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Abstract

Bayesian approaches have been successfully integrated into training deep neural
networks. One popular family is stochastic gradient Markov chain Monte Carlo meth-
ods (SG-MCMC), which have gained increasing interest due to their ability to handle
large datasets and the potential to avoid overfitting. Although standard SG-MCMC
methods have shown great performance in a variety of problems, they may be ineffi-
cient when the random variables in the target posterior densities have scale differences
or are highly correlated. In this work, we present an adaptive Hessian approximated
stochastic gradient MCMC method to incorporate local geometric information while
sampling from the posterior. The idea is to apply stochastic approximation (SA) to
sequentially update a preconditioning matrix at each iteration. The preconditioner
possesses second-order information and can guide the random walk of a sampler ef-
ficiently. Instead of computing and saving the full Hessian of the log posterior, we
use limited memory of the samples and their stochastic gradients to approximate the
inverse Hessian-vector multiplication in the updating formula. Moreover, by smoothly
optimizing the preconditioning matrix via SA, our proposed algorithm can asymptoti-
cally converge to the target distribution with a controllable bias under mild conditions.
To reduce the training and testing computational burden, we adopt a magnitude-based
weight pruning method to enforce the sparsity of the network. Our method is user-
friendly and demonstrates better learning results compared to standard SG-MCMC
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updating rules. The approximation of inverse Hessian alleviates storage and computa-
tional complexities for large dimensional models. Numerical experiments are performed
on several problems, including sampling from 2D correlated distribution, synthetic re-
gression problems, and learning the numerical solutions of heterogeneous elliptic PDE.
The numerical results demonstrate great improvement in both the convergence rate
and accuracy.

Keywords— Adaptive Bayesian method, deep learning, Hessian approximated stochastic
gradient MCMC, stochastic approximation, limited memory BFGS, highly correlated density

1 Introduction

Deep learning has gained increasing interest in many areas due to its performance when dealing
with large scale datasets. One important aspect of their successes in handling large datasets is
that they process a small batch of data at each iteration to estimate the gradient of a cost function
and update model parameters using gradient descent with a small step size. Bayesian approaches
consider uncertainty in model parameters and help to improve the robustness in model learning.
MCMC, as one of the most fashionable methods in Bayesian learning, is known for its asymptotic
properties. However, it usually requires computations using the whole dataset, which is not feasible
in large scale learning.

In recent years, many efforts have been made to bring Bayesian methods into the learning of
DNNs [1, 24, 12]. One of the most popular approaches is stochastic gradient Langevin dynamics
(SGLD) [24]. Tt is a stochastic gradient MCMC algorithm that originates from the discretization
of Langevin diffusion. Similar to stochastic gradient descent (SGD), SGLD using mini-batches to
approximate the gradients in the loss function. However, it injects a suitable amount of noise when
updating parameters so that the sample variance matches the posterior variance. Moreover, with
decreasing step sizes, it avoids the Metropolis-Hastings accept-reject step during sampling. It joins
the stochastic optimization algorithm which resembles SGD, with Langevin dynamics which injects
noise in the parameter updating formula. By injecting the right amount of noise, the method
ensures that the trajectory of parameters will converge to the true posterior, rather than the MAP
[24, 21, 5].

However, due to the complexity of DNN architecture, the model parameters may have compli-
cated posterior density functions [10, 14, 6]. When the parameters have different scales in different
directions, it may be inefficient if adopting a common step size. It becomes even more sophisticated
if the target densities are highly correlated. There have been a lot of methods in the optimization
community to overcome these difficulties and accelerate the gradient descent, such as precondition-
ing and stochastic Newton-type method [9, 26, 4, 3]. However, directly applying these methods to
SGLD will not produce a correct MCMC scheme [14, 20, 16] in general. As indicated in [25, 13, 16],
from another point of view, one can directly consider a Langevin diffusion on a Riemann manifold
which described the geometric structure for the probability model. To ensure the diffusion has an
invariant density, one needs to choose drift and volatility according to the Fokker—Planck equation,
thus resulting in an additional drift term I'. Several attempts have been made starting from the
discretization of Riemann Langevin dynamics, to incorporate the underlying geometry according
to the metric tensor in the sampling algorithm such that constant step size is adequate along with
all directions. These methods also replace the gradient of a cost function using estimation from
mini-batches as in SGLD. For example, stochastic gradient Riemann Langevin dynamics (SGRLD)
[18] incorporates local curvature information by adopting the expected Fisher information as its



metric tensor. However, the full second-order Fisher information is intractable to obtain in many
applications.

Preconditioned SGLD (PSGLD) is a computationally efficient method where a diagonal precon-
ditioning matrix is employed as the metric tensor. In [14], the authors adopt a diagonal precondi-
tioner where it is updated sequentially taking into account the current gradient and preconditioning
matrix in the previous time step. This type of preconditioner can handle scale differences in the
target density but may not be sufficient for highly correlated densities. Moreover, the correction
term I' needs the computation of third-order derivatives, and ignoring the term in the updating
equation will introduce a permanent bias on the MSE [14]. To tackle these issues, a Hessian ap-
proximated stochastic gradient MCMC method (HAMCMC) [20] is studied, and it uses the local
Hessian of the negative log posterior as an approximation to the full expected Fisher information.
Instead of computing and storing the Hessian matrix, the limited memory BFGS (L-BFGS) al-
gorithm [15, 4] is employed to approximate the product of inverse Hessian and gradient vectors.
The idea is to reduce the computation and storage burden while maintaining accuracy. In addi-
tion, the current parameter at time step t is updated based on the sample at the previous time
step t — M, and the approximated Hessian is computed using a history of samples at time steps
{t-—2M+1,--- ,t—M+1,t—M—1,--- ,t—1}. They claim that the correction term I" vanishes
due to this construction. However, when M is large, there will be a large gap between the two
samples in the updating formula. Additionally, the method requires a relatively larger memory size
2M — 2 compared to standard memory size M.

In this paper, we propose a stochastic Hessian approximated MCMC algorithm with the help
of stochastic approximation (SA) [2] to adaptively approximate the preconditioning matrix which
involves the Hessian information. SA methods are typically used for root-finding problems or opti-
mization problems in an iterative manner. It was first developed by Robbins and Monro [19], and
serves as a typical framework in adaptive algorithms and control of stochastic systems. Let H (3, 0)
be a random output function. To find the root of the mean field function h(0) = [ H(8,0)xr(B)dS,
instead of evaluating h(@) directly, SA adopts an adaptive method which resembles an online forms
expectation-maximization approach. In each iteration, it samples Br4+1 from a transition kernel
which has the invariant distribution 7(f3), and update the latent parameters 6 via the equation
of the form Og41 = Ok + wiy1H (Br+1,0k), with a suitable choice of sequences {wy} as the step
size. Through this iterative process, 0 will converge in Lo to the root of the target function h(0)
under mild conditions. The SA approach naturally fits in our training of a Bayesian model and
sequentially updates preconditioning matrices. Moreover, we apply an iterative pruning strategy
during the training to ensure the sparsity of the neural network. For simplicity, we use a magnitude-
based criterion to prune weights in some densely connected layers given a user-defined sparse rate.
The pruning technique not only behaves in a manner of greedy algorithms to remove redundant
connections in the over-parameterized network but also allows the rebirth of pruned important
connections to ensure robustness. Compared with HAMCMC, our proposed method (HAMCMC-
SA) requires fewer samples in the L-BFGS algorithm. We prove that the samples generated from
the proposed algorithm weakly converge to the true posterior with a controllable bias introduced
by stochastic approximation. The advantages of our proposed algorithm are (1) user-friendly: the
implementation is more straightforward, the parameter at time step t is updated based on the
sample at the previous time step ¢ — 1 and there is no gap in the updating formula, (2) efficient: it
requires less computation and memories, which is important in applications which require to run a
very large-scale computational model, (3) the bias introduced by the algorithm is controllable and
can be analyzed theoretically. Moreover, we adopt a magnitude-based weight pruning method to
enforce the sparsity of the network, which further reduces the training and testing computational



cost.

The plan of the paper is as follows. In Section 2, we review some backgrounds in Langevin dy-
namics, Riemann Langevin dynamics, and some stochastic gradient MCMC algorithms. In Section
3, our main algorithm is proposed. We first present a detailed online damped L-BFGS algorithm
which is used to approximate the inverse Hessian-vector product and discuss the properties of
the approximated inverse Hessian. Next, the adaptive Hessian approximated MCMC algorithm
with the stochastic approximation to the preconditioning matrix is presented. Its convergence is
discussed in Section 4. Applying the proposed method to a simple 2D Gaussian distribution, a
large-p-small-n regression problem, and to solve elliptic problems with varying source terms or
heterogeneous coefficients, we demonstrate the numerical examples in Section 5 and conclude in
Section 6.

2 Preliminary

First, we present backgrounds on SGLD, preconditioned SGLD, and Hessian approximated SGLD.

2.1 Langevin Dynamics and SGLD

Denote by B the model parameters in DNN. Let D = {d;}, be the training dataset, where
d; = (x;,y;) is an input-output pair. Let p(8) be a prior distribution, and p(d|8) be the likelihood
function. The posterior distribution is then p(8|D) o< p(8) [T, p(d:|B). The stochastic differential
equation (SDE) which yields an invariant distribution p(8|D)

dB(t) = VgL(B(t))dt +V2dW, (1)
where W; is a Brownian motion and
N
VsL(B) = Vglogp(B) + Y Vglogp(di|B)
i=1
The likelihood for regression problem can be rewritten as

) > (- Faf:B)?
:E?Gdk
p(dk|ﬂ,02) = W exp { —

202 }

where F denotes a model describing the input-output map between :vf’ and yf .

SGLD is a posterior Bayesian sampling method originates from the discretization of the SDE (1)
and combines the idea from stochastic gradient algorithms. The loss gradient can be approximated
efficiently using mini-batches, and the uncertainty in the model parameter can be captured in
Bayesian learning. The model parameters update as follows:

Bir1 = B + exVaL(By) + N(0, 26,77 ")

where ¢, is the learning rate and

- N
VeL(Bi) = Vglogp(B) + — > Vglogp(dii|B)
=1

is the stochastic gradient computed from a mini-batch d = {dp1,- - , dp, }-
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2.2 Reimann Langevin Dynamics and HAMCMC

Stochastic Gradient Riemann Langevin Dynamics (SGRLD) [18] is a generalization of SGLD on a
Riemannian manifold. If the components of the model parameter 8 possess different scales or are
highly correlated, the invariant probability distribution for the Langevin equation is not isotropic,
using standard Euclidian distance may lead to slow mixing. Given some metric tensor G~1(3), the
SDE defining the Langevin diffusion with stationary distribution p(8|D) on a Riemann manifold is

dB(t) = [G(B(1)VL(B(t)) + T(B(1)] dt +\/2G(B(t))dW; (2)

where I';(8) = 3_; %éfﬁ). We note that I'(8) corresponds to variations in local curvature on the
manifold and is equal to zero for a constant curvature. It is shown that, the invariant distribution
of the dynamics (2) is p(3|D) oc exp L(3), and it is unique if G=1(B) is positive definite [16].

In this case, the parameter updates can be guided using the geometric information of this

manifold:
Brpr = Bu+ & |G(BVBL(BY) + T(By)| + /267 G (By) (3)
where z ~ N(0,1).

A natural choice for metric tensor is the expected Fisher information matrix, however, it is in-
tractable in many cases. In [14], the authors introduce a diagonal preconditioner, which resembles
the preconditioning matrix in RMsProp, to reduce computational cost. However, it is effective to
handle the case when there are scale differences among model parameters, but may not be suffi-
cient to deal with strongly correlated target densities. A Hessian-approximated MCMC [20] method
(HAMCMC) was proposed to overcome this issue. The idea is to compute the local curvature of
the target density by approximating local Hessian information via quasi-newton approaches. In
particular, HAMCMC generates samples 3, based on B;_,s, where M > 2, and uses a history of
samples {Br._onri1s s Br_m—1:Br_nry1, - »Brp_1} to approximate inverse Hessian information
via limited BFGS. By this construction, the authors claim that the approximated Hessian is in-
dependent of the base-line sample B;,_,,, thus the correction term I'(8}) can be ignored without
introducing additional bias. However, if the memory size M is large, there will be a large gap
between two neighboring samples in the update rule. This may require a larger regularizer to
ensure positive definite L-BFGS approximations, which result in a preconditioning matrix close to
the identity matrix.

In this work, we adopt the stochastic approximation (SA) idea to iteratively update the ap-
proximated inverse Hessian. In each step, we sample 8, based on B;_;, and approximate G(B},)
using history samples {8y /41, - > Br_1}- Compared with HAMCMC, our proposed method
(HAMCMC-SA) requires fewer samples in the memory.

3 Main Method
3.1 The online damped L-BFGS algorithm

Now, we describe the online damped L-BFGS algorithm to approximate the local inverse Hessian
at each iteration. In this approach, the approximated inverse Hessian matrix does not need to be
computed or stored explicitly, but an approximation to the matrix-vector product is updated using
successive gradient vectors instead.

Suppose we have a history of samples {8;_7,1, - ,B1_1}, where M is the memory size. Let
sk = Bry1 — By be the increment in samples, and y = VgL(Bj 1,dr) — VgL(By, di) be the



differences between sample gradients. We remark that, although it may seem more natural to
compute y; = Vﬁi(ﬁkﬂ, dry1) — Vﬂi(ﬁk, dy) for the stochastic gradient variation, but this may
not guarantee convergence [17]. Here the stochastic gradients VgL (B, 1, dx) and VgL(B, dy,) are
evaluated with respect to the same set of samples dj, which refers to the online L-BFGS [17]. This
procedure helps to avoid additional differences between noisy gradient estimates and will only be
applied for determining the stochastic gradient variation in the approximation of inverse Hessian.

Another thing to mention is that, given an initial guess of Hessian approximation which is
positive definite. If the gradients are not stochastic, one usually use y;, directly in the approximation
of Hessian/inverse Hessian matrices. In this case, the curvature condition sfy; > 0 can be satisfied
via a line search and it is essential to ensure the positiveness of Hessian approximation after p
recursion steps. In our case, due to the stochasticity, the line search is not feasible. We apply a
stochastic damped BFGS method [22], modify yi to gk and justify sig, > 0. From there we can
see the Hessian approximation is positive definite (details are shown in Lemma 1).

Uk = Oy + (1 — 0r) sy, (4)
where ( ) .
1—r)s; s o T T
, if spyr < 7s Brosk
O = { st Byosk — St Br.ok F F
1, otherwise

where 0 < r < 11is a constant, By, is the initial guess of the Hessian at k-th step, 6y = 1 at the
initial step in the recursion process.
The approximation of Hessian employs the following updating formula:

;e T
Yi¥;  Bkisjsj Br,

Bit1 = Bri+ —p~ — (5)
’ ’ y;fpsj S?Bk,isj
where j = k — M + i, M denotes the memory size. The initial guess of the recursion is typically
= =T
chosen to be By ¢ = I, where v, = max{ yk?{’% ,0} and § > 0 is a given constant which is usually
SkYy

set to be 1. Denote by By be the final approximation of the Hessian, and Gj, = Bk_l. After M
recursions, we take By = By, pr.
For the online damped L-BFGS approximation to the inverse Hessian, we have

—T =T T

~ SiYs | ~ S5Y5 T 5585

Gryiv1 = (I — _TJ.)Gk,i(I - —T]A) —T], (6)
Yj Sj Y; Sj Y Sj

The initial guess of the recursion is ék,o =7 1.
As for the \/G}, == Sy, (G = SkST), with initial guess Sy = fyk_lI,

Ski+1 = (I = p;ja; ) Sk, (7)

— U (8)

For brevity, we denote by gr = VgL(8) from now on. The online damped L-BFGS algorithm

to compute ékgk and 4/ G’kzk use a two-loop recursion and is described in Algorithm 1. Using the
two-loop iteration is a standard approach in the L-BFGS algorithm [15]. The idea is that one would
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like to avoid saving/storing the entire Hessian matrix as in BFGS, but computing the matrix-vector
product through the two-loop iteration and only save the resulting product vectors. It represents
the (inverse) Hessian approximation implicitly and only has linear memory requirements. To be
specific, the detailed computation for the term Gjgy, is presented through line 1-line 4, line 10, and
line 12-14 in Algorithm 1. After recursion, the output ¢ is the final results for Gygi. Similarly, for
2 ~ N(0,1), Sgzx is computed through line 5-line 9, line 11, line 12 and line 15. The output 7 is
the final results for Sy z; after recursion.

Algorithm 1 Online damped L-BFGS

INPUT: g, 2 ~ N (0,1), M, By = I, Sko =1/ /%I, Gro =7 '1
OUTPUT: Gpugr =& Spwzr =1

1: w < gi
2: for all i<« k:min{k — M + 1,0} do
SITU/‘
3: o, < _T
Yi i _
4: W W — O4Y;
5. ay < Brosine1, Thv; = BroSk—m4j, j=1,---, M
6: for all 1< 2:k do
7: for all j<«+i:kdo
_ T
Yi—15; ;185
8: Tij+ Tim1j+ 7—2Vi-1 — —0i
Si—1Yi-1 Si_10i—1

9: a; < Tli,i

10: £ < CNJ;‘,ow

11: 7 < Sk’gzk

12: for all i < min{k — M + 1,0} : k do
T

13: B '(,"‘
Yi Si

yin

T
a; 1
40 = = =5i — i
\/ Si Yin/ @; Si Si Yi

15:

Lemma 1. Let y; be defined in (4), if By, and Gk,i are positive definite, then By ;11 and ék,z‘+1
generated by (5) and (6) are both positive definite.

Proof. By (4), we can easily obtain

T_ rsTBk’Osj, if sTyj < rsTBkyosj
_ J J J
Sj y] - T .

85 Y otherwise

Thus, s?gj > rs?Bk7osj > 0 since By, is positive definite. By positive definiteness of CNT’/“-, for
any nonzero vector x € R%, we have
XTGJW'X >0



Then it’s easy to see

T A T SiU; |~ Si¥; \r I 7. 7
X' Griix =x ([ — =-)Gpi(l — =) X+ —5—X 8j8; X
Yj i Yj i Yj 5
= zTGk,iz + = (s;‘-Fx)2 >0
Y5 S5
Sjng T = . o . .
where z = (I — —=—)" x. Thus, Gy ;11 is positive definite, so is By, ;1.

Y; Sy
O

In the following, the notation P < ) means ) — P is positive semidefinite for two matrices P
and Q.

Assumption 1. There exists a constant A < 0o such that the Hessian H(8) = V2L(B) satisfies
H(B) =X A for any B.

Lemma 2. The eigenvalues of Hessian approximation By, generated from iteration (5) with By =
eI are uniformly bounded,
al = B < Al

- M
where A =d(5 + A) + 2L (‘%2 +(0+A)+ 2A) and a = ﬁ (%) MM " and d is the size of the

matriz, M is the number of recursions in online L-BFGS updates.

Proof. Take trace of the matrix in both hands of the equation (5), we have

1

- t1(Bp.s.s'Bu . 9
S?Blm‘sj 1“( k,iS55; k’,z) ( )

1 _
tr(Bgi+1) = tr(Bg;) + Ttr(yjyf)
Y; Sy

By the properties of trace of a matrix, the above equation can be simplified as

=T 2 7T
Y Yy Bk;S‘ Y5 Yj
tr(Bp,it1) = tr(By,;) + 25— — HTBZ il < tr(Bpy) + ==
yj Sj Sj kﬂ'sj yj Sj
B s |2
since M > 0 by the positive definiteness of By ;.
§j Pk,iSj
v Ui
Now we derive a bound for _]T ! Since Byo =1,

Y5 Sy

+(1—6;) % +

Ui 95 16555+ (1 —6;)Brosl” _ 1 (6l
r [Is511?

20;(1 — 0;) Y] s;
=T T 2 (10)
Yj sj rsj Bros; Vells;ll

Denote by H = fol H(Br + 7(Brs1 — Br))dr the mean of Hessian in the segment [By, Bpr1], H < AL
Due to the fact

OVL(Br + 7(Brs1 — Br))
or

= (Bry1 — Br)H(Br + 7(Bry1 — Br)), (11)

we have

[ s — B+ (Brs — 8007 = VEBhr) ~ VI, (12)
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by integrating (11) over [0,1] in both sides of the equation. One can see from (12) that Hs; = ys.

Thus, the first term and third term in (10) can be bounded as follows

2 2 7
BllyllP _ sl _ 42
Wellssl1* ~ yells; |~ 6

(1 — 0\ s Ty .
20;(1 = 0;)y; s; < oS Hs;

1511 — llssll?

<24

since 0 < §; < 1, and § <y, < 0 + A. Plug these estimates in (10), we get

T 2
SRE E <A+(5+A)+2A>
yis; r\ 46
7 °J
Then (9) can be bounded as
1 [ A?
tr(Bp,i+1) < tr(Bg,i) + S\t (6+A)+24
M [ A?
< tr(ka) + 7 (5 + (5 + A) + 2A>
M [ A?
Sd((S—I—A)-FT <5+(6+A)+2A>

where d is the size of matrix By, M is the number of recursions.

Since By, ;11 is positive definite, and tr(By ;+1) is the sum of all eigenvalues of By, ;1 1, the largest

eigenvalue fimax of By ;41 satisfies

2

M [A N
umaxéd(5+A)+T<5+(6+A)+2A> =A

Thus the largest eigenvalue of By, ;11 is no greater than A.
On the other hand,

B*.l’-*T (B 5. T
det(Bk’i+1) = det(Bk7z)det <I + k_,zTy]y] . S](T k,zsj) >
Y % 5j Br.isj

The second term in the right hand side of (13) is equivalent to

B 5iit  s;(Bras;)T
det 1+ —ks9% 5 BRisi) ) _ g P14 ) — () (wdus)
Y; Sj S5 By isj
Biis; 1 Uj
where u1 = —s;, uo = —=——, uz = B, y;, U4 = ——.
J S?Bk,z\sj ’ ki y]TSj
T
It is easy to check that ufus = —1, uf'uy = —1, ud uz = STSé:JJ_S,, thus (13) implies
j Phii®s
det(By.is1) = det(By, A)ﬂ > det(By )M — det(By.) 2
i+ ) S?Bk,isj fel ) AH3jH2 K A

since szgjj > rs;-FBk,osj > 7| |s;]|? and szBkyisj < Allsjl>.

9



By induction and using the fact that det(By ) = v{, we have

det(By 1) > det(Byo) (m’“>M > (T>M7d+M > (T)M&”M
kyitl) = ko) =3 po2 7

Since any eigenvalue of By, ;41 is no greater than fl, and det(By ;+1) is equal to the product of all
eigenvalues, we have that for any specific eigenvalue p; of By ;11

M
i = Adll (2) §HM =g

Thus, we have

Furthermore,

O]

3.2 Adaptive Hessian-approximated SG-MCMC with iterative prun-
ing

The adaptive Hessian-approximated stochastic gradient MCMC with iterative pruning is a mixture
of optimization and sample algorithm, where the model parameters are sampled from (3), and the
preconditioning matrix G(8) is optimized iteratively.

The idea is to obtain the optimal G, based on the asymptotically correct distribution m(3)
through stochastic approximation. We aim to get an estimate G, which solves the fixed point

equation / 9c(B)m(B)dB = G, where gg(-) denotes some mapping to derive the optimal G given

current (.

Define the random output H(8,G) = ga(B) —G and its mean field function h(G) = E[H (B, G)].
In our approach, we approximate g (/) using the damped online L-BFGS as described in Algorithm
1. This will result in a bias 6(M,n, €x) at each step which includes the error introduced by using
stochastic gradients, and the error introduced by using a limited memory instead of full memory.
Here M is the memory size, n is the number of samples in a mini-batch. That is, we use

H(B,G)=H(B,G)+ 6(M,n,e;), (14)

where we assume E||§(M, n, ¢,)||> < CZ.
After sampling 3, using (3) with approximated preconditioning matrix Gy, one can then
update Gi41 from the following recursion:

Gri1 = Gi + wit1H(Bri1, Gr)- (15)

In summary, the adaptive empirical Bayesian algorithm samples 8 and optimize G(3) as in
Algorithm 2.

4 Convergence analysis

In this section, we will discuss the convergence of stochastic approximation and the proposed
algorithm.
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Algorithm 2 HAMCMC-SA
INPUT: [Initialize 8, M, p, Gy =1, 7
1: for all k<« 1: #iterations do
2 g(Bi) < VpL(:|dy)
G, Gri—1, Suzk, Skze_1 from Algorithm 1
Grgr < (1 — wi)Gro19x + wWiGrgx
Skzk <— (1 — wk>Sk,12k + wkSka
&k < Grgr/||Grgell
Mk < Sz /|| Skzkl|
Bri1 < Br + e + \/QEkjm
10: if Pruning then
11: Prune the bottom -p% weights with the lowest magnitude
12: Increase the sparse rate

4.1 Convergence of stochastic approximation of preconditioning
matrix

Denote by G vectorization of a matrix G, we first state the following stability lemma.

Lemma 3. The mean field function h(G) satisfies YG € R where d is the dimension of B3,
<h(b),é — G.,) < —||G = G.|[2, where || - || denotes ly norm. The mean field system % = h(b) is
stable and G, is the asymptotically stable equilibrium.

Proof. Since H(B,G) = ga(B) — G, the mean field function h(G) is

hG) = [ (96(8) - G)e(B)AB = G. - G

Then, .
(h(G),G =Gy = —||G = G| < |G = G. P

—

Consider the positive definite Lyapunov function V(G) = %HG; — GJ]?, it’s easy to see that

(VV, %§> = (G -G,,G, - G) = —||G - G.||? < 0, which completes the proof.
O

Assumption 2. The step size {wy} satisfies

[e.9] o0
Zwk:—i—oo, Zw,%<+oo
k=1

k=1
N Wk WEg+1 — Wk
lim infy_, o2 4+ 2B 5 >0
WE+1 Wi+t1

In practice, one can choose wy = ci(k + ¢c2)™ for a € (0, 1]) and constants c1, ca.

Lemma 4. There exists Q > 0, such that sup E||Gy||> < Q2.

11



Proof. From Lemma 2, we have
i
A

We will prove by induction. For k = 0, E||Gy||* < 1 := Q. Assume we have E[|Gy||> < @, then

()

B

IS N

El|Grs1ll* = El|(1 — wi)Gr + wpGria?

< (1 —wp)’El|Gyl[* +2(1 - Wk)wk\/EHGkHQEHGk-HHQ + WRE||Grya |
1 1
< (1—wp)’Q* +2(1 - wiJwr\[ @%(2)* + W2(5)2 < Q.
This completes the proof. ]

Assumption 3. For all G € O, there exists a function puc(B) that solves the Poisson equation
ua(B) —Ueug(B) = H(G, B) — h(G). There exists a constant C such that

Elllgua(B)l| < C
E|[Heuc(B) — e (Bl < ClIG = G|

Here || - || denote the Frobenius norm.

Lemma 5. There exists a constant Qo > 0 such that

1H(B,G)|* < Qa1 + |Gy — G-l P?) (16)
Proof.
1H (B, G)II” < 2[lga(B)II” + 2/|Gkl[* < 2(%)2 +2[|Gi|]? < CL1 +[|GP) < C1(1 +||Gr — G?).
Then

(B, = |H(B,G) + 8(M,n, e)|* < 2/[H (B, G)I|* + 2/|8(M, 1, ex) |
< 201(1 + |Gy = Gul?) + 265 < Qa(1 + |Gy — G.|P)

where Qo = 20, + 2C§. O

Lemma 6. Let ky be an integer which satisfies

. We4+1 — Wk
inf =% 492 Qupiq >0
k>ko  wWrWiy1

Then Yk > kg, the sequence {Af}kK:ko is increasing, where

K-1
AR 20p [ (1= 2wi1 + Quityy), k<K

= it
2w, ifk> K

Lemma 7. There exists N\g and ko such that YA > Ao and Yk > ko, the sequence {1y }re, with
Y = Awg + 2Q sup A\; satisfies

1>ko

U1 2 (1= 2041 + Qi) + 14CQWE 1 + 4Q 0 w41 (17)

12



Proof. Plug in 9, = Awg, + 2Q sup A; in equation (17), it’s equivalent to
i>ko

(Awpt1 +2Q sup ;) > (1 — 2wpy1 + Qwiy 1) Awk + 2Q sup ;) + 14CQuwi 1 + 4Q A kwi11

1>ko i>ko

Rearranging terms, we need to show

Awis1 — Wi + 2wpwia1 — Quirwiyy) > (—2wit1 + Qi) (2Q Sup N) + 140Quip 1 + 4Q A gy
12 K0

Using the fact that Ay — sup, >, & <0, it is suffices to show that

MC3 — Qui)wiyy 2 wig1 (Cs + 2Q° sup L)

i>ko
. Wk W41 — Wk 2 .
where C3 = liminfy_,,,2 + 5 , Cy = 14CQ*. By choosing )y and kg such that
Wk+1 Wi+1
C 4Q?% sup;;,. N\ + 2C
Wiy < %, and \g = @ uPZZé? ‘ 4, the desired inequality (17) holds.
3

O]

Theorem 1. Suppose Assumptions 1-3 hold, the sequence {Gy,k =1,--- ,00} converge to G, and
there exist a sufficiently large ko such that

E[|Gk — Gul* = O\wy, + sup El|6(M,n, €)|])
1Z2R0

Proof. Denote by Ey = G — G, we have

Bl * = ||Ekl)* + iyt [ H (Brt1, Gi)l|* + 2wi1E(Ex, H(Br41, Gr)) (18)

For the third term in (18), we have

<Ek,f~[(ﬂk+1,Gk)> Ek,H(,Bk+1,Gk) +5(M, n, ék)>

<
< (Er, MGy) + pey (Brr1) — ey v, (Brr1) +6(M,n, e))

<
+ (B, e, Gy, (Br) — g pe, (Brg1)) + [1E[l[[0(M, n, e)]]

= —||Ep|* + (1) + (I1) + (I1D) + || Ex[| A,

—|Ekl* + (Ek, iy (Bri1) — U tic, (Br)) + (B, ey pic, (Br) — Uey s iy, (Bi))

where we use Lemma 3, Assumption 3, and Cauchy-Schwarz in the second last step, and ||0(M, n, €)|| =

Ay

For (I), we have E[uq, (Br11) — e, 1y (Br)|Fr] = 0, where Fy, is a o-filter formed by {Go, 81, G1, -

For (IT), by Assumption 3
E(By, Ug,pc, (Br) — e, 1y, (Br)) < ClIEK|IIGr — Graa]] £ 4CQ%wy < 50Q%wir1,  (19)

where we use the fact that |Gy — Gr_1|| = ||wrH (Br, Gr_1)|| < 2Quwg, and the last inequality in
(19) use the assumption on the step size for a sufficient large number k.
For (III), by Assumption 3

(B, Mg, e (Br) — Haytiay (Bry1)) = 26 — 2es1 + (Erg1 — By, Ua gy (Bry))
< 2k = 241 + Ol Brr1 — Bil| = 2k — 2141 + C||Grp1 — Gil| < 21 — 241 + 2CQup 1

13
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where zj, = (Ek‘a Hkalﬂck—l(/Bk»? Rk+1 = <Ek?+1v Hlequ (ﬂk+1)>
Thus,

El|Bpnl]* < (1= 2wt + Qi) BN EBil® + 140Qui 1 + 4Q 0wk 11 + 2w 1 B2y, — 2141])
According to Lemma 7, there exists Ao, ko such that

E|| Bk l1* < thro = Aowk, + 2Q sup A,
i>ko

Thus,

k
E||Exll* < or+E[ D Af(zj401 — 2)] (20)
j=ko+1

From Assumption 3 and Lemma 4, we have

E{|zx]] = E [| (B, o,y 161 (B1))]] < EIEE [|Ho,_ ., (81| <200

By Lemma 6,
k k—1
E Z A;?(ZJ’H —z)|| =E Z (A§+1 - A?)Zj + Aioﬂ% — Afzk
j=ko+1 j=ko+1

< (A = Afy41)2QC + 8QCwy < 12QCuwy,
Then the inequality (20) can be further bounded as

E||Ex| > < Aowr + 2Q sup A; + 12QCwy,
i>ko

= Awi + 2Q sup A
i>ko

where A = Ay + 12QC. O
4.2 Weak convergence of model parameters

Given a metric tensor G(8(t)) on the manifold, the Langevin diffusion is characterized by

dB(t) = G(B(1) [VaL(B()) + T(B(E)] + G2 (B(t)dB: (21)

where B; is the standard Brownian motion.
Let £ be the generator for (21), for any function f which is compactly supported and twice
differentiable,

£HA®) = (GIBO) [VAL(BH) + T(BO)]- Vo + 5GHBIGH A VaV5 ) FBO) (22

where - denote the vector dot product, and : denote the matrix double dot product, and generator
L is associated with the backward Kolmogorov equation

E[f(B(1)] = e (Bo)

14



In our work, we define the true generator using G, as
1
L. =G.VgL(B(t) - Vg + 5Gu : VsVh (23)

Given a test function ¢ of interest, let ¢ be the posterior average of ¢ under the invariant measure
of the associate SDE of (23). Let 8, be numerical samples, and define ¢ = Y5 | 5=0(By), where

Sk = Zszl €x. Let ¥ be a functional which solves the following Poisson equation

L(BL) = ¢(Br) — ¢.

The solution functional characterize the difference between the posterior average and ¢(8;,) for
every f3;. The assumption of ¢ is described as follows, which is the same as in [5].

Assumption 4. The functional 3, and its derivatives DI+ (j =1,2,3), are bounded by a function
V. That is ||DI|| < C;VPi(j = 0,1,2,3), for some positive constants C; and pj. Furthermore, V
satisfies sup, E(V(B},)) < 0o, and is smooth such that

g%pl) VP (sB+(1—=s)y) <COVP(B)+VP(v))

, VB,v, and p < max{2p;}, C > 0.
Next, we write the local integrator of our proposed method £; as
L= G(8,) (VoL(81) Vs + 3G(8,) : VsV (24)
Then Ly, = Ly + AV}, with
AVi = (G(By) — G.) VaL(B) - Vs + (C(By) — G) & - Vg + 5tr [(G(8,) — G) V)

where &, is the stochastic noise which comes from VgL(8;) — VgL(B}).
We now state the estimates for the bias and MSE.

Theorem 2. Under Assumptions 4, the bias and MSE of HAMCMC-SA for K steps with decreasing
step size €, is bounded,

Bias: |]Eg§ — ¢ = ( + Z )\wkek Z —|— 2Q) sup A\ )

i>ko

Proof. Following a similar proof as in [5], one can obtain the following:

K— K
6= 0= 5 (BU(BL) ~ b(Bo) + 5 Z ED(81) = (30) = 3 AV By D+OE @)

Taking expectation on both sides of (25),

P 1 K €k K e%
[E6— 9] < g Elw(Bx) — v(8)| + k; 5, [EIAViG (Bl +C k; 5 (26)
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For the third term in the above equation,

E [AVi(Br—1)] | (27)
<[E((G(Br) — G+) VBE(By), Vb (By-1))| + %HG(/Bk) — G[[IEAD (B4l (28)

where we use the fact that VgL(8;) is an unbiased estimator of VgL(8}), and tr(AB) = ||AB||r <
[|A||F||Al|F where || - || is the Frobenius norm and is abbreviate for || - ||.
According to Assumption 4, we have derivatives ¥ (8;_;) are bounded,

((G(By) — Gx) VL(B), Vb (Bi_1)) < ClIG(By) — G|

for some positive constant C, since VgL(},) is also bounded.
By Theorem 1, (27) can be further bounded

B [AViv(8e )] | < CE|[G(B) — Gul| € Clws +2Qsup 4

Thus,

K k‘zl K 7,>k() kz].

where wy = O(k™%). As K — oo, )E<§ — q_ﬁ‘ — 2Q sup;>y, Ai, which is a controllable bias.
As for the MSE, we following a similar proof as in [5], as long as sup; E||AViy(B_1)||? is
A2
bounded, which is obvious, we have as K — oo, E (gb - g{)) — 0.

5 Numerical examples

In the last section, we will perform several numerical tests using the proposed algorithm.

5.1 2D correlated distribution
We first consider a synthetic 2D correlated distribution as shown in [16] for illustration. The density
function for the 2D correlated distribution is

B (4(B2+1.2) — B2)°
10 2 '

In such a case, the two random variables are highly correlated and the probability distribution
of (81, P2) can be easily visualized. We compare the sampling efficiency of the proposed method
HAMCMC-SA with vanilla SGLD and HAMCMC. The learning rate are chosen to be set to be
n = 0.06,0.04, 0.06 for HAMCMC-SA with SGLD and HAMCMC, respectively. The memory size in
L-BFGS is chosen to be M = 3 for HAMCMC-SA and HAMCMC. The decay rate in the stochastic

2
approximation of Hessian for HAMCMC-SA is wy =

W The inverse temperature 7 = 1.
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We remark that, in the implementation of HAMCMC, we adopt the idea of approximating inverse
Hessian using memory vectors at time steps {t —2M +1,--- ;t— M +1,t— M —1,--- ;t—1} and
updating the current parameter based on the sample at the time step ¢ — M, without using the
other tricks introduced in [20]. The choices of hyperparameters are consistent in our examples when
employing HAMCMC and HAMCMC-SA methods. In Figure 1, we show the sampling trajectories
using three methods. The contour of the true posterior is shown in the background. It shows that
HAMCMC-SA can explore the posterior better compared to SGLD and HAMCMC.

- SGLD HAMCMC - HAMCMC-SA
05 05 05 "

NN -~ HAMCMC-SA
05 ;:. .
of ¥e

LN

(¢) Number of samples: 500

Figure 1: 2D correlated distribution, sample trajectory.

5.2 Small n large p problem

We then test on a linear regression problem with n observations and p model parameters, where
n << p. Let the model parameters be 8 € RP, 31 = 3,82, = 1,3; =0, for j = 3,--- ,p. Denote by
X € R"*P the predictors, which is generated from N, (0, X) with ¥;; = 0.81/1=3l, The responses y =
XB +¢, and € ~ N, (0,31,). Due to the error in the observations of y, the originally deterministic
parameter B results in stochasticity. With our choice of X, the posterior distribution are correlated
to demonstrate the performance of the proposed algorithm. In this example, we take n = 100 and
p = 200. We compare the performance of SGLD, HAMCMC and HAMCMC-SA and present
them in Figure 2. We remark that, in this example, we assume the model parameter 3; follows a
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spike and slab Gaussian-Laplace prior in order to perform sparse inference. That is, Bj|02,7j ~
YN (0, 0%v1) + (1 — ;) £(0, ovp), where ; = {0,1}. Similar as in [11], the hyper-parameters priors
are o ~ IG(v/2,v\/2), ©(v;]6;) = 5}%'(1 — §;)Pi~ il and 7 (8;) = 5;-’_1(1 — ;)01 The priors will
be learned through optimization. We choose v = 1, A\ = 1,v; = 100,v9 = 0.1,0 = 0.5,a = 1,b = p,
and the step size for updating hyper-parameters in the priors and Hessian approximation is wy =
2 x (50 + k)~%7. The inverse temperature 7 = 1. The learning rates are chosen to be n = 0.1
for HAMCMC and HAMCMC-SA, and = 0.001 for SGLD. The learning rates are different such
that the gradients in three method have different magnitude. In our experiments, larger learning
rate for SGLD will not lead to convergence. The comparison of posterior mean B and true @ is
shown in the left subplot of Figure 2. It shows that HAMCMC-SA identifies the model parameters
better. Moreover, for testing purposes, we generate 50 new samples, and use the estimated posterior
mean in each step to perform a prediction. Then we compute the mean MSE and MAE error of
the predicted responses with true responses among these testing samples, and show the results in
Figure 2. We observe that HAMCMC-SA has consistently smaller errors during this process.

4
o
N
o

—SGLD
—HAMCMC
— HAMCMC-SA

—SGLD
—HAMCMC
—HAMCMC-SA

® SGLD
o HAMCMC
>l| ® HAMCMC-SA

©

©

N

(2}

5

—_
&)

0 true
MSE for test samples, (in percentage’
~
MAE for test samples, (in percentage

0 1 2 3 500 1000 500 1000
[ estimation epochs (thininning = 100) epochs (thininning = 100)

o
o

Figure 2: A comparison between three methods for large-p-small-n problem.

5.3 Solutions of Elliptic PDE

Next, we apply the proposed approaches to predict solutions the elliptic problem with heterogeneous
permeability fields. The mixed formulation of the elliptic problem reads:
klu+Vp=0 in Q
div(u) = f in Q
where k represents permeability, f is the source. The domain{2 = [0, 1] x [0, 1], and the boundary
consists of 92 = 'y UT'p. Raviart-Thomas element RTy and piecewise constant element Py pairs

are chosen to solve the linear system, and the solution vectors will be used as training labels. The
mixed finite element system on the fine grid has the matrix form

An BE| |un| | Dy

B, 0| |pn| |-F
where where [Az]ij = [o 67" - ;, and [Bylij = — [ Qpy divep;, where 1; is the velocity basis on
the i-th fine scale edge, pi is the pressure basis on the k-th fine scale block.
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It is well known that the multiscale properties of the permeability fields require very fine-scale
meshes to recover all scale information. Numerous methods have been proposed to develop reduced-
order models to alleviate the computational burden. A popular class of approaches among these
includes the mixed multiscale finite element method [7, 8]. The idea is to construct a multiscale
velocity basis by solving some local problems on each coarse region and couple them with a mixed
formulation. If the underlying permeability has rich information, several multiscale bases are needed
to capture these features to provide an accurate approximation. The mixed FEM formulation on
the coarse grid level preserves mass conservative property which is essential for flow problems.

To be specific, denote by Nf be dimension of the multiscale velocity solution space, and let
R, € RN« XNi he the matrix with these velocity basis in every row, where N/ is the dimension of
fine scale velocity solution space. Similarly, denote by R, the matrix containing piecewise constant

. . . . h
basis on coarse grid level which maps fine scale pressure vector in R™» to coarse scale pressure
. H . . .
vector in RY> . The mixed formulation on the coarse grid reads

Ay BE| lug| |R. 0| |An(s) BI||RL 0| |ug| | O
By 0 ||pu| |0 R, | By 0 0 RT||pu| |—Fu

R, O . L
One can observe that [ 0" R ] performs an upscaling procedure which is analogy to an encoder,
P
RT
and O“ RT acts as downscaling matrix which can be viewed as a decoder.
P

After one obtains the coarse-scale solution vector uy from the above system, the multiscale
solution upys can be recovered using upys = Zf\g (up);¥;, where (ug); is the i-th component in
ug, and ¥; is the i-th column in RI. To obtain an accurate approximation ums to uy, it is crucial
to design good local problems and basis selecting algorithms that are used for solving multiscale
bases. Moreover, many practical applications need to solve the flow problem with (1) varying source
terms or boundary conditions, given a fixed permeability field, or (2) different permeability fields.
In the second case, the multiscale basis needs to be reconstructed every time providing a new k.
To avoid these technical difficulties, we aim to borrow the upscaling-downscaling idea from coarse
grid solvers and construct an encoding-decoding type of neural network [23] as surrogate models
(1) between the source term f and fine grid velocity solution uy, (2) between the permeability fields
x and fine grid velocity solution uy. We refer to [23] for the details of the network architecture.

5.3.1 Varying source term

we first consider the case when f are different among samples, but the x is a fixed permeability
field from SPE10 model. We use a three-spot source term, where the three blocks with nonzero
source lie in the center w. € €1, the upper right corner w,, € €2 and lower left corner wy € 2 of the
computational domain. The values of the source is set to be

f1 ~N(10,5), if z € wyp
fa ~N(10,5), ifxe€wy
—(f1+ f2), if z € we
0 otherwise

fz) =

An illustration of the permeability field, source term and corresponding velocity solution is
shown in Figure 3.
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log permeability source velocity x velocity y

Figure 3: From left to right: The permeability field of SPE10 model (in log scale); A three-
spot source; Velocity solution magnitude in x direction; Velocity solution magnitude in y
direction.

We simulate 1500 different source terms and use the source-velocity pairs to train the neural
network F, where F(f) ~ u. 80% of the samples are randomly selected to train the network and
the rest 20% will be used for testing. The learning rate is set to be 0.01. The inverse temperature
7 = 10000. The batch size is set to be r1 00. The decay rate in the stochastic approximation of
Hessian for HAMCMC-SA is wy = ————— .
(1000 + k)99
first layer is an average pooling layer with pool size 2 x 2, a flatten layer is followed to transform the
image into its vector version, then a fully connected layer with 100 neurons is adopted. This part
of the network encodes the input and is in analogy to upscaling. Then we reshape this intermediate
output to square images, use another two convolution layers, a flatten layer, and a fully connected
layer with 200 neurons to extract more hidden features. Finally, a dense layer is used to decode
the features. The network has 2, 566, 828 weight parameters in total.

We use the relative [y error in the loss function

[[u; — F(fi)ll2
il |2

The architecture of the network is as follows. The

[lui = F(fi)ll =

where u; is the true velocity solution obtained from mixed FEM solver, F( f;) is the neural network
prediction for the i-th sample. The mean errors for testing are shown in Table 1. We see that with
1 or 2 memory size, HAMCMC-SA gives smaller errors consistently compared with vanilla SGLD.
A few sample comparisons are shown in Figure 4. We remark that these are some bad predictions
in the testing set, for other sample predictions, the errors are small and the discrepancies cannot
be visualized obviously. We observe that, SGLD predictions lose some features compared with true
solution, while HAMCMC-SA captures the heterogeneities in the solution well.

SGLD | HAMCMC-SA (M=1) | HAMCMC-SA (M=2)
No pruning 2.03 0.45 0.42
Pruning Sparse rate 30% | 1.38 0.37 0.34
Pruning Sparse rate 50% | 1.25 0.29 0.27
Pruning Sparse rate 70% | 1.26 0.30 0.27

Table 1: Mean errors (in percentage) for 300 testing samples among the true and predicted
solutions using proposed HAMCMC-SA with memory size M =1, M = 2, and SGLD.
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Figure 4: Varying source term: comparison between true and predicted solution
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5.3.2 Varying heterogeneous coefficients

In this section, we consider the case when heterogeneous coefficients vary and let f = 1 be a
constant source term. The boundary conditions are u -n = 0 on the top and bottom sides of the
square domain, p = 1 on the left boundary, and p = 0 on the right boundary.

k can be obtained using Karhunen-Loeve expansion as follows:

p
k(w5 ) = Ko+ Yy /&P ()
=1

where kg is a constant which is the mean of the random field. Moreover, random variables j1; are
drawn from iid N(0,1). (\/&,®;(z)) are the eigen-pairs obtained from a Gaussian covariance
kernel:
|z — 25 Jyi — yj|2)

12 2

€z Y

COV(IEi, Yiy Tj, yj) = O'eXp(*

where we choose [l,,ly] =[0.2,0.3], 0 = 2 and p = 64 in our example.

The training and testing data for deep learning can be generated by solving the equations with
MFEM for various permeability fields. An illustrations of the permeability fields for p = 32,64, 128
and corresponding their corresponding solutions are presented in 5. We can see that when p becomes
larger, the velocity solutions exhibit many more scale features.

23 "
22 0.4
-19.5
o1 02

-20 ' |
120 0
1. -20.5 -0.2
19
’ @ >
18
. 06
215 &

permeability velocity x velocity y

Figure 5: Hlustrations of the permeability fields when using 64 terms in KLE expansion and
corresponding solutions. From left to right: Permeability, horizontal velocity magnitude,
and vertical velocity magnitude.

We generate 1, 500 samples pairs (£, u}l), and randomly pick 1, 300 of them for training, and take
the rest for testing. In this example, we choose the learning rate to be 0.01. The inverse temperature
= 50000. The batch size is set to be 100. The decay rate in the stochastic approximation of

-
Hessian for HAMCMC-SA is wy, =

9
output velocity solution vector is 5,100. The network consists of 2 convolution layers with kernel
size 3 x 3, and 64 and 32 channels, respectively. Then, an average pooling layer with pool size 2 x 2
is followed by a flatten layer and then a dense layer with 100 neurons. This part of the network can
be viewed as an encoder. Then, a reshaping layer, another two convolution layers, a flatten layer,
and a fully connected layer with 800 neurons are used to mimic the coarse grid solver. Finally, a
fully connected layer is used as a decoder. The total number of parameters is 8,252, and 320.

The numerical results using SGLD and HAMCMC-SA are presented in Table 2. As an illustra-
tion, predictions of two samples are presented in Figure 6. The predictions obtained from vanilla
SGLD are not reliable, and HAMCMC-SA produces much better results.

The size of an input permeability is 50 x 50, an

22



HAMCMC-SA | HAMCMC-SA
SGLD (M=1) (M=2)
No pruning 3.07 2.72 1.68
Pruning Sparse rate 30% | 3.04 0.85 0.78
Pruning Sparse rate 50% | 3.06 1.21 0.88

Table 2: Mean errors among 300 testing samples between the true and predicted solutions

using proposed HAMCMC-SA and SGLD.

6 Conclusion

In this work, we proposed an adaptive Hessian approximated stochastic gradient MCMC method
where the parameters are sampled from a posterior lying on a Riemannian manifold. The precondi-
tioning matrix contains the geometric information of the underlying density function and is updated
via stochastic approximation in each iteration. It includes an approximation to the inverse Hessian
which can be efficiently computed using a limited memory BFGS algorithm. We provide an analysis
of the convergence of the proposed method and show that there is a controllable bias introduced
by the stochastic approximation. The bias term is generated due to the use of mini-batch when
estimating the gradients, and the memory size which is used to approximate the inverse Hessian.
It is expected to decrease if the batch size and the memory size are increased and if the step size
in stochastic approximation and learning rate is decreased. In practice, our proposed algorithm
achieves faster convergence and provides accurate predictions. In the future, we will explore the
applications of our proposed method to sparse deep learning.

Acknowledgement

We gratefully acknowledge the support from the National Science Foundation (DMS-1555072,
DMS-1736364, CMMI-1634832, and CMMI-1560834), Brookhaven National Laboratory Subcon-
tract 382247, ARO/MURI grant W911NF-15-1-0562 and Department of Energy DE-SC0021142.

References

. AHN, A. KORATTIKARA, AND M. WELLING, Bayesian posterior sampling via stochastic
1] S. A A K M. W B ] teri li ja stochasti
gradient fisher scoring, arXiv preprint arXiv:1206.6380, (2012).

[2] A. BENVENISTE, M. METIVIER, AND P. PRIOURET, Adaptive algorithms and stochastic ap-
prozimations, vol. 22, Springer Science & Business Media, 2012.

[3] A. BorDES, L. BorTOoU, AND P. GALLINARI, Sgd-gqn: Careful quasi-newton stochastic gra-
dient descent, Journal of Machine Learning Research, 10 (2009), pp. 1737-1754.

[4] R. H. BYRD, S. L. HANSEN, J. NOCEDAL, AND Y. SINGER, A stochastic quasi-newton method
for large-scale optimization, STAM Journal on Optimization, 26 (2016), pp. 1008-1031.

[5] C. CHEN, N. DING, AND L. CARIN, On the convergence of stochastic gradient mcme algo-
rithms with high-order integrators., In Advances in Neural Information Processing Systems,

(2015), pp. 2278-2286.

23



[6]

[14]

[15]

[16]

[17]

[18]

T. CHEN, E. Fox, AND C. GUESTRIN, Stochastic gradient hamiltonian monte carlo, in Inter-
national conference on machine learning, 2014, pp. 1683-1691.

Z. CHEN AND T. Hou, A mized multiscale finite element method for elliptic problems with
oscillating coefficients, Mathematics of Computation, 72 (2002), pp. 541-576.

E. CHUNG, Y. EFENDIEV, AND C. LEE, Mixed generalized multiscale finite element methods
and applications, SIAM Multicale Model. Simul., 13 (2014), pp. 338-366.

Y. DaupHIN, H. DE VRIES, AND Y. BENGIO, Fquilibrated adaptive learning rates for non-

convex optimization, in Advances in neural information processing systems, 2015, pp. 1504—
1512.

Y. N. DAUPHIN, R. Pascanu, C. GULCEHRE, K. CHO, S. GANGULI, AND Y. BENGIO, Iden-
tifying and attacking the saddle point problem in high-dimensional non-convex optimization,
in Advances in neural information processing systems, 2014, pp. 2933-2941.

W. DENG, X. ZHANG, F. LIANG, AND G. LIN, An adaptive empirical bayesian method for

sparse deep learning., In Advances in Neural Information Processing Systems, (2019), pp. 5564—
5574.

N. DinG, Y. FanaG, R. BaBBusH, C. CHEN, R. D. SKEEL, AND H. NEVEN, Bayesian
sampling using stochastic gradient thermostats, in Advances in neural information processing
systems, 2014, pp. 3203-3211.

M. GIROLAMI AND B. CALDERHEAD, Riemann manifold langevin and hamiltonian monte
carlo methods., Journal of the Royal Statistical Society: Series B (Statistical Methodology),
73 (2011), pp. 123-214.

C. L1, C. CHEN, D. CARLSON, AND L. CARIN, Preconditioned stochastic gradient langevin

dynamics for deep neural networks., In Thirtieth AAAT Conference on Artificial Intelligence,
(2016).

D. C. Liu AND J. NOCEDAL, On the limited memory bfgs method for large scale optimization,
Mathematical programming, 45 (1989), pp. 503-528.

Y.-A. MaA, T. CHEN, AND E. Fox, A complete recipe for stochastic gradient mcmc, in Ad-
vances in Neural Information Processing Systems, 2015, pp. 2917-2925.

A. MOKHTARI AND A. RIBEIRO, Global convergence of online limited memory bfgs, The
Journal of Machine Learning Research, 16 (2015), pp. 3151-3181.

S. PATTERSON AND Y. W. TEH., Stochastic gradient riemannian langevin dynamics on the

probability simplex., In Advances in neural information processing systems, (2013), pp. 3102
3110.

H. ROBBINS AND S. MONRO, A stochastic approximation method, The annals of mathematical
statistics, (1951), pp. 400-407.

U. SiMSeEKLI, R. BADEAU, T. CEMGIL, AND G. RICHARD, Stochastic quasi-newton langevin
monte carlo, 2016.

24



[21]

[22]

23]

[24]

[25]

[26]

S. J. VOLLMER, K. C. ZyGALAKIS, AND Y. W. TEH, Ezxploration of the (non-) asymptotic
bias and variance of stochastic gradient langevin dynamics, The Journal of Machine Learning
Research, 17 (2016), pp. 5504-5548.

X. WANG, S. MA, D. GOLDFARB, AND W. Liu, Stochastic quasi-newton methods for non-
convex stochastic optimization, SITAM Journal on Optimization, 27 (2017), pp. 927-956.

Y. WANG AND G. LIN, Efficient deep learning techniques for multiphase flow simulation in
heterogeneous porousc media., Journal of Computational Physics, 401 (2020), p. 108968.

M. WELLING AND Y. W. TEH, Bayesian learning via stochastic gradient langevin dynamicsn,
In Proceedings of the 28th international conference on machine learning (ICML-11), (2011),
pp. 681-688.

T. X1rARA, C. SHERLOCK, S. LIVINGSTONE, S. BYRNE, AND M. GIROLAMI, Langevin dif-
fusions and the metropolis-adjusted langevin algorithm, Statistics & Probability Letters, 91
(2014), pp. 14-19.

Y. ZHANG AND C. A. SUTTON, Quasi-newton methods for markov chain monte carlo, in
Advances in Neural Information Processing Systems, 2011, pp. 2393-2401.

25



-20.3
-20.35

velocity x

- L, ; 204
I e — L e i R

ground truth HAMCMC-SA SGLD

0.1

velocity y

-0.1

ground truth HAMCMC-SA

(a) Test case 1

-19.65
-19.7
-19.75
-19.8
-19.85

velocity x

ground truth HAMCMC-SA SGLD

0.3
0.2

0.1

velocity y

-0.1

ground truth HAMCMC-SA

(b) Test case 2
26

Figure 6: Varying heterogeneous coefficients: comparison between true and predicted solu-
tion





