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One of the most promising applications of noisy intermediate-scale quantum computers is the
simulation of molecular Hamiltonians using the variational quantum eigensolver. We show that
encoding symmetries of the simulated Hamiltonian in the VQE ansatz reduces both classical and
quantum resources compared to other, widely available ansätze. Through simulations of the H2

molecule and of a Heisenberg model on a two-dimensional lattice, we verify that these improvements
persist in the presence of noise. This is done using both real IBM devices and classical simulations.
We also demonstrate how these techniques can be used to find molecular excited states of various
symmetries using a noisy processor. We use error mitigation techniques to further improve the
quality of our results.

I. INTRODUCTION

Quantum computers are believed to be one of the most
promising technologies currently being developed that
will help extend the reach of scientific discovery. This
may be achieved through quantum simulation [1], which
leverages the properties of a quantum processing unit
(QPU) to simulate naturally occurring quantum mechan-
ical systems. One of the most popular algorithms within
the reach of near-term devices is the variational quantum
eigensolver (VQE) [2–7].

This algorithm falls under a more general class of algo-
rithms known as hybrid variational quantum algorithms
[8–14]. The general principle of these algorithms is to
use a feedback loop between the quantum and classi-
cal computers to minimize a predefined cost function.
This method has been applied to a variety of quantum
systems in both theoretical [15–27], and experimental
[2, 3, 5, 12, 28–31] contexts. In the case of the VQE,
the predefined function is the expectation value of the
simulated Hamiltonian with respect to the state of the
QPU. Additionally, a variety of techniques are avail-
able that use the VQE to find higher excited states of
such systems [6, 32, 33]. These variational algorithms
in general are of particular interest for near-term devices
due to their proposed noise resilience. Notably, Ref. [4]
has demonstrated noise resilience against coherent errors,
and Ref. [34] proved noise resilience against incoherent
errors for a special class of variational algorithms.

The advantage of hybrid variational algorithms lies in
their ability to exploit advanced classical computational
resources without having to store the wavefunction on a
classical computer. Wavefunctions are instead prepared
and measured on the QPU. The success of these algo-
rithms depends sensitively on challenges involving op-
timizing rapidly varying functions with many parame-
ters, limited computational resources, and the presence of

∗ gbarron@vt.edu

noise [24, 35–45]. Work has been done to manipulate the
input and output of the QPU so as to mitigate and char-
acterize the error [46–49]. Another, perhaps more funda-
mental issue is related to the complexity of the quantum
circuits used to prepare the wavefunctions. This com-
plexity in turn is fundamentally related to the number of
parameters needed to describe arbitrary states. Hence, a
fundamental question is “how likely is it that a given pa-
rameterized quantum circuit (a variational ansatz) will
represent the targeted state with sufficient accuracy?”
Typically there are no accuracy guarantees for a given
ansatz. One approach to designing ansätze with tunable
accuracy is to iteratively build a customized variational
ansatz in a “problem tailored” fashion, as proposed with
the adaptive derivative assembled problem-tailored VQE
(ADAPT-VQE) algorithm [50, 51]. This is accomplished
by growing the ansatz operator-by-operator, each time
selecting the operator which creates the largest change to
the objective function, using the VQE as a subroutine at
each step. This is in contrast to alternative approaches
that fix the number of parameters from the start. In
Ref. [22], we showed how to create quantum circuits that
have exactly the necessary number of variational param-
eters to describe any state in the relevant symmetry sub-
space of the Hilbert space.

One of the advantages of Ref. [22] is that the ansatz
is guaranteed to find the correct state in the absence of
noise, both for ground and for excited states. Other algo-
rithms that accomplish excited state simulation are some-
times iterative and rely on previous results of a VQE,
thus introducing computational overheads. Despite these
advantages of symmetry-enforcing circuits, however, it is
not clear how the presence of noise might affect their
performance. The operators which create noise clearly
will not commute with the same symmetries as the tar-
get Hamiltonian, and as such, might drive the system
into undesirable symmetry subspaces. Will a circuit that
preserves these symmetries perform worse due to a lack
of relevant error mitigating degrees of freedom?

In this work, we consider the effect that noise has on
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the ability of a VQE to preserve symmetries. The sim-
ulations here are done using IBM’s Qiskit [52] software,
using noise models derived from real superconducting de-
vices. We also test our methods on real IBM devices.
We perform these simulations and experiments using our
previously developed techniques [22] for encoding sym-
metries of the problem Hamiltonians directly into the
state preparation circuit. We test our approach on H2

and on a two-dimensional Heisenberg model, finding in
both cases that our ansätze can outperform standard, ad
hoc ansätze. We adapt this approach to solving for ex-
cited states that obey certain symmetries. This allows us
to guarantee the ability of the ansatz to find the desired
state, and in fact, accomplish this with a minimal number
of variational parameters. Additionally, our approach for
producing excited states does not rely on previous runs of
VQEs and is parallelizable for the different excited states
calculated.

This paper is structured as follows. In Sec. II we pro-
vide the necessary background to make this paper self-
contained. Specifically, in Sec. II A, we review the the-
ory behind VQE and its application to quantum chem-
istry problems. In Sec. II B we review our earlier work
on symmetry preserving VQE ansätze. In Secs. III and
IV, we perform simulations on the H2 molecule and ana-
lyze the performance of these algorithms in noiseless and
noisy simulation contexts, respectively. In Sec. IV we
use, benchmark, and compare a variety of error mitiga-
tion techniques, as well as discuss challenges associated
with noisy optimization. In Sec. V we compare the abil-
ity of the symmetry preserving and ad hoc ansätze to
preserve desired symmetries with both noisy simulations
and experiments on IBM devices. In Sec. VI we present
the results of this procedure for excited state simulation.
In Sec. VII we discuss potential future work incorporat-
ing device connectivity. In Sec. VIII, we give a summary
of our conclusions.

II. BACKGROUND

A. Variational Quantum Eigensolver

The goal of a VQE is to minimize an objective func-

tion of the form f(~θ) =
〈
ψ(~θ)

∣∣∣H ∣∣∣ψ(~θ)
〉

, where
∣∣∣ψ(~θ)

〉
=

U(~θ) |ψ0〉 is the state of the QPU after initializing the
register to some initial state |ψ0〉 and applying a circuit

with unitary U(~θ), where ~θ is a vector of variational pa-
rameters chosen by an optimization algorithm. Per the

variational principle, f(~θ) ≥ E0 where E0 is the ground
state energy of the Hamiltonian H.

We primarily focus on the second quantized molecular
Hamiltonian

Ĥf =
∑
ij

hij â
†
i âj +

∑
ijkl

gijklâ
†
i â
†
j âkâl, (1)

where â (â†) is the fermionic annihilation (creation) op-

erator. The quantities hij and gijkl are the single and
double electron integrals respectively, which can be com-
puted efficiently on a classical computer with existing
software. For these calculations we use the STO-3G ba-
sis set. To evaluate the objective function f(~θ) on the
QPU, one must map the fermionic operators to a set of
qubit operators in a way that accounts for the fermionic
anti-commutation relations.

This can be accomplished with several different meth-
ods, including the Jordan-Wigner (JW) [53], parity [54],
Bravyi-Kitaev (BK) [55], or Bravyi-Kitaev Super Fast
(BKSF) [56] mappings. In this work we choose the JW
mapping as it directly maps occupations of fermionic spin
orbitals to excitations of qubits. The result is that our
ansatz consists of only nearest-neighbor two-qubit gates,
which we choose to preserve particle number and spin
projection. This choice is not necessary, but other maps
would require gates that act on more than two qubits to
attain the same effect. To achieve this, one would need
to find mapping-specific gates that preserve the desired
expectation values of the states on which they act, but
this is beyond the scope of the current work.

The resulting Hamiltonian appearing in the objec-

tive function f(~θ) is a weighted sum of Pauli strings

Ĥ =
∑
i αiTi where αi ∈ R are the weights of Pauli

strings and Ti ∈ {I,X, Y, Z}⊗n for n qubits (with the JW
mapping, this is the number of spin orbitals). The role of
the QPU is to compute expectation values of this Hamil-

tonian. In particular, for a given set of parameters ~θ, the
QPU calculates

{
〈Ti〉~θ

}
which may then be weighted on

the classical computer according to the coefficients αi to
form 〈H〉~θ. Work has been done to reduce the number
of measurements at this step based on the properties of
{Ti} [41]. Additionally, Ref. [57] developed techniques
that use symmetry to reduce the number of qubits for
certain systems including H2, however the transforma-
tions used are not compatible with our framework.

Despite substantial progress, accurately performing
VQEs on current and near-term hardware is still chal-
lenging for a number of reasons. Firstly, calls to the ob-

jective function f(~θ) are inherently probabilistic, mean-
ing one must use an optimization algorithm to minimize

f(~θ) that is resistant to noise. Additionally, the num-
ber of variational parameters used to construct the vari-
ational form can potentially limit the performance of an
optimization algorithm in finding a suitable minimum
for the estimated ground state energy. Furthermore,
the depth of circuits and number of CNOT gates are
costly resources when executing circuits on a real QPU,
so creating ansätze that efficiently use these resources is
paramount.

B. Symmetry Preserving Ansätze

The minimal number of parameters for a general
Hilbert space of n qubits (i.e. n spin orbitals) is given by
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2(2n−1). However if symmetries are present, they can be
used to reduce this parameter count, sometimes dramat-
ically. For example, if particle number is conserved, then
the number of parameters reduces to 2(

(
n
m

)
− 1), where

m < n is the number of fermions. If the Hamiltonian
also respects time-reversal symmetry, as is often the case
in molecular problems, then the energy eigenstates can
be chosen to have only real coefficients, which further re-
duces the parameter count by a factor of 2. Total spin s
and spin projection sz are also commonly conserved, in
which case the parameter count becomes [22]

m/2−s∑
k=0

(
n/2

k

)(
n/2− k
m− 2k

)
× (2s+ 1)(m− 2k)!

(m/2− k − s)!(m/2− k + s+ 1)!
.

(2)

Choosing a particular symmetry-preserving ansatz
amounts to restricting the search space of the optimizer
to a smaller region of the Hilbert space. This in turn
reduces the number of variational parameters, lessening
the burden on the classical optimizer. We show below
that it also lessens the demands on the QPU by cutting
down the number of function calls in the optimization
process and reducing the circuit depth.

Using a symmetry-preserving ansatz contrasts sharply
with using ansätze that rely on ad hoc arguments [5,
58]. These ansätze usually attempt to express all possible
states in the Hilbert space, including the ground state of
the Hamiltonian in question. The conventional wisdom
here is that more variational parameters result in more
flexibility in producing the target states. However, too
many variational parameters can result in large circuit
depths and challenging conditions for the optimizer. It
may also not be possible to exactly represent the ground
state with these types of ansätze if they are not designed
to uniformly cover the relevant part of the Hilbert space.

In this work, we primarily focus on the “ASWAP”
ansatz, which is constructed using gates that preserve the
number of excitations in a state. In the case of a molecu-
lar Hamiltonian, this corresponds to fixing the number of
electrons occupying some number of orbitals. The gates
we consider [21] are of the form

A(θ, φ) =


1 0 0 0
0 cos θ eiφ sin θ 0
0 e−iφ sin θ − cos θ 0
0 0 0 1

 . (3)

Ref. [22] showed how to construct circuits that preserve
particle number and spin projection Sz by tiling these A
gates in a regular pattern like the one shown in Fig. 1.
Preserving any value of 〈Sz〉 is accomplished by dividing
the register of qubits into two halves (the upper half rep-
resents spin-up orbitals, and the lower half spin-down).
The parameters for the A gates that join the two spin
subspaces are then set to 0. The desired Sz subspace can
be selected by changing which subset of qubits are acted

FIG. 1. Circuit used to produce the “ASWAP” ansatz. Each
A gate has two separate parameters, θ and φ. Each A gate
preserves the particle number of the state it acts on, so the
entirety of the ansatz does too. The initial X gates are used
to place the register in the desired particle number subspace.

on by the initial X gates. In this work, we primarily
use the ASWAP ansatz that fixes 〈Sz〉 = 0, except when
considering excited states in Sec. VI.

The advantages of the symmetry-preserving ansätze
are thus twofold. Firstly, restricting the space of states
prepared by the ansatz always produces states that
are consistent with physical constraints imposed by the
Hamiltonian. Secondly, both the classical and quantum
resources required to run the VQE are reduced. The lat-
ter is especially important when considering near-term
devices.

III. PERFORMANCE COMPARISONS OF
VARIOUS ANSÄTZE WITHOUT NOISE

Before testing the performance of the symmetry pre-
serving ansätze in the presence of noise, we first demon-
strate that the correct ground state can be prepared in a
noiseless context. To do this, we run different instances
of the VQE algorithm for H2 under the JW mapping on
four qubits using a noiseless simulator. The noiseless sim-
ulator used is the “state vector simulator” implemented
in Qiskit. To perform the optimization of the varia-
tional parameters in the VQE, we use the limited memory
BFGS (Broyden-Fletcher-Goldfarb-Shannon) optimiza-
tion algorithm. For noiseless simulations, the number
of CNOT gates in an ansatz will not affect the quality
of the results. Thus, if a given ansatz is able to reach
chemical accuracy, the relevant benchmark is how many
function evaluations are required to do so.

Since our ansätze are symmetry preserving, the ref-
erence state ultimately determines the targeted values
of 〈N〉 and 〈Sz〉. Therefore, in the case of H2, we ex-
pect a singlet ground state, so we have 〈N〉 = 2 and
〈Sz〉 = 0. The ansätze that we compare against are stan-
dard ad hoc ansätze available in Qiskit [52]. Generally,
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the structure of these ansätze involves interleaving layers
of single-qubit rotations with entangling operations. In
the case of the RY(RYRZ) ansätze, layers of single-qubit
RY (θ) (RY (θ)RZ(φ)) operations on all qubits are inter-
leaved with CZ gates. However, since CZ and CNOT are
locally equivalent, we instead count the number of CNOT
operations for comparison. In all cases when executing
circuits, we use the highest level of optimization available
in Qiskit to reduce gate counts (i.e. transpilation). The
number of such layers in the ansatz is referred to as the
depth. The SwapRZ ansatz interleaves RZ(θ) operations
with parameterized SWAP operations, meaning that this
ansatz preserves particle number symmetry. In contrast
with our ASWAP ansatz, the SwapRZ ansatz does not in
general span the full symmetry subspace, and so does not
necessarily capture the ground state exactly. Addition-
ally, the ASWAP ansatz generally has fewer parameters
and CNOTs. In these ad hoc ansätze, the entangling op-
erations performed at each layer can be chosen for the
appropriate problem. For the ansätze considered here,
we perform entangling operations between all pairs of
qubits unless specified otherwise.

In Fig. 2, we illustrate the performance of several ad
hoc ansätze, along with our ASWAP ansatz. All the
ansätze considered are able to find the correct ground
state energy to well below chemical accuracy (∼ 1.5 milli-
Hartree). One distinction between our ansatz and the ad
hoc ansätze, however, is that the ASWAP ansatz requires
at least five times fewer function evaluations to converge
compared to any of the other considered ansätze, while
simultaneously having lower error rates. For the exam-
ple shown in Fig. 2, ASWAP requires 414 function calls,
while RY uses 2142. This improvement is expected since
the number of variational parameters is smaller than the
other considered ansätze. This illustrates the key point
that enforcing known symmetries of the simulated Hamil-
tonian can significantly reduce the computational load
on the QPU, namely the number of calls to the objective
function.

The metrics that we use to evaluate the resource “ef-
ficiency” of a particular ansatz are the number of varia-
tional parameters and the number of CNOT operations it
contains. We summarize these resource requirements for
ASWAP and for several of the ad hoc ansätze described
above in Table I for 4 qubits. Generally, as expected, the
number of variational parameters in the ASWAP ansätze
can be small, despite being able to quickly and accurately
prepare the correct ground state.

Ansätze with more parameters require more optimiza-
tion steps and hence calls to the objective function.
Ansätze with more CNOT gates suffer from higher er-
ror rates and are more limited by decoherence. Here, the
ASWAP ansätze enforce time-reversal symmetry. The
combinations of symmetries for ASWAP are not exhaus-
tive, as more are possible. Some ansätze are parameter-
ized by the “depth” d ≥ 1, which is the number of times
the layer is repeated. Ansätze for which a symmetry
is “None” means that the ansatz does not enforce this

FIG. 2. Results for H2 in a noiseless simulator with the limited
memory BFGS algorithm. All results are well below chemical
accuracy and sufficiently converged. To account for bad initial
variational parameters, each result was obtained by running
additional optimizations with randomized initial variational
parameters. The lowest energy found with this method was
then chosen as the final result. The median number of iter-
ations of the BFGS optimizer for each ansatz were: ASWAP
414, RY 2142, SwapRZ 3955, RYRZ 4851.

symmetry. The RY(RZ) ansätze apply CZ operations
between nearest-neighbors at each layer.

This comparison of resources illustrates the potential
of enforcing symmetries at the level of the ansatz. Not
only is the final prepared state guaranteed to have certain
desired properties, but enforcing this at the level of the
ansatz allows for a reduced number of parameters as well
as CNOT gates, compared to a more generic ansatz.

TABLE I: Comparison of ansatz resources on 4 qubits.
N Sz # Pars # CNOTs

ASWAP 0, 4 None 0 0
1, 3 None 3 9
2 None 5 16
2 0 3 3

RY(d) None None 4(d+ 1) 3d
RYRZ(d) None None 8(d+ 1) 3d
SwapRZ(d) N None 10d+ 4 24d

IV. EFFECTS OF NOISE ON PERFORMANCE
OF VQE WITH VARIOUS ANSÄTZE

A. Hardware Noise and Noise Model Simulation

All of the ansätze used in this paper are applicable to
any general-purpose quantum processor. Nevertheless,
for the purposes of noisy simulation, we will consider a
noise model that is derived from information about the
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IBM Q processors. In particular, we include information
from the devices about measurement errors, single- and
two-qubit gate errors, depolarization, and thermal relax-
ation errors that are dependent on individual gate times.

To establish a vocabulary, the different simulators in
Qiskit that we use here are as follows. We refer to the
noiseless simulator that keeps track of the state vector of
the register under unitary operations as the “state vector
simulator”. We refer to the noisy simulator that includes
the above information as the “QASM simulator” (quan-
tum assembly language) [52]. When using the QASM
simulator, we will use noise models constructed from in-
formation about the Vigo, Boeblingen, Ourense, and Jo-
hannesburg IBM Q devices.

B. Error Mitigation Techniques

When running a VQE in the presence of noise, we use
three error mitigation techniques. The first of these ad-
dresses state preparation and measurement (SPAM) er-
rors by computing and inverting a matrix T of dimension
2n×2n whose entries represent the probability of prepar-
ing one state and immediately measuring another. In-
verting this matrix allows one to perform error mitigation
on population counts of a particular experiment, thereby
accounting for SPAM errors. This and similar techniques
have been previously explored [59–64]. Though there is
not yet a fully scalable solution for mitigating SPAM er-
rors, each of these techniques have applicability in dif-
ferent contexts for near-term devices. Here, we use the
implementation in Qiskit.

The second technique, known as Richardson extrapo-
lation [29, 65, 66], involves systematically increasing the
amount of error in a given computation in a controlled
way so that one can then extrapolate an objective func-
tion to a point at which those errors would be reduced. In
this case, the extrapolation occurs by taking each CNOT
gate in a particular circuit and inserting an additional
even number of CNOTs immediately after it. For in-
stance, each CNOT gate in a given circuit would then
become a sequence of an odd number of CNOT gates.
In this way the logic of the circuit is unaffected, but in
the presence of noise and faulty gates, more redundant
CNOT gates will increase the error in the results. In
Fig. 3, this procedure is shown for a variety of bond dis-
tances. In this case, we find that the extrapolated mini-
mum energy obtained by the VQE is more accurate than
the original results by as much as an order of magnitude
in the energy error. Moreover, the extrapolated results
are within a standard deviation of chemical accuracy for
most of the interatomic distances.

The third error mitigation we use is partial symmetry
enforcement during measurement. This noise mitigation
relies on the fact that the true ground state has a known,
definite particle number and therefore the measurement
results should also have this symmetry, even in the pres-
ence of noise. This mitigation is only partially possi-

ble since the measurement process itself requires post-
rotation gates, which do not themselves conserve particle
number. However, for the chemical Hamiltonians we are
interested in, we can always group together Pauli strings
which do preserve particle number. For instance, the
H2 Hamiltonian, after the JW mapping onto 4 qubits,
can be divided into 5 sets of commuting Pauli strings;
one of these sets is made up of only Pauli strings that
commute with the total particle number operator (terms
like IIIZ, ZZII, IZII etc.). During the measurement of
this set, we can enforce that the particle number must
match that of the ground state, discarding results which
do not respect this symmetry. We also note that this
procedure is not limited to the JW mapping. Under the

BK mapping, for instance, the a†iai and a†ia
†
jajai terms

in a molecular Hamiltonian map to operators that are
diagonal in the Pauli basis [67], as does the total particle
number operator. Hence, this procedure extends to other
mappings, however we cannot presently compare their
performance since the ASWAP ansatz currently only ap-
plies to the JW mapping.

This process simply post-selects data which we know
to positively contribute to our goal of finding the ground
state. The measurements of Pauli strings that do not
commute with the total particle number operator are not
modified. This technique may be more applicable when
the state produced on the QPU during the VQE pro-
duces expectation values that are close to the total parti-
cle number, which is the case with the ASWAP ansätze.
Nevertheless, this may be applied to any ansatz as we
later demonstrate. One potential drawback of this ap-
proach is the overhead introduced in the number of shots
needed to accurately take expectation values. In dis-
carding shots, it may be necessary to perform additional
measurements to compensate for the reduced shots after
post-selection. In this case, as we later discuss, we are
limited in the number of shots by the IBM Q devices.

We employ all of these strategies in various combina-
tions in a noisy H2 simulation using both the RY and
ASWAP ansätze. The results are shown in Fig. 4. We
find that the largest improvement in performance for the
RY and ASWAP ansätze come from partial symmetry
enforcement and SPAM strategies, respectively. In the
case of RY, the large improvement under partial sym-
metry enforcement is likely due to the fact that RY can
prepare states that do not obey the desired symmetry,
but partial symmetry enforcement corrects this by clas-
sical post-processing. In the case of ASWAP, the large
improvement from SPAM is likely due to the structure
of the ansatz. Specifically, the ASWAP ansatz uses logic
that assumes a fixed initial state of the register. More-
over, measurement errors can in principle violate the ex-
pected value of the particle number. Both of these effects
can be suppressed by SPAM error mitigation.
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FIG. 3. Comparison of results with and without Richardson extrapolation for H2 at varying interatomic distances for the
ASWAP ansatz. Some points on the extrapolated curve are within chemical accuracy (∼ 1.5 milliHartree). Richardson
extrapolation provides as much two orders of magnitude improvement over a standard VQE run.

C. Noisy Optimization

Minimization of the objective function f(~θ) requires an
optimization algorithm that is resistant to noise. In pre-
vious works, variational quantum algorithms have been
implemented using the SPSA (simultaneous perturbation
stochastic approximation) [68], Adam (adaptive moment
estimation) [69], COBYLA (constrained optimization by
linear approximation) [70], and DIRECT (dividing rect-
angles) [71] algorithms. For this work, we choose the DI-
RECT and COBYLA algorithms for three primary rea-
sons. First, the DIRECT algorithm has been demon-
strated to be resistant to substantial amounts of noise in
variational quantum contexts [31]. Second, DIRECT is a
global optimization algorithm that rarely gets trapped in
local minima. In this sense, DIRECT sidesteps the need
to consider carefully chosen (and potentially repeated)
initial conditions for the variational parameters. Finally,
though DIRECT does not converge quickly, it gets within
the vicinity of the correct solution quickly. This trade-
off is beneficial for the case of a noisy objective function
since high levels of precision in the objective function
are limited by statistical and hardware errors. We also

choose the COBYLA optimization algorithm for similar
reasons, namely its ability to find an accurate estimate
of the ground state in a short number of function calls
and resilience to noise. In previous experiments, it has
been shown that the number of shots limits the resulting
accuracy of the final energy estimate [5]. For this reason,
we performed the maximum number of shots allowed by
IBM devices (8192).

For our noisy simulations, the backend chosen is the
QASM simulator, which uses a noise model constructed
to mimic a variety of IBM Q processors. We use the
DIRECT and COBYLA optimization algorithms. In all
simulations using DIRECT, we limit the optimization to
a budget of 100 or 300 calls to the objective function.
For the COBYLA optimizer, on average the optimizer
converges with about 400 calls to the objective function.

D. Results for noisy VQE simulations

In Fig. 5 we show the results of running the VQE for
a variety of bond distances of H2 for the best-performing
symmetry preserving and ad hoc ansätze. We find that
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FIG. 4. Performance of two competing ansätze with different
combinations of error mitigation strategies for H2 at equilib-
rium. Each of these strategies is introduced in Sec. IV B. The
abbreviations for the strategies are RE (Richardson Extrapo-
lation), Sy (Partial Symmetry Enforcement), Spam (SPAM),
or combinations of any of these. We note here that the
ASWAP ansatz performs better even in the absence of any
error mitigation strategies. This underscores the fact that
the reduction in quantum and classical resources due to im-
posing symmetries at the ansatz level leads to improvements
in the energy error. Additionally, some values of the energy
error are below zero, which violates the variational principle.
This is due to our implementation of Richardson Extrapola-
tion, which can potentially undershoot the value of the ground
state energy. This is also potentially due to shot noise, since
our simulations rely on a finite number of samples from the
QPU.

for smaller bond distances, the ASWAP ansatz performs
better in terms of finding the correct ground state en-
ergy than the ad hoc ansätze. At larger bond distances,
it appears that the ad hoc ansätze perform better; how-
ever, as we show in the next section, this is actually not
the case. The reason is because in this regime, the ad
hoc ansätze are actually converging to an excited state
that is nearly degenerate with the true ground state. All
the ansätze have greater difficulty in identifying the true
ground state at large bond distance because correlations
are stronger here (the true ground state is a singlet). On
the other hand, the excited state found by the ad hoc
ansätze is a (triplet) product state, which is easy for the
ad hoc algorithms to identify. Because ASWAP has the
correct symmetry quantum numbers built in, it does not
misidentify the ground state, and the error at large bond
distance is larger because of the correlations in this state.

E. Experimental Simulation of H2

To more rigorously demonstrate the effectiveness of
these techniques in the presence of noise, we use the phys-
ical IBM superconducting qubits to validate the results.
In Fig. 7 we show the dissociation of H2 using several dif-
ferent devices. In each case, the resulting energy shows
good agreement with the exact result, and the shape of
the dissociation curve is generally preserved.

V. EFFECT OF NOISE ON SYMMETRY
PRESERVATION

In addition to reducing computational resources and
error levels, the ASWAP ansatz also correctly preserves
the desired symmetry throughout the entire dissociation
curve. This is illustrated in Fig. 6 for the case of H2.
While all ansätze considered remain reasonably close to
the correct particle number, 〈N〉 = 2, only ASWAP suc-
ceeds in finding the right value of 〈Sz〉 at all bond dis-
tances. In contrast, the RY ansätze find another nearly
degenerate solution that has an incorrect value of Sz.
This is a very important advantage of our ansätze when
considering quantum chemistry problems, because with
other ansätze there is no way to control which solution
is found when there are approximate degeneracies aside
from adding penalty terms to the objective function to
find different symmetry states. Even with that approach,
it is not clear how one would guarantee consistent eigen-
values for the symmetries throughout the whole curve
with another ansatz. The ASWAP ansatz allows us to
specify exactly which of these solutions we want to find.

A. Total Spin Ansatz Performance

So far, this work has only focused on the ASWAP
ansatz from Ref. [22]. That work also presented another
ansatz, referred to as the En ansätze, where n is the
number of qubits. Unlike any of the other ansätze in the
present work, it has the ability to preserve the total spin
of the trial state. The En ansatz is constructed by first
writing out a general state vector in the appropriate total
spin subspace, with the coefficients parameterized by hy-
perspherical coordinates. Then a unitary that produces
these general states of fixed total spin starting from |0〉⊗n
is constructed and decomposed in terms of Toffoli gates
using Gray codes [72]. The resulting ansätze can then
be used to prepare arbitrary states with the appropriate
spin projection, total spin, and particle number symme-
tries. The details of this construction can be found in
Ref. [22].

The En ansätze have larger gate depths, and they are
generally more challenging to implement on noisy hard-
ware. In Fig. 9 we compare the performance of the E4

and ASWAP ansätze for simulating H2 at equilibrium.
To accomplish this, we take the noise model from the
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FIG. 5. Comparison of the symmetry-preserving ASWAP ansatz with several of the best competing ad hoc ansätze, for a variety
of noise models corresponding to real devices. In all cases, the ASWAP ansatz performs better at smaller bond distances. This
is because for large bond distances, the ad hoc ansätze find a degenerate, separable ground state, whereas the ASWAP ansatz
consistently finds the non-trivial ground state for all bond distances. All results in this figure have SPAM error mitigation
applied.

IBMQ Vigo device and uniformly stretch the T1 and T2
times for all of the qubits, so as to simulate a device with
less noise. T1 is the energy relaxation time, associated
with decay from the |1〉 to the |0〉 state. T2 is the de-
coherence time, associated with the loss of the phase of
the quantum state. From these simulations, we confirm
that the performance of the E4 gate is limited by the
T1/2 times. Moreover, we find that these times would
need to be ∼ 4 times longer than they currently are to
perform as well as the ASWAP ansatz with current T1/2
times. Hence, we expect that the E4 ansatz will be useful
for preserving total spin, but is not yet currently viable.
Nevertheless, there may be more complex molecules for
which the ability to preserve S2 will have a greater im-
pact on the results and offset the challenges of the larger
circuit depth.

B. Application to Heisenberg Model

So far we have only focused on molecular systems, but
now we will turn our attention to the Antiferromagnetic
Heisenberg model (with J > 0). The Hamiltonian is
given by

H = J
∑

{i,j}∈E(L)

(XiXj + YiYj + ZiZj) +B
∑

i∈V (L)

Zi

(4)
where J is the interaction strength, B is the magnetic
field strength, and E(L), V (L) are the edge and vertex
sets of the lattice L, respectively. Here, we choose the
2 × 3 lattice. For this system, the ground state has a
well-defined particle number which varies with different
values of J/B. Here the particle number is defined as∑
i∈V (L)(1 − 〈Zi〉)/2. We have chosen this definition of

the particle number since (in the computational basis)
its diagonal entries correspond to the Hamming weight
of the corresponding basis state. This is more amenable
to the application of ASWAP operations. In Fig. 8 we
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FIG. 6. Comparisons of preserved symmetries (〈N〉 , 〈Sz〉) in ASWAP, RY, and RYRZ ansätze. The ASWAP ansatz consistently
preserves each desired symmetry throughout the dissociation, and any deviation, in this case, is due to the noise model. On the
other hand, deviations in the RY and RYRZ cases can also be attributed to the inability of the ansatz to target a particular
subspace. This is most prominently shown in the case of the 〈Sz〉 operator (right column). For the RY ansätze, the change
in the resulting expectation values around 1 Angstrom is due to the algorithm finding another, nearly degenerate solution for
the ground state that has an incorrect value of 〈Sz〉. The fact that the ad hoc ansätze produce values of 〈Sz〉 = +1 and not
−1 is dependent on both the optimization algorithm used, as well as the depth and connectivity used in the ansatz. Results
using the DIRECT algorithm (shown here) consistently produce 〈Sz〉 = +1 whereas COBYLA occasionally finds solutions
with 〈Sz〉 = −1. When using COBYLA, the value of 〈Sz〉 depends on the depth and connectivity of the ansatz used. This
underscores the importance of using an ansatz that preserves known symmetries so that one can guarantee consistent results.
All results in this figure have SPAM error mitigation applied.
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FIG. 7. Comparison of experimental VQE results for the dis-
sociation of H2 using IBM Q devices using the ASWAP ansatz
with Sz = 0, N = 2, and time-reversal symmetry enforced.
In each case, the shape of the results from hardware match
the general shape of the exact result, even at longer bond
distances. All points (except the exact results) have SPAM
and Richardson Extrapolation error mitigation applied. This
highlights the robustness of the ASWAP ansatz to a variety
of noise levels in an experimental setting.

show that again the ASWAP ansatz is able to successfully
find the ground state with the correct particle number,
whereas the RY ansatz produces results that deviate from
the correct particle number. Moreover, in some regions,
the ASWAP ansatz produces better results in terms of
the energy error. These results show that if the symme-
try of the ground state is known a priori, then enforcing
it at the level of the ansatz can lead to a reduction in
resource requirements and error rates. It is also impor-
tant to note that even if the symmetry of the ground
state is not known beforehand, one can still try multiple
ansatz symmetries in independent VQEs run on differ-
ent QPUs in parallel. It should also be noted that the
ad hoc ansätze can explore different symmetries during
a single VQE implementation run on one QPU. This po-
tentially makes such ansätze appealing if nothing about
the symmetries is known, and access to multiple QPUs
is limited.

VI. EXCITED STATES

An important aspect of our symmetry-preserving
ansätze is the ability to find excited states by targeting
subspaces of the Hilbert space that have the appropriate
symmetry, provided this symmetry differs from that of
the ground state. Other methods of calculating excited
states using VQEs exist, but they require either itera-
tively running multiple VQEs to determine excited states
[32] or executing additional circuits [6, 33]. Nevertheless,

each of these approaches has its own advantages. For ex-
ample, Ref. [33] does not require multiple optimizations
and is robust to noise. Hence, in terms of optimization,
no additional effort is required to obtain excited states.

A notable feature of our method is that the search
for excited states does not depend on having already ob-
tained the ground state. In fact, we could compute both
ground and excited states simultaneously by running sep-
arate VQEs in parallel, or skip the ground state if we
are only interested in excited states. Since our method
amounts to simply changing the ansätze for different ex-
cited states, finding an excited state is as easy as finding
the ground state. One possible disadvantage of our ap-
proach is that depending on the system chosen, it may
not be the case that one can uniquely specify all excited-
states by changing symmetries alone. Therefore, the op-
timal approach may be a combination of our techniques
and some of the previously introduced ones.

FIG. 9. Performance of the E4 and ASWAP ansätze for H2 at
equilibrium for a range of stretch factors. The stretch factors
here are the ratios of the original and simulated T1 and T2

times for the noise model. A stretch factor of 1 corresponds
to the original noise model. Here we chose the noise model
for the IBMQ Vigo device. We find that improving the T1

and T2 times of the device by a factor of roughly 4 makes
the E4 ansatz perform as well as the ASWAP ansatz does
today. Since the only error mitigation technique used here
is SPAM error mitigation, we find that roughly an order of
magnitude improvement of the T1 and T2 times will allow the
ASWAP ansatz to reach chemical accuracy without Richard-
son extrapolation.

A demonstration of excited state calculations using our
ASWAP ansatz is shown for the H2 molecule for several
excited states in Fig. 10. Note that some of the exact re-
sults do not have corresponding simulation results. This
is because our method does not, in general, allow one
to produce all of the higher excited states, only those di-
rectly accessible by partitioning the Hilbert space accord-
ing to symmetries. In all cases considered, we are able to
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FIG. 8. Comparison of VQE results using ASWAP and RY ansätze for the Heisenberg model on a 2 × 3 lattice. Since the
particle number cannot be fixed to a constant value with the RY ansatz, it only sometimes produces the correct result. On the
other hand, by fixing the particle number in each case to the correct value, the ASWAP ansatz is able to obtain better results.
To improve the RY results, we use 3 layers of entanglers and rotations. Here, we use the IBMQ Vigo noise model and include
SPAM error mitigation.

prepare 5 excited states (in addition to the ground state)
out of the possible 10 (not counting degeneracies). The
error rates here are sufficiently low so that one may cor-
rectly order the eigenstates according to their energies.

VII. OUTLOOK

The key development of Ref. [22] was that the ASWAP
tiling procedure produces ansätze that can be used to
prepare any state in the given symmetry subspace. How-
ever, the tiling procedure used has the requirement of
using nearest-neighbor connectivity. This raises the pos-
sibility of other connectivities having this same property,
namely that they span symmetry subspaces. Though be-
yond the scope of the current work, future implementa-
tions of ASWAP ansätze could be hardware tailored by
tiling A gates according to the connectivity of the de-
vice. Such a result would alleviate the need to insert
additional SWAP operations to account for non-nearest
neighbor operations. In this case, one would need to
check that the ansatz is able to capture all states in the
symmetry subspace. The resulting ansatz could be con-
sidered a hybrid between hardware efficient (taking into
account the device connectivity) and symmetry preserv-
ing (only utilizing A gates) ansätze. Such considerations
may become more advantageous as device architectures
become more complex.

VIII. CONCLUSIONS

In this work, we have demonstrated that the deleteri-
ous effects of noise on a VQE can be mitigated by exploit-
ing the symmetries of the Hamiltonian being simulated.
We achieve this by performing simulations of the noiseless
and noisy systems for a variety of ansätze, utilizing the

most current error mitigation techniques. We also test
our methods on real IBM devices. The results of these
simulations and experiments indicate that, with or with-
out noise, using state preparation circuits that preserve
the relevant symmetries of the problem reduces compu-
tational resources and error rates compared to more ad
hoc approaches. In addition, we have shown that the
built-in symmetry preservation of our ansätze allows us
to find excited states without having to first find the
ground state and without using longer state preparation
circuits.
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Appendix A OPERATORS WITHOUT SPAM
MITIGATION

In Fig. 11 we show the same information as in Fig. 6,
except without using SPAM error mitigation. In terms
of preserving symmetries, SPAM error mitigation helps
to reduce the errors in estimating 〈N〉 that are due to
state preparation and measurement. Generally, we see
that without SPAM error mitigation 〈N〉 is underesti-
mated. This is likely due to T1 relaxation during state
preparation and measurement.
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FIG. 10. The dissociation curve for a variety of excited states for H2 calculated using the ASWAP ansatz. Dotted points
correspond to results obtained using simulations of the Vigo IBMQ quantum processor, where different colors correspond to
different symmetries enforced by the ASWAP ansatz (here, the particle number 〈N〉 and spin projection 〈Sz〉). Lines correspond
to the different excited states as a function of the bond distance calculated using exact diagonalization, where different colors
correspond to different excited states. In all cases, we find strong agreement between the results from noisy simulation and
exact diagonalization. All results in this figure have SPAM error mitigation applied.
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FIG. 11. Identical to Fig. 6, except with no SPAM error mitigation. Comparing with Fig. 6, SPAM error mitigation seems to
consistently help preserve 〈N〉 for all ansätze.
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äquivalenzverbot,” Z. Phys. 47, 631 (1928).

[54] Jacob T. Seeley, Martin J. Richard, and Peter J. Love,
“The bravyi-kitaev transformation for quantum compu-
tation of electronic structure,” The Journal of Chemical
Physics 137, 224109 (2012).

[55] Sergey B. Bravyi and Alexei Yu. Kitaev, “Fermionic
quantum computation,” Annals of Physics 298, 210 –
226 (2002).

[56] Kanav Setia, Sergey Bravyi, Antonio Mezzacapo, and
James D. Whitfield, “Superfast encodings for fermionic

http://dx.doi.org/10.1103/PhysRevA.99.012334
https://arxiv.org/abs/2005.14475
http://dx.doi.org/10.1103/PhysRevLett.120.210501
http://dx.doi.org/10.1103/PhysRevA.98.032331
http://dx.doi.org/ 10.22331/q-2019-07-01-156
https://arxiv.org/abs/1910.12890
https://arxiv.org/abs/1910.12890
https://arxiv.org/abs/1908.04416
http://dx.doi.org/10.1021/acs.jctc.9b00236
http://dx.doi.org/10.1021/acs.jctc.9b00236
http://dx.doi.org/10.1038/s41467-018-07090-4
http://dx.doi.org/10.1038/s41467-018-07090-4
http://dx.doi.org/10.22331/q-2019-12-09-214
https://arxiv.org/abs/1904.03206
https://arxiv.org/abs/1904.03206
https://arxiv.org/abs/1906.08728
https://arxiv.org/abs/1906.08728
https://arxiv.org/abs/1907.03358
http://dx.doi.org/ 10.1021/acs.jctc.9b00791
http://dx.doi.org/ 10.1021/acs.jctc.9b00791
https://arxiv.org/abs/1907.13623
https://arxiv.org/abs/1907.13623
https://arxiv.org/abs/1908.03185
https://arxiv.org/abs/1908.03185
https://arxiv.org/abs/1908.05628
https://arxiv.org/abs/1908.05628
http://dx.doi.org/10.1103/PhysRevA.98.062339
http://dx.doi.org/10.1103/PhysRevLett.122.180501
http://dx.doi.org/10.1103/PhysRevLett.122.180501
http://dx.doi.org/ 10.1103/PhysRevA.100.010302
http://dx.doi.org/ 10.1103/PhysRevA.100.010302
http://dx.doi.org/10.1103/PhysRevX.10.011004
http://dx.doi.org/ 10.1038/s41467-019-10988-2
https://arxiv.org/abs/1911.10205
https://arxiv.org/abs/1911.10205
https://arxiv.org/abs/1911.10205
http://dx.doi.org/ 10.5281/zenodo.2562110
http://dx.doi.org/ 10.5281/zenodo.2562110
http://dx.doi.org/10.1063/1.4768229
http://dx.doi.org/10.1063/1.4768229
http://dx.doi.org/ https://doi.org/10.1006/aphy.2002.6254
http://dx.doi.org/ https://doi.org/10.1006/aphy.2002.6254


16

quantum simulation,” Phys. Rev. Research 1, 033033
(2019).

[57] Nikolaj Moll, Andreas Fuhrer, Peter Staar, and Ivano
Tavernelli, “Optimizing qubit resources for quantum
chemistry simulations in second quantization on a quan-
tum computer,” Journal of Physics A: Mathematical and
Theoretical 49, 295301 (2016).

[58] M. Ganzhorn, D.J. Egger, P. Barkoutsos, P. Ollitrault,
G. Salis, N. Moll, M. Roth, A. Fuhrer, P. Mueller, S. Wo-
erner, I. Tavernelli, and S. Filipp, “Gate-efficient simu-
lation of molecular eigenstates on a quantum computer,”
Phys. Rev. Applied 11, 044092 (2019).

[59] Michael R. Geller and Mingyu Sun, “Efficient correc-
tion of multiqubit measurement errors,” arXiv preprint
arXiv:2001.09980 (2020).

[60] Kathleen E. Hamilton, Tyler Kharazi, Titus Mor-
ris, Alexander J. McCaskey, Ryan S. Bennink, and
Raphael C. Pooser, “Scalable quantum processor
noise characterization,” arXiv preprint arXiv:2006.01805
(2020).

[61] Sergey Bravyi, Sarah Sheldon, Abhinav Kandala,
David C. Mckay, and Jay M. Gambetta, “Mitigating
measurement errors in multi-qubit experiments,” arXiv
preprint arXiv:2006.14044 (2020).

[62] Kathleen E. Hamilton and Raphael C. Pooser, “Error-
mitigated data-driven circuit learning on noisy quantum
hardware,” Quantum Machine Intelligence 2, 115 (2020).

[63] Michael R Geller, “Rigorous measurement error cor-
rection,” Quantum Science and Technology 5, 03LT01
(2020).

[64] George S. Barron and Christopher J. Wood, “Mea-
surement error mitigation for variational quantum algo-
rithms,” arXiv preprint arXiv:2010.08520 (2020).

[65] Kristan Temme, Sergey Bravyi, and Jay M. Gam-
betta, “Error mitigation for short-depth quantum cir-
cuits,” Phys. Rev. Lett. 119, 180509 (2017).

[66] Abhinav Kandala, Kristan Temme, Antonio D Córcoles,
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