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Abstract

We present a new neural-network architecture, called the Cholesky-factored symmetric positive
definite neural network (SPD-NN), for modeling constitutive relations in computational mechanics.
Instead of directly predicting the stress of the material, the SPD-NN trains a neural network to
predict the Cholesky factor of the tangent stiffness matrix, based on which the stress is calculated
in incremental form. As a result of this special structure, SPD-NN weakly imposes convexity
on the strain energy function, satisfies the second order work criterion (Hill’s criterion) and time
consistency for path-dependent materials, and therefore improves numerical stability, especially
when the SPD-NN is used in finite element simulations. Depending on the types of available
data, we propose two training methods, namely direct training for strain and stress pairs and
indirect training for loads and displacement pairs. We demonstrate the effectiveness of SPD-NN
on hyperelastic, elasto-plastic, and multiscale fiber-reinforced plate problems from solid mechanics.
The generality and robustness of SPD-NN make it a promising tool for a wide range of constitutive
modeling applications.
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1. Introduction

One of the goals of material modeling is to construct constitutive models to describe the relation-
ship between strain and stress. The mapping between strain and stress (constitutive relations) can
be high dimensional and history-dependent, and these complexities make constitutive modeling
very challenging. Traditionally, the constitutive relations are derived from microscopic interac-
tions between multiscale structures or between atoms. However, first-principles simulations (e.g.,
molecular dynamics based simulations), which can resolve these interactions, remain prohibitively
expensive. The computational difficulty motivates the construction of constitutive models with
simplified assumptions that still capture the essential physical constraints of constitutive relations,
such as isotropicity or thermodynamics principles of material. Parameters in the models are then
calibrated on limited and coarse-scale loading test data. These constitutive models lead to afford-
able and robust simulations, and thus the models are very important for large-scale engineering and
scientific applications. However, the functional forms representing these constitutive models are
often limited to global exponents and polynomials, which are insufficient to represent complicated
multiscale constitutive relations.

Since the development of deep learning techniques, deep neural networks (DNN) have emerged
as a promising technique for constitutive modeling. For example, pioneering work has demonstrated
the feasibility of constitutive modeling using neural networks in a wide variety of applications, such
as Ghaboussi et al. [1] for modeling concrete, Ellis et al. [2] for modeling sands, Shen et al. [3],
Liang et al. [4] for modeling hyper-elastic materials, and Furukawa et al. [5] for modeling viscoelastic
materials.

Recently, recurrent neural networks (RNNs), which are effective for history-dependent phe-
nomena, have been applied to model multiscale multi-permeability poroplasticity [6], multiscale-
plasticity [7], and multiscale one-dimensional bars [8].

Additionally, neural networks have been used to address more complex material behaviors, such
as microcracking, brittle fracture, and crack propagation [9, 10, 11, 12]. Neural networks that take
as input microscopic structure parameters were used to design of new materials [13, 14, 15, 16].

The cited literature shows that DNNs offer a powerful framework to represent complex consti-
tutive relations. There are two important aspects of neural-network-based constitutive relations:

e Firstly, depending on the nature and availability of data, the neural-network-based consti-
tutive relations can either be trained directly or indirectly (Figure 1). Most of the cited
literature adopt the direct training method, where neural-network-based constitutive mod-
els and dynamic structural equations are eventually decoupled: the neural networks, which
accept strain (or strain increments, etc.) as input and yield stress as outputs, are trained
using input-output pairs. To model complex material behavior, this method requires a vo-
luminous amount of strain-stress data, which can be expensive or impossible to collect. Our
proposed approach enables training the neural network with either direct input-output data
or indirect full-field data [17, 18, 19, 20], such as displacement and external load data, by
coupling the neural network with a dynamic structural equation solver (Figure 1); the indirect
training approach alleviates the demanding requirement for strain-stress data.

e Secondly and more importantly, even DNNs that appear to make accurate predictions may be
numerically unstable when we plug them into a dynamic structural equation time integrator.
For example, in benchmarks that we run, accurate DNNs in fact led to unstable models when
coupled with dynamic structural equations. For predictive modeling, issues like numerical
stability, generalization, and global accuracy have not been sufficiently explored. In the



present work, the numerical stability of the coupled system is studied, and several stability-
preserving neural network architectures are proposed.
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Figure 1: Training neural-network-based constitutive relations NNg, based on different types of data. When the strain
and stress pairs are available, we can train the neural network using the typical least-square regression. However, when
only the displacement and external load (experimental) data are available, we need to couple a neural-network-based
constitutive model with the dynamic structural equation. In this work, we demonstrate training neural-network-based
constitutive relations with both approaches.

If one solves the structural governing equations embedded with general DNN constitutive mod-
els, numerical instabilities are observed (see Section 4.1 for an example). We found that the
numerical instability is actually due to the violation of physical constraints in the constitutive
models, such as the time consistency and the second order work criterion, which we will discuss
in the following. We show that by designing DNNs that satisfy these physical constraints, we can
dramatically improve numerical stability and prediction accuracy.

The idea of adding physics-based constraints to the neural network is not new. For example,
Ling et al. [21] enforce isotropicity an orthotropy on the predicted strain-energy of the crystal
elastic materials through building a basis of invariant inputs. Liu et al. [22, 23] design deep ma-
terial networks using a composition of simple building blocks inspired from the two-phase linearly
elastic model. Heider et al. [24] introduced coordinate-free invariant metrics for the objective
frame-independent functions to model anisotropic elastoplastic materials. However, despite better
accuracy for predicting the stress as a result of satisfying these constraints, the performance of the
resulting structural governing equations coupled with these physics constrained neural networks
is not necessarily improved. For example, a trained neural-network-based constitutive model may
predict stress relatively accurately, but it may not yield a symmetric positive definite stiffness ma-
trix. Because of this, the numerical solver, where the neural network is embedded, may produce
nonphysical solutions or suffer from numerical instability.

In the present work, we focus on the numerical stability aspect of the resulting hybrid model—
the conservation equations embedded with NN-based constitutive models. We propose a novel
neural network architecture with customized output layers to fulfill two objectives.

e The first objective is related to the convexity of the strain-energy, which plays a significant
role in the numerical stability. To this end, we propose to predict the tangent stiffness matrix



and enforce that it be symmetric positive definite.! The symmetric positive definiteness
guarantees the weak convexity of the strain-energy and fulfills the the second order work
criterion (Hill’s criterion) for path-dependent materials

e Another objective is ensuring time consistency Equation (13), in particular for path-dependent
materials, such as elasto-plastic materials.

To achieve these objectives, instead of training a neural network to identify a nonlinear map directly
between strain and stress, we train a neural network (with weights and biases 8) that maps the
strain (and possibly other relevant quantities) to a lower triangular matrix Lg (a Cholesky
factor). We then construct the constitutive model in the following incremental form:

Ao = LgL} Ae (1)

where A€ and Ae are the incremental strain and stress in Voigt notation.? In our formulation, the
tangent stiffness matrix Lg Lg is automatically symmetric positive semidefinite. If we assume that
Le is bounded, i.e., ||Lg|l2 < C < oo for a constant independent of @, this incremental form leads
to a time consistent scheme.

In the present work, results based on neural networks trained on both direct input-output
data and indirect full-field data [17, 18, 19] are presented. The robustness of our approach is
demonstrated in different numerical applications, including a hyperelastic material, an elasto-plastic
material, and a multiscale material. We have developed a software library that seamlessly combines
traditional finite element methods and neural networks. The code is accessible online:

https://github.com/kailaix/NNFEM. j1

The remainder of this paper is organized as follows. We first introduce the background in Sec-
tion 2, including the governing equations, different classical constitutive relations and their associ-
ated constraints. In Section 3, we present our constraint-embedded neural network architecture—
SPD-NN; and the training procedures. Finally, we apply the learned NN-based constitutive rela-
tions to several solid mechanics problems, including a one-dimensional truss coupon, and several
two-dimensional thin plate problems with hyperelastic material, elasto-plastic material and fiber-
reinforced multiscale material. Several issues related to neural networks are discussed in Section 5.
We discuss a possible generalization of the approach in Section 6.

2. Background

2.1. Governing Equations

The governing equation of a solid undergoing infinitesimal deformations can be written as

pu=divo+pb in ()
on=t on I'y

where p is the mass density, u is the displacement vector, o is the stress tensor, and pb is the body
force vector; €2 denotes the computational domain. The prescribed displacement @ and the surface

!Execptions exist, i.e., non-associate elasto-plasticity, where both symmetry and definite positiveness are lost, and
bifurcations and possible instabilities appear inside the plastic limit surface.
2For brevity, € and o represent both tensor form and vector form in Voigt notation depending on the context.



traction ¢ are imposed on the domain boundaries I',, and I'; with the outward unit normal n, where
FuﬁFt :(D and I‘uUthaQ

To solve for the displacement u from Equation (2), we also need the constitutive relations, which
maps the deformation history of the structure to the stress:

o(t) = M(e(t),Z(t)) 3)

Here €(t) is the strain tensor at time ¢ related to the displacement vector and Z(¢) denotes all other
quantities related to material states during time 7 = [0, ¢), such as €(7), o(7), etc. The infinitesimal
strain tensor is

€= e(u) = %[Vu +(Vu)T]

When we apply the finite element method to solve Equation (2) numerically, we have the
following semi-discrete equation at time ¢

Mi + P(u, M(e(u),Z)) = f(u,z,p) (4)

where we use the same notation u to denote the spatial discretization of the displacement vector u
in Equation (2), M is the discrete mass matrix, P and f are the discrete internal and external force
vectors, x is the coordinate vector, and p is the parameter vector of external loads. We adopt the
generalized a-method [25] with a,, = —1 and ay = 0 for temporal discretization of Equation (4).
This generalized a-method allows for dissipating high frequency energy to damp high frequency
modes, which is crucial for the robustness of the numerical solver when an approximate constitutive
relation is used.

Remark 1. For structure undergoing finite or large deformations, the finite strain tensor reads
1
e=¢€(u) = §[Vu + (Vu) + (Vu)!'vu (5)

o in Equation (2) represents the first Piola-Kirchhoff stress tensor, the constitutive relation gener-
ally relates the finite strain tensor with the symmetric second Piola-Kirchhoff stress tensor

S(t) = M(e(t), Z(1)) (6)
The first Piola-Kirchhoff tensor and the second Piola-Kirchhoff tensor are related by
o=FS

here F' = Vu+ 1 is the deformation gradient tensor, where 1 is the identity matric.

Our method works for both infinitesimal and finite deformations. Numerical examples of struc-
tures undergoing finite deformations are reported in Section 4.1 and Section 4.2.1, and examples
using infinitesimal deformations are reported in other numerical examples.

2.2. Constitutive Relations and Associated Constraints

Equation (3) represents one possible form of constitutive relations. Even when restricted to this
specific form, the constitutive relations can describe a great variety of material properties. Nev-
ertheless, most of the constitutive relations share extra constraints (i.e., objectivity, convex strain
energy function, and second law of thermodynamics) that play significant roles in material stability
and numerical stability. In what follows, several stability- and consistency-related constraints of
constitutive relations are discussed. These constraints should be considered in any data-driven
constitutive models.



2.2.1. Hyperelastic Materials
The constitutive relations of hyperelastic materials are path-independent and are related to the

strain-energy density function w(e),
Jw(€)
= 7
7 Oe (™)

In general, the strain-energy density function is assumed to be convex, namely, the tangent stiffness
2

matrix %(:) is symmetric positive definite (SPD). The assumption in one-dimensional is equivalent

to that the strain-stress is monotonically increasing®. The convexity is crucial to both the stability

of the material and also the numerical scheme.

2.2.2. Elasto-plastic Materials

The constitutive relations of elasto-plastic materials are rate-independent but path-dependent,
and feature transition between elastic and plastic behaviors. Namely, under loading, the material
behaves elastically until the initial yield stress oy is attained, and then undergoes permanent irre-
versible plastic deformations with further loading. The onset and continuance of plastic deformation
is governed by a yield function

fle) <0 (8)

For plastic deformation, the stress state must remain on the yield surface f = 0, thanks to hardening
parameters; and for elastic deformation, the yield function satisfies f < 0.
The strain is assumed to be additively decomposed into elastic € and plastic €P parts, as follows,

e=¢€"+¢€ 9)
The constitutive relation relates the stress and the elastic part of the strain:
o = Ce° (10)

here C is the tangent stiffness tensor. The plastic strain rate is given by a flow rule, i.e., the
associative flow rule as follows,

Of
. _ 391
€ do
where ) is called the plastic rate parameter or the consistency parameter, which is non-zero only
if f=0.
Naturally, the constitutive relation is written in the rate form
Ceé if f<0
. . fy(c 9INT
o =Hé= C_(C&J')(TCBU) é if fZO (11)
(ﬁ) c or
Jo Oo

It is worth mentioning the tangent stiffness matrix H is symmetric positive semidefinite, and when
strain hardening is considered, it becomes SPD. The definite positiveness leads to the second order
work criterion, proposed by Hill [27]:

1
W = ng >0 (12)

3Exceptions exist, i.e., strain-softening [26], which is beyond the scope of the present work.



which is also a sufficient condition for uniqueness of the elasto-plastic boundary value problem (see
[28, 29]). Moreover, the form in Equation (11) implies time consistency, i.e., as Ae — 0, Ao — 0,
and also rate-independent?, i.e., the tangent stiffness matrix is independent of the strain or stress
rate.

2.2.3. Associated Constraints
Based on the discussion above, the following properties are crucial to be incorporated in data-
driven constitutive models

(1) Symmetry positive definiteness of the tangent stiffness matrix (i.e., strain energy convexity),
which leads to non-singular stiffness matrix. We also found that the SPD property is crucial
for numerical stability.

(2) Time consistency, which is formulated as follows,

lim Ao =0 (13)
Ae—0

It is crucial for the convergence of the numerical approximation when At — 0.

3. Methodology

In this section, we describe our method for learning the constitutive relations Equations (3)
and (6). Our discussion will be divided into two parts:

1. the neural network architecture for approximating the mapping between the strain and the
stress;
2. the direct and indirect training methods based on the types of available data.

3.1. Neural Network Architectures

We note that the neural network has already been used to approximate the constitutive rela-
tions. The neural network architectures in many literatures output stress directly (-NN) with the
following form (recall that Z stands for other relevant information up to the current time)

o-NN: o = NNg(€,7) (14)
or output stress increment directly (Ao-NN):
Ao-NN: Ao = NNg(e, ) (15)

Note that (€,Z) is an abstract description of the neural network dependencies, which may include

: : L o : : Ae
the strain rate information €, or directional information TAe]

€

These architectures are suitable for learning the constitutive relations when the strain and the
stress data are available. However, these strain-stress relations expressed by Equations (14) and (15)
do not satisfy certain physical constraints and thus may break numerical solvers (see Section 4.1),

when we plug them into a numerical solver.

4Strictly speaking, rate independency implies homogeneity, namely the stiffness tensor must be homogeneous of
degree 0 and be dependent only on the direction of strain rate or stress rate.



We propose an alternative architecture (SPD-NN) based on the incremental form,

Ao = HgAe = LngAe

Le = NNg(e, T) (16)

Here instead of outputting the stress or stress increment directly, the neural network outputs a
lower triangular matrix Lg, which is the Cholesky factor of the tangent stiffness matrix Hg. The
numerical approximation to Equation (16) in the dynamic simulations has the following form

o_n+1 — LeLg(en-H _ 6”) + o (17)

here, the superscript n indicates the time step.

An obvious advantage of Equation (16) is the guarantee that the tangent stiffness matrix is a
symmetric semidefinite matrix, which is true for commonly used constitutive relations (i.e., hyper-
elasticity and associate elasto-plasticity). Additionally, when NNg is bounded, we have

lim Ao =0 (18)
Ae—0

which proves the time-consistency for both path-dependent/independent constitutive relations. In
contrast, both the o-NN with o™ = NNg(e"!, €",0™) and the Ao-NN with

ot = NNg(e”H7 e, o")+o"

fail to satisfy the time-consistency condition Equation (18) for path-dependent constitutive rela-
tions.

In the following, we discuss how to adapt SPD-NN for different materials.

e Linear Elasticity

For linear elastic material, the tangent stiffness matrix is independent of the strain or stress.
Therefore, no neural network is needed, and the constitutive relation reads

o_n-‘rl — C9€n+1 (19)

where Cy is the parametric tangent stiffness tensor and the unknowns are simply entries in
the tensor (no neural network).

e Nonlinear Elasticity

For nonlinear elastic material, the tangent stiffness matrix Equation (7) depends only on the
strain at the current time step. The constitutive relation Equation (17) can be formulated as

o_n+1 — L9(6n+1)L9(6n+1)T<6n+1 _ en) +o" (20)

Note the input €”*! must be evaluated at the current time step n + 1 because it is impossible
to determine the stress at time step n + 1 given only the information at time step n.

e Elasto-Plasticity

For elasto-plastic material, the material behavior features transition from elastic behavior to
plastic behavior. To model this effect, we consider two types of constitutive relations:

1. In the linear elasticity region, the constitutive relation is approximated by

o_n+1 — C9(6n+1 _ en) + o" (21)

elasticity



2. In the plasticity region, the constitutive relation is approximated by

o-glzslticity — L9(€n+17 Gn,O'n)Lg(En_H, en’ o_n)T(en—l-l _ en) +o" (22)
However, since we do not know when the transition occurs (the yield strength oy is not
available and strain hardening could strength the material), we can relax the constitutive
relation using a differentiable® transition function D(a™,5y) (see Figure 2), whose value is
between 0 and 1, as follows,

o-n+1 = (1 - D(Un’ a-Y))o-(:Ll;Ls%cicity + D(Un7 &Y)Uggslticity (23)
here gy is the estimated yield strength, which does not need to be accurate. When the
equivalent stress estimated from o” (such as von Mises stress)® is smaller than &y, the
material behavior is assumed to be linear and described by Equation (21); otherwise, it is
assumed to be described by the plastic form Equation (22). It is worth noting the plastic
form Equation (22) can degenerate to the linear elastic form Equation (21), but not vice
versa. Therefore, the estimated yield strength 6y should be smaller than the yield strength
oy. In the present study, historical data for plastic form Equation (22) span only one time
step, more historical data might be needed for materials with strong hysteresis.

1.0
0.8 1
/; 0.6 1 Oelasticity | Oplasticity
’Eﬁ dominates | dominates
S 0.4+
0.2
oy
0.0
T T T T T
0 0.5 1 1.5 2

Figure 2: An exemplary transition function D(o,Gy) = sigmoid (100(c” — %)) and Gy = 1. Here sigmoid is the
sigmoid function sigmoid(x) = (1 +e %)%

Remark 2. Strictly speaking, the stiffness tensor Lng must be homogeneous of degree 0 and be
dependent only on the direction of strain rate or stress rate:

n+1 n+1

€ — € lo —o"
”6n+1 _ enH’ ||0-n+1 _ a-nH

In the implementation, we use the formulation Equation (22) for simplicity.

>The differentiability of the transition function is necessary since we need to evaluate the gradient of "' with
respect to o™ during the training with indirect data.

5In general, D should depend on o™ instead of o™. Because it is difficult to express o™ explicitly using this
form, we assume ¢" ! &~ ¢™ and thus obtain Equation (23).



Remark 3. Generally, we can write the strain-stress relations for a linear elastic material in Voigt

notation, as follows:

o11 [Ci111 Crizz Cuzz Crizz Criis Crizl| [ en
0922 Co200 2233 (2223 (2213 C2212| | €22
033 C3333 C3323 C3313 C3312| | €33
093 Co323 (2313 Cos12| 2623
013 symm C1313 Ci312| |2€13
1012 L Ci212] [2€12]

The corresponding Cholesky factor Lg of Co is a full lower triangular matriz. For the materials
constdered in the present work, they are orthotropic, i.e., they have three mutually orthogonal planes
of reflection symmetry. Thus the tangent stiffness matrix can be expressed by a block diagonal matriz
(Orth-NN), when orthotropy azes are used to form an orthogonal frame:

[C1111 Crnize Chiss ]
Co222 U233
Co = C3333
C2323
symm C1313
| Ci212]

Therefore, the associated Cholesky factor Lg has the following form

L1111
Loo11 La22o
L3311 L3322 L3333

24
Lo3o3 (24)

L1313

L1212

Consequently, we can further simplify the neural network outputs to only the nonzero entries in
Equation (24). Equation (24) is the form of the Cholesky factor used in the present work.

Remark 4. Bringing the rate form of Equation (16) into Equation (12) leads to
1
§c‘rT é=élLglle>0

Therefore, our proposed SPD-NN architecture Equation (16) is fully consistent with the second
order work criterion.

3.2. Training Methods

Based on the types of available data, i.e., direct and indirect, we can employ different train-
ing methods. For the following discussion, we summarize the neural network based constitutive
relations as follows

C0€n+1
L9(6n+1>L0(6n+1)T(6n+1 _ en) 1+ on

~ 1 ~ 1
(1 - D(o-n7 O-Y))o-gli_sticity + D(an’ UY)UgfgStiCity

Linear Elasticity
ot = Me(ﬁnﬂ, €, o") = Nonlinear Elasticity

Elasto-Plasticity

10



3.2.1. Direct Data

Direct data consist of the input and the output of the NN-based constitutive relations such
as strain-stress pairs or strain-stress increments pairs. These data points come from experimental
measurements and numerical simulation results. The comprehensive strain-stress data measure-
ment relying on simple mechanical tests, such as tensile or bending tests, might be challenging.
However, comprehensive strain-stress data generated from sub-scale simulations, such as represen-
tative volume element (RVE) simulations [30, 31, 32, 33, 34] or post-processed from direct numerical
simulations, are widely used to train neural networks [13, 14, 21, 6].

Mathematically, the direct data are given in terms of N sequences of strain-stress pairs at n

time snapshots.
(e},a’}), (63,0']2) o, (€],07) §=1,2,3,...,N

Here the superscripts indicate time and the subscripts indicate the sequential number. We train
the neural network by solving a minimization problem

arg mmﬁ = Z Zn: (a’ — Mg (e é-_l, 0';»_1))2 (25)

7j=1 =2

3.2.2. Indirect Data

Indirect data consist of deformation data from structure coupons under different load conditions.
Deformations are measured by techniques such as digital image correlation or grid method [35].
These techniques can record complete heterogeneous fields, which are rich in the constitutive rela-
tions. The virtual fields method [17, 36, 37, 38] has been designed to apply the finite element method
(FEM) to bridge the full-field data with parametric constitutive relations. Recently, the method is
generalized to an end-to-end training procedure to learn neural-network (or its counterparts) based
constitutive relations from the full-field data [18].

The indirect data are given by IV full-field deformation-load sequential data at n time snapshots

(uj,£)), (w3, £), -+, (u},f]) j=1,23,... N

JrJ Jr7J

Here the superscripts indicate time and the subscripts indicate the sequential number.
We can compute the acceleration and the stress using the formulas

Z+1 211 4 u

i) = 5 At2 (26)
ol(0) := Mg(e(u}),e(u’™"),0i71(0)), i=2,...,n—1 (27)
ij =0, uj =0, 0;(d) =0 (28)

Here At is the time step, which is assumed to be constant. We train the neural network by solving
a minimization problem

N
argmin £(0) = Y > (Mi] + P(u}. o5(0)) ~ 1)) (29)

Here i is the index for time and j is the index for spacial degrees of freedom. It is worth men-
tioning, in Equation (29), the predicted stress a’j-(B) = Mg(e(uﬁ),e(u}_l),0';-_1(0)) depends on
the predicted stress a§_1(0) from the last time step. The procedure of evaluating the residual

) ) S N 2
L= (Mu} +P(uj, 0;(0)) — f;) at each time step in Equation (29) is depicted in Figure 3. The

11



procedure resembles the recurrent neural network in deep learning, where the state variables are
the stresses. Like the recurrent neural network, the stress predictions at different time steps must
be sequentially computed and so does the back-propagated gradients, and thus the computation
is hard to be parallelized. Additionally, the training of recurrent neural network suffers from ex-
ploding and vanishing gradients problem [39], which poses a challenge for indirect data training of
SPD-NNs as well.  For example, when we train recurrent neural networks using gradient back-
propagation, we need to back-propagate the gradients layer by layer. When the tanh activation
function is used, its derivative is close to zero when the input to tanh is large. Therefore, the back-
propagated gradients will possibly shrink layer after layer. The small gradient makes the training
process challenging. In other cases, when the RELU activation function is used, its derivative is not
contracted; therefore, back-propagation gradients can accumulate exponentially. This phenomenon
is called gradient explosion. There are many efforts for alleviating these problems. One notable
technique is to simply back-propagate the gradients for only a few layers instead of all of them.
This technique results in an inaccurate gradient and thus its effectiveness may be case dependent.
Another approach is to carefully initialize the neural network. We employ the latter approach in
our present work.

‘szl Li £z+1
i—1 f 7 f +1 f
L RRREEEED ! £ L RREEERED
-------- »! R EEEEEEE R EEEEEEE

i—2

______ i it
€. €

Figure 3: The procedure of evaluating the residual £ at each time step for training with indirect data approach in
Equation (29).

3.8. Initialization for Indirect Data Training

Another notable challenge in training the recurrent neural network based constitutive relation
is the existence of many local minima, since the training data set is small in the present work, and
different constitutive relations under the same external loads may produce similar displacements.
A common strategy to find a good local minimum is to start from multiple random weights and
biases. However, this strategy is expensive and does not guarantee a good initial guess. We thereby
propose an initialization technique that yields a set of reasonably good initial weights and biases.

The key idea is that according to Equation (4), we have the relation between the internal force
and the stress field

P(u), o)) = f; — Mii) (30)
However, solving the stress field O';- from Equation (30) is generally an underdetermined problem,
since the number of equations is fewer than the number of stress unknowns. To alleviate this,
quadratic elements are used to represent the displacement field u, and in each quadratic element,
a linear stress field is assumed and approximated (see Figure 4).

The number of stress unknowns is roughly 3(n, +1)(n, + 1) for a 2D plate, and 6(ng +1)(n, +
1)(n, + 1) for a 3D cube, the number of equations is roughly 2(2n, + 1)(2n, + 1) for a 2D plate,
and 3(2n, + 1)(2ny + 1)(2n, + 1) for a 3D cube. Here ng, n,, and n, represent the number of
quadratic elements in each direction. Therefore, the number of equations outnumbers the number

12



Figure 4: Schematic of the 2D quadratic element, with quadratic nodes (red circle) for displacements and linear
nodes (blue empty square) for stress components.

of unknowns, and Equation (30) becomes an overconstrained problem, the least-square fitting is
applied for solving it. And then the stress field is approximated linearly at each Gaussian point in
each quadratic element.

Once we solve for 0'; from Equation (30), we can use the technique in Section 3.2.1 to pre-train
the neural network. Although the least square approximation of the stress field is poor (the error
can be larger than 100%), but the approximation is qualitatively correct and sufficient for obtaining
a good initial guess.

4. Applications

In this section, we present numerical results from solid mechanics for the proposed NN based
constitutive relations:

e Problem with a 1D truss coupon made of elasto-plastic materials under dynamic loading,
which compares the proposed SPD-NN (17) and other neural network architectures, including
o-NN (14) and Ao-NN (15).

e Problems with 2D thin plates made of hyperelastic materials, elasto-plastic materials, and
multiscale fiber-reinforced materials under dynamic loading, which demonstrate the effective-
ness of the proposed SPD-NN (17) for learning path-independent, path dependent (hysteresis),
and multiscale constitutive relations.

In all problems, the training data and test data of the strain/stress fields and the displacement
fields are generated numerically.

4.1. 1D Trusses with Elasto-plasticity

In this section, we consider 1D truss elements with a length L, = 1 m, a cross section area
A = 0.005 m? and a density 8000 kg/m3. The truss coupon, clamped on the left end, is tested
under 5 loading conditions (see Figure 5-left). The setting corresponds to a uniaxial tensile test.
The prescribed time-dependent load force £ consists of both loading and unloading parts and takes
the form

; t
£ = psin (;) ,p=(0.4tid + 1.6) x 10° N

here tid = 1,2,3,4 and 5 are the test indices. The total simulation time is 7' = 0.2 s. The case
tid = 3 is used as test set and all the other tests are used as training sets.
The trusses are made of elasto-plastic materials. The Young’s modulus is

E =200 GPa
The yield function with isotropic hardening has the form

f=lo| —oy — Ka
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Figure 5: 1D truss problem setup (left): the truss coupon consists of 4 elements with left end fixed and force load on
the right end; Extracted strain-stress curves for different loading conditions (right).

The yield strength is oy = 0.3 GPa, the plastic modulus is K = 2%0 GPa, the internal hardening

variable follows the simplest evolutionary equation

Q= A
The truss coupon consists of 4 truss elements, which are modeled as geometric nonlinear truss
elements [40, p. 63]. The time step size is At = 0.001 s.

As for the SPD-NN Equation (23), the estimated Young’s modulus is assumed to be known,
which can be separately calibrated using small external loads (e.g., using the method proposed in

[18]), and the estimated yield strength is 6y = 0.1 GPa. The transition function is
i)

D(o",6y) = sigmoid <(U — (31)
doy

where d = 0.1 is the nondimensional parameter.
Because the strain and stress pairs can be extracted from the uniaxial tensile tests, we can apply

the direct input-output data training method Section 3.2.1 to train the neural network. Figure 5-
right shows the strain-stress curves exhibiting plastic loading and elastic unloading phenomena,
which the neural networks are trained to learn. These curves start from the origin and rise with the
slope FE in the linear elastic region, until the stress reaches the yield stress. Then the curves enter
the strain hardening region, where plastic deformations happen, until the elastic unloading. The
slope of the unloading curve is typically equal to the slope in the elastic (initial) region of the stress-
strain curve. The plasticity deformations result in permanent strains, which cannot be recovered
by the elastic unloading. Since training neural networks involve highly non-convex optimization

problems, we start from 10 different initial weights for all NN training.
To evaluate the quality of approximation, we propose two kinds of tests

1. NN test: extract the sequential strain-stress data (€’,c") at each Gaussian quadrature point
from the test data, and compare the predicted stress and the reference stress for each tu-

ple (€741, ¢, g; git1).
2. NN-FEM test: embed the learned constitutive relation Mg into the finite element framework,
solve the governing equation of the truss coupon under the corresponding loading condition,

and finally compare the predicted strain-stress paths and the truss deformations.
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Because the optimization results depend on the initial guess for the neural network weights and
biases, we pick the neural network with the minimal loss on the training set for the NN test and NN-
FEM test. Other choices for selecting the candidate neural networks such as cross-validation [41]
can also be used. It is worth noting that NN-FEM test is more challenging than the NN test, but
is more relevant for predictive modeling. Indeed, the NN test does not take the numerical stability
in the predictive modeling into account and only evaluates the NN’s ability to fit the strain-stress
curve. As we will see in the following examples, although SPD-NNs and other NN methods fit the
strain-stress curves equally well in the NN test, SPD-NNs are significantly preferable due to their
predicting power in new scenarios.

4.1.1. Comparison of SPD-NN, o-NN, and Ao-NN

The performance of the aforementioned neural network architectures, including the proposed
SPD-NN, o-NN and Ao-NN, with different hyper-parameters are compared. The neural networks
considered contain 1, 2, 3 and 4 hidden layers with 20 neurons in each layer, and tanh as the
activation function is used. Both input and output are 1-dimensional. The losses at each training
step are reported in Figure 6. Different initial weights lead to different local minima, as with any
neural network based data-driven approaches. And deeper neural networks perform better in terms
of the training error. SPD-NN achieves significantly smaller training errors, compared with o-NN
and Ao-NN.

108 - - l-layer SPD-NN 108 1 --- 1-layer o-NN 108 --- 1l-layer Ao-NN

_ 2-layer SPD-NN 2-layer o-NN 1 2-layer Ao-NN
107 7 --- 3-layer SPD-NN 107 --- 3-layer o-NN 107 --- 3-layer Ao-NN
1064 1 --- 4-layer SPD-NN 10% --- 4-layer o-NN 106 4 --- 4-layer Ao-NN

Loss
Loss

T
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
Iteration .10* Iteration 104 Iteration 10*

Figure 6: The losses evaluated on the training set at each training iteration with SPD-NN (left), o-NN (middle),
and Ao-NN (right) with different number of layers for the 1D truss problem. Different curves correspond to different
initial guesses.

For the NN test, the predicted strain-stress relations are reported in Figure 7. All deep neu-
ral networks (DNN) architectures give good results. The predictions of different neural network
architectures are all very accurate and the errors are indiscernible in the plots.

In the NN-FEM test, the finite-element code uses the DNN predictions for integrating the equa-
tions of motion. The predicted displacement trajectories of the right end point and the predicted
strain-stress curves for one Gaussian quadrature point on the right end element are reported in
Figure 8 and Figure 9. Most of o-NN and Ao-NN architectures are found to be numerically
unstable. We attribute the instability to the deviation of the strain and stress pairs in the test
loading condition from the training set, where the numerical errors are accumulated during the
prediction process. More specifically, the violation of SPD constraints on the tangent stiffness
matrix for -NN or Ao-NN makes them vulnerable to these errors and less robust to even slight
extrapolations. In contrast, the proposed SPD-NN, which is supposed to be stable inside the plastic
limit surface according to the second order work criterion (See Equation (12)), delivers numerically
stable results and the predicted displacements and strain-stress curves overlap the exact ones.
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Figure 7: The strain stress curve results
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for SPD-NN (left), o-NN (middle), and Ae-NN (right) in the NN test.
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Figure 8: Displacement trajectories of the right end point for SPD-NN (left), o-NN (middle), and Ao-NN (right) in
the NN-FEM test. As can be seen, some of the DNNs lead to unstable models as predicted by the second order work

criterion.
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Figure 9: The strain stress curve of the NN-FEM test results obtained by using SPD-NN (left), o-NN (middle), and
Ao-NN (right). The middle and right models are unstable as predicted by the second order work criterion.
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| Depth\Width | 2 10 20 40
1 1.1x107° 4.2x107° 2.0x107° 3.0x107°
canh 3 4.7x1075 1.8x107% 1.3x1076 NaN
an 8 55%x10~% 1.3x10°5 NaN NaN
20 8.8x1076 59%x107° NaN NaN
1 9.3x1072 3.7x107° 6.1x107° 4.2x1073
ReLU 3 9.3x1073 3.1x1073 4.7x1073 5.3x1073
8 9.1x1072 1.8x107*% 6.1x1072 1.0x1072
20 3.5 59%x107% 3.3x1073 NaN
1 4.6x107% 4.8x1073 4.3x107% 1.2x1072
3 8.9x1073 1.2x1072 1.0x1072 2.1x1073
leaky ReL.U | ¢ 53x1073  5.0x1073 6.6x1073 5.4x1073
20 9.3x1073  4.4x1073 8.6x1073 1.8x1072
1 1.0x1072 6.6x10~* 2.2x107% 2.2x10*
SELU 3 9.6x1073 9.8x107° 4.3x10™* 3.8x10~*
8 9.2x107° 7.6x1073 4.8x10~® NaN
20 8.3x107% 5.8x107° NaN NaN
1 42x1073 4.6x107% 5.0x1073 6.6x107°3
ELU 3 6.8x107° 5.7x1073 4.7x10~* 4.1x1073
8 8.0x1076 84x10~% NaN NaN
20 6.6x107° NaN NaN NaN

Table 1: Mean squared errors of the predicted displacements at the final time T for different neural network architec-
tures, including tanh, ReLU (rectified linear unit), ELU (exponential linear unit), SELU (scaled exponential linear
unit), and leaky ReLU (leaky rectified linear unit) with leakage 0.1. The width is the number of activation nodes in
each hidden layer. The depth is the number of hidden layers. “NaN” denotes the numerical simulation fails (e.g.,
due to numerical instability) using the trained NN-based constitutive relations.

4.1.2. Comparison of Different Neural Network Architectures for SPD-NN

In this experiment, we consider different neural network architectures. We vary widths, depths
and activation functions of the neural network used in SPD-NN, while keeping other settings the
same as Section 4.1.1. The errors in the NN-FEM test in terms of mean squared errors of the
predicted displacements at the final time 7" are shown in Table 1. We see that the tanh activation
function is in general more accurate than others if appropriate widths and depths of the neural
network are chosen (For this case, the training set consists of 800 data, the number of neural
network parameters is not supposed to outnumbers it too much). However, ReLU and leaky ReL.U
are more robust for deep and wide neural networks, despite being less accurate.

4.1.8. Choice of oy and d
We consider the impact of 6y and d in the transition function D (see Equation (31))

n\2 _ =2
D(o",6y) = sigmoid <(U ) =3 UY)
doy

on the accuracy of the SPD-NN. As mentioned before, 6y controls where the transition from
the elastic form (Equation (21)) to the plastic form (Equation (22)) happens and d controls the
sharpness of the transition (see Figure 2). In this numerical experiment, we use a fully connected
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neural network with 3 hidden layers, 20 neurons in each layer, and the tanh activation function.
We vary &y and d in Equation (31).

The error plot is shown in Figure 10, where the error metric is the same as Section 4.1.2. The
reported errors are the average errors of 10 simulations with different initial guesses. We can see
that the accuracy of the SPD-NN is less sensitive to d. Additionally, as long as we choose a small
enough Gy so that the corresponding plastic form (Equation (22)) covers the plasticity regime,
the SPD-NN is sufficiently expressive to approximate the constitutive relation. This justifies our
choices d = 0.1 and 6y = 0.1 GPa.

102 E
10*32
H ]
z 10~* 4
| 1073
1075 E
1076 4

T

10* 103 102 10! 100

oy (MPa)

Figure 10: Impacts of &y and d on the approximation accuracy of SPD-NNs.

4.1.4. The Effect of the Training Dataset

In this experiment, we investigate the effect of the training dataset, including its size and
distance to the test dataset, on the performance of the aforementioned neural network models. The
prescribed time-dependent load force ¢ consists of both loading and unloading parts and takes the

form 41
) ¢ tid —
t_psin<j7f>, p—<1 +1.6>><106N

12

here tid = 1,2, ..., 25 are the test indices. The total simulation time is 7" = 0.2 s. The case tid = 13
is used as the test dataset. For fairness, we start from the same deep neural network architecture
(3 hidden layers, 20 neurons per layer, tanh activation function) and weight initialization. We run
the optimization for 30,000 iterations using the L-BFGS-B optimizer.

To understand the effect of the training dataset size, we train ¢-NN, Ao-NN, and SPD-NN
using n datasets. In each case, we use the following tids (test IDs)

e n=1;tid=12

e n = 2;tid = 10,15

e n=4;tid=1,9,17,25

e n=9tid=3k+1,k=0,1,...,8

e n=14;tid=1,3,5,7,8,10,12,14, 16, 18,19, 21, 23, 25

e n=24;tid=k,k#13
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The errors in the NN test (0-NN and Ao-NN suffer instability for the NN-FEM test) in terms of the
mean squared errors of the predicted stresses are presented in Figure 11. See page 14 for a definition
of these tests. Since tid = 13 does not appear in the training dataset, the mean squared error can
be interpreted as the test error. From Figure 11, we can see that SPD-NN outperforms both o-NN
and Aco-NN for moderate dataset sizes. For small dataset sizes, SPD-NN can achieve reasonable
accuracy, except for the case where only 1 dataset is used. This illustrates that potentially our
approach does not require a large number of data to have good prediction power. This is beneficial
for engineering applications because, in practice, data may be scarce or expensive to collect.

-o-0-NN
-0~ Ao-NN
-~ SPD-NN

Error

1 2 4 9 14 24
Dataset Sizes

Figure 11: Mean squared errors for different neural network models and training dataset sizes. We see that SPD-NN
achieves best accuracy compared with other models.

To understand the effect of the distance between the training data and test data (or the quality
of the training data) on the performance of the aforementioned neural network models, we conduct
the following experiments with small training dataset sizes. The tids are indicated for each n:

o n=1;tid =12

e n = 1; tid = 1. Note this dataset is far from the test dataset tid = 13.

e n=2;tid =10,15

e n = 2; tid = 1,25. Note these two datasets are far from the test dataset tid = 13.

The mean squared errors are shown in Table 2. We can see that for all cases, using datasets that
are closer to the test dataset yields better test results. Therefore, we conclude that although more
data help train SPD-NN better, the quality of the training data also matters. And the SPD-NN
is more robust with respect to the quality of the training dataset when a moderate dataset size is
used.

4.2. 2D Thin Plate with Different Materials

In this section, we consider thin plate coupons of size L, = 10 cm by L, = 5 cm with the
plane stress assumption (L, = 0.1 cm). These plates are made of different materials, including
hyperelastic material (finite deformation), elasto-plastic material (infinitesimal deformation), and
fiber-reinforced multiscale elasto-plastic material (infinitesimal deformation). For each case, the
plate is tested under 13 loading conditions as depicted in Figure 12. The prescribed time-dependent
load force t € R? consists of both loading and unloading parts and takes the form

i . tm
= Sin e
p T
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‘nzl ‘n:2

Training Dataset | tid =12 tid=1 | tid=10,15 tid=1,25

o-NN 6.02 106365.00 | 0.13 86.50
Ao-NN 0.06 658.85 0.06 1.00
SPD-NN 4.40 914.90 0.01 0.06

Table 2: Mean squared errors for small dataset sizes. Given the dataset size n, when the training dataset is close to
the test dataset, the test errors are in general smaller.

here p € R? is the loading parameter vector, as follows,

e A) clamp on the bottom edge and impose force load on the top edge.
Al: (0,p1), A2: (0,—p1), A3: (p3,0), Ad: (—ps,0), A5: (p3/V2,p1/v/2), and A6: (0.75p3,0).

e B) clamp on the left edge and impose force load on the right edge.
B1: (p1,0), B2: (—p1,0), B3: (0,p2), B4: (0, —p2), B5: (p1/v/2,p2/v/2), and B6: (0,0.75p2).

e C) clamp on the left edge and impose force load on the bottom edge.

—(T—T 2 .
Cl: <07 \/Z;—%L;Xexp ((TXO))), with zg = 5%”” andoyx = 0.2L,.

The total simulation time is 7" = 0.2s. We use A1-A5 and B1-B5 as training data and A6, B6, and
C1 as test data. Both training procedures discussed in Sections 3.2.1 and 3.2.2 are applied. For the
direct input-output data training, the strain-stress sequential data are extracted from all Gaussian
points in the training sets. For the indirect data training, the full-filed displacement fields on the
21 by 11 grid (0.5 cm interval) from the training data are extracted. Therefore, this approach
is potentially applicable to experimental data. The pre-training is required to obtain good initial
guesses.

t
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Figure 12: Schematic of the boundary conditions of the thin plate tests.

4.2.1. Hyperelasticity
The plate is made of the incompressible Rivlin-Saunders material [42, 43] with the density
p =800 kg/ m® and the energy density function

w = Cl(Il — 3) + CQ(IQ — 3)

Here ¢; = 0.1863 MPa and ¢y = 0.00979 MPa, and I, Is, I3 are three scalar invariants of the right
Cauchy-Green stretch tensor C = FFT = 2¢ + 1, where

1
I=trC I,= 5[(trc7)2 —t1C? Iz =J*=detC
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The incompressibility implies that J = 1. The plate is assumed to undergo finite deformations (see
Remark 1), and the second Piola-Kirchhoff stress tensor reads

ow 0J

here \; is the Lagrangian multiplier, which can be calculated based on the plane stress assumption
S33 = 0. The plate domain is discretized by 20 x 10 quadratic quadrilateral elements. The
time step size is At = 0.001 s. The data sets are generated with load parameters (p1,p2,ps) =
(44800, 4480, 16800) N/m.

Both the direct data training approach in ? Section 3.2.1 and the indirect data training approach
in ? Section 3.2.2 are applied to train a SPD-NN:

Sn+1 — L9(6n+1)L0(6n+1)T(6n+1 _ en) + Sn (33)

where the neural network consists of 4 hidden layers and 20 neurons in each layer.

The predicted trajectories of displacements at the top-right and top-middle points as a function
of time and the references for all test cases are depicted in Figure 13. All predicted results are in
good agreement with the references, and the direct input-output data training approach leads to
slightly better results for case C1. The predicted von Mises stress fields at ¢t = % for all test cases
and the references are depicted in Figure 14.
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Figure 13: Top: Trajectories of displacement at top-right (red: wus, yellow: uy) and top-middle points (blue: ug,
green: uy) of the 2D hyperelastic plate for test A6 (left), B6 (middle) and C1 (right), defined on page 19. The
reference solutions are marked by empty circles, the solutions obtained by the SPD-NN trained using indirect data
are marked by solid lines, and the solutions obtained by SPD-NN trained with direct data are marked by dashed
lines. Bottom: The absolute errors of displacements for each cases.

4.2.2. Elasto-Plasticity
The plate is made of titanium, which is assumed to be elasto-plastic material with density
p = 4200 kg/m>. The constitutive relation is

o = Ce
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Figure 14: The von Mises stress (MPa) fields at ¢ = Z for the 2D hyperelastic plate for test A6 (top), B6 (middle)
and C1 (bottom), defined on page 19. From left to right: reference solutions (on a fine mesh), solutions obtained by

SPD-NN trained with direct data, solutions obtained by SPD-NN trained with indirect data.
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here C denotes the isotropic plane stress stiffness tensor with Young’s modulus £ = 100 GPa and
Poisson’s ratio v = 0.35. The von Mises yield function with isotropic hardening has the form

f= \/0%1 — 011022 + 039 + 303, — oy — K« (34)

The yield strength oy = 0.97 GPa and the plastic modulus K = 10 GPa, the internal hardening
variable « follows the simplest evolutionary equation

=\ (35)
This plate domain is discretized by 20 x 10 quadratic quadrilateral elements. And the time step
size is At = 0.001s.

As for the SPD-NN Equation (23), the estimated yield strength is 6y = 0.32GPa, the transition

function is
n 2

~2
D(ol},,0y) = sigmoid (w/)
doy
here o7, is the computed von Mises stress at the previous time step and d = 0.1 denotes the
nondimensional parameter. The tangent stiffness matrix Cg in the linear region is first estimated
as following, and then used as constant in Equation (23).

Linear region. The data sets are generated with load parameters
(p1,p2,p3) = (0.16,0.016,0.06) GN/m

which are small enough to maintain the deformations in the linear region.
The indirect data training approach in Section 3.2.2 is applied to extract the tangent stiffness
matrix, and we obtain the following estimation

1.04064 x 10%  2.09077 x 10° 0.0 ]
Cop = [2.09077 x 105 1.041146 x 105 0.0 (36)
0.0 0.0 4.19057 x 10°
Based on Young’s modulus and Poisson’s ratio of the material, the tangent stiffness matrix is
1.04167 x 10% 2.08333 x 10° 0.0 ]
Crot = |2.08333 x 10° 1.04167 x 10° 0.0 (37)
0.0 0.0 4.16667 x 10°

For each components, the relative error is less than one percent. These errors are introduced by
the discretization, including the interpolation of the displacement field on the observation grid and
the estimation of the acceleration Equation (26). It is worth mentioning, the direct input-output
data training delivers exactly the same stiffness matrix as the reference.

Nonlinear region. The data sets are generated with load parameters
(p1,p2,p3) = (1.6,0.16,0.6) GN/m

which are 10 times larger than these in the linear region. Both direct input-output data train-
ing (Section 3.2.1) and indirect data training (Section 3.2.2) are applied to train a SPD-NN with 5
hidden layers and 20 neurons in each layer. The predicted trajectories of the displacements at top-
right and top-middle points for all test cases are depicted in Figure 15, along with the references.
SPD-NNs trained with both methods are able to predict the initial elastic behavior, the strain-
hardening region, and the unloading behavior. The SPD-NN obtained by the direct input-output
data training performs better especially for the prediction of the yield strength the strain-hardening
T

behavior. The predicted von Mises stress fields at ¢ = 5 and the references for all test cases are

depicted in Section 4.2.2. Reasonable agreements are achieved.
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Figure 15: Trajectories of displacement at top-right (red: us, yellow: u,) and top-middle points (blue: u,, green:
uy) of the 2D elasto-plastic plate for test A6 (left), B6 (middle) and C1 (right), defined on page 19. The reference
solutions are marked by empty circles, the solutions obtained by the CholNN trained using indirect data are marked
by solid lines, and the solutions obtained by CholNN trained with direct data are marked by dashed lines. Note that
the plasticity model takes into account the full history of the deformation while the DNN models take as input only
the value from the last step.
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Figure 16: The von Mises stress (GPa) fields at t = £ for the 2D elasto-plastic plate for test A6 (top), B6 (middle)
and C1 (bottom), defined on page 19. From left to right: reference solutions (on a fine mesh), solutions obtained by
SPD-NN trained with direct data, solutions obtained by SPD-NN trained with indirect data.
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4.2.8. Multiscale Fiber Reinforced Elasto-plasticity
The plate is made of the titanium—the same as Section 4.2.2—but reinforced by fibers made
of SiC, which are assumed to be isotropic and elastic with

p = 3200 kg/m®, E =400 GPa, and v = 0.35

These fibers are square shaped and uniformly distributed in the plate, with a diameter d = 0.25 cm
and a fraction 25%. There are in total 800 fibers, as shown in Figure 17. This plate domain is
discretized by 200 x 400 quadratic quadrilateral elements, and 25 elements for each fiber. And the
time step size is At = 0.001s.
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Figure 17: Schematic of the fiber (orange) reinforced thin plate.

As for training SPD-NNs, the estimated yield strength and the transition function are the same
as these in Section 4.2.2. The tangent stiffness matrix Cy in the linear region is first calibrated and
then fixed as constant in Equation (23) when training the SPD-NN.

Linear region. The data sets are generated with load parameters
(p1,p2,p3) = (0.16,0.016,0.06) GN/m

which are small enough to maintain the deformations in the linear region. The indirect data training
approach in Section 3.2.2 is applied to extract the following predicted tangent stiffness matrix,

1.335174 x 10°  3.26448 x 10° 0.0
Co = | 3.26448 x 10° 1.326879 x 10° 0.0 (38)
0.0 0.0 5.26955 x 10°

The predicted linear constitutive relation Equation (19) is verified on the test set. The predicted
displacements at top-right and top-middle points as a function of time and the references for all
test cases are depicted in Section 4.2.3. The corresponding von Mises stress fields at t = % are
reported in Section 4.2.3. The SPD-NN based homogenized model delivers similar results as the

high-resolution multiscale model.
Nonlinear region. The data sets are generated with load parameters
(p17p27p3) = (167 0167 06) GN/I’II

which are 10 times larger than those in the linear region. Only the indirect data training approach
is applied to train a SPD-NN with 5 hidden layers and 20 neurons in each layer. To enable direct
input-output data training, homogenization is required to generate strain-stress data from RVE
simulations [13, 14, 21, 6], or extract strain-stress data from direct numerical simulations. This
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Figure 18: Trajectories of displacement at top-right (red: us, yellow: u,) and top-middle points (blue: u,, green:
uy) of the 2D multiscale plate in the linear region for test A6 (left), B6 (middle) and C1 (right), defined on page 19.
The reference solutions are marked by empty circles and the solutions obtained by the SPD-NN trained with indirect
data are marked by solid lines.
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Figure 19: The von Mises stress (GPa) fields at t = T for the 2D multiscale plate in the linear region for test A6 (top),
B6 (middle) and C1 (bottom), defined on page 19. From left to right: reference solutions (on a fiber-resolved mesh)
and solutions obtained by SPD-NN trained with indirect data.
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may be challenging in the context of experimental data, which necessitates the indirect training
approach.

The predicted trajectories of displacements at top-right and top-middle points for all test cases
are depicted in Figure 20, along with the references. Comparing with the previous elasto-plasticity
case, all displacements are smaller due to the SiC fiber reinforcement. The proposed SPD-NN gives
a satisfactory approximation of the initial elastic behavior, the strain-hardening region, and the
following unloading behavior. The predicted von Mises stress fields at ¢ = % and the references
for all test cases are depicted in Figure 21. The predicted and simulated homogenized stress fields
are in reasonably good agreement. Although the solutions obtained by SPD-NNs do not capture
local large stress concentrations near each fiber (at the level of the microstructure), the local
recovery techniques [44] can be applied to estimate these local stress concentrations. For example,
a RVE simulation can be conducted to estimate local stresses using the local strain from the coarse

homogenized solution.

Accelerating Simulations with Neural Network Surrogates for Constitutive Modeling. 1t is also worth
noting that each SPD-NN-based simulation is several order magnitude faster than the corresponding
fiber resolved simulations. The CPU time for both the SPD-NN-based simuations and fiber resolved
simulations are shown in Figure 22. Note as we increase the external load, the CPU time increases
because more elements undergo plastic deformations, which requires more expensive Raphson-
Newton iterations in the numerical simulations. Still, the dramatic acceleration from around 24
hours to just a few minutes is impressive. However, the acceleration should be carefully interpreted
in the context of surrogate models. First, the current benchmarks are based on serial execution,
where the state-of-the-art FEM simulations usually involve parallelization. Nevertheless, these
parallelization techniques for fiber resolved simulations are also directly applicable to SPD-NNs.
Second, the speed of the fiber resolved simulations depend on the required resolution (e.g., the
resolution on each fiber). If we use very coarse grids, the speed of the fiber resolved simulations
may be comparable to or even faster than the SPD-NN-based simulations, though the coarse grids
raise concerns for accuracy. Third, we have not compared the present model with other state-of-
the-art accelerating techniques for multiscale modeling, for example projection-based model order
reduction [45] and self-consistent clustering [46]. Finally, as with any NN-based surrogate models,
the SPD-NN only works on test data that does not deviate too much from the training data, while
fiber resolved simulations are usually considered to be general and applicable in a much wider
context.
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Figure 20: Trajectories of displacement at top-right (red: us, yellow: uy) and top-middle points (blue: u,, green:
uy) of the 2D multiscale plate in nonlinear region for test A6 (left), B6 (middle) and C1 (right), defined on page 19.
The reference solutions are marked by empty circles and the solutions obtained by the SPD-NN trained with indirect
data are marked by solid lines.
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5. Discussion of Neural Networks

The introduction and benchmarking of SPD-NNs raise many questions, some of which are par-
tially answered in this paper while some others are worthwhile to be investigated further. We
believe that the following discussion is important and central to the application of NN-based con-
stitutive modeling and should be careful dealt for the development of SPD-NNs and other NN-based
approaches.

Function approzimators. In the present work, neural network is used as a basis function to ap-
proximate a complex constitutive relation, the strain-stress relation. Many other basis functions,
including piecewise linear functions, radial basis functions, and radial basis function networks, can
also be applied for the approximation of the Cholesky factor. The choice of neural networks is
well-versed and justified by the following three reasons.

e First, the distribution of the strain data—the input to the neural network—is determined by
experiment records, which in general does not evenly spread over the domain. The comparison
study presented in [18] illustrates that neural network outperforms the other basis functions in
terms of regularization and generalization properties when the data distribution is ill-behaved.

e Second, the strain-stress curves are non-smooth in the context of plastic deformations and
elastic unloading. As a result of the non-smoothness, the approximation efficiency of typical
basis functions is usually compromised. Nevertheless, neural networks exhibit the potential
to capture the sharp transitions in the strain-stress relations and performs reasonably well
for the non-smooth data.

e Third, the input and the output dimensions are relatively high (e.g., the input is 9D and
the output is 4D in the elasto-plasticity and the multi-scale cases), which poses a challenge
for traditional basis functions. For example, if we were to use the linear basis functions, to
discretize the high dimensional input space, even if we only have 10 grid points per dimension,
the total degrees of freedom is 10, which is too costly regarding both the computation and the
storage. Yet, neural networks are particularly convenient and useful for expressing mappings
between high dimensional spaces [47] and requires no mesh in the input parameter domain.

All the aforementioned reasons motivate us to use neural networks in this work.

Optimization method. Most of neural networks in literature, especially in computer science commu-
nities, are trained with stochastic gradient methods (SGD). In our present work and the previous
work [18], the optimization of the loss functions Equations (25) and (29) is done by the Limited-
memory BFGS (L-BFGS-B) method [48] with the line search routine in [49], which attempts to
enforce the Wolfe conditions [48] by a sequence of polynomial interpolations. Note BFGS is ap-
plicable in our case since the data sets are typically small and the neural network is reasonably
deep and wide; otherwise, the memory requirement of L-BFGS-B is so high that SGD or other
similar first-order methods for training neural networks should be adopted. It is worth mentioning
that the choice of BFGS optimizer is well-motivated and has long been adopted for scientific and
engineering applications due to its fast convergence and robustness.

Data scaling. We observed that input data scaling significantly helps train SPD-NNs faster, reduces
overfitting, and makes better predictions. In the present work, the inputs and outputs of the neural
network are scaled to a similar magnitude. Specifically, we introduce a strain reference €, and a
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stress reference oo to scale strains and stresses. We also scale the tangent stiffness matrix by %eff
For example, in the elasto-plasticity case, the Cholesky factor has the form

ei eif 1 0.7,'7 1
Lo [ —, :
€ref €ref Oref

The most important thing is that 7 ~ O(E), here E is the estimated Young’s modulus. This

guarantees the inputs for SPD-NN, especially for elasto-plasticitiy, (€?, "1, o*~1) have similar
magnitudes.

Local minima. Local minima are observed in Section 4.1, since training neural networks involves
highly non-convex optimization problems. Although neural networks with minimal losses on the
training set from 10 different initial weights perform well, neural networks with median losses
are less satisfactory. This reveals the uncertainty with respect to the initial weights for most
NN-based data-driven approaches. Wider neural networks will be considered in the future, since
some theoretical and computational results [50, 51] show quality of local minima tends to improve
toward the global minimum value as depths and widths increase. As for the indirect data training
approach, pre-training approach (see Section 3.2.2) produces acceptable initial weights and thus
mitigates this concern. For all these training processes, the optimization is terminated when the
objective function is called 3,000 times and 50,000 times for pre-training and training, respectively.
The direct input-output data training is about 4 times faster than the indirect data training.

6. Conclusion

Data-driven approaches continue to gain popularity for constructing constitutive models from
high-fidelity simulations and high-resolution experiments. The incorporation of data-driven con-
stitutive models into conservation equations leads to a hybrid model, namely a coupled system
with differential equations to describe conservation laws and thermodynamic principles, and neural
networks to describe the material properties.

To make these hybrid models numerically more robust, we introduced a novel neural network
architecture, SPD-NN, in which the neural network outputs the Cholesky factor of the tangent
stiffness matrix instead of the stress or the stress increment. This neural network architecture
weakly imposes convexity on the strain energy function (i.e., SPD tangent stiffness matrix). The
incremental form of SPD-NN also preserves the time consistency and fulfills the second order work
criterion. We tested SPD-NN-based constitutive relations on a 1D elasto-plastic truss problem
and several 2D plate problems in which the plate is made of hyperelastic, elasto-plastic, and mul-
tiscale fiber-reinforced materials. When contrasting the SPD-NN with two other neural network
architectures, we showed that SPD-NN exhibits better numerical stability in the resulting hybrid
models. The general training approach and the improved numerical stability will allow extending
SPD-NNs to other time-dependent physical systems, such as viscoelastic materials, where the con-
stitutive relations are rate-dependent, and plastic materials with stronger hysteresis, where more
history-dependent variables are required.

However, one limitation of the current approach is that the training process requires full-field
data, either for strain-stress pairs or displacement measurements. This is especially challenging for
a 3D solid body, where the measurements may only be made on the surface (although by using
techniques such as X-ray computer tomograph [52], we can obtain full field displacements or strain
fields induced by loading). NN-based constitutive modeling with incomplete data remains to be
investigated in the future.
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