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ABSTRACT: A single nonprecipitating cumulus congestus setup is applied to compare droplet spectra grown by the

diffusion ofwater vapor inEulerian bin and particle-basedLagrangianmicrophysics schemes. Binmicrophysics represent droplet

spectral evolution applying the spectral density function. In the Lagrangian microphysics, computational particles referred to as

superdroplets are followed in time and space with each superdroplet representing a multiplicity of natural cloud droplets. The

same cloud condensation nuclei (CCN) activation and identical representation of the droplet diffusional growth allow the

comparison. The piggybacking method is used with the two schemes operating in a single simulation, one scheme driving the

dynamics and the other one piggybacking the simulated flow. Piggybacking allows point-by-point comparison of droplet spectra

predicted by the two schemes. The results show the impact of inherent limitations of the two microphysics simulation methods,

numerical diffusion in theEulerian scheme and a limited number of superdroplets in theLagrangian scheme.Numerical diffusion

in the Eulerian scheme results in a more dilution of the cloud upper half and thus smaller cloud droplet mean radius. The

Lagrangian scheme typically has larger spatial fluctuations of droplet spectral properties. A significantly larger mean spectral

width in the binmicrophysics across the entire cloud depth is the largest difference between the two schemes. A fourfold increase

of the number of superdroplets per grid volume and a twofold increase of the spectral resolution and thus the number of bins have

small impact on the results and provide only minor changes to the comparison between simulated cloud properties.
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1. Introduction

Understanding processes affecting cloud droplet spectra is

an important objective of observational and modeling cloud

studies. Droplet spectral characteristics impact such essential

processes as the precipitation development or radiative trans-

fer through a cloudy atmosphere. In cloud modeling, simula-

tion of droplet spectral evolution is cumbersome and often

simpler approaches such as the bulk microphysics are used. For

predicting the spectra, there are essentially two different pos-

sibilities. The first one, the so-called bin (or spectral) micro-

physics, solves the evolution equation for the spectral density

function with the droplet spectrum represented by a finite

number of droplet radius (or mass) bins. Each bin is advected

in the physical space, and all bins are combined in each model

grid box to represent droplet growth through the transport

(advection) of droplets from one bin to another. This is the

Eulerian approach because the spectral density function is

formulated and solved similarly to other Eulerian fluid flow

variables such as the fluid velocity, air temperature, and water

vapor mixing ratio. Bin microphysics is the traditional ap-

proach to model spectral evolution of cloud and precipitation

particles (see Khain et al. 2015; Grabowski et al. 2019 and

references therein). The second approach is to represent evo-

lution of the droplet spectrum by an ensemble of Lagrangian

point particles. These particles are tracked in the physical

space using model-predicted flow field, and they grow or

evaporate as they move with the flow. Each computational

particle represents amultitude of natural cloud particles and an

additional parameter, the multiplicity, is used to describe the

total number of real particles each computational particle

represents. For warm-rain microphysics, the computational

particles are often called superdroplets and the approach is

referred to as the superdroplet method (Shima et al. 2009).

Superdroplet method is a relatively novel approach to simulate

droplet spectral evolution; see Andrejczuk et al. (2008,

2010), Shima et al. (2009), Sölch and Ka ̈rcher (2010),

Riechelmann et al. (2012), Hoffmann et al. (2015), and

Grabowski et al. (2019).

The two schemes represent drastically different simulation

methodologies and their direct comparison is needed. To that

end, Grabowski (2020; G20 hereafter) presents such a com-

parison applying a cloud chamber setup. The chamber, a lab-

oratory apparatus at the Michigan Technological University

(see http://phy.sites.mtu.edu/cloudchamber/), forms a cloud

because of the temperature and humidity differences between

lower and upper horizontal boundaries that drive turbulent

Rayleigh–Bénard convection. Mixing between plumes rising

and descending from the lower and upper boundary, respec-

tively, results in the cloud condensation nuclei (CCN) activa-

tion and cloud droplet growth. Motivated by simulations

discussed in Thomas et al. (2019), G20 considers only CCN

activation and droplet growth by the diffusion of water vapor.

G20 shows a good agreement between droplet spectra pre-

dicted by the twomodelingmethodologies when averaged over

the chamber volume away from boundaries. Small differences

that do exist are explained by the inherent differences between
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the two schemes and their numerical implementation. There

are large differences in the local droplet spectra, again in agree-

mentwith the limitations of the theoretical foundation behind the

two approaches. There is a general agreement between the

simulations and cloud chamber observations, with simplifications

of the CCN activation and of the droplet growth equation used in

the simulations likely explaining specific differences.

In this paper, we consider the problem of predicting cloud

droplet spectra in a natural cloud, a nonprecipitating cumulus

congestus. In general, droplet spectra observed in natural cu-

muli, even in undiluted or weakly diluted volumes, are often

significantly wider than predicted by simple models of cloud

dynamics and microphysics; see, for instance, Fig. 11 in

Jensen et al. (1985) or Fig. 1 in Lasher-Trapp et al. (2005,

LT05 hereafter) and their discussion; Brenguier and Chaumat

(2001); among many others. This problem continues to oc-

cupy cloud physics community from early days of in situ

aircraft observations of cloud microphysics (e.g., Warner

1969). On the modeling side, bin microphysics is affected by

numerical issues similar to other Eulerian fields. For in-

stance, typically sharp cloud–environment boundary can

only be represented by relatively smooth few-gridpoint

transition zones. Because each bin is advected separately,

one may expect unphysical droplet spectra within those

zones. Since high-quality contemporary advection schemes

are nonlinear, separate bin advection typically results in

numerical artifacts (Ovtchinnikov and Easter 2009). Moreover,

as documented in Morrison et al. (2018), combination of the bin

advection in the stratified atmosphere with advection in the bin

space that represents droplet growth typically results in nu-

merical problems such as artificial spectral broadening. The

Lagrangian particle-basedmicrophysics is free from these issues,

but suffers from the limited and usually small number of

superdroplets, especially considering the number of real drop-

lets in a simulated cloud.

The above differences between the two approaches to

droplet spectral modeling warrant comparison in simulations

of a cumulus cloud. As noted in G20, decoupling between the

vertical transport and condensational growth of cloud droplets

(because of the constant chamber pressure) likely plays role

in good G20 comparison. In a warm cumulus simulation,

the coupling between vertical advection and condensa-

tional growth/evaporation may lead to a different conclu-

sion (Morrison et al. 2018). However, replacing onemicrophysics

scheme with another in a cumulus simulation typically leads

to a different cloud evolution, and this make comparison be-

tween the two simulations difficult. To cope with this problem,

we apply the piggybacking methodology (see Grabowski 2019,

and references therein). The next section presents the dynamic

model, the setup of cumulus congestus simulations, and explains

the piggybacking method. Section 3 presents simulation results

focusing on the comparison between droplet spectra predicted

by the two schemes. Sensitivity simulations with an increased

number of superdroplets in the Lagrangian scheme and an in-

creased spectral resolution in the bin scheme are discussed in

section 4. Discussion in section 5 concludes the paper.

2. The model, methodology, and model setup

a. Dynamics

The dynamic model, the same as in G20, is a simplified

serial version of the 3D finite-difference nonhydrostatic

anelastic Eulerian–Lagrangian (EULAG) model (http://

www.mmm.ucar.edu/eulag/) referred to as babyEULAG.

BabyEULAG features Eulerian dynamics and has been

FIG. 1. Schematic of the droplet size distribution in (left) Eulerian bin microphysics and

(right) Lagrangian superdroplet scheme.
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previously applied in simulations of shallow and deep con-

vection (e.g., Grabowski 2014, 2015; Grabowski and Jarecka

2015; Grabowski and Morrison 2016, 2017). Here, we apply

babyEULAG to simulate a single ice-free nonprecipitating

cumulus congestus cloud following LT05. The model has no

subgrid-scale (SGS) transport scheme and relies on the

monotone MPDATA advection scheme (Smolarkiewicz

1984; Smolarkiewicz and Clark 1986; Smolarkiewicz and

Grabowski 1990) to provide small-scale dissipation. This is

in the spirit of the so-called implicit large-eddy simulation

(ILES; Margolin and Rider 2002; Andrejczuk et al. 2004;

Margolin et al. 2006; Grinstein et al. 2007). ILES removes

the need of selecting a suitable SGS scheme not only for the

dynamics, but for thermodynamic variables as well. There

are significant differences in SGS methodologies that can be

used for the two microphysical schemes. For the bin scheme,

the traditional approach is based on the concept of Reynolds

averaging and ensemble-averaged SGSfluxes. For theLagrangian

scheme, the approach can be based on a stochastic realiza-

tion of the SGS processes that affect the motion and growth

of Lagrangian particle (e.g., Weil et al. 2004; So ̈lch and

Ka ̈rcher 2010; Grabowski and Abade 2017; Abade et al.

2018; Hoffmann et al. 2019).1 If SGS schemes are used, the

results will be affected by those differences as well. Before

exploring those, however, it is appropriate to understand the

differences in simulations affected by numerical aspects alone.

To simulate a single cumulus cloud, we follow methodology

applied in LT05. Horizontally uniform surface temperature

and moisture fluxes are applied during the first simulation

hour and they lead to the development of the boundary layer

turbulent eddies. The surface fluxes have amplitudes of

0.1 Km s21 and 43 1025 m s21 for the temperature and water

vapor mixing ratio, respectively. In the second hour, a single

cloud in the center of the domain is forced by Gaussian-shaped

surface fluxes. The fluxes have 1.7-km half width and the

maximum values at the center of the domain 3 times larger

than the uniform fluxes during the first hour. Surface momen-

tum fluxes are prescribed assuming a constant friction velocity of

0.28m s21 as in Siebesma et al. (2003). Temperature, water va-

por, and momentum tendencies due to surface fluxes are de-

rived assuming the fluxes exponentially decrease with height

with the e-folding length of 200m. A random noise of 10%

amplitude is added to the surface fluxes to break the uniform

conditions at the simulation onset and provide small-scale

perturbations during the model run. The initial sounding pro-

vided by Prof. Lasher-Trapp comes from observation during

the Small Cumulus Microphysics Study (SCMS); see LT05.

The computational domain of 83 km3 that is covered with a

uniform 1283 grid with the grid length of 62.5m. The domain is

periodic in the horizontal with rigid lid free-slip boundary

conditions at the surface and top. The dynamicmodel time step

is 1 s with 0.25-s substepping for the two microphysics schemes

(see details in Grabowski and Jarecka 2015).

A unique feature of the current study is the piggybacking

methodology. Because moist convection is a chaotic system,

changing the microphysics scheme (or even a scheme param-

eter) typically leads to a different cloud evolution. In such a

case, a comparison between simulations is only possible

through statistical methods, for instance, comparing droplet

distributions at a selected height and featuring the same

FIG. 2. Results from four piggybacking simulations. Evolutions

of (a) the cloud-base height (dashed lines), cloud-top height (solid

lines), and cloudwater center-of-mass height (plus symbols) in four

drivers; (b) the total cloud water in the domain in drivers (solid

lines) and piggybackers (dashed lines); and (c) the mean vertical

velocity in grid volumes with driver cloud water mixing ratio larger

than 0.1 g kg21 and vertical velocity larger than 1m s21. Results are

shown up to minute 110 only.

1 These differences are similar to the representation of droplet

collision–coalescence applying the Smoluchowski equation in the

Eulerian scheme and using the probabilistic collision–coalescence

algorithm in the Lagrangian scheme; see discussion in Grabowski

et al. (2019).

NOVEMBER 2020 GRABOWSK I 3953

Unauthenticated | Downloaded 07/25/22 05:12 PM UTC



adiabatic liquid water fraction. The key idea behind piggy-

backing is to apply two sets of thermodynamic variables (the

temperature, water vapor, and all aerosol, cloud, and precipi-

tation variables) in a single simulation. One thermodynamic

set is used in the buoyancy calculation and thus it is coupled to

the dynamics. That set drives the simulated flow and it is re-

ferred to as the driver. The second thermodynamic set piggy-

backs the flow, that is, thermodynamic variables are carried by

the flow but they do not affect it. The set is referred to as the

piggybacker. Piggybacking allows comparing microphysical de-

tails independent of different flow realizations because the two

schemes operate in the same cloud-scale flow. See a recent re-

view of the piggybacking method featuring a list of its appli-

cations in Grabowski (2019). Here, we apply piggybacking to

contrast the Eulerian bin microphysics scheme and the

particle-based Lagrangian scheme in simulations of a non-

precipitating warm cumulus. The two schemes are briefly

discussed below.

b. Microphysics

TheEulerian binmicrophysics scheme is the same as applied

in shallow nonprecipitating convection simulations discussed

in Grabowski and Jarecka (2015). The scheme considers 30

equally spaced bins with the radius bin size of 0.7mm spanning

the radius range from 0 to 21mm. Activated droplets are in-

serted in the first bin. Each bin is independently advected in the

physical space using the same MPDATA scheme as applied to

the momentum, temperature, and water vapor mixing ratio.

Droplet sedimentation is not considered. All bins are com-

bined at each grid box to calculate evolution of the droplet

spectrum due to the local sub- or supersaturation applying a

custom-designed 1D advection scheme. The scheme combines

the analytic Lagrangian solution of the condensational growth

with remapping of the spectral distribution onto the original

radius grid using piecewise linear functions (see section 3.2 in

Grabowski et al. 2011).

The particle-based Lagrangian scheme follows Grabowski

et al. (2018). The specific implementation considers on average

30 Lagrangian particles (superdroplets) per cloudy grid box,

each featuring the same multiplicity (see the CCN activa-

tion below). Although arguably quite small, simulations

presented in G20 document that the number as small as

10 per grid box provides physically meaningful results. Each

activated superdroplet is placed at a random position within

FIG. 3. Example of bin microphysics results for minute 106 from one of piggybacking simulations. (left) Contours

of the cloud water mixing ratio in the central x plane of the 3D cloud. Only part of the entire computational domain

is shown. Dashed contour is for 0.1 g kg21. Solid contour interval is 1 g kg21. The two dots show locations at which

droplet spectra are shown. (right) Droplet spectra (see dots in the left panel), along with the total cloud water

mixing ratio and the mean radius.
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the grid box. Superdroplets are advected applying a model flow

field interpolated to the droplet position as inArabas et al. (2015).

The interpolation scheme maintains the incompressibility of the

flow at subgrid scales; see discussion of this aspect in section 2.4 in

Grabowski et al. (2018). As in the bin scheme, droplet sedimen-

tation is not considered. The activated CCN is assumed to have a

radius of 0.7mm with a 0.2-mm random component to mimic the

finite bin width of the Eulerian scheme.

We apply Twomey CCN activation to represent the initial

formation of cloud droplets in the two schemes. The Twomey

activation relates the concentration N of activated CCN to the

local supersaturation S (in percent) asN5 C0S
k, where C0 and

k are coefficients based on the observed characteristics of the

CCN (Twomey 1959; see also Pruppacher and Klett 1997).

Based on SCMS observations, LT05 suggests using C0 5
1114 cm23 and k5 0.77. In addition, we limit N to a maximum

value of Nmax 5 1150 cm23. In the numerical implementation,

the concentration of cloud droplets within each grid box is

calculated first in both schemes. If the concentration is smaller

than the concentration of activated CCN N resulting from the

Twomey formula applying the local supersaturation, addi-

tional droplets need to be added to the grid box up to N. This

is straightforward for the bin scheme, but requires additional

considerations for the Lagrangian scheme because of the fi-

nite number of equal-multiplicity superdroplets, 30 in the

current simulations. The new superdroplets are created in

installments of Nmax/30 ensuring the maximum number of

superdroplets within the grid box does not exceed 30. This is

the Twomey activation as described in Grabowski et al. (2018,

see section 2.3 and Fig. 1 therein). The vertical grid length

used in the simulations is too coarse to accurately predict the

concentration of cloud droplets activated at the cloud base (Clark

1974; Morrison and Grabowski 2008; Grabowski and Jarecka

2015). This is arguably of secondary importance as long as the

two schemes apply only resolved cloud-base supersaturation

and do not include an SGS scheme that can affect the cloud-

base activation in different ways between the two schemes.

Droplet growth in both schemes is calculated applying a

simplified growth formula:

dr/dt5AS/(r1 r
0
) ,

withA5 0.91523 10210m2 s21 and r05 1.86mm; see appendix

in Grabowski and Jarecka [2015; Eq. (A6) in particular] and

Eq. (4) in Grabowski et al. (2018). Incorporation of r0 in the

droplet growth equation allows including kinetic effects in a

simplified way and limits the rate when r approaches zero.

For a fair comparison, the two schemes have to apply the same

droplet growth equation and this is why the solution effect

is neglected as impossible to include in the bin scheme;

FIG. 4. As in Fig. 3, but for the superdroplet microphysics. The original data are averaged as explained in text.
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see discussion in Kogan (1991). The curvature effect is only

important for small droplets and is neglected as well. The two

schemes apply the droplet growth equation in different ways:

as a transport (advection) velocity across the bin space in the

Eulerian scheme and to calculate individual superdroplet

growth in the Lagrangian scheme.

Figure 1 illustrates the representation of the droplet size

distribution in both schemes. In the bin scheme, the distribu-

tion is simulated directly by solving the evolution equation for

the spectral density function, e.g., (4) inGrabowski et al. (2011)

or (A6) in Grabowski and Jarecka (2015). In the particle-based

Lagrangian scheme, superdroplets within each grid box can be

gathered into size bins that correspond to the Eulerian bins as

illustrated in the right panel.

c. Model simulations

Two simulation sets were completed. The first set features

four piggybacking simulations, two with superdroplets driving

and bin piggybacking, and two with bin driving and super-

droplets piggybacking. The piggybacking simulations allow

comparison of cloud characteristics in each grid volume be-

cause the two schemes operate in exactly the same cloud-scale

flow. The reason for two simulations with each scheme driving

is to assess with a better confidence if there are any systematic

differences depending on which scheme drives the simulation.

Results of piggybacking simulations are discussed in the next

section. The second set of six traditional simulations (i.e., no

piggybacking), each with a single set of thermodynamics

variables, three with bin microphysics and three with super-

droplets, applies the same spatial resolution as the first set,

but an increased bin resolution in the Eulerian scheme and

increased number of superdroplets in the Lagrangian scheme.

Unfortunately, the sensitivity simulations cannot be run in

the piggybacking mode because of the increased computa-

tional cost. Results of these simulations are discussed in

section 4. In the two sets, different cloud evolutions come

FIG. 5. Evolutions of the bin simulation results at 4-km height. (top) Themean liquid water

mixing ratio, (second) mean droplet number mixing ratio (m. r.), (third) mean droplet radius,

and (bottom) mean spectral width. Only cloudy points with the cloud water mixing ratio

larger than 0.1 g kg21 are included. Thick lines show cloud percentile ranges: red is for 10th–

90th, green is for 25th–75th, and blue is for 45th–55th. Stars show the mean values. Plus

symbols in the top panel show the adiabatic cloud water mixing ratio. The figure includes data

from two driving and two piggybacking sets. Results are shown every 2min with individual

sets shown shifted from the actual minute for clarity.
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from different sets of random numbers applied in the surface

flux formulation.

Simulation data are archived as snapshots of the fluid ve-

locity field and bulk thermodynamic variables (i.e., the tem-

peratures, water vapor and cloud water mixing ratios) every

minute. Droplet data (i.e., spectral density function for the

Eulerian scheme and the superdroplet data for the Lagrangian

scheme) are saved every 2min. These data are used in the

analysis presented below.

3. Results of piggybacking simulations

We start with a brief discussion of the entrainment and

mixing because their representation impacts simulation results

differently in the two microphysics schemes as shown below.

Entrainment refers to the process of bringing environmental

air into a cloud that eventually dilutes the cloud and reduces its

buoyancy. Entrainment is associated with large vortical struc-

tures evident in observations (e.g., Damiani et al. 2006), high-

resolution model simulations (e.g., Grabowski and Clark 1991,

1993; Brenguier and Grabowski 1993; Carpenter et al. 1998;

Moser and Lasher-Trapp 2017) and apparent in a typical

cauliflower-like appearance of a cumulus cloud. As shown in

Carpenter et al. (1998), spatial resolution applied in simulations

discussed here is sufficient to represent those structures. In a

natural cloud, the entrained air merges with the cloudy air

through the process of turbulent stirring (often referred to as

‘‘mixing’’) where the interface separating the entrained air from

the original cloudy air is stretched and folded, and the initially

separated air volumes are broken into smaller and smaller pieces

by inertial range turbulent eddies, down to the Kolmogorov

microscale (about a millimeter in typical atmospheric condi-

tions). Processes occurring across such a range of scales can only

be represented in idealized frameworks such as in Krueger et al.

(1997) and Su et al. (1998). A small range of scales involved in

the turbulent stirring can be represented in high-resolution dy-

namic cloud simulations featuring grid length of a few meters,

such as in Grabowski and Clark (1993) and Sato et al. (2018).

In numerical simulations discussed here, the turbulent stir-

ring remains unresolved. As the entrained air is brought into

the cloud, the sharp interface separating it from the cloudy air

is smoothed by the numerical diffusion of the advection

scheme. This picture applies to all fields in the Eulerian scheme

as MPDATA transports the temperature, water vapor, and

one-by-one all cloud water bins. In addition to smoothing the

cloud–clear air interface, independent advection of all bins may

result in numerical artifacts as discussed in Ovtchinnikov and

Easter (2009). For the Lagrangian scheme, the temperature and

FIG. 6. As in Fig. 5, but for the simulation with superdroplets.
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water vapor are transported by MPDATA applying the same

flow as the Eulerian scheme, whereas superdroplets are carried

by the predicted flow that is interpolated to the superdroplet

position. These differences in the transport are exacerbated by

the representation of microphysical transformations that in-

clude droplet activation, growth, or evaporation. The following

discussion includes references to these key differences.

a. Simulated cloud development

Development of the simulated cloud is illustrated in Fig. 2.

Figure 2a shows evolutions of the cloud-base and cloud-top

heights together with the height of the cloud water center of

mass derived from the four driving thermodynamic sets (two

for bins in red and two for superdroplets in blue). The cloud

base and cloud top are defined as the lowest and the highest

levels in all model columns with the cloud water mixing ratios

larger than 0.1 g kg21. Horizontally uniform surface fluxes

force development of boundary layer eddies shortly after the

simulation onset. The boundary layer deepens and first ran-

domly distributed small cumuli develop after about 40min of

the simulations. The cloud field gradually deepens, in the same

way regardless which scheme drives the simulation, until the

uniform surface fluxes are replaced by Gaussian fluxes cen-

tered in the middle of the domain at minute 60. By then, the

tallest small cumulus is over 1 km deep, and the deepest cumuli

are for simulations with superdroplets driving the flow. The

latter is arguably because of a smaller dilution and cloud water

evaporation of those poorly resolved scattered cumuli in the

Lagrangian scheme. Initial development of a single larger

cloud in the center of the domain can be identified around

minute 80. The cloud rapidly deepens by launching sequential

turrets (or thermals) as in observations and model simulations

(e.g., Carpenter et al. 1998; Damiani et al. 2006; Moser and

Lasher-Trapp 2017). These turrets rise from the main body of

the cloud and they collapse back after losing positive buoyancy

due to entrainment and buoyancy reversal resulting from cloud

water evaporation. This leads to an occasional decrease of the

cloud-top rise rate evident in Fig. 2 or even a sporadic decrease

of the cloud-top height. Turrets in some simulations reach the

domain top by 120min. This is why the evolution shown in

Fig. 2 is truncated at minute 110. The cloud base slowly rises

throughout the simulations (because of a small reduction of the

near-surface relative humidity) with small differences between

the four simulations. The center of mass rises similarly in all

simulations until about minute 100, when one of the bin sim-

ulations starts lagging behind.

Figure 2b shows the evolution of the total condensed water

mass in drivers (solid lines) and piggybackers (dashed lines)

applying the same colors as in the upper panel. The panel

shows that clouds formed with superdroplets driving (i.e., blue

lines) feature more total cloud water than when bin micro-

physics drives the simulation; this is shown by the difference

between blue and red solid lines. Moreover, regardless which

scheme drives the simulation, the superdroplets have more

condensed water as shown by the difference between solid and

dashed lines. These arguably come from differences in repre-

sentation of cloud water advection in the two schemes, its

impact on entrainment and mixing as discussed above, and

possibly on the cloud buoyancy. However, the impact on the

buoyancy and thus on the cloud dynamics seems relatively small

because the mean cloudy updraft shown in Fig. 2c is practically

the same until about minute 100 when one of the bin simulations

starts lagging behind. This suggests that the differences in the

total condensate shown in themiddle panel are not related to the

differences in the cloud dynamics (e.g., stronger updrafts when

superdroplets are driving the flow), but come from more cloud

water evaporation simulated by the bin scheme.

In relation to the above discussion, it should be stressed that

these differences between the two microphysics modeling ap-

proaches come from the representation of physical processes,

and not from the lack of water conservation in the two

schemes. In particular, representation of transport and mi-

crophysical transformations in the two microphysical schemes

conserve the volume integral of the total water (i.e., the sum of

water vapor and cloud water) inside the computational do-

main. The total water increases slightly during the simulations

because of the surface latent heat flux. However, the cloud

water, affected by condensation and evaporation, differs sig-

nificantly between the Eulerian and Lagrangian schemes as

documented in Fig. 2b.

b. Illustration of cloud simulation results

Figures 3 and 4 show distributions of the cloud water mixing

ratio within a y–z plane cutting across the middle of the 3D

cloud at minute 106 together with the droplet spectra at two

selected locations. The figures show results from a randomly

selected piggybacking simulation for the Eulerian (Fig. 3) and

Lagrangian (Fig. 4) schemes. In the specific simulation se-

lected, the Lagrangian microphysics drives the flow and

Eulerian microphysics piggybacks. As expected, the cloud

water distributions are similar between the two figures, with a

close to adiabatic central part of the cloud below 2.5 km height

and a complicated pattern resulting from entrainment aloft.

Because of the small number of superdroplets per grid box,

the Lagrangian results shown in Fig. 4 were smoothed by cal-

culating the droplet distribution and cloud water mixing ratio

using 8 neighboring grid boxes (i.e., i and i1 1 in the x direction,

j and j 1 1 in the y direction, k and k 1 1 in the vertical). This

reduces the noise resulting from statistical fluctuations of the

superdroplet number per grid box. However, the Lagrangian

results still feature more small-scale fluctuations than the

Eulerian scheme. As discussed above, the physical space ad-

vection in the bin scheme provides a significant smoothing of

the cloud water field. Smoothing bin results in the same way as

superdroplet results in Fig. 4 leads to hardly noticeable dif-

ferences between Fig. 3 and its smoothed version (not shown).

Figures 3 and 4 also show droplet spectra at two locations

near the center of the cloud, one at the height of 2 km (i.e., near

the cloud bottom) and the second one at the height of 4.75 km

in the upper part of the cloud. The spectra near the bottom

feature almost exactly the same cloud water mixing ratio

(around 1.95 g kg21, not far from the adiabatic value), and the

mean radius is similar in both, around 7.5mm.However, the bin

spectrum is wider than the one derived from the Lagrangian

scheme. This has been argued inMorrison et al. (2018) to result

from the combination of the vertical advection of droplet bins
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in a stratified environment and advection in the radius space

that represents diffusional growth of cloud droplets; see also

Fig. 3 in Grabowski et al. (2019). The spectra in the upper part

of the cloud are also similar and feature a peak around 14mm

and droplets of smaller sizes to the left. Small cloud droplets

may come from either evaporation of cloud water due to en-

trainment or from fresh activation of entrained CCN (see

Brenguier and Grabowski 1993). In general, the multimodal

droplet spectra in diluted cloudy volumes agree with numer-

ous cumulus observations starting with Warner (1969). The

cloud water is significantly below the adiabatic value (around

8 g kg21 at this height) for both schemes and about 20%

smaller for the bin scheme. The former is consistent with cloud

dilution aloft and the latter agrees with more dilution simu-

lated by the bin scheme as shown in Fig. 2b. The reduced cloud

water in the bin scheme results in the smaller mean radius

(11 vs 12mm) as shown in the figures. The bin spectrum is

smoother and reaches larger droplet sizes than the one derived

from the Lagrangian scheme.

c. Statistical comparison between the two schemes

To illustrate results from all piggybacking simulations,

Figs. 5 and 6 show evolutions of the cloud water and droplet

number mixing ratios together with the mean droplet radius

and spectral width for bin and superdroplet simulations, re-

spectively. The two figures show results at the height of 4 km,

that is, in the upper half of the cloud depth. Both drivers and

piggybackers are used in the figures which explains why four

datasets are used in both figures. Comparing the two figures

shows that the mean quantities (shown by stars in the figures)

evolve similarly in the two schemes, with small differences

between individual realizations. Notable differences include

the spectral width, significantly larger in the bin scheme,

slightly smaller cloudwatermixing ratios for the bin scheme (in

agreement with Figs. 2–4), and larger percentile ranges for the

superdroplets, especially for the spectral width. Of notice are

also larger number mixing ratios in the Lagrangian scheme.

This is because of the upward adjustment of the droplet con-

centration in the Lagrangian scheme that was explained in G20

as follows: If a grid box features a smaller number of super-

droplets because of a statistical fluctuation, additional super-

droplets can be created to increase the droplet concentration

toward the activation limit. At the same time, a grid box with a

larger number of superdroplets (even above the activation

limit) remains unchanged. As a result, Twomey activation al-

ways adjusts upward the number of superdroplets and this leads

FIG. 7. Cloud water mixing ratio statistics vs height for a simulated cumulus at minute 106. Only cloudy points

with the cloud water mixing ratio larger than 0.1 g kg21 for both schemes are included. Every fourth model level is

shown including levels where there are at least 20 data points. Thick horizontal lines show cloud water distribution

percentile ranges at a given height. Red is for 10th–90th, green is for 25th–75th, and blue is for 45th–55th. Asterisks

show the mean values at each height. Results are from (left) the superdroplet microphysics and (right) the bin

microphysics. The dashed line at 5 g kg21 mixing ratio is added to allow a better comparison between superdroplet

and bin results. Plus symbols show the adiabatic cloud water mixing ratios.
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to a higher on average droplet concentration when compared to

the bin microphysics.2 The top two panels in both figures show a

small decrease of themixing ratios in time thatmay come from the

simulated clouds progressing through their life cycle.

Figures 7–10 show statistics of cloud parameters as a func-

tion of height for the two schemes at minute 106 of the pig-

gybacking simulation used in Figs. 3 and 4. Figure 7 shows the

cloud water mixing ratio statistics. Both schemes show a large

scatter of the mixing ratio in agreement with aircraft obser-

vations (e.g., Warner 1955; Blyth and Latham 1985; Burnet and

Brenguier 2007; Gerber et al. 2008). Themean values at a given

height are slightly smaller in the bin scheme. But there are also

clear differences. First, in agreement with Figs. 3–6, the vari-

ability of the mixing ratio is larger for the superdroplets,

especially in the upper half of the cloud depth. This is be-

cause of statistical fluctuations due to a relatively small

number of superdroplets per grid box used in the simula-

tions. Second, the 90th percentiles above 3 km in the bin

scheme reach only values significantly smaller than the

adiabatic value, and the 10th percentiles are smaller in

the Lagrangian scheme. These differences likely come from

the contrast in the representations of droplet transport and

evaporation resulting from the small-scale homogenization

as discussed above. Statistical fluctuations of the super-

droplet number per grid box in the Lagrangian scheme al-

low 90th-percentile-reaching adiabatic values. This problem is

reduced when a larger number of superdroplets is used as il-

lustrated in section 4.

Droplet number mixing ratio statistics are compared in

Fig. 8. As in the cloud water case, the number mixing ratio

variability is larger for the superdroplets (cf. Figs. 5 and 6). The

mean values increase with height in the upper part of the cloud

depth. This is likely because of the in-cloud CCN activation

in the upper parts of the cloud that feature higher vertical ve-

locities (not shown). Larger mean number mixing ratios in the

Lagrangian scheme are because of the upward adjustment of

the droplet concentration in the superdroplet activation. The

problem becomes less significant when the number of super-

droplets is increased. For the bin microphysics, advecting each

bin separately in the physical space can also lead to some un-

physical behavior of the total droplet concentration (see

Ovtchinnikov and Easter 2009).

Figure 9 shows similar statistics for the mean droplet radius.

The average mean radii are similar between the two schemes

below 4 km, with the range between 6 and 9mm. This range

is similar to the observations of shallow warm cumuli over

Montana; see Fig. 9 in Jensen et al. (1985). Above 4 km, the

average mean radius is larger and the 90th percentile is sig-

nificantly larger in the Lagrangian scheme. The reason is

FIG. 8. As in Fig. 7, but for the droplet number mixing ratio. The dashed line at 700mg21 is added to allow a

better comparison between superdroplet and bin results.

2 Note that the same problem exists with traditional super-

droplets, that is, when superdroplets represent unactivated CCN

and activated cloud droplets as in Shima et al. (2009). This is be-

cause droplet concentration can only increase according to the

superdroplet multiplicity.
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likely a combination of the numerical diffusion in the bin

scheme (that leads to smaller cloud water mixing ratios in the

upper part of the cloud, cf. Figs. 4–6) and the impact of the

‘‘eddy hopping’’ mechanism as argued in Grabowski and

Abade (2017) and Abade et al. (2018); see discussion in LT05

(Fig. 6 in particular) and in Grabowski and Wang (2013).

Eddy hopping refers to a mechanism in which individual

droplets follow different trajectories in a turbulent flow and

experience different growth histories (Cooper 1989). One can

argue that the eddy hopping by the resolved flow can

be simulated in both Lagrangian and Eulerian schemes.

However, differences of the droplet transport and of the

representation of droplet growth/evaporation makes such

an argument questionable. The increasing-with-height 10th–

90th-percentile range is similar between the two schemes.

Statistics of the spectral width are shown in Fig. 10. The

simulated width shows the largest difference between the

two schemes. The width decreases within the first few hundred

meters above the cloud base in both schemes. This is expected

within the adiabatic or nearly adiabatic cloud volumes because

droplet size distribution narrows when the volume rises

away from the cloud base. However, spectral widths in the

Lagrangian scheme are about half of that for the Eulerian

scheme. This should not be surprising as the spectral bin res-

olution has the largest impact on the predicted spectral width

when droplets are small. However, the bin mean spectral

widths are significantly larger than for the Lagrangian scheme

across the entire cloud depth. This agrees with the argument

presented in Morrison et al. (2018) that bin advection in the

stratified atmosphere combined with advection in the bin

space typically results in artificial spectral broadening. The

10th–90th-percentile range is much larger for the Lagrangian

scheme. This may come from a relatively small number of su-

perdroplets in current simulations, but this conclusion holds

when more superdroplets are used (see section 4). For the

Lagrangian scheme, specific values of the spectral width, be-

tween 1 and 3mm throughout most of the cloud depth, is

consistent with the spectral width observed in Montana shal-

low cumuli (Fig. 10 in Jensen et al. 1985). The range of mean

radii (5–10mm) and corresponding spectral widths (1–4mm)

across the cloud depth in Figs. 9 and 10 for the Lagrangian

scheme is in a better agreement with observations of monsoon

convection over Indian subcontinent reported in Prabha et al.

(2012, see Fig. 6 therein). LT05 show examples of the simulated

droplet spectra at 4.2-km height (see Figs. 14 and 15 and

Table 1 therein) with the radius spectral width between 2.0 and

3.5mm and the mean droplet radius between 6 and 9mm. Such

spectral widths also agree better with the Lagrangian scheme

results.

d. Comparison facilitated by piggybacking

As an introduction, Fig. 11 compares point-by-point bulk

thermodynamic variables, the temperature, water vapor and

cloud water mixing ratios, and the resulting buoyancy in cloudy

FIG. 9. As in Figs. 7 and 8, but for the dropletmean radius. The dashed line at 10-mm radius is added to allow a better

comparison between superdroplet and bin results.
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grid boxes at minute 106 of the same simulations as in the

previous figures. Blue, red, and green symbol colors show

the height the data come from. The buoyancy is defined by the

deviation of the density potential temperature from that of the

environment [see 4a in Grabowski and Smolarkiewicz (2002)

and accompanying discussion; the density potential tempera-

ture ud is defined as ud 5 u(1 1 «qy 2 qc) where u is the po-

tential temperature, qy is the water vapor mixing ratio, qc is the

cloud water mixing ratio, and « 5 Ry/Rd 2 1; Ry and Rd are

the gas constants for water vapor and dry air, respectively]. The

comparison in Fig. 11 is only possible through piggybacking

because each grid box has two sets of thermodynamic variables

and each symbol in the figure compares point-by-point vari-

ables from the two sets. The figure shows that the temperature

and water vapor mixing ratio are close in both sets with a few

exceptions. This is expected because the two variables come

from solving exactly the same equations with the only differ-

ence being the condensation/evaporation term. In contrast, the

cloud water mixing ratio can differ significantly, especially

away from the cloud base (red and green colors). Point-by-

point fluctuations of the cloud water is a combination of nu-

merical diffusion for the bin scheme and statistical fluctuations

of the superdroplet number in a grid box for the particle-based

scheme. Because condensation of 1 g kg21 of water vapor in-

creases the temperature by about 2K, small spread of the

temperature and water vapor implies that the differences in the

cloud water mixing ratio are not systematic (i.e., long lasting)

because then the temperature and water vapor spread would

be larger. There seems to be more points below the one-to-one

line for cloud water larger than 2 g kg21. This shows that the

Lagrangian microphysics feature higher cloud water mixing

ratios away from the cloud base, in agreement with results

shown previously. The differences in the cloud water lead to a

scatter in the buoyancy above 2.5 km as show by the red and

green colors. There seem to bemore data points below the one-

to-one line which suggests that the Lagrangian microphysics

feature slightly more cloud buoyancy. Figures for different

simulations and at different times look similar to Fig. 11

(not shown).

The format of Fig. 11 is used to compare point-by-point

microphysical characteristics simulated by the two micro-

physical schemes in Fig. 12. As in Fig. 11, the figure applies

blue, red, and green colors to show the height data come

from. The upper panel compares point-by-point droplet

number mixing ratio statistics. As for the cloud water, there

is a significant scatter. In the Lagrangian scheme, the small

number of superdroplets per grid box together with the way

Twomey activation is implemented leads to the apparent

pattern where droplet number mixing ratio can only change

in a discontinuous way. In contrast, the bin scheme does not

have such a limitation, although numerical issues (e.g.,

Ovtchinnikov and Easter 2009) likely contribute to the

scatter as well. The blue color shows that number mixing

ratios are typically larger for the Lagrangian microphysics

FIG. 10. As in Figs. 7–9, but for the spectral width. The dashed line at 3-mm width is added to allow a better

comparison between superdroplet and bin results.
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below 2.5 km, and the opposite is true for cloudy volumes

above 4 km (the green points), that is, in more diluted upper

parts of the cloud.

The mean radii predicted by the two schemes are compared

in Fig. 12b. Except for some outliers, the mean radii are rela-

tively close between the two schemes below 2.5 km (blue

color). The comparison deteriorates at higher levels, with

red symbols scattered approximately symmetric around the

one-to-one line, and green symbols (data points above 4 km)

typically located below the one-to-one line. The systematic

differences at the large mean radius end, that is, in weakly

diluted regions near the cloud top, come from the under-

prediction of the cloud water mixing ratio in the bin scheme as

discussed before.

Finally, Fig. 12c shows the comparison of the spectral width.

Most of the points are located above the one-to-one line im-

plying that the spectral width in the bin scheme is typically

larger, and often significantly larger, than in the superdroplet

scheme. This is true throughout the cloud depth as illustrated

by the symbol colors. The systematic difference between the

Lagrangian and Eulerian spectral width is consistent with re-

sults already shown in Figs. 5, 6, and 10, and with the impact

of numerical problems in the bin scheme as discussed in

Ovtchinnikov and Easter (2009) and Morrison et al. (2018).

The cluster of blue points with a small spectral width in the

lower left corner and away from the one-to-one line comes

from volumes not far from the cloud base where droplets are

small and the bin resolution in the Eulerian scheme is never

FIG. 11. Point-by-point comparison ofmodel fields at all cloudy points at minute 106 from the same simulations as

Figs. 3–8. (top left) Potential temperature, (top right) water vapor mixing ratio, (bottom left) cloud water mixing

ratio, and (bottom right) buoyancy. Superdroplet and bin variables are shown on the horizontal and vertical axes,

respectively. Only 5% of all data points is shown for clarity. The dashed line along the diagonal shows the perfect

agreement between the two schemes. In the bottom-right panel, additional two lines show deviations of 0.02m s22

from the diagonal. Blue, red, and green symbols are for grid volume below 2.5 km, between 2.5 and 4.0 km, and

above 4.0 km, respectively, as shown in the top-right panel.
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sufficient. There are also some points where the spectral width

is lager in the Lagrangian scheme, that is, those below the

one-to-one line. These arguably come from the broadening of

the droplet spectrum resulting from individual droplets fol-

lowing different trajectories and experiencing different growth

histories (i.e., the eddy hopping mechanism; Cooper 1989;

LT05; Grabowski and Abade 2017; Abade et al. 2018).

4. Sensitivity simulations

Six sensitivity simulations without piggybacking, three ap-

plying Eulerian microphysics and three with the Lagrangian

scheme, have been completed. For the Eulerian microphysics,

FIG. 13. As in Fig. 2, but for BIN60 (red) and SDS240 (blue)

simulations.

FIG. 12. As in Fig. 11, but for (a) number mixing ratio, (b) mean

radius, and (c) spectral width. Blue, red, and green symbols are for

grid volume below 2.5 km, between 2.5 and 4.0 km, and above

4.0 km, respectively, as shown in (b).
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the number of bins is increased from 30 to 60, and the bin size is

reduced from 0.7 to 0.35mm. These simulations are referred to

as BIN60. For the Lagrangian microphysics, the number of

superdroplets per grid box is increased from 30 to 240 implying

that superdroplets are activated in installments of Nmax/240

(see section 2b). These simulations are referred to as

SDS240.

Overall, cloud evolution in the six simulations are similar to

the piggybacking simulations. This is illustrated in Fig. 13 in a

similar format as Fig. 2. The scatter between evolutions of

the cloud top and center of mass in Fig. 13 is larger than in

Fig. 2, with Lagrangian microphysics showing typically the

highest cloud top and the highest center of mass among all

realizations. The total cloud water evolutions are also similar

to those in Fig. 2, although the difference between Eulerian

and Lagrangian microphysics seems larger despite the scatter.

One can argue that increasing the number of superdroplets

should improve the Lagrangian simulation because the am-

plitude of statistical fluctuations is reduced. On the other hand,

increasing the number of bins in the Eulerian scheme can ei-

ther improve or degrade the simulation. The improvement can

come from a better resolution in the bin space and thus re-

ducing the impact of the numerical diffusion when represent-

ing condensation/evaporation (e.g., Grabowski et al. 2011).

However, the bin width is already small with 30 bins in the

piggybacking simulations, especially when comparing to a few

dozen bins applied in simulations of precipitating clouds (e.g.,

Table 3 in Khain et al. 2015). Those bin schemes typically have

less than a dozen bins in the range considered here. On the

other hand, increasing the number of bins imply that more

bins need to be advected in the physical space and thus in-

creasing the potential for numerical problems as discussed in

FIG. 14. Evolutions of BIN60 and SDS240 set results at 4-km height sampled and presented

as in Figs. 5 and 6. The panels show the mean liquid water mixing ratio andmean spectral width

only. Only cloudy points with the cloud water mixing ratio larger than 0.1 g kg21 are included.

Thick lines show cloud percentile ranges: red is for 10th–90th, green is for 25th–75th, and blue is

for 45th–55th. Asterisks show the mean values at each height and plus symbols show the adi-

abatic cloud water. Results are shown every 2min with individual sets shown shifted from the

actual minute for clarity.
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Ovtchinnikov and Easter (2009) and Morrison et al. (2018).

The mean vertical velocity in the bottom panel also shows

more fluctuations when compared to Fig. 2 and does not

seem to unambiguously explain clear differences in the total

cloud water.

Figure 14 shows evolutions of the cloud water mixing ratio

and spectral width statistics at 4 km for all BIN60 and SDS240

simulations in the same format as Figs. 5 and 6. Comparing the

BIN60 results with Fig. 5 shows a small impact of the increased

number of bins on the evolutions of the cloud water and

spectral width. For the Lagrangian scheme (i.e., SDS240 and

Fig. 6), there are larger differences. The 90th percentile for the

cloud water between minutes 100 and 110 are further away

from the adiabatic values. The 10th–90th-percentile range for

the spectral width is reduced (especially for the last 10min of

the simulations), and the mean spectral width is slightly in-

creased in SDS240 when compared to Fig. 6. As in piggy-

backing simulations, the mean cloud water mixing ratio is

lower in BIN60 than in SDS240, especially between minutes

100 and 110.

As in the piggybacking case, we randomly selected two

simulations, one with the Eulerian and one with the

Lagrangian microphysics. For the two simulations, we decided

to use minute 108, with clouds reaching slightly higher than in

the piggybacking simulations at minute 106 shown in previous

figures. BIN60 and SDS240 can be compared as in Figs. 7–10

keeping in mind that comparison is for two different cloud

simulations. The results are presented in Fig. 15 for BIN60 and

Fig. 16 for SDS240.

Comparing Fig. 15with the corresponding panels of Figs. 7–10

documents the impact of the number of bins in the Eulerian

scheme. The percentile ranges for the droplet number mixing

ratio are larger than in the original piggybacking simulations,

with the increase mostly at the low percentile range and in the

upper part of the cloud. This is also true in the two other bin

simulations and for different times in the simulation selected

FIG. 15. As in Figs. 7–10, but for BIN60 simulation at minute 108.

3966 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 77

Unauthenticated | Downloaded 07/25/22 05:12 PM UTC



for the Fig. 15 (not shown). Another difference, also true for

other simulations, is a more rapid increase of the spectral width

above the cloud base. The width reaches 3 microns around

3 km in Fig. 10, and about 0.5 km lower in Fig. 15. Arguably,

this comes from the necessity to transport more bins in the

physical space (60 in BIN60 versus 30 in the piggybacking

simulations) as discussed above.

Comparing the panels in Fig. 16 with the left panels of

Figs. 7–10 documents that fourfold increase of the number of

superdroplets has a relatively minor impact. The 90th per-

centile of the cloud water mixing ratio no longer exceeds the

adiabatic value, droplet number mixing ratio and its percentile

variability are practically unchanged, so is the mean radius.

The mean spectral width does not change either, although the

10th–90th-percentile range is reduced. This suggests that in-

creasing the mean number of superdroplets per grid volume

beyond 30 in the nonprecipitating case provides only small

changes to the results.

5. Discussion and conclusions

FollowingG20, this manuscript reportsmodeling results that

compare Eulerian bin microphysics and Lagrangian particle-

based microphysics in simulations of a warm nonprecipitating

cumulus. The Eulerian bin microphysics is a traditional ap-

proach to simulate droplet spectra applying the spectral den-

sity function. The Lagrangian particle-based microphysics is a

novel methodology that gains popularity because of its benefits

when compared to the bin microphysics (see discussion in

Grabowski et al. 2019). We apply a simulation setup of LT05

that leads to a development of a single cumulus congestus

in the center of the computational domain. LT05 applied

a cumbersome methodology of combining bulk microphys-

ics cloud simulation with Lagrangian trajectories to predict

droplet spectra at selected locations inside a simulated cloud

and to demonstrate the impact of different droplet ensemble

trajectories through a turbulent cloud on the droplet spectra

FIG. 16. As in Fig. 15, but for SDS240 simulation at minute 108.
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as suggested by Cooper (1989). The Lagrangian methodol-

ogy automatically provides similar outcome as pointed out in

Grabowski et al. (2019, see Fig. 5 therein and its discussion).

The simulations presented here apply implicit large-eddy

simulation methodology and purposely excluded represen-

tation of subgrid-scale processes. This is because those pro-

cesses cannot be represented in the same way in Eulerian

and Lagrangian approaches. Grabowski and Abade (2017)

argued that the Lagrangian particle-based microphysics

constitutes a simulation methodology for which a physically

consistent subgrid-scale scheme can be designed; see also

Hoffmann et al. (2019). Development of such a multiscale

scheme is difficult, maybe even impossible, for the Eulerian

bin microphysics. To allow a point-by-point comparison

between the two schemes, the piggybacking technique is

applied with the two schemes operating side-by-side in a

single simulation. One scheme is used to calculate buoyancy

and thus it drives the simulated flow, and the second scheme

piggybacks the predicted flow without affecting it. A small

ensemble of simulations is completed, with two simulations

driven by the bin microphysics and two by the particle-based

microphysics. Clouds in four simulations develop similarly,

but there are obvious differences (such as cloud appearance

at a particular time) that supports the need for the piggy-

backing approach.

There are two key differences between the Eulerian and

Lagrangian simulation results. First, Eulerian simulations

feature reduced cloud water mixing ratio in diluted upper parts

of a simulated cloud. As a result, the total cloud water mass

differs significantly at the end of the simulations.We argue that

this comes from the difference in the representation of the

droplet physical space transport in the two schemes and how it

affects the simulation of mixing resulting from entrainment of

subsaturated environmental air. One can argue that the total

cloud water difference may also come from a dynamical im-

pact, for instance, presence of stronger updrafts resulting from

buoyancy differences that can lead to more condensation and

thus more cloud water. However, the mean cloud updraft ve-

locities are similar in all simulations and thus do not support

such a conjecture. In essence, the difference in the total cloud

water seems to come from the thermodynamics (e.g., cloud

water evaporation) and not from the dynamics.

Second, bin microphysics simulates significantly larger

spectral widths than those simulated by the Lagrangian mi-

crophysics. Applying piggybacking methodology demonstrates

this in an unequivocal way; see Fig. 12. The simulated spectral

width is the most significant microphysical difference between

the two cloud simulation methodologies. The fact that the

cloud chamber simulations in G20 did not reveal this problem

implies that the culprit is in the coupling between the vertical

advection in the stratified environment (that provides the su-

persaturation source) and the droplet growth as suggested in

Morrison et al. (2018); see also Fig. 3 inGrabowski et al. (2019).

Increasing the number of bins in the sensitivity simulations

provides no improvement. This is perhaps because of com-

pensating effects of the increase of the number of bins that

need to be advected in the physical space (that increases the

potential for numerical artifacts) and the reduction of the bin

size that improves accuracy of the spectral change calculation.

Overprediction of the spectral width in the bin scheme has

likely implications for the modeling of rain formation, an as-

pect that needs to be investigate in the future.

G20 mention that the computational cost of the bin and

superdroplet cloud chamber simulations are comparable, with

the 40-per-gridbox superdroplet simulations requiring about

25% more computational time than 40-bin Eulerian simulations.

The difference is significantly larger in simulations discussed here.

For instance, test simulations with 1513 grid and 30 superdroplets

per grid box required about 3 times less computational time

than similar bin simulation with 30 bins. The SDS240 simula-

tion required over 5 times less computational time when

compared to BIN60. The key difference with G20 is the ratio

between the volume of the cloud and the computational domain

volume, the cloud volume fraction. The fraction was close to one

in G20 (because the cloud fills almost entire chamber) and is

typically below 10% here. For Lagrangian microphysics, the

cloud volume fractionmatters because superdroplets exist only

inside the cloud when Twomey activation is used (Grabowski

et al. 2018). In contrast, the cloud volume fraction does not

matter for the bin microphysics because computational effort

of each bin advection in the physical space is independent of

the cloud fraction. However, as pointed out in Grabowski et al.

(2018), such argument may not apply to parallel calculations

because load imbalances need to be considered.

The simulations presented in this paper should be consider

as a pilot investigation. As a next step, one should systemati-

cally explore the role of the spatial resolution in the physical

space in connection to the bin resolution for the Eulerian

scheme and the number of superdroplets in the Lagrangian

scheme. Some of such studies already exist in the literature, for

instance, those considering the number of superdroplets (e.g.,

Arabas and Shima 2013; Grabowski et al. 2018; Hoffmann et al.

2019; G20) or the spatial resolution for simulations of shallow

convection (e.g., Stevens et al. 2002; Matheou et al. 2011; Sato

et al. 2018). For the bin microphysics, higher spatial resolution

seems to provide less spectral spreading as suggested in

Morrison et al. (2018). However, the impact of all those factors

combined in piggybacking simulations with the two schemes is

unclear and should be investigated in follow-up studies in-

cluding droplet collisions. We hope to report on some of such

studies in the future.
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