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ABSTRACT
Many-body potential energy functions (MB-PEFs), which integrate data-driven representations of many-body short-range quantum mechan-
ical interactions with physics-based representations of many-body polarization and long-range interactions, have recently been shown
to provide high accuracy in the description of molecular interactions from the gas to the condensed phase. Here, we present MB-Fit,
a software infrastructure for the automated development of MB-PEFs for generic molecules within the TTM-nrg (Thole-type model
energy) and MB-nrg (many-body energy) theoretical frameworks. Besides providing all the necessary computational tools for generat-
ing TTM-nrg and MB-nrg PEFs, MB-Fit provides a seamless interface with the MBX software, a many-body energy and force calculator
for computer simulations. Given the demonstrated accuracy of the MB-PEFs, particularly within the MB-nrg framework, we believe that
MB-Fit will enable routine predictive computer simulations of generic (small) molecules in the gas, liquid, and solid phases, including,
but not limited to, the modeling of quantum isomeric equilibria in molecular clusters, solvation processes, molecular crystals, and phase
diagrams.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0063198

I. INTRODUCTION

Molecular-level computer simulations, such as molecular
dynamics (MD) and Monte Carlo (MC) simulations,1,2 have become
an indispensable tool in molecular sciences, providing fundamen-
tal insights into structural, thermodynamic, and dynamical prop-
erties of molecular systems, from materials to biomolecules, which
are difficult (if not impossible) to obtain by other means.3–8 How-
ever, the level of realism and the predictive power of any MD and
MC simulation depend sensitively on the accuracy of the poten-
tial energy function (PEF) used to represent the multidimensional
potential energy surface (PES) of the molecular system in question.
In the early days of computer simulations, due to limited compu-
tational resources, the only effectively suitable PEFs were empiri-
cally parameterized force fields (FFs) that adopted relatively simple
expressions to describe intramolecular distortions and purely pair-
wise additive functions to describe intermolecular interactions.9,10

While more sophisticated (both nonpolarizable and polarizable) FFs
have been developed over the years and are still the most common
PEFs used in MD and MC simulations,11–15 machine-learning (ML)
models trained on electronic structure data have gained popularity
in the last decade, enabling computer simulations with higher level
of accuracy.16–19

Various types of ML PEFs have been proposed, including neu-
ral network potentials (NNPs),20–29 Gaussian approximation poten-
tials (GAPs),30 moment tensor potentials (MTPs),31 and spectral
neighbor analysis potentials (SNAPs),32 as well as PEFs based on the
atomic cluster expansion,33 graph networks, kernel ridge regression
methods,34 gradient-domain machine learning (GDML),35 support
vector machines (SVMs),36 permutationally invariant polynomials
(PIPs),37–43 and permutation invariant polynomial neural networks
(PIP-NNs).44–47 The interested reader is referred to several excel-
lent reviews of ML-based PEFs, which have recently appeared in
the literature.16,18,48–50 It is generally found that ML PEFs trained on
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gas-phase reference data provide highly accurate descriptions of
individual molecules and small clusters of molecules51,52 but are
not necessarily able to describe condensed-phase systems.53 On the
other hand, ML PEFs trained on condensed-phase data are able to
closely reproduce the corresponding ab initio simulations of liq-
uid and solid phases but are not, in general, directly transferable to
molecular clusters or air/solid and air/liquid interfaces.54 In this con-
text, it should be noted that since gas-phase training data are gener-
ated for molecular systems with a handful of atoms, they can be com-
puted at relatively higher levels of theory, often coupled cluster with
single, double, and perturbative triple excitations, i.e., CCSD(T),
the “gold standard” for molecular interactions,55 compared to train-
ing data for condensed-phase systems that are effectively limited to
density functional theory (DFT) calculations.17

An alternative ML approach to the development of accurate
multidimensional PEFs, which are transferable from the gas to
the condensed phase, can be rigorously derived from the many-
body expansion (MBE) of the energy.56 These many-body PEFs
(MB-PEFs) adopt a hybrid data-driven/physics-based scheme,
where a data-driven model, which captures many-body (short-
range) quantum-mechanical interactions arising from the overlap
of the electron densities of individual molecules (e.g., Pauli repul-
sion, and charge transfer and penetration), is integrated with a
physics-based model of many-body interactions, which are generally
represented by classical many-body electrostatics.57,58 A remarkable
example of MB-PEFs is the MB-pol PEF for water.59–61 MB-pol has
been shown to correctly reproduce the properties of water,57,62 from
small gas-phase clusters63–74 to liquid water,75–81 the air/water inter-
face,82–86 and ice.87–91 The hybrid data-driven/physics-based scheme
originally developed for MB-pol was later extended to generic
molecules through the introduction of two families of MB-PEFs,
the TTM-nrg (for “Thole-type model energy”) and MB-nrg (for
“many-body energy”) PEFs, for halide92–94 and alkali-metal95–97 ions
in water, molecular fluids,98,99 and small molecules in water.100

When employed in computer simulations, the MB-nrg PEFs
have been shown to consistently provide remarkable agreement
with experimental data for both gas-phase and condensed-phase
systems.101–108

Here, we present MB-Fit, a complete software infrastructure
for the automated development of TTM-nrg and MB-nrg PEFs for
generic molecules. Besides providing a complete array of computa-
tional tools for generating the necessary training and test sets, per-
forming the required quantum mechanical (QM) calculations, and
fitting the TTM-nrg and MB-nrg PEFs, MB-Fit is seamlessly inte-
grated with the MBX software,109 a many-body energy and force
calculator in both finite and periodic boundary conditions, which
enables computer simulations with both TTM-nrg and MB-nrg
PEFs, currently supporting LAMMPS110 and i-PI.111

II. THEORY
A. Many-body potential energy functions

The total energy of a system containing N (atomic and/or
molecular) monomers can be formally expressed as the sum of
individual n-body energies, εnB, from one-body (1B) to N-body
(NB), which is known as the many-body expansion (MBE) of the
energy,56

EN(1, . . . , N) =
N

∑

i=1
ε1B
(i) +

N

∑

i<j
ε2B
(i, j) +

N

∑

i<j<k
ε3B
(i, j, k)

+ ⋅ ⋅ ⋅ + εNB
(1, . . . , N). (1)

In Eq. (1), ε1B
(i) corresponds to the distortion energy of monomer

i from the corresponding equilibrium geometry, i.e., ε1B
(i) = E(i)

− Eeq(i). It follows that ε1B
= 0 for monoatomic monomers. A

rearrangement of Eq. (1) allows all higher-order n-body energies,
εnB
(2, . . . , n), to be defined recursively as

εnB
(1, . . . , n) = En(1, . . . , n) −∑

i
ε1B
(i) −∑

i<j
ε2B
(i, j)

− . . . − ∑
i<j<k

ε3B
(i, j, k) − . . . − ε(n−1)B

(1, . . . , n − 1).

(2)
Since the MBE converges quickly for non-metallic systems, Eq. (1)
served as a rigorous theoretical framework for the development
of TTM-nrg and MB-nrg PEFs for various aqueous systems
and molecular fluids, which are fully transferable from the gas
to the condensed phase. Specifically, building upon the MB-pol
PEF for water,59–61 TTM-nrg and MB-nrg PEFs were introduced
for halide92,93 and alkali-metal ions95,96 in water, water–carbon
dioxide98 and water–methane99 mixtures, and small molecules in
water.100 When used in computer simulations, the TTM-nrg and
MB-nrg PEFs consistently provide remarkable agreement with
experimental data, which is effectively quantitative in the case of
MB-nrg PEFs.98,99,101–106,108

In the most general form, the TTM-nrg and MB-nrg PEFs
approximate the MBE of Eq. (1) as

EN(1, . . . , N) =
N

∑

i=1
V1B
(i) +

N

∑

i>j
V2B
(i, j) +

N

∑

i>j>k
V3B
(i, j, k)

+ Vpol(1, . . . , N), (3)

where V1B, V2B, and V3B are fitted to reproduce the corresponding
reference values calculated at the desired QM level of theory and
Vpol is an implicit many-body polarization term representing induc-
tion interactions. In both TTM-nrg and MB-nrg PEFs, the 1B term
is described by a set of PIPs,37 i.e., ε1B

= V1B
PIP.

The 2B term of Eq. (3) is expressed as

V2B
= V2B

sr + V2B
disp + Velec, (4)

where V2B
sr describes short-range interactions between each pair

of monomers, V2B
disp describes the 2B dispersion energy, and Velec

describes permanent electrostatics as Coulomb interactions between
atomic partial charges. In the TTM-nrg PEFs, V2B

sr is represented by
a sum of pairwise Born–Mayer functions between all pairs of atoms
located on the two (M1 and M2) monomers,112

V2B
sr, TTM−nrg = ∑

i∈M1
j∈M2

Aije−bijRij . (5)

Here, Rij is the distance between atoms i and j on monomers M1
and M2, respectively, and Aij and bij are fitting parameters. In the
MB-nrg PEFs, V2B

sr is expressed in terms of a set of PIPs37 that
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smoothly switch to zero as the distance between monomers M1 and
M2 becomes larger than a predefined cutoff value,

V2B
sr, MB−nrg = s2(

R11 − Rin

Rout − Rin
)V2B

PIP(M1, M2), (6)

where R11 is the distance between the first atom of M1 and the first
atom of M2. In Eq. (6), s2(t) is a switching function defined as

s2(t) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

1 if t < 0,

0.5 × [1 + cos(πt)] if 0 ≤ t < 1,

0 if 1 ≤ t.

(7)

By construction, s2(t) = 1 when R11 ≤ Rin and s2(t) = 0 when
R11 ≥ Rout. Therefore, the values of the inner (Rin) and outer (Rout)
cutoffs in Eq. (6) define the region over which V2B

sr, MB−nrg is slowly
and continuously switched off. The values of Rin and Rout are chosen
based on the distance at which the short-range component of ε2B is
no longer required to accurately model the 2B QM energies. Since in
the current version of MB-Fit, the switching function is calculated
based on the coordinates of the first atom of each monomer, it is
recommended to define the atom ordering so that the most “central”
atom in each monomer is listed first. It should be noted that, while
this definition of R11 is well suited for small molecules, more general
definitions of the switching distance between two monomers (e.g.,
the distance between the monomer’s centers of mass) may be more
appropriate for larger molecules and will be implemented in a future
release of MB-Fit.

The 2B dispersion energy in both TTM-nrg and MB-nrg PEFs
is represented by a sum of pairwise additive contributions,

V2B
disp = ∑

i∈M1
j∈M2

− f (δijRij)
C6,ij

R6
ij

, (8)

where Rij is the distance between atoms i and j, respectively,
on monomers M1 and M2, C6,ij is the corresponding disper-
sion coefficient derived from QM calculations, and f (δijRij) is the
Tang–Toennies damping function,113

f (δij, Rij) = 1 − exp(−δijRij)
6

∑

n=0

(δijRij)
n

n!
, (9)

where δij is set equal to fitting parameter bij in Eq. (5).
While the 3B term in Eq. (1) is set to zero in the TTM-nrg PEFs,

it is represented by a short-range term in the MB-nrg PEFs,

V3B
= V3B

sr . (10)

As in the analogous 2B term, V3B
sr is represented by a PIP37 over vari-

ables that are functions of the distances between all atoms of the
three monomers of the trimer,

V3B
sr = [s3(t12)s3(t13) + s3(t12)s3(t23) + s3(t13)s3(t23)]V3B

PIP

× (M1, M2, M3). (11)

Here, the sum of the three terms in the square bracket represents
a compound switching function that smoothly goes to zero as any

of the molecules moves apart from the other two. In Eq. (11),
s3(t) = s2(t) from Eq. (7), and

tmn =
Rmn

Rcut
, (12)

where Rmn is the distance between the first atoms on monomers
m and n and Rcut is a predefined 3B cutoff chosen to disable
the 3B short-range term at distances where its contribution is
negligible.

Finally, Vpol in Eq. (1) describes the induction energy and is
represented by a classical many-body polarization term built upon
a modified version of the Thole-type model originally introduced in
Ref. 114.

B. Permutationally invariant polynomials
As discussed in Sec. II A, both the TTM-nrg and MB-nrg

PEFs contain 1B terms represented by PIPs, with the MB-nrg PEFs
also including explicit 2B and 3B PIP terms. These PIPs take the
following general form:37

P(ξ1, ξ2, . . . , ξN) =
L

∑

l=0
AlS[ξ1

al1 , ξ2
al2 , . . . , ξN

alN
]. (13)

Here, ξi is a variable defined as a function of distance Rjk between
sites j and k, which include both physical atoms and fictitious sites
of the monomers contributing to the 1B, 2B, or 3B PIP. N is the total
number of such variables, L is the total number of monomials in the
polynomial, Al is a linear fitting parameter and coefficient for mono-
mial l, and S[ξ1

al1 , ξ2
al2 , . . . , ξN

alN
] is an operator that symmetrizes

each monomial l to guarantee that the PIP is invariant with respect
to permutations of equivalent sites. Each ali passed to S indicates
the degree of each ξi in monomial l. The theory behind the develop-
ment and symmetrization process of the PIPs is detailed in Ref. 37.
In the MB-nrg PEFs, the 2B and 3B PIPs have been shown to correct
deficiencies intrinsic to classical representations (e.g., Born–Mayer
and Lennard-Jones functions) of quantum-mechanical short-range
interactions (e.g., Pauli repulsion, and charge transfer and pen-
etration) that arise from the overlap of the monomer’s electron
densities.58,94,97

In the MB-Fit software, four different functional forms are
available for the variables ξ. Each form is a function of the distance
R and one or two non-linear fitting parameters k and d0,

ξexp
(R) = e−kR, (14a)

ξexp0
(R) = e−k(R−d0), (14b)

ξcoul
(R) = e−kR

/R, (14c)

ξcoul0
(R) = e−k(R−d0)

/R. (14d)

It is important to note that, while the functional forms with the d0
parameter [Eqs. (14b) and (14d)] are usually able to more closely
reproduce the QM training data, they may also lead to discontinu-
ities in the representation of the target multidimensional PES, which,
in turn, may result in instabilities in MD and MC simulations that
use MB-nrg PEFs containing these monomials.
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C. Fitting procedure
Equations (3) and (4) show that both TTM-nrg and MB-nrg

PEFs include terms describing 1B distortions (V1B
PIP), 2B short-range

interactions (V2B
sr ), 2B dispersion (V2B

disp), permanent electrostat-
ics (Velec), and many-body polarization (Vpol). The MB-nrg PEFs
also include an explicit term describing short-range 3B interac-
tions [V3B

sr in Eq. (11)]. As discussed in Sec. II A, V2B
disp, Velec, and

Vpol are derived from QM calculations of dispersion coefficients,
atomic charges, and atomic polarizabilities carried out for an iso-
lated monomer. The remaining V1B

PIP, V2B
sr , and V3B

sr terms are fitted to
reproduce reference 1B, 2B, and 3B energies calculated at the desired
QM level of theory.

Specifically, all linear and nonlinear fitting parameters entering
the expressions of V1B

PIP, V2B
sr and V3B

sr are determined by minimizing
the regularized weighted sum of squared residuals calculated for the
corresponding training sets, S,

χ2
= ∑

k∈S
wk[V

nB
(k) − VnB

ref (k)]
2
+ Γ2
∑

l
c2

l , (15)

where VnB
ref (k) and VnB

(k) are the reference QM and corresponding
TTM-nrg or MB-nrg nB energies (n = 1, 2, 3) for the kth config-
uration in the training set. The weights, wk, are set to emphasize
configurations with low energies,

wk = (
δE

Ek − Emin + δE
)

2

, (16)

where Ek is the energy of the kthn-body (i.e., monomer, dimer,
or trimer) configuration in the training set and Emin is the corre-
sponding minimum energy. For ε1B training sets, Emin corresponds
to the energy of the monomer’s optimized geometry, while for ε2B

and ε3B, the smallest binding energy in the training set is used. δE
in Eq. (16) thus defines the range of favorably weighted energies,
with wk = 0.25 for Ek = δE and wk = 1 for Ek = Emin. The regulariza-
tion parameter, Γ, is introduced in order to reduce the variation of
the linear fitting parameters (larger Γ values suppress any variation)
without spoiling the overall accuracy of the fit (favored by smaller Γ
values), contributing no more than 1% to χ2. Given the small num-
ber of linear parameters, Γ is not necessary in fitting the TTM-nrg
PEFs. In Eq. (15), the linear parameters, cl, are obtained through
singular value decomposition, while the simplex algorithm is used
to optimize the nonlinear parameters.

III. SOFTWARE INFRASTRUCTURE
The MB-Fit software supports a number of features enabling

the user to construct well-behaved TTM-nrg and MB-nrg PEFs for
generic molecules by following a standardized workflow. Broadly,
the steps in the workflow are as follows: (1) generate training and
test sets, (2) set up and perform the required QM calculations for
collecting the necessary training data, (3) optimize the linear and
non-linear parameters entering the mathematical expressions of the
TTM-nrg and MB-nrg PEFs, and (4) generate the TTM-nrg and
MB-nrg PEF codes that are exported to MBX109 for subsequent MD
simulations with LAMMPS110 or i-PI.111 The features provided by
MB-Fit for each step of the workflow shown in Fig. 1 are elaborated
upon below. Optionally, some of the steps may be skipped if the user

FIG. 1. MB-Fit drives generation of molecular configurations, quantum mechan-
ical calculations, generation of permutationally invariant polynomials, parameter
optimization, and export the final TTM-nrg and MB-nrg PEFs to the MBX109 many-
body energy/force calculator for molecular-level computer simulations. All data are
stored in a central PostgreSQL database.

wishes to directly provide the necessary data (e.g., dispersion coef-
ficients, atomic charges, and atomic polarizabilities), which may be
acquired using software different from that currently supported by
MB-Fit. MB-Fit is written in Python with a centralized PostgreSQL
database for storage of QM data. C++ is used in the codes for the
parameter optimizations and energy evaluations of the TTM-nrg
and MB-nrg PEFs. Maple115 is employed for an optional factoriza-
tion of the PIPs, which allows for optimizing the run time of the
final MB-PEFs.

It should be noted that, while the many-body formalism imple-
mented in MB-Fit is completely general, its “off-the-shelf” applica-
tion to large molecules (with more than ∼15–20 atoms) can become
computationally expensive both in terms of training and simulation.

A. Database
The storage of molecular configurations and associated nB

energies is implemented using a PostgreSQL database.116 This
database can be either local or centralized and allows simultaneous
connections by multiple clients, facilitating collaboration. The basic
unit of storage within the database is a molecular configuration,
uniquely defined by a list of atoms and their coordinates alongside
other molecular properties, such as net charge and spin multiplic-
ity. Molecules are rotated into standard orientation and moved to
their center of mass prior to insertion into the database in order
to avoid repetition of configurations that differ only by rotations
and/or translations. Each molecular configuration can be associ-
ated with one or more “models.” A “model” is defined by the QM
level of theory and the basis set to be used in the electronic struc-
ture calculations. Each configuration-model pair is associated with a
number of electronic structure calculations required to obtain the
corresponding nB energies. Tags can be assigned to groups of
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configuration-model pairs and later used to retrieve the correspond-
ing nB energies. Generally, each training/test set is given a unique
tag.

Database operations are implemented by server-side Post-
greSQL functions and interfaced into the Python MB-Fit library
using psycopg2.117 Python interfaces are available to initialize the
database, insert and retrieve configurations, generate input for
electronic structure calculations, insert calculation results into the
database, and generate training/test sets consisting of configura-
tions and nB energies from the data stored in the database. Data
insertion and retrieval are batched to allow a minimum of round-
trips between the client and the server while avoiding transferring
large amounts of data in a single payload. All operations run in
average-case constant or linear time, thus removing any database
access bottlenecks. Favorable runtime and scalability enable inter-
active retrieval of training set data consisting of tens of thousands of
molecular configurations.

B. Training and test sets
As in the case of any ML PEF, training and test sets for the

TTM-nrg and MB-nrg PEFs should provide a complete represen-
tation of the “physically relevant” low-energy regions of the target
multidimensional PES, which are explored in MD and MC simula-
tions. At the same time, an adequate representation of high-energy
configurations is also required for the TTM-nrg and MB-nrg PEFs
in order to guarantee the absence of “holes” on the PES in regions
where the PIPs, extrapolating from (incomplete) training sets, may
predict unphysical energy values. To satisfy these requirements, the
1B training set is generated by sampling the harmonic distribution
associated with the optimized structure of the monomer. Other local
minima can also be sampled for complex molecules. Briefly, within
the harmonic approximation, the canonical partition function for an
N-atom molecule can be written as118

Z = Tr(e−βĤ
) = ∣det(2πD)∣−1

∫ e−
1
2 (r−q)TD−1

(r−q)dr, (17)

where

Ĥ =
1
2
∇

TM−1
∇+

1
2
(r − q)TK(r − q) (18)

is the Hamiltonian, with the minimum of the potential energy set
equal to zero, β = 1/kBT with kB being Boltzmann’s constant, D is
the displacement–displacement correlation matrix (i.e., the distri-
bution covariance matrix), K is the Hessian, and q is the center of
the Gaussian. The covariance matrix of the harmonic distribution is
given by

D =M−1/2d(Ω)M−1/2, (19)

where M = diag(mi) is the mass matrix and Ω = diag(ωi) is the fre-
quency matrix. For the classical harmonic partition function, the
auxiliary function d(Ω) is defined as

dclass(ωi; T) =
kBT
ω2

i
, (20)

while for the quantum harmonic partition function, it takes the
following form:

dquant(ωi; T) =
̵h

2ωi
coth(

̵hωi

2kBT
). (21)

In Eqs. (20) and (21), dclass(ωi; T) and dquant(ωi; T) describe the
breadth of the corresponding harmonic distributions at temperature
T along the ith normal mode.

MB-Fit allows the user to generate the training and test sets
by sampling molecular configurations using either the classical or
the quantum harmonic distribution. Specifically, following Ref. 118,
MB-Fit samples a given (classical or quantum) harmonic distribu-
tion using inverse transform sampling that allows for sampling a
normal distribution 𝒩 (q, D), with mean q and covariance matrix
D, starting from an initial sequence of points uniform on [0, 1)3N . A
transformation matrix is then constructed using the normal modes
obtained from the mass-scaled Hessian, which are obtained from
the corresponding QM calculations. Since it was shown that effec-
tively no differences are found when pseudorandom or quasirandom
sequences are used to define the starting uniform distribution,118
only the former is currently available in MB-Fit to generate the
initial sequence of points. After transformation to 𝒩 (q, D), these
points correspond to unique molecular configurations that can thus
be included in the training/test sets.

In sampling the classical and quantum harmonic distributions,
the only free parameter to be chosen is the temperature, which
effectively determines the range of molecular distortions that are
included in the training/test sets. As discussed in Ref. 118, linear
(Ti+1 − Ti = constant) or geometric (Ti+1/Ti = constant) tempera-
ture progressions can be used to efficiently sample both distribu-
tions. Ideally, the temperature range should be sufficiently wide
to “excite” all normal modes of the monomer at the same time.
Although this protocol often results in a maximum temperature
that may be significantly higher than the temperature range usually
explored in MD and MC simulations, highly distorted configura-
tions generated at elevated temperatures guarantee that the 1B PIPs
of the TTM-nrg and MB-nrg PEFs are well-behaved over a wide
region of the configuration space. In this context, it should be noted
that, since it primarily samples low-energy configurations, the clas-
sical harmonic distribution may lead to “holes” in the representation
of ε1B in regions of the multidimensional PES that are not properly
represented in the training sets used to generate the correspond-
ing PIPs. On the other hand, sampling exclusively with the quan-
tum harmonic distribution may result in a sub-optimal representa-
tion of ε1B in the minimum-energy regions of the multidimensional
PES, especially for floppy molecules with several atoms. In these
cases, it is thus recommended to supplement the training/test sets
generated from sampling the classical harmonic distribution with
configurations sampled with the corresponding quantum harmonic
distribution.

It should also be noted that some complications may arise in
generating training sets for “floppy” molecules since sampling high-
frequency normal modes may cause low-frequency normal modes
to break.118 It was shown that this problem can be overcome by
sampling each normal mode at a characteristic temperature directly
related to its frequency, which effectively mimics the concept of the
Einstein temperature introduced to model the heat capacity of crys-
tals.118 While this feature is currently not implemented in MB-Fit, it
will become available in a future release.
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For the training/test sets of the higher-body (>1B) terms of
Eq. (1), MB-Fit employs a general configuration generator that uses
distance-based sampling with randomized rotations, which is appli-
cable to both rigid and flexible monomers. The latter can be sam-
pled from the 1B training/test sets described above or re-generated
as required with the normal-mode sampling algorithms. Configu-
rations are automatically screened for inter-molecular atomic dis-
tances that fall below a predefined cutoff distance corresponding to a
fraction (0.8) of the sum of the van der Waals radii of the two closest
atoms on two monomers of the target n-body system. Molecules are
randomly rotated using a quaternion-based algorithm.119 However,
the higher-body terms in Eq. (1) are, in general, associated with com-
plicated, multidimensional energy landscapes. This implies that the
random distance and rotation sampling may not always suffice for
generating adequate 2B and 3B training sets for the MB-nrg PEFs.
It is thus recommended to augment the 2B and 3B training sets
by sampling from MD or MC simulations carried out under vari-
ous temperature and pressure conditions. Future releases of MB-Fit
will include an active-learning approach to training set reduction,
which was shown to be effective in the development of representative
training sets for ion–water MB-nrg PEFs.108,120

C. Quantum mechanical calculations
MB-Fit includes an interface that drives QM calculations in

order to optimize molecular structures, perform normal-mode anal-
ysis, and compute molecular properties (e.g., atomic charges, atomic
polarizabilities, and dispersion coefficients). MB-Fit supports run-
ning QM calculations locally or, alternatively, provides a job man-
ager that generates short Python scripts for each nB energy calcula-
tion, which can then be executed on HPC platforms or in a cloud
or grid computing environment, such as Open Science Grid.121 The
details of job scheduling depend on the platform and are currently
up to the user, but interfaces with common job schedulers will be
included in future releases of MB-Fit. Once the calculations have
completed, the job manager automatically parses QM data from out-
put files and adds them to the database. The calculation of individual
nB energies [εnB in Eq. (2)] from QM outputs is fully automated.
MB-Fit uses third-party software to perform QM calculations, cur-
rently supporting Q-Chem122 and Psi4.123 Extensions to other soft-
ware are planned for future releases. Electronic structure calcula-
tions can be carried out at an arbitrary QM level of theory using an
arbitrary basis set (among those available in Q-Chem and Psi4).

As described in Sec. II A, the TTM-nrg and MB-nrg PEFs adopt
the same sets of atomic charges, atomic polarizabilities, and disper-
sion coefficients. While the user has complete freedom in selecting
any method available to determine these quantities, it is recom-
mended to calculate the atomic charges using the CM5 scheme,124

and the atomic polarizabilities and dispersion coefficients using the
exchange-hole dipole-moment model (XDM).125–127 For the calcula-
tion of the individual nB energies, MB-Fit provides the user with the
option of correcting the basis set superposition error (BSSE) using
the counterpoise method.128

If users wish to use a “model” (i.e., a combination of the QM
method and basis set) not currently supported by Q-Chem or Psi4,
or otherwise wish to generate the necessary QM data in an alterna-
tive way, they are free to bypass MB-Fit and use another software for
this step. The “model” and fitting procedure are independent of how
the data are generated.

D. Implementation of the permutationally
invariant polynomials

The C++ PIP evaluation functions and their analytical gradi-
ents are generated automatically with two main challenges in mind:
(1) optimization of generation and (2) optimization of evaluation.
MB-Fit adopts a dynamic programming algorithm to address the
first challenge while relying on optimization features provided by
common C++ compilers [e.g., GCC129 (GNU license) or ICPC130

(Intel)] and Maple115 to address the second challenge. Before compi-
lation, Maple can optionally be applied to factorize the polynomials,
which reduces the number of floating point operations needed for
evaluation.

The generation of PIPs up to arbitrary degree is supported,
although polynomials of high degree may be excessively large for
use in actual MD and MC simulations, depending on the avail-
able computational resources. Optional filtering of polynomials to
exclude specific terms based on a number of factors (e.g., degree of
certain variables, inter/intra-molecular character, etc.) is also avail-
able. A detailed description of the protocol used by MB-Fit for
the implementation of the PIPs is reported in the supplementary
material.

E. Parameterization and training
As described in Sec. II A, both MB-PEFs adopt the same repre-

sentation of the 1B term, ε1B, which is expressed by a PIP. In practice,
for a given set of non-linear parameters entering the expressions of
the corresponding monomials [Eqs. (14)], which are obtained using
the simplex algorithm, the linear coefficients of V1B

PIP are obtained
from a linear least-squares fit (see Sec. II C) by fitting

yref(k) = ε1B
ref(k), (22)

where ε1B
ref(k) is the 1B QM reference energy for the kth configuration

in the 1B training set, with ε1B
ref = 0 for the optimized geometry of the

monomer.
In the case of the 2B energy, Aij, bij, and δij of the TTM-nrg PEFs

in Eqs. (5) and (8) are fitting parameters, with bij = δij by construc-
tion. For a given set of non-linear parameters (i.e., bij) from each
simplex step, the linear parameter Aij in Eq. (5) is obtained by fitting

yref(k) = ε2B
ref(k) − Velec(k) − Vpol(k) − V2B

disp(k), (23)

where ε2B
ref(k) is the 2B QM reference energy for the kth configuration

in the 2B training set, with Velec(k), Vpol(k), and V2B
disp(i) describ-

ing permanent electrostatics, polarization, and dispersion energy,
respectively [Eqs. (3)–(8)].

The MB-nrg PEFs use the same classical electrostatic model as
the TTM-nrg PEFs and include explicit representations of short-
range 2B and 3B energies in terms of PIPs. In the case of the 2B
energy [Eq. (4)], MB-Fit provides the user with the option of fit-
ting V2B

sr, MB−nrg in Eq. (6) with or without including V2B
sr, TTM−nrg

in Eq. (5) as a baseline potential. For a given set of non-linear
parameters entering the expressions of the corresponding mono-
mials [Eqs. (14)], the linear coefficients of V2B

PIP in Eq. (6) are thus
obtained by fitting

yref(k) = ε2B
ref(k) − Velec(k) − Vpol(k) − V2B

disp(k) − αV2B
sr, TTM−nrg(k),

(24)
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where α = 1 when including the TTM-nrg Born–Mayer repulsion
term V2B

sr, TTM−nrg, otherwise α = 0. Fitting of V2B
sr, MB−nrg over a base-

line TTM-nrg potential is optional although recommended since it
significantly reduces the probability of “holes” in V2B

PIP.
In the case of the 3B energy [Eq. (10)], for a given set of non-

linear parameters entering the expressions of the corresponding
monomials [Eqs. (14)], the linear coefficients of V3B

PIP in Eq. (11) are
obtained by fitting

yref(k) = ε3B
ref(k) − Vpol(k), (25)

where ε3B
ref(k) is the 3B QM reference energy for the kth configuration

in the 3B training set.

F. Visualization and analysis tools
Once a TTM-nrg or MB-nrg PEF has been obtained, MB-Fit

provides tools to retrieve the associated root-mean-square devia-
tions (RMSDs) as well as the corresponding correlation plots for
both training and test sets. Different customization options for the
visualization are available, and the data used in the graphs are writ-
ten as a data file for further inspection and visualization with external
plotting programs. In the correlation plots, the reference QM nB
energies are reported on the x-axis, and the corresponding TTM-nrg
or MB-nrg values are reported on the y-axis.

G. Interface to MBX
MB-Fit provides an automated C++ code generator that

enables the use of the TTM-nrg and MB-nrg PEFs in MBX, a
freely available many-body energy and force calculator.109 Specif-
ically, MB-Fit provides all the pieces of code that are needed by
MBX, and if the location of the MBX software is provided by the
user, it automatically adds them to MBX with no need of action by
the user. MBX is currently interfaced with LAMMPS110 and i-PI,111

which thus allows the user to perform MD simulations with both
TTM-nrg and MB-nrg PEFs in all common thermodynamic ensem-
bles. Enhanced-sampling simulations and free-energy calculations
are possible in both LAMMPS and i-PI through the interface with
PLUMED.131,132

H. Availability and documentation
The MB-Fit software is freely available on Github.133 Unit tests

and regression tests ensure the correctness of the software. Exten-
sive documentation is provided in the form of Jupyter notebooks
that walk the user through the generation of TTM-nrg and MB-
nrg PEFs, including details of the background theory. The user is
strongly encouraged to refer to the Jupyter notebooks to get started
building TTM-nrg and MB-nrg PEFs with MB-Fit.

IV. EXAMPLE: TTM-nrg AND MB-nrg PEFs
FOR AMMONIA

Ammonia (NH3) has been one of the most important industrial
chemicals since the development of the Haber–Bosch process. NH3
is widely used in the fertilizer and cleaning industries as well as in
synthetic chemistry where it is the most common source of nitro-
gen.134 Since the interactions between NH3 molecules include all
typical contributions (i.e., Pauli repulsion, permanent and induced
electrostatics, hydrogen bonding, and dispersion), ammonia serves

as an ideal test case to illustrate the workflow of the MB-Fit soft-
ware as well as the ability of MB-Fit to generate TTM-nrg and
MB-nrg PEFs at an arbitrary QM level of theory, which are fully
transferable from the gas to the condensed phase. To this end, we
present two sets of TTM-nrg and MB-nrg PEFs developed at the
DF-FNO-CCSD(T)135 and PBE0-D3(BJ)136,137 levels of theory,
respectively, combined with the aug-cc-pVTZ basis set.138 Since
these MB-PEFs primarily serve as a showcase for the MB-Fit abil-
ity to seamlessly generate transferable, many-body representations
of molecular interactions and not for quantitative analyses of the
properties of ammonia, the MB-nrg PEFs are constructed without
including ε3B in Eqs. (10) and (11).

The same 1B and 2B training and test sets were used for both
sets of MB-PEFs, which allows for analyzing the relative accuracy
of TTM-nrg and MB-nrg PEFs trained on two different QM lev-
els of theory, i.e., DF-FNO-CCSD(T) and PBE0-D3(BJ). Indepen-
dent of the QM level of theory, the two sets of MB-PEFs share the
same representations of Vpol, V2B

disp, and Velec. Specifically, the atomic
charges were calculated with the CM5 method,124 while the atomic
polarizabilities and dispersion coefficients were calculated using the
exchange-hole dipole-moment model (XDM).125–127 Because it is
currently not possible to perform CM5 and XDM calculations at the
DF-FNO-CCSD(T) level of theory, in order to guarantee the same
representations of Vpol, V2B

disp, and Velec for the two sets of TTM-nrg
and MB-nrg PEFs, the CM5 and XDM calculations for all MB-PEFs
were carried out with the ωB97M-V functional since, among existing
exchange-correlation functionals, it was shown to consistently pro-
vide the closest agreement with CCSD(T) data for various molecular
interactions.58,94,97,139–142 Both the CM5 and XDM calculations were
carried out with Q-Chem v5.1122 using the aug-cc-pVTZ138 basis set.
All 1B and 2B energies were calculated using Psi4123 at the corre-
sponding QM level of theory, including counterpoise correction for
the BSSE.

A. One-body PEF
As discussed in Sec. II A, the TTM-nrg and MB-nrg PEFs adopt

the same functional form for the 1B energies. The 1B configurations
for the training and test sets were obtained from normal-mode sam-
pling using a piece-wise distribution over temperature provided by
MB-Fit. The distribution was constructed relative to the temperature
(Tmax) corresponding to the highest normal-mode frequency (νmax)
of the system (i.e., an isolated NH3 molecules) as T = hνmax/kB.
Specifically, 5%, 40%, 30%, 20%, and 5% of the total number of 1B
configurations for the training (4098 configurations) and test (512
configurations) sets were generated from the corresponding classical
harmonic distributions sampled at temperatures equal to Tmax/100,
Tmax/20, Tmax/10, Tmax/5, and Tmax/2, respectively. It should be
noted that while this piece-wise distribution gives a good range of
configurations for small molecules, such as NH3, we do not recom-
mend using it for larger molecules that may have higher frequency
normal modes, as the substantial gap between Tmax/100 and Tmax/20
can result in “holes” in the training data and resulting PEF. Half of
the configurations were generated based on the optimized minimum
and umbrella inversion transition state structures, respectively. A
fifth degree PIP, with six different exponential variables ξexp

(R) cor-
responding to all the possible distances between pairs of atoms, con-
taining 102 symmetrized terms, was fitted to the QM data for ε1B. δE
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FIG. 2. Correlation plots between the reference 1B energies and the corresponding MB-nrg values calculated for the NH3 test set. The reference 1B energies were
calculated using DF-FNO-CCSD(T)/aug-cc-pVTZ [panel (a)] and PBE0-D3(BJ)/aug-cc-pVTZ [panel (b)]. The TTM-nrg PEFs have the same 1B term as the corresponding
MB-nrg PEFs. See the main text for details.

in Eq. (16) was set to 250 kcal/mol. The unweighted RMSDs of the
1B training set for configurations below 25 kcal/mol are 0.0967 and
0.0742 kcal/mol for two sets of MB-PEFs derived from DF-FNO-
CCSD(T) and PBE0-D3(BJ) 1B energies, respectively. The correla-
tion plots for the test sets shown in Fig. 2 demonstrate that the
1B PIPs are able to accurately reproduce the reference data over a
wide range of 1B energies, independently of the QM level of the-
ory. To assess the smoothness of the 1B PEFs, a relaxed scan along
the umbrella motion of an isolated NH3 molecule was performed at
both DF-FNO-CCSD(T) and PBE0-D3(BJ) levels of theory. Figure 3
shows that the 1B PEFs are able to quantitatively reproduce the
corresponding reference data.

B. Two-body PEF
The 2B training (597 configurations) and test (200 configura-

tions) sets for the TTM-nrg PEFs were obtained from scans along the
distance between the two N atoms of the NH3–NH3 dimer, applying
random rotations to the two molecules at each distance while keep-
ing their geometries fixed at the corresponding optimized structure
of an isolated NH3 molecule. As in the corresponding MB-nrg PEFs,
δE in Eq. (16) was set to 20 kcal/mol to guarantee a one-to-one com-
parison between the TTM-nrg and MB-nrg PEFs. It should be noted
that while varying the value of δE may improve the ability of the
TTM-nrg PEFs to reproduce some gas-phase and liquid properties,
based on our experience, no value of δE leads to TTM-nrg PEFs that
are capable to correctly represent the overall 2B energy landscape, in
both repulsive and attractive regions, due to intrinsic limitations of
the TTM-nrg functional form. The RMSDs for the TTM-nrg train-
ing sets are 1.0424 and 1.0451 kcal/mol for the two MB-PEFs fitted to
DF-FNO-CCSD(T) and PBE0-D3(BJ) 2B energies, respectively. The
correlation plots for the test sets in Fig. 4 show that both TTM-nrg
PEFs are able to semi-quantitatively reproduce the corresponding
reference 2B energies, with an accuracy that is independent of the
QM level of theory.

As shown in previous studies,93,96,98–100 higher accuracy in
modeling 2B energies is achieved by the MB-nrg PEFs that adopt
short-range PIPs to effectively represent 2B quantum-mechanical
interactions that arise from the overlap of the monomers’ elec-
tron densities (e.g., Pauli repulsion, and charge transfer and pen-
etration).59,60,62,93,96,98,99,104,106,140 The 2B training (7261 configura-
tions) and test (1449 configurations) sets for the MB-nrg PEFs
were generated by including configurations extracted from three
different sources. The first source was normal-mode sampling of

FIG. 3. Distortion energy calculated along a relaxed scan of the NH3 umbrella
motion as a function of distance between the nitrogen atom and the plane defined
by the three hydrogen atoms. Both DF-FNO-CCSD(T)/aug-cc-pVTZ (black) and
PBE0-D3(BJ)/aug-cc-pVTZ (gray) reference 1B energies along with the corre-
sponding MB-nrg values are shown. The TTM-nrg PEFs have the same 1B term
as the corresponding MB-nrg PEFs. See the main text for details.
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FIG. 4. Correlation plots between the reference 2B energies data and the corresponding TTM-nrg [panels (a) and (c)] and MB-nrg [panels (b) and (d)] values calculated for
the NH3–NH3 2B test set. The reference 2B energies were calculated using DF-FNO-CCSD(T)/aug-cc-pVTZ [panels (a) and (b)] and PBE0-D3(BJ)/aug-cc-pVTZ [panels
(c) and (d)]. Also shown are the corresponding RMSDs. See the main text for details.

the NH3–NH3 optimized dimer, which was carried out adopting
the same protocol described above for the 1B sets. The second
source included scans along the N–N distance of the NH3–NH3
dimer with rigid NH3 molecules as described above for the 2B
TTM-nrg training and test sets. The third source included scans
along the N–N distance of the NH3–NH3 dimer using distorted
NH3 configurations extracted from the 1B sets instead of rigid
NH3 molecules. The present MB-nrg PEFs for ammonia use 2B
PIPs up to the fourth degree, which include 3, 23, 159, and 930
symmetrized terms of degrees 1, 2, 3, and 4, respectively. The
2B PIPs contain 28 different variables corresponding to all pos-
sible intra- and inter-molecular distances between atoms of the
NH3–NH3 dimer, all described with the ξexp

(R) functional form.
As in the corresponding TTM-nrg PEFs, δE in Eq. (16) was set
to 20 kcal/mol. The unweighted RMSDs for the MB-nrg training

sets are 0.1524 and 0.1542 kcal/mol for the two MB-nrg PEFs fit-
ted to DF-FNO-CCSD(T) and PBE0-D3(BJ) 2B energies, respec-
tively. Figure 4 shows the correlation plots for the corresponding
test sets, which, as previously found for other molecular systems,98,99

demonstrate that the MB-nrg PEFs are able to quantitatively repro-
duce QM reference data, independently of the QM level of the-
ory. It should be noted that the accuracy of the MB-nrg PEFs can
be improved by increasing the degree of the PIPs and/or applying
filters on terms containing variables that involve interatomic dis-
tances that are found to be less relevant for the representation of the
underlying PES.

The smoothness of the 2B PEFs is assessed by performing three
scans along the H–H, H–N, and N–N distances between the two
monomers in the NH3–NH3 dimer. Figure 5 shows the orientations
of the monomers and performance of the four MB-PEFs on each of
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FIG. 5. Interaction energy scans along the H–H [panels (a) and (d)], H–N [panels (b) and (e)], and N–N [panels (c) and (f)] distances between the two monomers in the
NH3–NH3 dimer. The reference interaction energies calculated using DF-FNO-CCSD(T)/aug-cc-pVTZ along with the corresponding TTM-nrg and MB-nrg values are shown
in the top panels, while the reference interaction energies calculated using PBE0-D3(BJ)/aug-cc-pVTZ along with the corresponding TTM-nrg and MB-nrg values are shown
in the bottom panels. See the main text for details.

the scans relative to the QM reference data, providing further evi-
dence for the ability of the MB-nrg PEFs to reproduce arbitrary QM
reference data. On the other hand, the TTM-nrg PEFs display well
known deficiencies that are common to PEFs purely based on clas-
sical polarization.143,144 This results in only qualitative agreement
between the TTM-nrg and QM 2B energies, with the TTM-nrg accu-
racy being particularly sensitive to the relative orientation of the two
NH3 molecules.

C. Many-body energies in ammonia clusters
While the analyses presented in Figs. 2 and 5 assess the ability

of the TTM-nrg and MB-nrg PEFs to reproduce 1B and 2B ener-
gies that were the target of the training process, one of the greatest
challenges for ML PEFs is to preserve the same accuracy for many-
body energies and/or molecular systems that are not included in
the training sets. Combining explicit data-driven representations of
short-range low-order interactions with implicit (mean-field-like)
many-body representations of high-order and long–range interac-
tions, it has been shown that the MB-pol PEF59–62,143 for water as well
as the MB-nrg PEFs for ions in water93,96,108,142 and various molecu-
lar fluids98,99 are able to correctly reproduce each individual term of
the MBE of Eq. (1). Relatively large deviations were instead observed
for the TTM-nrg PEFs.92,95,98,99

To assess how the different many-body terms in the MBE for
ammonia are represented by the TTM-nrg and MB-nrg PEFs, we
performed many-body decompositions of the lowest-energy isomers
of the (NH3)n clusters, with n = 2, 3, and 4. Figure 6 shows the devia-
tions ΔE per fragment associated with each nB term of the TTM-nrg

and MB-nrg PEFs relative to the corresponding reference values
(dashed line) that were calculated using the SAMBA approach.145

Specifically, the 1B and 2B reference energies were calculated at the
CCSD(T) level of theory using a two-point extrapolation between
the aug-cc-pVTZ and aug-cc-pVQZ basis sets. The 3B reference
energies were calculated at the CCSD(T)/aug-cc-pVTZ level of the-
ory with a cluster counterpoise correction for the BSSE, while the
4B reference energies were calculated at the CCSD(T)/aug-cc-pVTZ
level of theory. Also shown in Fig. 6 are the deviations calculated
with DF-FNO-CCSD(T) and PBE0-D3(BJ), which allow for assess-
ing the ability of the corresponding TTM-nrg and MB-nrg PEFs to
reproduce the target energies as well as for quantifying the relative
accuracy of the different models in reproducing the reference ener-
gies. The deviations are calculated as ΔE = 1

n∑
n
i ΔEi, where n is the

number of monomers, dimers, trimers, etc., in a given cluster and
ΔEi is the individual signed error of the ith fragment. In summary,
Fig. 6 shows the average error per monomer, dimer, trimer, and
tetramer for the three cluster sizes analyzed. Comparisons between
the actual values of each many-body term for the same clusters
shown in Fig. 6 are reported in Fig. S1 of the supplementary material.

While the 1B deviations from the CCSD(T)/SAMBA reference
values are negligible for all models, significant errors are associ-
ated with the TTM-nrg representations of 2B energies. In con-
trast, the MB-nrg 2B energies closely reproduce the corresponding
DF-FNO-CCSD(T) and PBE0-D3(BJ) target values for all three
clusters. Importantly, while the 2B energies calculated with DF-
FNO-CCSD(T) and the corresponding MB-nrg PEF are in close
agreement with the CCSD(T)/SAMBA reference values, appreciable
deviations are associated with 2B energies calculated using
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FIG. 6. Energy deviations per fragment from the reference CCSD(T)/SAMBA values for each individual many-body contribution to the es of (NH3)n clusters, with n = 2 [panel
(a)], n = 3 [panel (b)], and n = 4 [panel (c)] calculated using DF-FNO-CCSD(T) and PBE0-D3(BJ), and the corresponding MB-nrg and TTM-nrg PEFs. See the main text for
details.

PBE0-D3(BJ) and the corresponding MB-nrg PEF. It should be
noted that the relatively large deviations associated with the rep-
resentation of 3B energies based on classical polarization that is
adopted by the TTM-nrg and MB-nrg PEFs suggest that the inclu-
sion of explicit 3B PIPs may be needed for a more quantitative
description of 3B interactions. The analyses reported in Fig. 6
demonstrate that classical polarization is instead able to quantita-
tively reproduce the 4B energies.

D. Second virial coefficient
While the analysis of the individual many-body energies allows

for a general assessment of the ability of any PEF to describe the
underlying molecular interactions, these quantities are not amenable
to direct measurements. However, the interplay of many-body inter-
actions directly determines the (free-)energy landscape that effec-
tively determines structural, thermodynamic, and dynamical prop-
erties of any molecular system at finite temperature, which can be
measured experimentally. Since these properties can be calculated
using computer simulations and directly related to the underly-
ing molecular interactions using statistical mechanics principles, it
follows that comparisons between measured and calculated prop-
erties provide an effective means to assess the ability of a PEF to
realistically describe the molecular system of interest.

In this context, a direct probe of the overall 2B energy landscape
is provided by the second virial coefficient, B2(T), given by

B2(T) = −2π∫
∞

0
(⟨e−

ε2B
(R)

kBT ⟩ − 1)R2dR. (26)

Here, ε2B is the 2B energy of Eq. (1), kB is Boltzmann’s constant, R
is the distance between the two monomer centers of mass in a given
dimer configuration, and T is the temperature. We calculated B2(T)
for ammonia by numerically solving the integral in Eq. (26) using the
trapezoidal rule with an integration step of ΔR = 0.05 Å and 120 000
dimer configurations generated via Monte Carlo sampling for each
radial grid point. Figure 7 shows the virial coefficient as a function
of temperature, calculated with both sets of TTM-nrg and MB-nrg
PEFs trained on DF-FNO-CCSD(T) and PBE0-D3(BJ) data. These

comparisons indicate that the two TTM-nrg PEFs perform similarly,
independently of the QM level of theory. This is in line with the anal-
ysis of the many-body energies presented in Fig. 5, which shows that,
although PBE0-D3(BJ) predicts 2B energies that deviate appreciably
from the CCSD(T) reference values, the functional form adopted by
the TTM-nrg PEFs is too simple for quantitatively capturing these
differences. On the other hand, these differences become apparent in
the MB-nrg calculations of B2(T), which clearly show that the MB-
nrg PEF trained on DF-FNO-CCSD(T) data closely reproduces the
available experimental values over the entire temperature range. The
larger B2(T) values predicted by both TTM-nrg PEFs can be traced
back to the inability of these MB-PEFs to correctly reproduce the
attractive region of the corresponding 2B energy landscape (Fig. 5).
The lower B2(T) values obtained with the MB-nrg PEF trained

FIG. 7. Comparison between the experimental NH3–NH3 second virial coefficients
and the corresponding values calculated with the TTM-nrg and MB-nrg PEFs
trained on DF-FNO-CCSD(T) and PBE0-D3(BJ) data. The experimental data are
from Ref. 146.
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on PBE0-D3(BJ) data instead are directly related to PBE0-D3(BJ)
predicting overly attractive 2B energies, as shown in Fig. 5.

E. Structure of liquid ammonia
Finally, we used classical MD simulations to investigate the

structure of liquid ammonia. While the present MD simulations are
not meant to provide a comprehensive analysis of the liquid prop-
erties, they can be used to assess the transferability of the TTM-nrg
and MB-nrg PEFs from the gas to the liquid phase. For this purpose,
classical MD simulations were carried out with the MBX software109

interfaced with i-PI.111 A first set of simulations was carried out in
the canonical (NVT) ensemble at a temperature of 273 K using a
cubic box of length 23.084 Å with 278 NH3 ammonia molecules,
which corresponds to the liquid density used in the experimental
measurements of Ref. 147. The initial configuration was generated
using Packmol,148 and the system was equilibrated for 50 ps before a
production run of 100 ps using a time step of 0.2 fs. The temperature
was controlled by a global Langevin thermostat.

Figure 8 shows that all MB-PEFs provide nearly quantitative
agreement with the experimental N–N, N–H, and H–H radial distri-
bution functions (RDFs). In particular, the location of the different
solvation shells is accurately predicted, while all MB-PEFs predict
higher first peaks in the N–N and N–H RDFs. Various reasons may
be responsible for these differences between the experimental and
calculated RDFs: (1) intrinsic inaccuracies in the QM data used in
the training of the TTM-nrg and MB-nrg PEFs, (2) inaccuracies
in the TTM-nrg and MB-nrg representations of individual many-
body terms of the MBE, (3) neglect of the explicit 3B term in the

MB-nrg PEF, and (4) neglect of nuclear quantum effects. It is inter-
esting to note that the differences that were apparent in the analysis
of individual many-body energies of (NH3)n clusters (Fig. 6) appear
to be washed out in the MD simulations of the liquid phase car-
ried out in the NVT ensemble, with all MB-PEFs performing sim-
ilarly. In this context, it should be noted that our previous studies
of various molecular fluids98,99 show that the differences between
different TTM-nrg and MB-nrg PEFs are somewhat suppressed in
MD simulations carried out in the NVT ensemble but can lead to
qualitatively different liquid structures and phase behavior when
the simulations are performed in the isobaric–isothermal (NPT)
ensemble.

To test the ability of the TTM-nrg and MB-nrg PEFs to cor-
rectly reproduce the thermodynamic state point probed experimen-
tally (T = 273 K and P = 483 kPa), MD simulations were also carried
out in the NPT ensemble at the same temperature and pressure con-
ditions as in the experiments. In line with the performance of the
TTM-nrg PEFs observed in MD simulations of liquid CO2

98 and
CH4,99 both TTM-nrg PEFs do not describe a stable liquid phase
for NH3 at T = 273 K and P = 483 kPa but predict evaporation.
In contrast, both MB-nrg PEFs correctly reproduce a stable liquid
phase, with the RDFs shown in Fig. 9 being effectively indistinguish-
able from those calculated in the NVT ensemble and in good agree-
ment with the experimental RDFs. Importantly, the different accu-
racy exhibited by the MB-nrg PEFs trained on DF-FNO-CCSD(T)
and PBE0-D3(BJ) data in reproducing both many-body and interac-
tion energies of small (NH3)n clusters, which was somewhat washed
out in the NVT simulations, becomes apparent in the NPT simula-
tions. In particular, the MB-nrg PEF trained on DF-FNO-CCSD(T)

FIG. 8. Comparison between experimental and simulated radial distribution functions (RDFs) of liquid ammonia at T = 273 K and P = 483 kPa. [(a) and (d)] Nitrogen–nitrogen
RDF (gNN), [(b) and (e)] nitrogen–hydrogen RDF (gNH), and [(c) and (f)] hydrogen–hydrogen RDF (gHH). RDFs calculated from MD simulations carried out at the experimental
density in the NVT ensemble using the TTM-nrg and MB-nrg PEFs trained on DF-FNO-CCSD(T) data are shown in panels (a)–(c), while those calculated from the
corresponding NVT simulations with the TTM-nrg and MB-PEFs trained on PBE0-D3(BJ) data are shown in panels (d)–(f). The experimental RDFs are from Ref. 147.
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FIG. 9. Comparison between experimental and simulated radial distribution functions (RDFs) of liquid ammonia at T = 273 K and P = 483 kPa. (a) Nitrogen–nitrogen RDF
(gNN), (b) nitrogen-hydrogen RDF (gNH), and (c) hydrogen–hydrogen RDF (gHH). Only the RDFs calculated from MD simulations carried out in the NPT ensemble using the
MB-nrg PEFs are shown since the corresponding MD simulations carried out with the TTM-nrg PEFs do not predict a stable liquid phase. The experimental RDFs are from
Ref. 147.

data predicts a density of 0.658 g/cm3, which is in good agreement
with the experimental value of 0.638 g/cm3, while the MB-nrg PEF
trained on PBE0-D3(BJ) data overestimates the density by ∼20%,
predicting a value of 0.757 g/cm3.

V. CONCLUSIONS
We have introduced MB-Fit, an integrated software infrastruc-

ture that enables the automated development of fully transferable,
data-driven MB-PEFs for generic molecules within the TTM-nrg
and MB-nrg theoretical/computational frameworks. MB-Fit pro-
vides a complete array of tools to (1) generate training and test
sets for individual many-body energies, (2) set up and perform the
required QM calculations of the necessary training data, (3) optimize
both linear and non-linear parameters entering the mathematical
expressions for the TTM-nrg and MB-nrg PEFs, and (4) generate the
associated codes that are directly exported to the MBX energy/force
calculator109 that enables MD simulations with the TTM-nrg and
MB-nrg PEFs using LAMMPS110 and i-PI.111 Given the demon-
strated accuracy of the MB-pol PEF for water,59–62 and the TTM-nrg
and MB-nrg PEFs for ions in water,93,96,101–106,108 and various molec-
ular fluids,98,99 we believe that MB-Fit can open the door to routine
predictive computer simulations of small molecules in the gas, liq-
uid, and solid phases, including, but not limited to, the modeling
of molecular clusters, solvation structure and thermodynamics, het-
erogeneous processes at air/liquid and air/solid interfaces, molecular
crystals, and phase diagrams.

SUPPLEMENTARY MATERIAL

The supplementary material includes details on the implemen-
tation of the permutationally invariant polynomials in MB-Fit as
well as a figure showing the convergence of the many-body expan-
sion of the interaction energies for (NH3)n clusters, with n = 2–4.
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