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Abstract

New particle formation (NPF) can influence the Bartadiative budget when the newly formed
particles grow to climate-relevant sizes. Here pnasent analysis of 21-months of continuous
aerosol size distribution measurements at a baakgreemote site in the western Himalaya and
provide observational evidence that newly formedi@as grow to cloud condensation nuclei
(CCN)-active sizes (i.e. >20-100 nm in diameten)t 6f total 55 NPF events, 38 (66%) events
occurred in the pre-monsoon season (March-May). &ldats were classified into those with
and without pollution influence as polluted andacler, respectively, using black carbon data.
The analysis of air mass age, based on the ratiamber concentration of Aitken to
accumulation mode aerosols, indicated that NPFroedun the relatively cleaner air masses
reaching to the site. The median formation ratéhm particles and particle growth rates for
cleaner events were three-fold and two-fold, respelg, higher than polluted events. We
present the first estimates of the survival proligiof newly formed particles to 50 nm and 100
nm size, which was not attempted in an Indian @emrent previously. The survival probability
to 50 nm particles ranged from 44 to 98%, with amand standard deviation of 82 £ 18%. On
average, ~60% of the particles surviving to 50 mmviged to 100 nm, making the overall
survival probability of 100 nm to 53 = 31%. Thiglinates that the probability of nucleated
particles growing to CCN-active sizes under a lagerce of condensing vapor (transported
from nearby lower-altitude regions) and low preséirig particle concentrations (background
mountain site) is high compared to the previoudist These findings highlight the importance
of the efficiency of nucleation events for produrc@CN, which is a critical basis of aerosol

indirect effects.

1 Introduction

Solid or liquid particles suspended in air are miedi as atmospheric aerosols. Much has
been learned about the effects of atmospheric alsros weather and climate. Aerosols affect
weather, climate, human health, and air qualitystitis of significant societal and economical
importance Chowdhury et a).2018;IPCC, 2013;Landrigan et al. 2018]. Aerosols also
counteract some fraction of greenhouse gas-dril@mabwarming Paasonen et 312013], by

directly scattering and absorbing solar radiatiod altering cloud propertie®psenfeld et al.
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2014;Sarangi et al.2018]. Amongst current uncertainties in the radéaforcing, aerosol-
induced changes in cloud properties is the larg@stce of uncertainty in future climate
projections at the regional and global scale€[C, 2013].

Aerosol nucleation is the process of formation @fvrparticles from vapors (hereafter
referred to as new patrticle formation — NPF) and the largest source of aerosol numbers in the
atmosphereulmala et al, 2013;Zhang et al.2012]. However, these newly formed aerosols of
1-2 nm in diameter need to grow further to climagkevant cloud condensation nuclei (CCN)
sizes (i.e. 50-100 nm in diameter) until they dke o influence clouds and thereby climate
[Kerminen et al.2012;Wang and Penne009], even though smaller aerosols affect human
health, air quality, and atmospheric chemistrgridrigan et al. 2018;von Schneidemesser et al.
2015]. NPF has been observed to take place thraighost of the terrestrial troposphere,
including high altitude sitekerminen et aJ.2018;Sellegri et al. 2019]. Numerical experiments
over the Midwestern USA, where NPF occurred fretjyean regional scale, showed that NPF
inhibits growth of pre-existing aerosols to CCNesiby reducing ambient sulfuric acid
concentrations over the region, and thereby thaemhlECN concentrations and cloud albedo,
leading to an overall warming effect relative toeniNPF was exclude&{illivan et al. 2018].
Westervelt et a[2014] relates CCN formation to various nucleatschemes using simulation in
GEOS-Chem-TOMAS global aerosol model and highlightet nucleation contributed to about
half of the CCN concentrations. A recent study asticated that NPF produces about 54% of
CCN in the present day with an estimated uncestaiarige of 45-85%Gordon et al. 2017].
Thus, the contribution of NPF to the global CCN petdspans a relatively large range of
uncertainty Kerminen et al.2012;Westervelt et al2014], which, together with our limited
understanding of association between NPF and C&lts in large uncertainties in the indirect
radiative forcing by aerosoltHCC, 2013]. Thus, the evident ubiquity and heteroggriei
linkages between NPF and CCN requires long-ternirmoous ambient observations, aided with
state-of-the-art aerosol instrumentation techniguekregional to planetary scale model
simulations to bring out new insights into field asarements.

The majority of comprehensive long-term ambientepbations of NPF have been made
in urban, rural, and remote areas in North Ameaicd Europe in locations that are more easily
accessibleHallar et al, 2016;Kanawade et al.2012;Manninen et a].2010;Nieminen et aJ.

2018]. NPF has also been studied at some highastisites, such as the measurements by
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Venzac et al[2008] at Himalayan Nepal Climate Observatory,dyid [NCO-P, 5079 m above
mean sea level (amsl)] in the Khumbu VallEwekas et al[2009] at Mount Waliguan (3816 m
amsl), a remote mountain-top station in inland @htioucart et al[2018] at the Maido
observatory (2150 m amsl), Réunion, a Southern klgmaire site surrounded by Indian Ocean,
Venzac et al[2009] at the Puy de Doéme site (1465 m amsl) anEe Boulon et al[2010] and
Trostl et al.[2016] at Jungfraujoch (3580 m amsl) in the Swiikss andHallar et al.[2011] at
Storm Peak Laboratory (3201 m amsl) in USA. RegeBttllegri et al[2019] presented aerosol
observations from six high altitude stations (PayDime in France, Mount Chacaltaya in
Bolivian Andes, Nepal Climate Observatory PyranMidido observatory on La Reunion Island
in the Indian Ocean, Jungfraujoch in the Swiss A#psl the Monte Cimone site on the Northern
Apennines) for which a year-long measurements w&eadable to derive statistically relevant
NPF features (frequency, formation rates, growtesrand CCN contribution to total aerosols)
and seasonal variability. Previous long-term stsifiem the Indian Himalaya have also
characterized aerosol properties and NPF eventsasithe measurementsgoda et al.
[2018], Neitola et al.[2011] and Komppula et al.2009] at Mukteshwar, a high altitude site
(2180 m amsl) in North-western Indian Himalaya dMuabrthy et al.[2011] at a high/altitude
site, Hanle (4520 m amsl), in the Trartéimalaya. NPF frequency at Mukteshwar and Hanle
sites in Himalaya showed a clear seasonal cyctenths connected to the evolution of
atmospheric boundary layer and solar insolatiospeetively. During the pre-monsoon season
(March-May), the increasing boundary layer heigted aerosols and their precursors from
nearby lower-altitude regions up to the statior #re precursors combined with high solar
insolation at the mountain top increased the NRBatbility significantly Moorthy et al, 2011;
Neitola et al, 2011]. In addition, the ground-based NPF obse&matin India are limited to only
a few locations, including Mahabaleshwar in West@hats Leena et a].2017], New Delhi
[M6nkkonen et al2005], Kanpur and Pun&éamra et al, 2015;Kanawade et al.2020;
Kanawade et al.2014a], Gadankianawade et al.2014b], and TrivandrunBjabu et al.
2016]. However, none of the above previous stuididsdia, to our knowledge, has explored the
linkage between atmospheric NPF and CCN formation.

In this study, we use 21-months (December 2016pteGeer 2018) of continuous
aerosol size distribution measurements to estabtaistics on NPF rates, growth rates, seasonal

variability, survival probability, and CCN formataates of newly formed aerosols to climate-
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relevant aerosols at Ranichauri measurement sitader to explain the seasonal variability in
NPF features, different months are grouped in masons: winter (December-February), pre-
monsoon (March-May), monsoon (June-September,pasimonsoon (October and

November).

2 Materials and Methods

2.1 Location

The village named Ranichauri is located in Tehrirel district of Uttarakhand state in
the southern slope of the Western Himalaya. Fidarshows the location of Ranichauri and
surrounding locations, including three high altgwsltes in the Himalaya (Hanle, Mukteshwar,
and NCO-Pyramid, Nepal) from where observationaeybsol size distributions were reported
in the past. The observation site (30l278.25E; ~1930 m amsl) is situated on an isolated hill-
top, within the campus of College of Forestry imRRaauri (Fig. 1b).The observation site is a
Climate Monitoring station (hereafter referred soRanichauri) managed by India
Meteorological Department (IMD) under the Globaimstspheric Watch (GAW) program of the
World Meteorological Organization (WMO). The stattic away from major sources
of anthropogenic pollution and can be considered lackground observatory. But the black
carbon (BC) concentrations measured at Ranichag@nsiderably high for a background
location (annual mean and standard deviation oft1L4Llpg m?). This is higher compared to a
nearby high altitude remote site, Mukateshwar #0096 pg n?) [Kumar et al, 2020],
particularly in the pre-monsoon season with thejonity of forest fires. The 10 25", 50",
75", and 9@ percentiles of BC at Ranichauri are 0.3, 0.6, 2.8,and 3.2 g ™ respectively.
The city of Rishikesh is located about 70 km togbath, Srinagar city about 100 km to the
south-east and Dehradun city about100 km to thé efdRanichauri. The topography of the
region covers uneven distribution of forests, agtize land, orchards, and small human
settlements. Based on long-term observations (P88%), the daily maximum temperature
varies from 9.4 to 27°€, with mean annual total rainfall of about 1274 mnthis site
[Upadhyay et a].2015].
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Figure 1. (a) Location of Ranichauri and surroundings loaaiancluding high altitude sites in

the Himalaya (b) Photograph of Ranichauri Climabes€ving Station.

Air mass history was identified using HYSPLIT bdcdkjectory calculations and ratio of
number concentration of Aitken mode to accumulatrarde aerosols. BC data was used to
identify if the air mass reaching the site wasytteltl. Figure 2 shows the two-day backward
trajectories of air masses arriving at 500 m alibeeground at Ranichauri for winter, pre-
monsoon, monsoon and post-monsoon seasons. Ramigbaearally experiences a mixture of
relatively cleaner free tropospheric air and peltbiair from highly polluted Indo-Gangetic Plain.
During winter and post-monsoon seasons, the fogp®$pheric flow from north-western region
predominantly reaches the site. Air masses fronpttleted Indo-Gangetic Plain in the south-
east were dominant during the pre-monsoon seasereas air masses from the south-east and

west were prevalent during the monsoon season.
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Figure 2. Two-day backward air mass trajectories starting0& m above the ground level for
(a) winter (DJF), (b) pre-monsoon (MAM), (c) monaddJAS) and (d) post-monsoon (ON)

seasons. The color indicates the altitude alongitheass backward trajectory.

The Atmospheric Boundary Layer (ABL) influence wasalysed using the methodology
explained inHooda et al.[2018]. It used specific humidityg) as a passive tracer for ABL
dynamics Kowol-Santen et gl2001;Serafin et al. 2018;Weigel et al.2007]. The lifting of air
in the ABL was first assessed by examining theallity ‘6q’ in specific humidity at two sites
(Delhi and Ranichauri). Further, to investigate &L air lifting from the plains below, the
hourly specific humidity difference between the twides and corresponding undisturbed
difference ofgq between Ranichauri and the plains (Delti@noted asARPg’ was estimated. It
was assumed, based upog’‘diurnal-monthly values that there was no mixafair happening
at 5:00 am between the two sites (mountainous &ids). From these parameters, the fraction

of air (@q) arriving Ranichauri from the plains can be cadted as;
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The influence of the Indo-Gangetic Plains boundaygr was evaluated with different threshold
values of@q (0.25, 0.5, and 0.75) and compared to the maximmismg depth of Delhi (ERA-5
based) in terms of the fraction of the days (Fig)). 3More details are provided in supporting

information.

2.2 Instrumentation and datasets

A custom-built differential mobility particle sizéDMPS) was used to obtain the ambient
aerosol size distribution in the size range of &0Ota 800 nm (30 size bins). The DMPS
consisted of a Vienna-type differential mobilityadyzer (DMA) that classifies the charged
particles according to their electrical mobilityjwdaa TSI 3772 condensation particle counter
(CPC) that counts particles of the selected mgbilihus, the aerosol size information
throughout the text is in electrical mobility diatee A full aerosol number-size distribution with
30 bins was obtained every 10 minutes. The DMPS ftdw rate was 1 liter per minute (LPM),
and the sheath air flow rate was 5 LPM. The sarapl®as drawn inside through a stainless
steel inlet tube of about 2 meter in length anddito less than 40% relative humidity with a
Nafion dryer. Diffusion losses in the inlet andidesthe DMPS were considered in the data
inversion. The inversion method was identical &t firesented bwiedensohler et a]2012],
for the Finnish Meteorological Institute (FMI) DMPS

Black carbon measurements were made using Aeth&doifmeodel AE-33)lagee
Scientific 2016], which is deployed under IMD national netkvfor measurements of BC at
important geographical locations in Indkajmar et al, 2020]. Aethalometer measures light
attenuation at 7 wavelengths. The BC concentratiens are derived at a wavelength of 880 nm
using mass absorption cross-section (MAC) value. 6T n? g'[Petzold et al.2013]. This
wavelength was chosen to calculate BC concentrasaabsorption due to other aerosols is
negligible at this wavelengtifinovec et al. 2015]. Aethalometer uses a Teflon-coated glass
fiber tape and the aerosols are collected on gawallel spot measurement of optical
absorption, which provides near real-time compeémsdor the spot loading effect.

Aethalometer inlet was equipped with an impactorémoving the aerosols with aerodynamic
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diameters larger than 2.5 pm. More details of B@sneement and calculation can be found in
Drinovec et alJ2015].

Air mass origin and path to the measurement site wstimated using NOAA ARL PC-
version Hybrid Single-Particle Lagrangian Integdaleajectory (HYSPLIT) modelDraxler
and Rolph 2010] by calculating hourly two-day air mass haatd trajectories starting at 500 m
above the ground level using gridded wind fielasrfrthe Global Data Assimilation System
(GDAS), which has a spatial resolution 8&11°longitude by latitude and a time resolution of 1
hour [Kanamitsy 1989].

2.3 Estimation of relevant new particle formation &atures

We classified NPF events into different types upisial inspection of the contour plot
of the aerosol size distributioD&l Maso et al. 2005]. Particle mode diameter and BC
concentrations were used to classify events inbetgpes. To obtain the particle mode diameter
(i.e. local maximum of the aerosol size distribojianultimodal log-normal distribution upto
three modes was fitted to the measured aerosotsiéution. Type-I NPF events were
identified by the presence of distinctly new modearticles with diameters smaller than 25 nm
and with a steady growth in diameter of this newdenfor at least 6 hours such that aerosol size
distributions displays a “banana” shaped aerosoitir. Type-I NPF events were further
classified into two sub-types: la and Ib, base®@nconcentrations. Type-la NPF event showed
no or insignificant simultaneous increase in BCaagnrations with new mode of particle
diameter, implying a cleaner event (e.g. Fig.3a¢mehs Type-lIb NPF event showed significant
simultaneous increase in BC with the new mode digba diameter, implying polluted event
(e.g. Fig.3b). For these events, the particle gnaate (GR) was calculated by fitting a first-
order polynomial line through growing particle matlameter between 10 nm and 25 nm as a
function of time and calculating its slope, follmgiDal Maso et al[2005] methodology,
modified and updated By/estervelt et a[2013]. The formation rate of 10 nm particleg)dvas
found using the simplified approximation of the el Dynamic Equation (GDE), describing
evolution of the aerosol size distribution. Thenfiation rate of 10 nm particles was calculated

from aerosol size distributions obtained from tHdfP5 (10-800 nm) using equation 2

__AdN1g-25
10 — dt + FCoagS + Fgrowth (2)
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where the first term in equation (2) is the rat¢hef change of nucleation mode particle number
concentrations, the second term is the coagul#ti®s) and the third term is the flux out of the

size range 10-25 nm i.e. condensational growth.

Type-ll NPF events were similar to Type-1 NPF egecept that the initial mode
diameter was larger than 25 nm. Thus, GR asdah not be calculated for Type-1l NPF events.
Such events are observed when the air mass withrédiRes the measurement site after the
particles have already grown larger than 25 nnerrefl to as Aitken-mode growth events. Type-
Il NPF events were further classified into two sypes: lla (cleaner) and IIb (polluted), similar
to Type-l NPF events. This indicates that Typevims can occur in both cleaner and polluted
air masses. Type-lla NPF events showed no or iifgignt simultaneous increase in BC
concentrations, implying a cleaner event (e.g.3€)g.Type-llb NPF events showed
simultaneous increase in BC concentrations, imglgmolluted event (e.g. Fig. 3d). The days
with no evidence of distinct change in particle malibmeter were identified as Type-Ill non-
event (e.g. Fig. 3e). Those days, which were diffito be classified as any one of the above
categories, were identified as Type-1V unidentifeaeé@nt days (e.g. Fig. 3f). The criteria used for
classifying these events are summarized in Table 1.

We also calculated size-segregated aerosol nunolpeentrations by integrating the
number concentration of aerosols from 10-25 nmlgaton mode, Nuc), 25-100 nm (Aitken
mode, M), 100-800 nm (accumulation modesd¥u) and 10-800 nm (total aerosols;dy).
Similarly, total aerosol surface area (@4), total volume (Volor), total mass concentration
(M+o1), total condensation sink (€&) and total coagulation sink (Coa@$%) in the size range
of 10-800 nm were calculated followimpl Maso et al[2005], to examine seasonal variability
and diurnal patterns of NPF features. It is working that there were no measurements of
aerosols less than 10 nm diameter size duringttitly period. Therefore, it was not possible to
precisely estimate the fraction okd¢t originated from NPF processes, which usually stairtl -

2 nm diameter siz&kulmala et al, 2007].
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Table 1. Summary of new particle formation event classtfama

Event type subtype features

A new mode of particles smaller than 25 nm size is
visible with a steady growth in the particle sine &t

la least 6 hours. GR andoan be calculated. No or
(cleaner) |.- 7" . . , : .
Type-I NPF insignificant simultaneous increase in BC concdituns
with the particle mode diameter.
Ib Same as Type-la, but with significant simultaneous

(polluted) | increase in BC concentrations.

A new mode of particles smaller than 25 nm is abser
referred to as Aitken-mode growth event. GR andadn

lla 2 .
(cleaner) _not be Ca_lculated. No or |n_S|gn|f|(_:ant S|mult§1neous
Type-Il NPF increase in BC concentrations with the particle enod
diameter.
b Same as Type-lla, but with significant simultaneous

(polluted) | increase in BC concentrations.

No distinct change in particle mode diameter duthrey
course of the day

Difficult to identify whether it is one of the abewevent
types.

Type-Ill non-event

Type-1V unidentified

2.4 Particle survival probability, CCN-active particle formation rates and CCN derived
from SMPS

While particles as small as 20 nm may activataimreertime arctic cloudsKprhonen
et al, 2008;Leaitch et al. 2016], in typical ambient in-cloud supersatunasio50 nm and 100
nm can be considered as a good proxy for CCN caraten [Kerminen et a].2012] at
approximately 1.0% and 0.2% supersaturation fatigbrm clouds, respectively. Here, we have
calculated the particle survival probabilities @rim (SP50) and 100 nm (SP100) size following
the methodology explained Bierce and Adamfg007] and first applied to ambient
observations iWestervelt et a[2013]. Briefly, SP is the ratio of particle fluxat the initial size
and the CCN-active sizes (typically to 50 nm an@ @t particles). The survival probability
from initial size m to n (in this case, 10 to 50 and 10 to 100 nm) is calculated by the

following equation:

1 Tlccokn+d1

— Tn— ,

SPm,n = llk=m €xp <_ .L.COtlg)
k

(3)

This article is protected by copyright. All rights reserved.



wherer°™ is the condensational growth time scale requioed fparticle to grow to a size of
interest.t¢°% is the inverse of the coagulation sink for a gigeae range. The formation rates of
CCN-active particles (i.e. 50 nm and 100 nm) ateutated as,sd = Jox SP50 andido = JoX
SP100. sh and Joo are the formation rate of particles of size 50ma 400 nm, respectively.

While this methodology does not consider aerospipmmsition and mixing state, the particles
larger than 50 nm will serve as CCN under typicglessaturations. Since, the aerosol size plays
the major role in the aerosols ability to act adNd@&ther than its compositioD{isek et al.

2006]. The survival probabilities and formationesabf 50 nm and 100 nm particles were
calculated for Type-I NPF event alone as it waspustsible to deriveidfor Type-1l NPF

events.

We have also estimated the contribution of freétityned particles to the CCN
concentrations followed by Kerminen et al. (2012tmodology, which calculateschhprior and
Ncenmax We used similar CCN thresholds i.e. 50 nm andrifiGo calculate denprior and
Ncenmax Neenprior IS calculated as a one-hour average concentriamiorediately prior to the
appearance of the newly formed nucleation modegtest whereas dcnmaxis calculated as a
maximum one hour average concentration during af &knt. The contribution of the
nucleation to CCN concentrations during the obseiwgpe-I NPF event days was then

examined in both relative and absolute concentratierms.

3. Results and Discussion

3.1 Typical NPF events and their frequency

Previous study at Nepal Climate Observatory at fdgNCO-P) in the Khumbu
Valley, a high altitude site in the Eastern Himaaysing 16-months of aerosol size distributions
showed that NPF events occurred very frequentlynvthe more polluted air rising from valleys
reach the site\enzac et al.2008]. Whereas, the long-term (2005 - 2010) megsents of
aerosol size distributions from Mukteshwar, Uttdsahkd, a high altitude site in Western
Himalaya, showed that the NPF events occurred rapheradically, except during the pre-
monsoon seasompitola et al, 2011]. NPF events during the pre-monsoon seagoe w

connected to the evolution of the boundary layetouthe site elevation.
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Figure 3 shows typical NPF events observed at Ranit site. Type-la and Type-Ilb are
identical type of events except that BC concerregtidid not vary during the course of Type la
NPF event while BC concentrations increased shavjity particle mode diameter in case of
Type-Ib NPF event. Many studies have suggested\tR&t occur preferably at low aerosol
loading, because high pre-existing aerosol conagatrs tend to scavenge both nucleation
precursors (e.g. sulfuric acid, ammonia, amined,\ematile organic compounds) and small
molecular clustersdquimala et al, 2004;Zhang et al.2012]. However, observations in polluted
environments and plumes have also revealed signifi@tes of NPF despite the high ambient
aerosol concentrationslie et al, 2014;Nieminen et a).2018;Westervelt et al2013;Yao et al,
2018;Yu et al, 2017;Zhang et al.2015]. Previous studies put forward the hypoth#sat either
reduced scavenging of nanometer-sized clustersetexasting aerosols or rapid cluster growth
likely accounts for the nucleation and growth of@garticles in a polluted atmospheb&| et
al., 2017;Kulmala et al, 2017]. These previous studies substantiate tipe-Tly events, which
have NPF within a polluted air mass. The total emsation sink for Type-1 NPF events were in
the range (1.2 - 52.8) x £8*, with a mean and standard deviation of (8.6 + 5.8p2 s*. This
value is higher by a factor of about three as caegpéo a high altitude site, Puy de D6me in
France (2.77 x 1®s?) and more than an order of magnitude higher timather high altitude
site, Jungfraujoch in the Swiss Alps (0.15 = £0) [Sellegri et al. 2019]. At the NCO-P site in
the Khumbu ValleyVenzac et al[2008] found that high pre-existing aerosol cortaions
prevented NPF occurrence, with NPF frequenciesthess 10% for condensation sink higher
than 2.1 x 18 s, with a NPF frequency of about 50% for condenseasiok lower than this
value. This indicates that the typical condensasiok at Ranichauri site was sufficiently high
that the natural source strength of vapors canveicome it and thereby inhibited cleaner NPF
events. Type-ll events (referred to as Aitken-mgaevth events) were also sub-classified into
Ila and llb categories, similar to Type-I eventsr the typical Type-la event shown in Figure 3,
the calculated growth rate in the size range 1®nr@ diameter (8.45 nmhwas almost two-
fold than that of the Type-lb event (4.69 nrif).hOverall, the growth rates for Type-la cleaner
event days were higher than Type-Ib event daysoitrastNeitola et al[2011] reported higher
growth rates at Mukteshwar site for boundary Ip@tuted events as compared to cleaner free

tropospheric events.
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Figure 3. Temporal evolution of aerosol size distributioriBgd contour), particle mode
diameter (blue plus symbol), and BC mass conceoti(thick black line) for a typical Type-I
NPF (a, b), Type-Il NPF (c, d),Type-lll non-evea) and Type-IV unidentified (f) days at

Ranichauri.

Figure 4 shows the percentage of days for diffetygres of events observed at
Ranichauri during the period of the study. Out ¢btal of 643 days of observations, there were
24 (3.6%) Type-l and 31 (4.8%) Type-Il event daysotal of 493 (76.4%) days did not show
any evidence of NPF and 33 (5.1%) days were catsgbas unidentified days. There were no
measurements on 62 (9.7%) days. The monthly pexgerdf occurrence of NPF days was
comparable to an earlier study at a high altitutée Mukteshwar, in the Western Himalaya
[Neitola et al, 2011], which is about 300 km to the SoutheasRahichauri (Figure 1). Type-I
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NPF events occurred frequently in the pre-monseasan (23 out of a total 24 event days). The
days with no evidence for NPF were more commoihénhonsoon season owing to wet/cloud
scavenging of condensable vapours as well as stnatkers, and low solar insolation on
persistently cloudy conditions during the monsoeasen. A study at a rural site, Gadanki, in
India also observed infrequent occurrence of NRtheoted to lower aerosol precursor
concentrations and weak gas-phase oxidation ddertioished solar radiation on persistently

cloudy days during monsoon seasKafawade et al.2014b].
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Figure 4. Monthly percentage of days for occurrence of NP&név (la, Ib, lla, and IIb), non-
event (l11), unidentified (IV) and No-data daysRenichauri. The background colours (light
green, light red, light blue and light grey) indieaifferent seasons (winter, pre-monsoon,

monsoon and post-monsoon, respectively).

3.2 Diurnal variation of aerosol parameters
Figure 5 shows averaged diurnal variability in ssegregated aerosol number

concentrations (Fig. 5a-d), BC mass concentratiott€d line, Fig. 5a), total surface area (Fig.
5e), total volume (Fig. 5f), total condensatiorkgjRig. 5g), total coagulation sink (Fig. 5h), tota
mass (Fig. 5i) and particle mode diameter (Fig.Gyerall, we found two main types of diurnal
variation patterns in aerosol concentrations awggnties. The first type was clearly connected
to NPF events, showing rapid diurnal changes ins#mumber concentrations and properties
during mid-day. The second type was characterizgatiebackground aerosol size distribution
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and aerosol properties showing little or no diucteinge. These types of diurnal variation
patters are similar to previous studies reportargdoral evolution of aerosol number
concentraitons and properties from long-term grebasked measurementsdoda et al, 2018;
Shen et a).2011;Venzac et al.2008]. We further describe these types below.

Nnuc has more than an order-of-magnitude diurnal vditalon days with NPF events,
but a factor of 2-3 on non-event days (Fig. 5ae Morning increase inNNc does not coincide
with the increase in concentrations of anthropogeasrosol tracer, indicated by BC for Type-la
and Type-lla cleaner events. However, the mornaakpn Nwuc clearly coincides with the
elevated BC concentrations for Type-Ib and Typepibtiuted events (Fig. 5a). This is similar to
observations at a high altitude site in the Weskimalaya reported byenzac et al[2008].

This finding is further corroborated by the presenthigher Aitken mode and accumulation
mode concentrations for polluted events (Ib andlthian cleaner events (la and lla) (Fig. 5g).
The higher aerosol number concentrations on palld&ys are also reflected in the diurnal
variability in total surface area, total volumetal condensation sink, total coagulation sink, and
toal mass (Fig. 5d-i). In contrast, the particledealiameter was smaller for cleaner event days
than polluted event and non-event days (Fig. 3iil&r diurnal variation of BC concentrations
during Type-la, Type-lla, and non-event days (Ba&). perhaps illustrates that NPF was not
prevented by the pre-existing aerosol concentratioiiboth cleaner and polluted air masses. In
addition to pre-exisiting aerosol concentratiohgsé¢ are two other factors that may strongly
modulate NPF occurrence: availability of aeroseicprsor concentration and solar insolation. At
the high-altitude Hanle site in the Trans-Himal@lymorthy et al, 2011], it was observed that
NPF rates were higher during pre-monsoon as tle saolation was abundant. In this study,
NPF slowed as the seasons progressed towards veiesla et al.[2011] reported frequent

NPF at the Mukteshwar site in the North-Western &#laya during the pre-monsoon season.
They found that the high frequency of pre-monsogenés was linked to elevated boundary layer
height, indicating availability of aerosol precurstransported from valley regions. A recent
review study of ground-based high altitude sitescated that the impact of CS on the
occurrence of NPF appeared to be different fromtogle altitude site to anotheB¢llegri et al,
2019]. For instancé/enzac et al[2008] found that high CS (>24.103 s?) inhibited the
occurrence of NPF at the high-altitude Himalayap®aite, Pyramid, while the CS was higher
during NPF events days (3x1102 s?) than non-event days (2x110° s?') at the Mount
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Chacaltaya site in Bolivian AndeR@se et al.2015] (implying the opposite effect of
condensation sink at Pyrami®ellegri et al[2019] suggested that the occurrence of NPF at
high altitude sites might be determined by the alamce of condensable vapors, which are
transported together with pre-exisitng aerosolmffower altitudes. At Ranichauri, the NPF
occurred at both low (6.4 102 s?) and high (12.5% 103 s') condensation sink conditions (Fig.
5g), with the ratio between polluted and cleanemé¢days of about 2.

Further, we have calculated averaged diurnal vanaif meteorological parameters for
observed Type-I, Type-Il, and Type-Ill event daygy( S2). Temperature and relative humidity
were slightly lower on non-event days as compavegl/ent days. The wind direction rapidly
changed on event days as compared to non-eventAaygether, the meteorological
parameters did not show much variation betweerveat and non-event days.
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Figure 5. Averaged diurnal variation of (a) nucleation moéeosols (solid lines) and black
carbon mass concentrations (dotted line), (b) Aithkede aerosols, (c) accumulation mode
aerosols, (d) total aerosols, (e) total surfaca,dfetotal volume, (g) total condensation sin¥, (
total coagulation sink, (i) total mass and (j) detmode diameter for NPF (Type-1 and -II)
event and non-event (Type-lll) days. Line colouwioates the type of event.

The occurrence of NPF events in different air mass types is another open question. Air
masses of different origin pose not only different meteorological conditions, but also varying
chemical features. Therefore, the probability of occurrence of NPF at a given location not only
depends on local emissions, but also the type of air mass arriving at that location [Sogacheva et
al., 2005]. For instance, NPF events were more common in continental polluted air masses than
that of cleaner marine air masses from the Atlantic Ocean [Hussein et al., 2009; Sogacheva et al.,
2007]. Pierce et al. [2014] also showed that NPF rates were faster under the polluted conditions
as compared to cleaner-air flow at Egbert, a mixture of forests and farmland site in Ontario,
Canada. NPF has been seen to occur commonly at semi-rural and remote sites under the
influence of long-range transported polluted plumes with elevated sulfuric acid concentrations
via oxidation of sulfur dioxide [Creamean et al., 2011; Kanawade et al., 2012]. Neitola et al.
[2011] showed that NPF occurs frequently in the pre-monsoon season at a high-altitude site,

Mukteshwar in the Himalayan foot hills when the boundary layer height was lifted up to the
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station altitude which allowed transport of aerosol precursors from valley to the station. These
and numerous other studies found that NPF processes are strongly linked to the history of air
masses [e.g. Asmi et al., 2011; Nieminen et al., 2014; Nilsson et al., 2001]. This is not surprising
since air masses arriving from different locations are likely to be affected by varying
concentrations of aerosol precursors and meteorological conditions prior to their arrival at the
measurement site, which determines the age of the air mass.

Hyvdrinen et al. [2010] used ratio of Aitken mode to Accumulation mode aerosols to
determine the age of the air mass, where low values indicate an aged air mass while high values
indicate the cleaner air mass often connected with NPF events. Figure 6 shows the hourly and
monthly averaged ratio of Aitken mode to accumulation mode aerosols (Narr/Naccu) for NPF
and non-event days. The site is dominated by Aitken mode aerosols almost throughout the year,
with the highest ratios of Narr to Naccu during monsoon and pre-monsoon seasons. Narr/Naccu
values are higher for non-event days than event days in the monsoon indicating the efficient wet
scavenging of accumulation mode particles. Narr/Naccu values are higher for NPF event days
than non-event days in the pre-monsoon season, indicating the large source of Aitken mode
aerosols via NPF processes. The monthly mean ratio ranged from 1.5 to 4.2, with about 75%

cleaner events (Ia and IIa) of total NPF events (Fig. 6).
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Figure 6. Hourly (plus sign) and monthly (open circle) awgd ratio of Aitken mode to

accumulation mode aerosols for NPF event (la,l#h,and 1lb) and non-event (lll) days. The
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background colours (light green, light red, lighidband light grey) indicate different seasons

(winter, pre-monsoon, monsoon and post-monsoopeotisely).

3.3 Growth rate, formation rate and survival probalhlities of climate-relevant aerosols
Growth rates, formation rates, and survival praliiegs were calculated only for Type-la
and Type-lb event days. Table 2 summarizes meadiameand percentile (#5and 7%) values
for GRio-2snmand Jofor these event days. For Type-la events, the me@Rio-2snmwas 7.5 nm
hl, with 6.2 and 11.2 nnmrlas 2% and 7% percentiles. For Type-Ib events, the medianR
2snmwas 4.2 nm f, with 3.3 and 10.7 nmhas 2% and 7% percentiles. The mean Gisnm
was 8.51 nmtiand 4.86 nmffor Type-la and Type-Ib, respectively. Figure A(lastrates the
cumulative probability distribution functions foilRz-2snmfor these event days. The particle
growth rates were about two-fold higher for cleageznts than polluted events. This suggests
that faster growth rates were favored at a lowadeasation sink. Overall, GR:snmvalues are
within the large range observed at other highualétsites (0.4 to 19.9 nm‘h[Sellegri et al.
2019].

Table 2. Summary of particle growth and formation ratesTgpe-l event days indicates

standard deviation. p25 and p75 indicat® a6d 7% percentile values, respectively.

GRuio-25 (nm ht) Jio (cn1 s1)
Event type
Mean o Median (p25-p75) Meanio Median (p25-p75)
la 8.51+4.46 7.53 (6.15-11.18) 0.26 £0.27 21(00.05 - 0.49)
Ib 4.86 +£3.13 4.17 (3.29 - 10.71) 0.09 £0.08 070(0.02 -0.19)

The meanidwas 0.26 cni st and 0.09 cm s? for Type-la and Type-Ib events,
respectively. For Type-la event days, the mediawads 0.21 cni s, with 0.05 and 0.49 cths
Las 29 and 79 percentile values whereas for Type-lb events, nmedliavas 0.07 cnd s, with
0.02 and 0.19 criist as 2% and 7% quartile values. Figure 7(b) illustrates the cuative
probability distribution functions fordfor these event day&arcia et al[2014] reported ), at

a high-altitude Izafa station in the Atlantic Oceiarthe range from 0.5 - 0.6 chs! whereas
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[Venzac et a].2008] reported, at a high altitude NCO-P sitehimrange from 0.1 - 0.2 chs?.

Jio at Ranichauri is comparable to these values, aodée reported for the Mukteshwar site in
the Himalayan foothills (0.4 cths?) [Neitola et al, 2011]. Nevertheless;glvalues at

Ranichauri falls within the wide range reported liggh-altitude and continental boundary layer

sites across the globe (0.01 - 10%¢st) [Kulmala et al, 2004;Sellegri et al. 2019].
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Figure 7. Cumulative probability distributions of (a) Gésnnand (b) do for Type-la and -Ib

NPF event days.

The contribution of atmospheric NPF to total ael®so CCN concentrations can be

estimated from the aerosol size distribution didtdmala et al.[2016a] estimated that NPF

contributes about 80% to the total aerosol numbacentrations in a rural forest site, SMEAR I
station at Hyytiala, Finland. Butyostl et al.[2016] highlighted, based on 12-month aerosol size
distribution data from the high-altitude site, Jiragjoch, that NPF adds about 10% new
particles to the aerosol concentration below 50 Tiney further emphasized that newly formed
particles do not grow to CCN-active size (for ativation diameter of ~90 nnd{iranyi et al,
2011]) within observed NPF time-scales at this @&hours), yielding low contribution of NPF
to the CCN concentrations. The measurements at &lin Shandong Province in China also
showed that only about 12% of the total NPF evehtsved enhancement in CCN
concentrationsghen et aJ.2016]. There is also no direct evidence of NPhtrdoution to CCN
size at other high altitude sites e.g. NCO-Pyrar@Githcaltaya or Storm Peak Laboratdrallar

et al, 2016;Rose et a).2015;Venzac et a).2008]. Additionally, observations at Whistler
Mountain (~1300 m amsl) showed that freshly nuel@gtarticles had a 10 - 25% probability of

This article is protected by copyright. All rights reserved.



growing to CCN sizes (100 nm) before being scaveryecoagulatiorRierce et al. 2012]
whereas aerosol size distribution data at Chaaltayuntain found that the potential to form
CCN was about 53% in the free troposph&ede et a).2017]. Further, sulfuric acid is the
dominant contributor to initial growth of nanopatéis from NPF, while organic compounds
become more important as particles grow largettrhala et al, 2016b]. Thus, the growth of
nucleated particles to CCN sizes is dependent@sdhrce and chemical makeups of the
precursor compoundsMang et al.2017] as well as sinks (such as coagulationsdeegisting
particles) Kulmala et al, 2005]. Since the growth of nucleated particleE@N sizes takes from
a few hours up to about three days in the lowgrdsphere, it is observationally very
challenging to distinguish CCN formed through atptesic NPF from those formed from
growth of pre-existing aerosolK¢rminen et al.2012].

Figure 8 shows cumulative probability distributimmctions for the survival probability
to 50 nm and 100 nm particles (SP50 and SP100)enbrmation rates of 50 nm and 100 nm
particles (do and doo) for Type-I events. Table 3 summaries survivabgaialities (SP) and
formation rates (J) of 50 nm and 100 nm partictemfvarious sites across the globe. SP50
ranged from 44% to 98%, with a mean and standaritien of 82 + 18% and SP100 ranged
from 5% to 94%, with a mean and standard deviaiidsB + 32%. These results show that, on
average, 64% of new particle surviving to 50 nmsgoe to survive to 100 nm. With the
observed mean particle growth rates of 8.51 rixtlie newly formed particles survived
approximately 4 to 6 hours to reach 50 nm. The nvadure of SP50 at Ranichauri is almost
double of the value reported for low-altitude fdreite (33%) Pierce et al, 2014] and
comparable to the observed range at all four udites (31-80%) reported Westervelt et al.
[2013]. There are uncertainties in calculationwivssal probabilities to 50 nm and 100 nm
particles as previously reported Wiestervelt et a[2013]. First, the primary particles may
contribute to particle number concentrations ofd @5 nm, and therefore contributing to the
apparent nucleation rate. The use of two growtssrédr only two size ranges (10-25 nm and 25-
100 nm) may bias survival probabilities higher tieapected. ButyWestervelt et a[2013]
qguantitatively addressed the survival probabilitgertainty by using two methods: one method
identified in the paper, and the other describe&ibbgng et al[2009], wherein the ratio of Ny
to Ns for a given growth trajectory is defined as thevsial probability. Westervelt et a[2013]

found that the two methods largely yield similangval probabilities. & and Joo are the
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products of & and the corresponding survival probabilities.rdnged from 0.009 to 0.17 ¢hs

1, with a mean and standard deviation of 0.08+0r@5 s, which is about two times higher than
a low altitude site in Egbert, Ontario, CanaBéfce et al. 2014] wheres) was 0.039 cm s?

and lower by almost one- fifth to that of a higplgiluted site, Po Valley (0.39 cfrs?)
[Westervelt et al2013]. doo ranged from 0.004 to 0.16 chs?, with a mean and standard
deviation of 0.05 + 0.04 crhs?, which is about 2-3 times higher than low altitisite, Egbert,
Ontario, Canada (0.02 chs?) [Pierce et al. 2014]. While doo at Ranichauri was lower by an
order of magnitude than that at the Po Valley (@3# s') [Westervelt et al2013]. The ratio

of Jioo to ko ranged from 0.10 to 0.99, with a mean value oualBcG0 + 0.31.
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Figure 8. Cumulative probability distributions of (a) surviy@obability to 50 nm and 100 nm
and (b) formation rates of 50 nm and 100 nm pasitbr the Type-I events.

Table 3. Summary of survival probability and formation rafes0 nm and 100 nm particles at

diverse locations.

Location SP50 SP100 N Jioo Reference

(%) (%) (ecm®s?) (cm®s?)
Ranichauri, India 82+18 53+320.08+0.05 0.05+£0.04 This study
Egbert, Ontario, Canada 33 19 0.039 0.022 Pierce et al[2014]
Pittsburgh, USA 37 2.4 0.11 0.006 Westervelt et a[2013]
Atlanta, USA 67 3.7 0.177 0.006 Westervelt et a[2013]
St. Louis, USA 46 1.8 1.6 0.046 Westervelt et a[2013]
Hyytidla, Finalnd 55 2.6 0.23 0.004 Westervelt et a[2013]
Po Valley, Itlay 34 4.4 0.39 0.34 Westervelt et al2013]
Mt. Tai, China 10-140 5-40 - - EZhu et al, 2020]
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While the size of aerosol particle determineslitity to act as CCN, the hygroscopicity
of particle also affects CCN activatiobl¢Figgans et al.2006]. Figure 9 shows relative (in %)
and absolute (in crf) increase in CCN concentrations for Type-l nuéteaevent days at
Ranichauri. Analogous to SP50 and SP100 calcuistioucleation events had an obvious effect
on CCN concentrations. The relative increasesggrihged from 21.6 to 577.1 %, with a mean
and standard deviation of 247 + 198 % whereaslibelate increase inranged from 541 to
7964 cm?, with a mean and standard deviation of 3631 + 2603 The absolute increase ind\
at Ranichauri is comparable to continental backggagite, Botsalano, South Africkgrminen
et al, 2012], indicative of intense nucleation eventswhigher growth rates. The relative
increase in hbo ranged from 17.8 to 579.4 %, with a mean and st@hdeviation of 201 + 165
% whereas the absolute increase isokanged from 211 to 2451 cinwith a mean and standard
deviation of 1290+913 crh
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Figure 9. The relative (%) and absolute (in €)rincrease in CCN concentrations during Type-I

NPF event days.

4. Conclusions

Here, we presented aerosol size distribution measemts at a background remote site,
Ranichauri based on a 21-months (1 December 2018 &eptember 2018). We reported the
frequency of NPF occurrence, growth rate, formataie, seasonal variability and diurnal
patterns in NPF features and illustrated survivabpbility of newly formed aerosols to 50 nm
and 100 nm particles. Out of 643 observation daype-I (clear NPF events) and Type-Il NPF
(Aitken-mode growth) events were observed on 3.G%488% days, respectively, with highest
NPF frequency in the pre-monsoon (March-May) seaSgpe-| and Type-Il NPF events were
further classified into two sub-types: a (clearaar)l b (polluted), based on BC mass
concentrations. For Type-la NPF event days, theo@GRnvaried from 2.1 to 18.5 nmhwith a
mean and standard deviation of 8.51 + 4.46 rimard for Type-Ib events, it varied from 1.6 to
10.7 nm ht with mean and standard deviation of 4.86 + 3.13infFor Type-la events;d
varied from 0.01 to 0.91 cAws?! with a mean and standard deviation of 0.26 + @87 s?,

whereas it varied from 0.01 to 0.24 @' with mean and standard deviation of 0.09 + 0.08 cm
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s for Ib event days. The newly formed particle suabiprobability to 50 nm size ranged from
44 to 98%, with a mean and standard deviation af 82%, and the survival probability to 100
nm was 53 + 32%. Our estimates of survival prolighidicate that a significant fraction of
nucleated particles grow larger than 50 nm andriti0and thus constitute an important source
of CCN for cloud formations. The uplifting of théapetary boundary layer to the elevation of
the measurement site appeared to carry aerosalrpogo/apors for particle growth at a
relatively lower background pre-existing particencentrations. The mean formation rates of 50
nm and 100 nm particles were 0.08tgt and 0.05 cmi s?, respectively. The newly formed
particles have an obvious effect on CCN number eotnations during the observed NPF event
days. Overall, NPF occurred more frequently ima@isses with low BC concentrations (cleaner)
than polluted air masses, with faster growth ratesformation rates during cleaner event days
(Type-la). While the high condensation sink in ptald air masses could reduce the
concentrations of condensable vapors and in tuverimg NPF and growth rates, the chemistry
producing condensable vapors may also significalter NPF and growth rates. Our results
highlight that although the occurrence of NPF veagdr at this site as compared to other remote
high altitude sites, the high survival probabilitgicates that the sporadic NPF events could be a
large source of climate-relevant aerosols.

In this study, we have linked, for the first tineedur knowledge, NPF to climate-relevant
aerosols in India. First, more emphasis shouldui@p combining long-term field
measurements from multiple sites in India to destagistically relevant NPF features including
frequency, growth rates, formation rates, survprabability of newly formed aerosols, and
CCN concentrations or some proxy for it. Secondjragichemical information and CCN
concentration measurements to the existing aesm®ldistribution measurements would
provide new information on NPF-CCN linkages in deaversus polluted environments. Lastly,
such analyses of field measurements should be ardbdegional or parcel model simulations

to aid in interpreting field measurements.
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