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ABSTRACT

Fully coupled randomly disordered recurrent superconducting networks with additional open-ended channels for inputs and outputs are
considered the basis to introduce a new architecture to neuromorphic computing in this work. Various building blocks of such a network
are designed around disordered array synaptic networks using superconducting devices and circuits as an example, while emphasizing that a
similar architectural approach may be compatible with several other materials and devices. A multiply coupled (interconnected) disordered
array of superconducting loops containing Josephson junctions [equivalent to superconducting quantum interference devices (SQUIDs)]
forms the aforementioned collective synaptic network that forms a fully recurrent network together with compatible neuron-like elements
and feedback loops, enabling unsupervised learning. This approach aims to take advantage of superior power efficiency, propagation speed,
and synchronizability of a small world or a random network over an ordered/regular network. Additionally, it offers a significant factor of
increase in scalability. A compatible leaky integrate-and-fire neuron made of superconducting loops with Josephson junctions is presented,
along with circuit components for feedback loops as needed to complete the recurrent network. Several of these individual disordered array
neural networks can further be coupled together in a similarly disordered way to form a hierarchical architecture of recurrent neural
networks that is often suggested as similar to a biological brain.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0027997

I. INTRODUCTION

Neuromorphic computing has been gaining more and more
interest recently due to several reasons such as (1) an approach for
a power-efficient alternative to digital computing,1,2 (2) a way to
solve the problem of von Neumann bottleneck between the proces-
sor and memory,3 or (3) in simulating aspects and gaining a better
understanding of a biological brain,4,5 etc. Depending upon the
problem, different hardware approaches and models of the network
elements in the neuron have been considered. For example,
the Hodgkin–Huxley neuron model6 is a popular and accurate
representation of a biological neuron and is used in spiking neural
networks7 as well as mimicking biological behavior.8 The
McCulloch–Pitts neuron model9 is popular with artificial neural
networks that are used in convolutional neural networks.10

Similarly, biologically inspired synapse models are compatible with
spiking neural networks11 and exhibit learning rules corresponding

to spike timing-dependent plasticity.12 Also, artificial synapses for
largely feed-forward and non-spiking networks are also avail-
able.13,14 In this article, we attempt to provide a novel approach to
neuromorphic computing, which is not particularly designed to
solve a specific problem in the existing computing paradigm, but to
present a new architecture that may address several of the afore-
mentioned aspects, while also attempting to provide an alternative
perspective into the process of neuromorphic computing in
general. Nevertheless, the superconducting network components
considered here are compatible with spiking neural networks, and
leaky integrate-and-fire neurons that may permit the development
of a superconducting neural network can enable further exploration
of the architecture.

There are two important aspects to consider when building a
neural network. The first aspect involves identifying appropriate
materials, devices, and circuits that closely emulate biological

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 129, 073901 (2021); doi: 10.1063/5.0027997 129, 073901-1

Published under license by AIP Publishing.

https://doi.org/10.1063/5.0027997
https://doi.org/10.1063/5.0027997
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0027997
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0027997&domain=pdf&date_stamp=2021-02-19
http://orcid.org/0000-0002-9430-451X
http://orcid.org/0000-0001-6740-9677
mailto:ugoteti@ucsd.edu
mailto:rdynes@ucsd.edu
https://doi.org/10.1063/5.0027997
https://aip.scitation.org/journal/jap


aspects of elements such as neurons, synapses, and dendrites.
Several such materials and devices are being studied and imple-
mented with some degree of success,15–27 particularly in studying
memristive and phase-changing materials for synaptic connections
and spiking behavior for neurons. The second aspect to consider
involves scalability and power efficiency. A human brain comprises
roughly 8:3� 109 neurons with about 6:7� 1013 synaptic connec-
tions between them28,29 and consumes approximately 20W of
power.30 Replicating this using artificial circuit elements to achieve
similar power efficiency and connectivity currently presents some
severe challenges, although rapid progress is being made in this
area.31–34

The hardware challenges with respect to scalability can be
addressed by increasing the density of processing power into
smaller areas. A straightforward path to overcome this issue is by
increasing the density of interconnections through further develop-
ment of the IC fabrication techniques and also by decreasing the
footprint of the individual elements used in the circuits. We
present a collective synaptic network approach that could consider-
ably improve the scalability factors of the already existing technolo-
gies by utilizing the exponential scaling of the memory capacity of
disordered and coupled networks. In this example, all the neurons
in a network are connected to each other through a disordered
array of superconducting loops encompassing Josephson junctions,
instead of establishing distinct synaptic connections between each
pair of neurons. The details of the dynamics of such a network are
discussed in Sec. II, using equivalent lumped-element circuit simu-
lation results to demonstrate their operation. However, the idea is
to replace a large number of individual interconnections between
neurons with a system of a collective synaptic network that resem-
bles or exceeds in complexity when compared to a traditional
network, while any individual connection between neurons in such
system exhibits synaptic behaviors in the form of spike timing and
rate-dependency based learning rules. Watts and Strogatz35 estab-
lished that, in recurrent networks with fixed numbers of intercon-
nections between them, small-world and random networks exhibit
enhanced computational power, signal-propagation speed, and syn-
chronizability compared to an ordered network. Therefore, intro-
ducing disorder to a highly interconnected network allows us to
take advantage of lower computational power consumption and
higher speed in addition to the specified increase in scalability by a
significant margin. Furthermore, the tight coupling between all the
interconnections causes the system to directly update its configura-
tion with changing input and output signals of any neuron, instead
of updating weight of each connection separately. This results in an
exponential increase in the number of non-volatile memory config-
urations available (some more stable than others) with an increas-
ing number of nodes in the network as shown in Sec. II. The
dynamics guiding the emergent properties of such small-world or
random network and the corresponding learning principles can be
studied with the help of superconducting neural network elements
introduced in Secs. II A–II D. Furthermore, such a network made
of disordered arrays of superconducting loops can be used to
construct a dense recurrent neural network even with the existing
well-established technologies.36–39

In addition to the synaptic network, several other compatible
network elements are presented, with circuit simulations, which

together form a recurrent neural network with a hierarchical archi-
tecture, similar to a biological brain.40 First, we introduce a design
for a compatible leaky integrate-and-fire neuron with a dynamically
updating threshold value. It is comprised of a large superconduct-
ing loop with a stack of Josephson junctions, with inputs occurring
both in the form of direct spike trains from other neurons or as an
equivalent continuous current signal corresponding to the incom-
ing spike trains. The neuron circuit is described in detail in Sec. III.

Second, the feedback mechanism in this network is imple-
mented through inductively/magnetically coupled circuits that are
similar to that introduced by Shainline et al.41 A large number of
input spike trains can be fed into the neuron through a cascade of
merger circuits42 or through inductive/magnetic coupling into the
current bias of the neuron if necessary. These various additional
circuit elements are presented to underscore that a conceptually
complete recurrent neural network can be built with the hierarchi-
cal architecture, using several disordered array networks, as detailed
in Sec. V. The individual recurrent networks formed by neurons
and a disordered array network are in turn connected to each other
through a larger hierarchical disordered array, therefore represent-
ing self-similarity at the lower and higher levels, as often found in
biological brains.40 This approach can be followed to develop a
more complex network with several additional disordered array
structures at higher levels. A practical implementation of this
network may require additional network components or modifica-
tions to the presented circuits for specific applications. But the
emergent phenomenon of the disordered arrays and the principles
governing their dynamics can be studied using the superconducting
circuits presented in this paper.

II. DISORDERED ARRAY SYNAPTIC NETWORK

A. General overview

A disordered array of superconducting loops containing
Josephson junctions in them is used as a collective synaptic
network that can connect several neurons together. It forms a
network where each neuron is connected to every other neuron as
shown in Fig. 1(a), but with additional open-ended channels into it

FIG. 1. (a) Fully recurrent neural network. Red circles represent neurons, and
the respective red links represent synapses. Blue lines are input and output
channels, while black lines are for feedback. (b) Disordered array synaptic
network using superconducting loops. The gray area represents superconduct-
ing material, and the red lines signify positions of weak links that form
Josephson junctions.
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to connect to input/output neurons and to make feedback/feed-
forward loop connections to synapses. Together with the feedback
loops, the network is fully recurrent. A schematic of a disordered
array of superconducting loops with Josephson junctions is shown
in Fig. 1(b). The signal propagation in these networks occurs in the
form of single-flux quantum voltage pulses/spikes generated at the
Josephson junctions when the current through them exceeds a crit-
ical current.42 The flux quanta are stored in the superconducting
loops in the form of persistent loop currents. The number of flux
quanta (and the corresponding persistent current) that each loop
can store depends on the material and physical dimensions of the
loop and therefore the resulting geometrical inductance, along with
the Josephson junction parameters such as its critical current. The
disordered array shown in Fig. 1(b) can be resolved into an equiva-
lent lumped element circuit model for analysis as discussed in detail
below. This results in dynamically changing current paths between
any two nodes in the disordered array, as different junctions switch
to produce single-flux quantum spikes. The stable loop currents of
each state represent the memory configuration of the system.

The input and output signals, shown in Fig. 1(b) as
“i1, i2, . . .” and “o1, o2, . . .,” respectively, are spiking voltage
pulses while the biasing signals “b1, b2, . . .” are continuous but
time-varying current inputs. The output voltage spikes are mea-
sured across Josephson junctions. The synaptic weight of an indi-
vidual connection between any two neurons in the array is a
characterization of the total current between the two corresponding
nodes, which is the cumulative current from various dynamically
changing paths between those two nodes. Therefore, the corre-
sponding output spike generation across a junction depends on the
input signals as well as the configuration of various loop currents
from the previous state of the network. Therefore, the synaptic
weight between any two nodes of the network can be calculated as

shown in Eq. (1). The memory configuration of the network is sen-
sitive to output signals when the output spike train is coupled to
biasing currents in the form of a feedback loop. The feedback
mechanism is discussed in Sec. III. Note that the feedback/feed-
forward can also occur from another synaptic network from a dif-
ferent hierarchical level, as discussed in Sec. V. Changing the bias
currents can change the memory/loop current configuration of the
network and, therefore, the individual weights between any two
neurons. While the feedback/feed-forward coupling to the biasing
channels can enable unsupervised learning processes, the bias cur-
rents can also be updated manually to initialize the weights, or to
update them when they are saturated. Further investigation is
needed to develop specific programming methods to update the
bias manually to interact with the emergent dynamics of the disor-
dered system.

The dynamically changing synaptic weight between any two
neurons in the network can be calculated using

Synaptic weight ¼ Number of spikes at the output neuron
Number of spikes at the input neuron

: (1)

If each of the loops in the array can be designed to satisfy
LIC=Φ0 . 1, where L is the inductance of the loop, IC is the critical
current of the junction, and Φ0 is the magnetic flux quantum, then
the loop can at least allow a circulating current corresponding to at
least one flux quantum Φ0 in the loop before the junction in it gen-
erates a spiking voltage pulse. More specifically, in the case of
Φ0 , LIC , 2Φ0, each loop can at least be in one of the three con-
figurations corresponding to þΦ0, �Φ0, and 0 of clockwise, anti-
clockwise, and zero loop currents, respectively. Therefore, a disor-
dered array with n different loops can have at least 3n different
memory configurations resulting in an exponential scaling of

FIG. 2. (a) Three-state synaptic network formed using two loops with one input, two outputs, and two bias current channels. Josephson junction barriers are shown in red,
while the gray area represents the superconducting material. (b) Equivalent lumped-element circuit model with junctions and inductors. Outputs are voltage spikes mea-
sured across J3 and J4 as shown.
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memory capacity with increasing number of loops. This number
can be even higher if some of the loops are larger and can accom-
modate more than a single Φ0 in them (i.e., LIC=Φ0 . 2).
However, any degree of symmetry in the array will result in some
redundant (degenerate) configurations, where the resultant weights
between the nodes are identical between them. A maximum
number of configurations for a given array can be achieved when
the disorder is highest, with no degree of symmetry representing a
random network, while any degree of symmetry represents a small-
world network.

Establishing mathematical principles that guide the circuit
dynamics can help understand the emergent properties of the dis-
ordered network. Such studies could also provide insight into
whether specific application-related algorithms can be programmed
in the form of particular small-world network array patterns.
However, certain spike-timing and rate-dependency aspects of the
synaptic weights in disordered networks can be demonstrated using
a simpler and easier method to analyze arrays comprising two and
three loops with arbitrarily chosen parameters. While a larger array
may be more difficult to predict, various aspects of signal dynamics
that occur in the simpler subset of two or three loops in the array
can be understood from the following examples.

An example of an array larger than two or three loops is
shown in Fig. 1(b), that is based on the planar YBCO-based
Josephson junction process developed by Cybart et al.39,43 We note
that it is possible to manufacture such an array with several other
existing popular Josephson junction circuit processes.36–39

B. A symmetric array 1 × 2 three-state synaptic
network example

A “simple” synaptic network is designed to connect to one
input neuron and two output neurons as shown in Fig. 2(a). The
network also has two current bias channels that can be connected
to feedback. The simplest form of this system is symmetric, with
identical Josephson junction pairs J1, J2 and J3, J4. The inductance
of the loops is assumed to be symmetrically distributed and, there-
fore, can be characterized using lumped element inductors as
shown in Fig. 2(b). The Josephson junctions are shown as red lines
that define the barrier in Fig. 2(a) along with the superconducting
material characterized by inductances. The circuit equivalent used
for simulations is shown in Fig. 2(b). The input excitations are
chosen to represent an incoming spike train from an adjacent

neuron, and the bias inputs are chosen to represent continuous
current inputs from the feedback mechanism discussed in Sec. IV.
The corresponding simulation results are shown in Fig. 4. The fre-
quency of the input spike train is fixed and both the bias signals
are current ramps with constant slopes as shown in Figs. 4(a), 4(b),
and 4(e), respectively. Therefore, these excitations together repre-
sent a short time duration of the operation of the array, whereas
the input and the biasing signals are expected to follow significantly
complex dynamics at longer time scales. Note that the actual time
scales used, i.e., the input time period of a few hundred picosec-
onds and the bias ramp rates of several micro-amperes per nano-
second, are not important for the operation of the circuit. However,
the relative time scales such as the bias ramp rates with respect to
the input frequency along with their respective magnitudes deter-
mine the synaptic weight as demonstrated in Figs. 4(i) and 4( j).

While two loops designed to satisfy 1 , LIC=Φ0 , 2 can have
3n ¼ 9 configurations for the two loops (n ¼ 2), the symmetry in
the circuit restricts the total number of distinct configurations to
four, while strong coupling between the outputs makes them
almost identical. The various current paths and loop current com-
ponents between input node and output junctions for four distinct
configurations are shown in Fig. 3. Note that the currents in the
opposite directions that can generate negative voltage spikes are
also possible, but the circuit operation corresponding to them is
identical to these four configurations. The circuit is simulated and
the results of input, output, and bias signals as a function of time
are shown in Fig. 4.

The circuit operation is similar to that of a T flip-flop or a fre-
quency divider,44 with additional, dynamically varying bias current
signals that result in four different loop current states specified.
Therefore, the input voltage spikes drive the incoming current
through the junctions. The actual parameters and conditions used
for circuit simulation are provided in the supplementary material
for all the simulation results presented in this article. However, as
the circuits are disordered arrays, the choice of parameters is not
critical to understand the operation of the synaptic network.
Different choices of parameters produce different emergent loop
configuration dynamics. But practically plausible physical parame-
ter values are chosen for simulations shown in Fig. 4 to demon-
strate features of a spiking neural network.

When the bias currents are zero, the incoming spikes are
insufficient to exceed critical currents of either of the junctions to
generate an output voltage spike resulting in configuration 1 in

FIG. 3. Relative current directions corresponding to four different configurations/synaptic weights possible in the symmetric 1� 2 three-state synaptic network shown in
Fig. 2.
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Fig. 3(a), and no spikes are generated at the output. This corre-
sponds to a synaptic weight of zero. As a ramp current input with a
certain slope is applied to one of the bias inputs while the other
bias input is zero, the circuit cycles through its four configurations
at different bias current values. Both the outputs start to generate
identical spike trains as the current from constant frequency input
spikes and the bias current together are sufficient to switch junc-
tions J3 and J4 to a dynamical state generating voltage spikes. At
certain current biases, as the junctions J3 and J4 together exceed
their respective critical currents with each incoming spike, the
output spike frequency is half that of the input frequency resulting
in a synaptic weight of 0:5. This operation corresponds to the
second configuration as shown in Fig. 3(b) and occurs between
2:5 ns and 4 ns in Figs. 4(b)–4(d). The circuit transitions into the
third configuration at a higher bias current value where the output
frequency is unchanged, but the spike generation oscillates
between both the outputs as observed between 4 ns and 7 ns in
Figs. 4(b)–4(d), corresponding to junctions J3 and J4 switching
alternatively as the loop current in J3� L2� J4 cycles between
þΦ0 and �Φ0. As the current bias further increases, both the
output spike trains are identical, but a higher current bias can

generate voltage spikes across both junctions J3 and J4 simultane-
ously with every input spike. The weight between input and both
the outputs are 1 in this state as observed after 7 ns in Figs. 4(b)–4(d).
Both the outputs are identical due to the symmetry of the system
and strong coupling between the output junctions. Although
there are four configurations available, there are only three useful
states corresponding to weights of 0, 0:5, and 1, making it a
three-state synapse.

When both the current biases are active, the system cycles
through the same four memory states but the transitions occur at
different times and at different current values as shown in
Figs. 4(e)–4(g). The weight/configuration of this network, therefore,
depends on the input spike timing and/or frequency, the number
of input spikes, and the slopes of the bias currents. The slopes can
be either positive or negative as illustrated in Fig. 4(e), correspond-
ing to either positive or negative feedback coupling.

Therefore, the memory configuration of the array is a function
of two variables that are dependent on each other: the number/rate
of the input spikes and the rate of change of the bias currents (i.e.,
the slope of the bias current signal). However, as the output signal
is coupled to the bias current signal through a feedback loop as

FIG. 4. Simulation results of the three-state synaptic network shown in Fig. 2. (a) Input spike train with constant frequency and magnitude. [(b) and (e)] Bias current signals.
Black curve represents current through bias 1, and the blue curve represents current through bias 2. [(c) and (f )] Output spike trains measured across junction J3 of Fig. 2
(i.e., output 1), The four different configurations corresponding to different synaptic weights are highlighted in (c). [(d) and (g)] Output spike trains measured across junction J4
of Fig. 2. (h) Magnified view of a single spike demonstrating a single-flux quantum voltage pulse. (i) Synaptic weight, defined as the ratio of a number of output spikes to
number of input spikes, plotted as a function of the number of input spikes in 10 ns, for different values of bias current slopes. Bias current slopes: -10 μA/ns, -15 μA/ns,
-20 μA/ns, -25 μA/ns, and -30 μA/ns. ( j) Synaptic weight, defined as the ratio of the number of output spikes to the number of input spikes in 10 ns, plotted as a func-

tion of slope of the bias current, for different numbers of input spikes. Number of input spikes : -1000, -200, -100, -50, -20, and -10.
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discussed in Sec. IV, the slope of the bias current signal is propor-
tional to the frequency of output spikes. Therefore, the synaptic
weights between any two neurons are dependent on the relative
timing and the rate of spikes of the input and the output signals.
Figure 4(i) shows the dependence between the synaptic weight cal-
culated using Eq. (1) as the ratio between the number of output
spikes measured across J3 of Fig. 2 and the number of input spikes
in a fixed time period of 10 ns. The input frequency is kept cons-
tant, while the bias current is linearly varied during this time
period. The simulation results are shown for different bias current
increase rates (slopes) in Fig. 4(i). As evident in the results, for a
fixed output frequency (or bias current slope), the synaptic weight
converges to a fixed value after 500 input spikes. The number of
input spikes required for convergence changes with changing input
frequency. Furthermore, different choices of bias current slope
result in different convergent synaptic weight, indicating that the
weight can be varied between 0 and 1 with the choice of bias
current slopes. This is also evident in Fig. 4( j). Figure 4( j) shows
the dependence between synaptic weight and the slope of the bias
current (equivalent to output frequency). The results for different
numbers of input spikes during the fixed time interval of 10 ns
(equivalent to different input frequencies) are shown. Increasing
the bias current slope increases the synaptic weight non-linearly.
For the given set of input frequencies seen in Fig. 4( j), thresholds
appear at certain bias current frequencies, such as at 15 μA/ns and
30 μA/ns where the synaptic weight appears to saturate as constant
frequency input spikes are applied. The input frequency determines
the resolution of weights that can be accessed between 0 and 1.
Together, Figs. 4(i)–4( j) highlight the spike-timing and rate depen-
dencies of input and output signals on the synaptic weight.

C. 3-loop 1 × 2 synaptic network example

The three-state synaptic network introduced in Sec. II B
describing two loops is a highly constrained and symmetric (degen-
erate) system and was chosen to demonstrate the basic dynamics of
a disordered array even though the symmetry resulted in

degenerate memory configurations. Even this three loop geometry
offers more options and complexities. Introducing some disorder
in the system in the form of asymmetric geometry exponentially
increases the number of configurations/states available, thereby
transforming it to a complex system, while exhibiting similar time
and rate-dependent dynamics with respect to input signals and
output signals through feedback. A complex 3-loop disordered
array system is chosen to demonstrate the dynamics of a network
with 1 input and 2 outputs as shown in Fig. 5(a). In the equivalent
circuit shown in Fig. 5(b), we allow no two junctions to be identical
to each other. Furthermore, the inductance is asymmetrically dis-
tributed around loops. The inductor values and Josephson junction
parameters are arbitrarily chosen, with a restriction to only allow
up to 1 single-flux quantum in each of the loops. The actual
parameters used in the simulation results are provided in the
supplementary material. The circuit can be in up to 33 ¼ 27 differ-
ent configurations, each of them resulting in different weights
between the input and either of the two output neurons, which
range from 0 to 1. The weight dynamically changes with changing
input frequency or the rate of change of any of the bias currents
(equivalent to the feedback corresponding to respective output
frequencies).

Two different cases with different combinations of bias signals
(i.e., different ramp rates) are simulated to demonstrate this aspect.
The input spike frequency is kept constant, and the results of
output spikes are presented in Fig. 6. The resulting output spike
trains demonstrate voltage spikes with the timing between them
varying according to the bias current signals. A constant frequency
spike train shown in Fig. 6(a) is applied to the input terminal. The
two output spike trains are plotted for two different biasing condi-
tions in Figs. 6(b) and 6(c) and 6(e) and 6(f ), respectively. The
output spike trains are significantly more complex for the given
deterministic input spike train and, therefore, are a result of the dis-
ordered coupling as well as the biasing conditions. Note that an
inhibitory output can generate a decreasing or a negative bias
current. As the physical parameters of the circuit remain
unchanged, a correlated set of relations can be drawn between the

FIG. 5. (a) 1� 2 three-loop disordered array synaptic network with two feedback terminals. Josephson junction barriers are shown in red, while the gray area represents
the superconducting material. (b) Equivalent lumped-element circuit model with junctions and inductors. The output voltage spikes are measured across junctions J3 and
J5. The circuit is completely disordered with no two junctions or inductors identical to each other.
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synaptic weight and the input/output signals. To illustrate this, the
synaptic weights are plotted as a function of slope of the bias
current with constant input frequencies in Figs. 6(g) and 6(h).
Different curves in the plot represent different input frequencies.
Bias 1/feedback 1 is varied with bias 2 constant in Fig. 6(g) while
bias 2/feedback 2 is varied with Bias1 constant in Fig. 6(h). Similar
to the results observed in the three-state synaptic network in Fig. 4,
the weight is zero below a threshold value of bias current slope.
This threshold is dependent on the input frequency as evident in
Figs. 6(g) and 6(h). Above the threshold, the weight changes with
changing current slopes until a saturation value is reached, which is
also dependent on the input frequency. While the actual dynamics
are significantly complex to understand in detail, the emergent phe-
nomenon exhibits spike timing and rate dependency of input and
output (through feedback) on the synaptic weight. Additionally, the
resulting synaptic weights are dependent on the previous state of the
system. Note that the assumption here is that the parameters are
chosen to satisfy 1 , LIC=Φ0 , 2. Relaxing those conditions would
result in more than 27 configurations.

D. Large disordered array synaptic network

The number of configurations available increases exponen-
tially with an increasing number of loops. Therefore, it is difficult
and not too instructive to determine the behavior of such systems
with a similar circuit analysis performed for smaller arrays as

presented in Secs. II A–II C. Nevertheless, the circuit dynamics
established so far can be expanded to understand interactions
between any two adjacent loops that are part of a larger array. Two
different variations of coupling can occur between any two such
adjacent loops as shown in Fig. 7. In the first case, the loops are
coupled through an inductor as shown in Fig. 7(a), whereas in the
second case, the loops are coupled through a Josephson junction as
shown in Fig. 7(b). In both cases, the configuration of the network
(i.e., synaptic weight between any two nodes) changes when the
loop currents change. Changes in loop currents occur when one or
more of the junctions switch to a dynamic state, generating a
single-flux quantum voltage pulse, following the current through
them exceeding their respective critical currents. In other words,
any current path between the neurons changes when one of the
junctions in the path switches, resulting in a change in weight.
Output spikes are produced when the current across the output
junctions exceeds its critical current. Therefore, the interaction
between the loops can be understood through the loop currents as
a function of time and their transitions as the output frequency
changes.

When two adjacent loops have an inductor in common as
shown in Fig. 7(a), the circuit operates similar to that of a three-state
synaptic network of Fig. 2. The simulation results of loop currents
along with the output voltage spike train measured across junction
J4 as a function of time are shown in Figs. 8(a)–8(d) for the specified
bias current signals. The circuit operates in the mode that is identical

FIG. 6. Simulation results of the synaptic network shown in Fig. 5. (a) Constant frequency spiking input from an adjacent neuron. (b) Output spikes measured across an
outer junction of the first output loop with feedback slopes of 20 μA/s and 0 μA/s. (c) Output spikes measured across an outer junction of the second output loop with a
feedback slope of 20 μA/s and 0 μA/s. (e) Output spikes measured across an outer junction of the first output loop with feedback slopes of 20 μA/s and �10 μA/s. ( f )
Output spikes measured across an outer junction of the second output loop with a feedback slope of 20 μA/s and �10 μA/s. (g) Synaptic weight between output 1 and
input with constant input frequency as a function of rate of change of feedback 1 at different values of rate of change of feedback 2. (h) Synaptic weight between output 1
and input at different input frequencies as a function of rate of change of feedback 1 at a constant rate of change of feedback 2.
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to that shown in Fig. 3(a). Transient spiking currents are observed at
regular intervals corresponding to each input voltage spike because
the simulations performed are using transient circuit analysis.
However, the steady-state currents between these spikes are indica-
tive of the memory configuration of the array. Figures 8(b) and 8(c)
are the loop currents corresponding to loops J1� L1� L2� J2 and
J3� L3� J4, respectively. Note that the current on one of the

biasing terminals is steadily increasing, resulting in a corresponding
increase in the steady-state loop currents. The circuit is subjected to
the same four different configurations as that of Figs. 4(c) and 4(d).
The loop currents are subjected to different interactions during these
four configurations as they interact through the common inductor
L3. When the output voltage is zero, the loop currents steadily
increase or decrease until the loop current is sufficient to switch one
of the junctions J3 or J4. As the bias current increases further, the
output voltage generates a spike at every alternative input spike. The
loop currents in J1� L1� L2� J2 and J3� L3� J4 cycle between
þΦ0 and �Φ0. The voltages across each of the junctions in these
four states are shown in the supplementary material to further
support the analysis. Initially, the loop currents are opposite to each
other, acting together at L3. At a higher bias current, the loop cur-
rents are identical, therefore acting against each other through L3 as
seen in Fig. 8(b) and 8(c) between 2:5 ns and 7 ns. In an asymmetric
circuit, these two different configurations result in two different sets
of weights. The cycling between states stops as the bias current
increases further resulting in switching of all four junctions. Any
further increase in bias current will result in a higher output fre-
quency irrespective of the input signal. Therefore, when loops are
coupled through an inductor, the relative cycling of individual loop
currents between þΦ0 and �Φ0 can result in different weights,
while switching of the junctions changes the number of flux quanta
Φ0 in the array.

FIG. 7. Schematics representing two different types of loop interactions that can
occur in a large disordered array. (a) Two loops coupled to each other through
an inductive element. (b) Two loops coupled to each other through a Josephson
junction.

FIG. 8. Simulation results of the two loop circuits shown in Fig. 7. (a) and (e) Bias currents applied to the circuits from Figs. 7(a) and 7(b), respectively. Black curve
represents current through bias 1, and the blue curve represents current through bias 2.
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The second type of coupling between the loops can occur
through a Josephson junction as shown in Fig. 7(b). The simulation
results of loop currents and the output voltage are shown in
Figs. 8(e)–8(h) as a function of time for the given bias currents. In
this array, the loop currents do not cycle between states with each
input voltage spike, but abruptly switch to different values as one
of the junctions switch. Switching of either J1 or J3 can add or
remove a flux quantum Φ0 to the array, while switching of J2
results in a change in weight by changing the interaction between
the loop currents in both the loops. The corresponding voltages
between each of the junctions in this configuration are provided in
the supplementary material.

Therefore, the parameters of a large disordered array network
can be described as shown in Eq. (2), with the relation between any
two neurons in the network defined by the input i1, i2, . . . and
output signals o1, o2, . . ., along with the physical parameters
c1, c2, . . . that are dependent on the coupling inductors and junc-
tions between any two loops. Such a relationship can be used to
characterize synaptic weights to physical parameters c1, c2, . . . for
given inputs and outputs.

i1
i2
. . .

2
4

3
5

c1 c2 . . .
c3 c4 . . .
. . . . . . . . .

2
4

3
5 ¼

o1
o2
. . .

2
4

3
5: (2)

Identifying the coupling constants as shown in Eq. (2) does
not imply that the weights can be programmed in a deterministic
way. This is because the inputs i1, i2, . . . and outputs o1, o2, . . .
are coupled to each other through feedback, and therefore their
values are dependent on the previous memory state of the system.
Furthermore, in the two and three loop synaptic array examples
discussed in Figs. 3 and 7, it is clear that there is an upper limit to
bias current, above which all the junctions in the circuit will be in
the normal state (not shown in the simulation results). The feed-
back mechanism discussed in Sec. IV can be designed appropriately
to only allow bias currents below this upper limit.

III. LEAKY INTEGRATE-AND-FIRE NEURON MODEL

In Secs. II A–II D, a collective synaptic network system was
established that responds to spiking input and generates a spiking
output. A compatible integrate and fire neuron is presented in this
section that can be used to construct a recurrent neural network
described in Sec. V. We describe a design that can react to incom-
ing spikes from several other neurons through the synaptic network
and generate a spiking output when the integrated signal over-
comes a threshold. It comprises a superconducting loop with a
stack of Josephson junctions as shown in Fig. 9(a) with spiking
input for incoming spikes from several other neurons, or the DC
current input that can be connected to feedback loops. The result-
ing spike train is applied across the input Josephson junction as
shown in Fig. 10(a). The superconducting loop is designed to have
a large inductance. Therefore, with each incoming spike switching
the input junction J1 to a normal state, the current in the loop
increases. The number of spikes that can enter the integration loop
that can be referred to as the threshold, is determined by LIC

Φ0
, where

L is the inductance of the loop [i.e., L ¼ L1þ L2 in Fig. 9(b)], IC is
the critical current of the junctions in the identical junction stack,
and Phi0 is the magnetic flux quantum given by 2:5� 10�15 Wb.
When the loop current reaches a threshold, the junctions in the
stack develop single-flux quantum voltage spikes. Therefore, the
output spike train can be measured across one of the junctions in
the stack as shown. Switching all the junctions in the stack results
in a decrease in the persistent current in the integration loop to a
resting potential urest . The simulation results of the incoming spikes
of constant frequency, output spikes, and the loop current are
shown in Figs. 10(a)–10(c), respectively. A small resistor R is added
to the superconducting loop to allow the loop current to decay
with a time constant of τ ¼ L

R, therefore exhibiting a leaky
integrate-and-fire aspect. The resistor, therefore, allows us to
decrease the time constants of the current loop to the time scale of
the input signals. As shown in Figs. 10(a)–10(c), the circuit pro-
duces a spiking output when the loop current reaches a threshold
value when a constant bias current as a constant frequency input
spiking signal is applied. The operation of this design closely

FIG. 9. Leaky integrate-and-fire neuron
circuit schematic. Input signal repre-
sents spike trains received from other
neurons/disordered arrays. Current
bias represents integrated feedback
and/or feed-forward signals. Output
spike train is measured across junction
J2.
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emulates a leaky integrate-and-fire model, which is described by

τ
d
dt

u ¼ �(u� urest)þ RI(t): (3)

The neuron fires and resets to resting potential when u(t) ¼ v,
where u(t) is the loop current and v is the threshold defined by LIC

Φ0
.

The threshold, i.e., the number of incoming spikes needed for
the neuron to fire, can be varied through a bias current/feedback
loop as shown in Figs. 10(d)–10(f ). A linearly ramping current is
applied to the bias without a spiking input. Figure 10(e) shows that
the threshold and the resting potential decrease as the current bias
is increased, resulting in fewer input spikes required to fire the
neuron. Therefore, when the bias current terminal is coupled to a
positive feedback signal from the disordered array network, the
neuron can be made to fire more readily and vice versa. The actual
dynamics of the feedback/feed-forward signals can be a result of
immediate output signals or signals from a different hierarchical
level of the neural network through a feedback mechanism
explained in Sec. V, similar to the mechanism for the synaptic
network. Additionally, the current bias channel can also be used to
integrate spike trains from a large number of neurons/synaptic net-
works through a similar mechanism as that of feedback shown in
Sec. IV. Furthermore, the loop current magnitude (i.e., either
resulting from the spiking input or the bias current) vs the output
frequency resembles that of the ideal leaky integrate-and-fire model
described by Eq. (3). The simulated input current vs output fre-
quency is shown in Fig. 10(g). Therefore, this model circuit

demonstrates the operation of a leaky integrate-and-fire model that
is compatible with the disordered array synaptic network.

IV. FEEDBACK MECHANISM

One of the important aspects of the various circuits intro-
duced in Secs. I–III is the feedback mechanism. Continuous and

FIG. 10. (a) Input spike train with constant magnitude and frequency. (b) Output spike firing after the input signal reaches a threshold, for a given constant current bias.
The current bias value defines the threshold. (c) Loop current representing the total signal accumulated in the neuron. The currents reset to a “rest” value after the neuron
reaches the threshold and fires. (d) Varying frequency input signal obtained by applying a ramp current of a constant slope to the current bias. (e) Output spike train corre-
sponding to input as in (d). ( f ) Loop current accumulated in the neuron showing dependency on input frequency. (g) Input current bias vs output frequency. The threshold
varies with circuit parameters.

FIG. 11. (a) Feedback circuit to convert single-flux quantum pulses into current
bias with a similar mechanism as introduced by Shainline et al.41 (b) Several
feedback connections can be made to a single bias line.
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linearly increasing or decreasing ramp currents are chosen to
emulate a simplified response from these feedback connections. In
this section, the mechanism to convert an output spike train into a
continuous bias current is presented. A variation of this mechanism
is introduced by Shainline et al.41 for use as a feedback mechanism
for superconducting opto-electronic loop neural networks.
Nevertheless, this circuit is suitable to convert an output spike train
into a continuous current signal, the slope of which is proportional
to the frequency of the spike train. The circuit for feedback is

shown in Fig. 11. When a spiking input of constant frequency is
applied across junction J1 of Fig. 11(a), a circulating current
is added to the loop comprising J1� J2� L2. This current loop is
inductively coupled to the larger current loop that goes through the
bias current terminal and into the disordered array network. As the
circulating current in the loop J1� J2� L2 increases, the current
through the inductor L1 and, therefore, the bias current terminal
increases. An upper limit to the bias current exists in this mecha-
nism that is set by the inductor L2 at which the bias current

FIG. 12. Simulation results of feedback circuits shown in Fig. 10. (a) Spike train from output applied to J1 in Fig. 11(a). (b) Current bias through L1 in Fig. 11(a) that can
be applied to the disordered array. (c) Spike trains applied to different hierarchical feedback loops through J1, J3, and J5, respectively. Red spikes represent signal applied
at J1, blue represents signal applied at J3, and black represents signal applied at J5. (d) Total accumulated current on the bias line through inductors L1, L2, and L3 due
to signals applied as shown in (c).

FIG. 13. Illustration of (a) regular, (b) small-world, and (c) random disordered array synaptic networks.
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saturates. The corresponding simulation results are shown in
Figs. 12(a) and 12(b). The inductive coupling to the bias line can
either be positive or negative, representing an excitatory or inhibi-
tory input, respectively. As evident from the synaptic network sim-
ulations, the bias currents can only be increased up to a certain
value before reaching the maximum synaptic weight of 1.
Increasing the bias currents beyond a certain value results in all the
Josephson junctions in the array switching into the normal state
without further evolution of the memory configurations. Therefore,
the saturation values of the feedback current loops must be
designed to limit bias currents from driving the disordered array
into a saturated state.

A single bias line can be used to integrate feedback inputs
from a large number of spike trains incoming from various chan-
nels in the network from different hierarchical levels of the recur-
rent neural network. The schematic of this aspect is demonstrated
in Fig. 11(b) and the corresponding simulations results are shown
in Figs. 12(c) and 12(d). Three different spike trains are applied to
feedback loops across J1, J2, and J3, respectively as shown in
Fig. 12(c). The inductive coupling to the inductor L3 in the biasing
loop is in the opposite direction to that of the other two inductors
resulting in the negative bias current. Initially, only one of the feed-
back spike trains (across L1) is active causing the total bias current
to linearly increase until it reached saturation at 2 ns. When the
second spike train (across L2) is active, the bias current further
increases until it reaches a new saturation value. Note that the spike
train across L1 is active during this period. Adding a negatively
coupled spike train to this bias loop through L3 allows the bias
current to decrease resulting in a complex mechanism to update
the total bias current as shown in Fig. 12(d). The bias currents can
also be updated manually by injecting current through a separate
inductor in order to update the weights.

V. HIERARCHICAL ARCHITECTURE OF RECURRENT
NEURAL NETWORKS

As mentioned in Secs. I–IV, the disordered array synaptic net-
works and the building blocks developed around them can be inte-
grated together in a way to design fully connected and recurrent
neural networks with hierarchical architecture for unsupervised
learning. Any degree of symmetry in the disordered array results
in degenerate memory configurations resembling a small-world
network. The disorder can be varied to obtain small-world and
random networks to take advantage of the collective emergent

FIG. 14. Neural network schematic illustrating feedback connections for the
hierarchical architecture. Blue lines represent connections from/to neurons, and
black lines represent feedback connections. Feedback from multiple hierarchical
levels can be coupled to each bias line on disordered arrays.

FIG. 15. Neural network schematic for the hierarchical architecture. The schematic on the left represents individual neurons connected to each other through a disordered
array. The schematic on the right represents individual networks (may be viewed as corresponding to different functions) on the left connected to each other through a hier-
archical disordered array.
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properties,35 as shown in Fig. 13. The schematic of a fully recurrent
neural network at the lowest level is shown in Fig. 14. The input
nodes to the disordered array can be connected to the loop
neurons as shown in Sec. III, while the outputs can be coupled to
the bias current terminals of the array through a feedback mecha-
nism. The additional input and output nodes are open-ended that
can be connected to other recurrent networks. Therefore, several of
these neural networks can be combined together through a hierar-
chical disordered array with additional feedback connections
arising from that array coupled to bias terminals of the lower level
disordered arrays as shown in Fig. 15. Additionally, this architec-
ture allows scaling the recurrent neural networks with self-
similarity at the lowest and highest levels similar to that of a biolog-
ical brain.40 However, the emergent dynamics of such a network
must be further investigated to determine the programming
methods to update the weights as well as to design specific disor-
dered patterns optimized for particular applications.

The organization of biological brain networks can be classified
into structural and functional motifs,45 where Sporns28 identified
that the brain networks develop by maximizing the functional
motifs available for a small repertoire of structural motifs as
allowed by evolutionary rules. Furthermore, the structural motifs
are predominantly small-world networks45 that support a large
number of complex metastable states. The disordered array net-
works, therefore, allow flexibility to represent structural motifs that
are designed for specific functionality. Several such distinct recur-
rent networks can be combined together in a hierarchical network
to achieve a higher level functional motif operation.

Together, this system represents a recurrent network with an
architecture of a hierarchy of loops, ranging from individual loop
currents in a disordered array to a large loop current through the
feedback network. The integration of information across a wide
range of spatial and temporal scales can be constructed using disor-
dered array networks as summarized in Figs. 14 and 15. Such a
highly scalable network can be used to develop a complex system
that can reconfigure itself in response to the inputs analogous to a
biological brain network.40

VI. CONCLUSION

In this article, we have proposed a new approach to neuro-
morphic computing architecture using collective synaptic networks
implementing disordered arrays. We have used superconducting
disordered array loops to demonstrate the architecture. Equivalent
lumped-element circuit simulations are used to illustrate complex
dynamics of individual elements of such networks. The simulation
results are shown for a short time duration of operation of the
network with simplified excitation conditions, as the actual opera-
tion of these networks is significantly more complex. Additionally,
we have introduced components such as leaky integrate-and-fire
neuron and feedback that can be used to construct a recurrent
neural network together with disordered arrays. Finally, we have
shown that a large complex neural network with the hierarchical
architecture that is similar to a biological brain can be constructed
from the individual recurrent networks. However, we would like to
suggest that this architecture is not unique to superconducting
loops and that this disordered array approach can also be used with

other hardware mechanisms of various materials that emulate
neuron and synapse-like behavior. This can be achieved by creating
a disordered array of coupled synapses in the network to create a
complex dynamical system with a significantly larger number of
states than individual synaptic connections between neurons.
However, the introduced superconducting circuits can be used to
develop the mathematical basis to further understand emergent
phenomena to aid development of networks for practical
applications.

This approach can significantly improve scalability of a neural
network by replacing a large number of separate interconnections
between neurons with a considerably smaller disordered array.
Additionally, this high degree of inter-connectivity through a
small-world network increases the synchronizability,35 therefore
enabling faster learning. Additionally, these circuits can naturally
emulate spiking features of biological brains at high operating
speeds up to hundreds of GHz (Ref. 47) while dissipating energies
of the order of a few aJ/spike.46

SUPPLEMENTARY MATERIAL

See the supplementary material for the details of actual circuit
parameters used in calculations/simulations that are discussed in
the manuscript.

ACKNOWLEDGMENTS

This work was supported as part of the Quantum Materials
for Energy Efficient Neuromorphic Computing (Q-MEEN-C), an
Energy Frontier Research Center funded by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences under Award No.
DE-SC0019273. The authors wish to thank Shane Cybart for
ongoing discussions; Nirjhar Sarkar for ongoing questions; and our
Q-MEEN-C collaborators, especially Alex Frano, for continued
encouragement and associated collaborations.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article and its supplementary material.

REFERENCES
1P. Leong and M. Jabri, “A VLSI neural network for morphology classification,”
in [Proceedings 1992] IJCNN International Joint Conference on Neural Networks
(IEEE, Baltimore, MD, 1992), Vol. 2, pp. 678–683.
2G. Cairns and L. Tarassenko, “Learning with analogue VLSP MLPs,” in
Proceedings of the Fourth International Conference on Microelectronics for Neural
Networks and Fuzzy Systems (IEEE, 1994), pp. 67–76.
3J. Backus, “Can programming be liberated from the von Neumann style? A func-
tional style and its algebra of programs,” Commun. ACM 21, 613–641 (1978).
4F. Salam, “A model of neural circuits for programmable VLSI implementation,”
in IEEE International Symposium on Circuits and Systems (IEEE, 1989), Vol. 2,
pp. 849–851.
5F. Distante, M. Sami, and G. Storti Gajani, “A general configurable architecture
for WSI implementation for neural nets,” in International Conference on Wafer
Scale Integration 1990 Proceedings (IEEE, 1990), pp. 116–123.
6A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane
current and its application to conduction and excitation in nerve,” J. Physiol.
117, 500–544 (1952).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 129, 073901 (2021); doi: 10.1063/5.0027997 129, 073901-13

Published under license by AIP Publishing.

https://www.scitation.org/doi/suppl/10.1063/5.0027997
https://www.scitation.org/doi/suppl/10.1063/5.0027997
https://doi.org/10.1145/359576.359579
https://aip.scitation.org/journal/jap


7F. Castanos and A. Franci, “The transition between tonic spiking and bursting
in a six-transistor neuromorphic device,” in International Conference on
Electrical Engineering, Computer Science and Automatic Control (IEEE, 2015).
8S. P. DeWeerth, M. S. Reid, E. A. Brown, and R. J. Butera, “A comparative analysis
of multi-conductance neuronal models in silico,” Biol. Cybern. 96, 181–194 (2007).
9W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” Bull. Math. Biophys. 5, 115–133 (1943).
10C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and neural
networks in hardware,” arXiv:1705.06963[cs] (2017).
11T. Chou, J.-C. Liu, L.-W. Chiu, I.-T. Wang, C.-M. Tsai, and T.-H. Hou,
“Neuromorphic pattern learning using HBM electronic synapse with excitatory
and inhibitory plasticity,” in 2015 International Symposium on VLSI Technology,
Systems and Applications (IEEE, 2015), pp. 1–2, ISSN: 1524-766X.
12Y. Dan and M.-M. Poo, “Spike timing-dependent plasticity of neural circuits,”
Neuron 44, 23–30 (2004).
13H. Chible, “Analog circuit for synapse neural networks VLSI implementation,”
in ICECS 2000, 7th IEEE International Conference on Electronics, Circuits and
Systems (Cat. No. 00EX445) (IEEE, 2000), Vol. 2, pp. 1004–1007.
14S. Kim, Y.-C. Shin, N. C. R. Bogineni, and R. Sridhar, “A programmable
analog CMOS synapse for neural networks,” Analog Integr. Circ. Sig. Process 2,
345–352 (1992).
15P. Crotty, D. Schult, and K. Segall, “Josephson junction simulation of
neurons,” Phys. Rev. E 82, 011914 (2010).
16M. L. Schneider, C. A. Donnelly, S. E. Russek, B. Baek, M. R. Pufall,
P. F. Hopkins, P. D. Dresselhaus, S. P. Benz, and W. H. Rippard, “Ultralow
power artificial synapses using nanotextured magnetic josephson junctions,” Sci.
Adv. 4, e1701329 (2018).
17K. Segall, M. LeGro, S. Kaplan, O. Svitelskiy, S. Khadka, P. Crotty, and
D. Schult, “Synchronization dynamics on the picosecond time scale in coupled
josephson junction neurons,” Phys. Rev. E 95, 032220 (2017).
18R. Cheng, U. S. Goteti, and M. C. Hamilton, “Spiking neuron circuits using
superconducting quantum phase-slip junctions,” J. Appl. Phys. 124, 152126
(2018).
19E. Toomey, K. Segall, and K. Berggren, “Design of a power efficient artificial
neuron using superconducting nanowires,” Front. Neurosci. 13, 933 (2019).
20G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik,
R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud,
J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saïghi,
T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic
silicon neuron circuits,” Front. Neurosci. 5, 73 (2011).
21S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale memristor device as synapse in neuromorphic systems,” Nano Lett.
10, 1297–1301 (2010).
22H.-T. Zhang, T. J. Park, I. A. Zaluzhnyy, Q. Wang, S. N. Wadekar, S. Manna,
R. Andrawis, P. O. Sprau, Y. Sun, Z. Zhang, C. Huang, H. Zhou, Z. Zhang,
B. Narayanan, G. Srinivasan, N. Hua, E. Nazaretski, X. Huang, H. Yan, M. Ge,
Y. S. Chu, M. J. Cherukara, M. V. Holt, M. Krishnamurthy, O. G. Shpyrko,
S. K. R. S. Sankaranarayanan, A. Frano, K. Roy, and S. Ramanathan, “Perovskite
neural trees,” Nat. Commun. 11, 2245 (2020).
23J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, S. Fukami, and
M. D. Stiles, “Neuromorphic spintronics,” Nat. Electron. 3, 1–11 (2020).
24J. del Valle, P. Salev, F. Tesler, N. M. Vargas, Y. Kalcheim, P. Wang, J. Trastoy,
M.-H. Lee, G. Kassabian, J. G. Ramírez, M. J. Rozenberg, and I. K. Schuller,
“Subthreshold firing in mott nanodevices,” Nature 569, 388–392 (2019).
25I. K. Schuller, R. Stevens, R. Pino, and M. Pechan, “Neuromorphic computing
—From materials research to systems architecture roundtable,” Tech. Rep.,
USDOE Office of Science (SC), 2015.

26Y. Li, Z. Wang, R. Midya, Q. Xia, and J. J. Yang, “Review of memristor devices
in neuromorphic computing: Materials sciences and device challenges,” J. Phys.
D Appl. Phys. 51, 503002 (2018).
27S. R. Nandakumar, M. Le Gallo, I. Boybat, B. Rajendran, A. Sebastian, and
E. Eleftheriou, “A phase-change memory model for neuromorphic computing,”
J. Appl. Phys. 124, 152135 (2018).
28O. Sporns, “Network analysis, complexity, and brain function,” Complexity 8,
56–60 (2002).
29J. M. J. Murre and D. P. F. Sturdy, “The connectivity of the brain: Multi-level
quantitative analysis,” Biol. Cybern. 73, 529–545 (1995).
30J. Hsu, “IBM’s new brain [News],” IEEE Spectr. 51, 17–19 (2014).
31H. Moravec, “When will computer hardware match the human brain?,”
J. Evol. Technol. 1, 10 (1998).
32D. L. Lewis and H.-H. S. Lee, “Architectural evaluation of 3D stacked RRAM
caches,” in 2009 IEEE International Conference on 3D System Integration (IEEE,
2009), pp. 1–4.
33H. Markram, “The human brain project,” Sci. Am. 306, 50–55 (2012).
34See www.research.ibm.com for “IBM Research: Brain-Inspired Chip” (2015) .
35D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ net-
works,” Nature 393, 440–442 (1998).
36S. K. Tolpygo, V. Bolkhovsky, T. J. Weir, A. Wynn, D. E. Oates,
L. M. Johnson, and M. A. Gouker, “Advanced fabrication processes for super-
conducting very large-scale integrated circuits,” IEEE Trans. Appl. Supercond.
26, 1–10 (2016).
37S. K. Tolpygo, V. Bolkhovsky, R. Rastogi, S. Zarr, A. L. Day, E. Golden,
T. J. Weir, A. Wynn, and L. M. Johnson, “Advanced fabrication processes for
superconductor electronics: Current status and new developments,” IEEE Trans.
Appl. Supercond. 29, 1–13 (2019).
38S. Nagasawa, K. Hinode, T. Satoh, M. Hidaka, H. Akaike, A. Fujimaki,
N. Yoshikawa, K. Takagi, and N. Takagi, “Nb 9-layer fabrication process for
superconducting large-scale sfq circuits and its process evaluation,” IEICE Trans.
Electron. 97, 132–140 (2014).
39S. A. Cybart, S. M. Anton, S. M. Wu, J. Clarke, and R. C. Dynes, “Very large
scale integration of nanopatterned YBa2Cu3O7 � δ Josephson junctions in a
two-dimensional array,” Nano Lett. 9, 3581–3585 (2009).
40G. Buzsáki, Rhythms of the Brain (Oxford University Press, 2006).
41J. M. Shainline, S. M. Buckley, A. N. McCaughan, J. T. Chiles, A. Jafari Salim,
M. Castellanos-Beltran, C. A. Donnelly, M. L. Schneider, R. P. Mirin, and
S. W. Nam, “Superconducting optoelectronic loop neurons,” J. Appl. Phys. 126,
044902 (2019).
42K. Likharev and V. Semenov, “RSFQ logic/memory family: A new
Josephson-junction technology for sub-terahertz-clock-frequency digital
systems,” IEEE Trans. Appl. Supercond. 1, 3–28 (1991).
43S. A. Cybart, E. Y. Cho, T. J. Wong, B. H. Wehlin, M. K. Ma, C. Huynh, and
R. C. Dynes, “Nano Josephson superconducting tunnel junctions in
YBa2Cu3O7 � δ directly patterned with a focused helium ion beam,” Nat.
Nanotechnol. 10, 598–602 (2015).
44W. Chen, A. V. Rylyakov, V. Patel, J. E. Lukens, and K. K. Likharev,
“Superconductor digital frequency divider operating up to 750 GHz,” Appl.
Phys. Lett. 73, 2817–2819 (1998).
45O. Sporns and R. Kötter, “Motifs in brain networks,” PLoS Biol. 2, e369
(2004).
46D. S. Holmes, A. L. Ripple, and M. A. Manheimer, “Energy-efficient supercon-
ducting computing—power budgets and requirements,” IEEE Trans. Appl.
Supercond. 23, 1701610 (2013).
47W. Chen, A. Rylyakov, V. Patel, J. Lukens, and K. Likharev, “Rapid single flux
quantum T-flip flop operating up to 770 GHz,” IEEE Trans. Appl. Supercond. 9,
3212–3215 (1999).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 129, 073901 (2021); doi: 10.1063/5.0027997 129, 073901-14

Published under license by AIP Publishing.

https://doi.org/10.1007/s00422-006-0111-7
https://doi.org/10.1007/BF02478259
http://arxiv.org/abs/arXiv:1705.06963[cs]
https://doi.org/10.1016/j.neuron.2004.09.007
https://doi.org/10.1007/BF00228716
https://doi.org/10.1103/PhysRevE.82.011914
https://doi.org/10.1126/sciadv.1701329
https://doi.org/10.1126/sciadv.1701329
https://doi.org/10.1103/PhysRevE.95.032220
https://doi.org/10.1063/1.5042421
https://doi.org/10.3389/fnins.2019.00933
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1021/nl904092h
https://doi.org/10.1038/s41467-020-16105-y
https://doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.1038/s41586-019-1159-6
https://doi.org/10.1088/1361-6463/aade3f
https://doi.org/10.1088/1361-6463/aade3f
https://doi.org/10.1063/1.5042408
https://doi.org/10.1002/cplx.10047
https://doi.org/10.1007/BF00199545
https://doi.org/10.1109/MSPEC.2014.6905473
https://doi.org/10.1038/scientificamerican0612-50
https://www.research.ibm.com
https://doi.org/10.1038/30918
https://doi.org/10.1109/TASC.2016.2519388
https://doi.org/10.1109/TASC.2019.2904919
https://doi.org/10.1109/TASC.2019.2904919
https://doi.org/10.1587/transele.E97.C.132
https://doi.org/10.1587/transele.E97.C.132
https://doi.org/10.1021/nl901785j
https://doi.org/10.1063/1.5096403
https://doi.org/10.1109/77.80745
https://doi.org/10.1038/nnano.2015.76
https://doi.org/10.1038/nnano.2015.76
https://doi.org/10.1063/1.122600
https://doi.org/10.1063/1.122600
https://doi.org/10.1371/journal.pbio.0020369
https://doi.org/10.1109/TASC.2013.2244634
https://doi.org/10.1109/TASC.2013.2244634
https://doi.org/10.1109/77.783712
https://aip.scitation.org/journal/jap

	Superconducting neural networks with disordered Josephson junction array synaptic networks and leaky integrate-and-fire loop neurons
	I. INTRODUCTION
	II. DISORDERED ARRAY SYNAPTIC NETWORK
	A. General overview
	B. A symmetric array 1 × 2 three-state synaptic network example
	C. 3-loop 1 × 2 synaptic network example
	D. Large disordered array synaptic network

	III. LEAKY INTEGRATE-AND-FIRE NEURON MODEL
	IV. FEEDBACK MECHANISM
	V. HIERARCHICAL ARCHITECTURE OF RECURRENT NEURAL NETWORKS
	VI. CONCLUSION
	SUPPLEMENTARY MATERIAL
	DATA AVAILABILITY
	References


