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1 Introduction and summary

1.1 Motivation

The Sachdev-Ye-Kitaev (SYK) model [1–5] is a strongly interacting but yet solvable model
in the large N limit. At low energies, it displays an approximate conformal symmetry. In
this region, the model has many features in common with nearly AdS2 gravity, or Jackiw-
Teitelboim (JT) gravity [6–8], coupled to matter fields. This is a simple two dimensional
theory of gravity which describes some aspects of nearly extremal black holes in various
dimensions.

An interesting variant is to consider a pair of identical SYK models coupled through a
simple bilinear interaction [9], see also [10–12]. The ground state of this model has a gap,
but its excitation spectrum also displays an approximate conformal symmetry. Further-
more, this ground state is close to the thermofield double state of two decoupled models.
For reasons we explain below, we call the ground state of this coupled model “the SYK
wormhole”.

A conceptually similar state also arises when one considers two nearly extremal black
holes that are relatively close, so that they are coupled. In this case, a traversable wormhole
can connect the near extremal throats [13]. This can be effectively modeled by a nearly
AdS2 gravity theory where we have direct interactions between the values of the bulk
fields near the two boundaries [9, 14]. In other words, thinking of the Penrose diagram
of AdS2 as a strip, we put boundary conditions for the bulk fields that connect the two
boundaries. The two boundaries are causally connected through the bulk, so that this
spacetime describes a wormhole. This wormhole is the lowest energy configuration of the
system and it also displays the approximate SL(2, R) isometries of nearly AdS2.

Given that this is a remarkable state, we are interested in knowing whether it is easy
to get to it. In other words, if we start out from a general excited state of the coupled
model, can we easily get to the ground state by cooling the system down? Or will the
system get stuck in some other state? At first sight the answer seems straightforward, if
it is the ground state, the system will surely find it if it can shed its excess energy to the
bath. On the other hand, from the gravity perspective, the process involves a topology
change. Such topology change might happen via a tunneling solution, but it would be
exponentially suppressed in N (or the entropy of each separate black hole).

1.2 Wormhole formation in SYK

With this motivation in mind, we study this problem for the two coupled SYK models. We
start with a relatively high temperature state of the coupled model which looks like two
thermal density matrices, one for each SYK factor. Then we couple the system to a bath
and study the evolution in real time by solving the large N Schwinger-Dyson equations.
We find that the system indeed finds the “SYK wormhole” ground state in a time that
is independent of N . In particular, there is no exponential suppression. Notice that the
ability to efficiently find this ground state also makes it possible to prepare the thermofield
double (TFD) state of the decoupled model, by simply switching off the interaction between
the two sides [9], after we have found the ground state.
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The approach we used is the following. The large N Schwinger-Dyson equations form
a closed system for the two-point function [1–5]. In the out-of-equilibrium situation that
we are considering, these equations are commonly referred to as the Kadanoff-Baym (KB)
equations. We couple the system of two interacting SYK models to a large bath and find
the real time dynamics using KB equations. The problem of coupling SYK to a bath was
recently studied in [15] and we borrow some results from there. Also, the KB equations
for a single SYK was recently studied numerically in [16, 17]. Here we study this problem
solving the dynamical equations at q = 4. The problem has many time scales and due
to numerical limitations we could not separate them all by large amounts. However, our
numerical results seem to confirm the picture where the system follows the microcanonical
equilibrium curve. We now briefly review this equilibrium thermodynamics.

1.3 Equilibrium thermodynamics

In the canonical ensemble the system has two phases: the low temperature one correspond-
ing to the ground state, the SYK wormhole, and its excitations; and a higher temperature
phase which is closer to two separate thermal SYK systems. The two phases are separated
by a first order phase transition. In the large q limit, the black hole phase and the worm-
hole phase are smoothly connected by a canonically unstable phase with negative specific
heat [9]. However, in the microcanonical ensemble, we expect that the system smoothly
interpolates between these two phases. In other words, in the microcanonical ensemble we
expect no phase transition as we lower the energy.

Figure 1 shows energy vs inverse temperature β for q = 4. We use energy instead of
free energy or entropy because we will be dealing mostly with Lorentzian non-equilibrium
correlators numerically and it is easier to find the temperature and the energy from them.
There are three different regions. At high temperatures T > T2BH we have the phase we
name the “two black holes phase”. At low temperatures T < TWH we have the phase we call
“cold wormhole” phase, which can be viewed as a wormhole with few thermal excitations.
The two phases overlap, since T2BH < TWH. In the intermediate temperatures regime
T2BH < T < TWH we also expect a canonically unstable, but microcanonically stable,
phase that we call “the hot wormhole phase”. As we mentioned above, this phase can be
found analytically in the large q limit. It has positive entropy but negative specific heat.
However, at finite q we do not know much about this phase, since we have been unable to
find it by solving the Euclidean Schwinger-Dyson equations. We interpret this failure as
resulting from its canonical instability. This is why we put a question mark in figure 1.
We will find evidence for this phase through the real time evolution, since we will find that
the temperature goes up as the energy monotonically goes down. There is also analytic
evidence from a low energy analysis, as we will review later. The names “hot” or “cold”
wormhole refer to how these would feel to an observer who is inside the wormhole, at its
center, in a gravity picture for these configurations. As is clear from figure 1, there are
outside temperatures where we can have both a “cold” and “hot” wormhole. When we talk
about temperatures in this paper, we are always referring to the physical temperature as
seen from the outside.
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Figure 1. Dots: energy vs beta obtained by numerically solving SD equations for two coupled SYK
models with J = 0.5, µ = 0.0053. Blue dots correspond to the “two black holes phase”, whereas
green dots correspond to the “cold wormhole phase”. Red dashed line: curve for the “hot wormhole”
phase expected from a low energy analytic analysis. The question mark “?” reminds us that we
were not able to find it as a solution of the Euclidean SD equations.

Figure 1 also displays the critical temperature, Tc, when two stable phases switch
dominance in the canonical ensemble. For T2BH < T < Tc two black hole phase is ther-
modynamically metastable but is not a global minimum for the free energy. Similarly for
Tc < T < TWH and the cold wormhole phase. For our problem the microcanonical ensem-
ble is more relevant. Notice that the different “phases” are continuously connected in the
microcanonical ensemble, so they are not really sharply separated phases.

For small values of µ, the coupling between the two SYK models, we can make different
analytic approximations for the different parts of the curve. For the two black hole region
we can start with two separate thermal SYK models and use perturbation theory in µ. In
this regime, the left-right correlator GLR is small and of order µ. The gravity picture is
that we have two separate hyperbolic disks with a boundary perturbation that connects
the bulk fields on the two disks. We find that T2BH is in the region where this perturbation
theory breaks down. For low temperatures the left-right correlator is of order one. We can
access this regime by assuming that the system is close to the thermofield double state.
The relevant part of the dynamics is captured by the Schwarzian mode. This aspect of
the dynamics is the same for the SYK model and the nearly-AdS2 gravity theory [18–20].
This describes both the cold wormhole and hot wormhole phases. In particular, we can
see the existence of the hot wormhole phase in this approximation [9]. In particular, the
temperature TWH can be found within this approximation. We review this description in
section 2.3.
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1.4 Gravity picture

One of our motivations was to understand whether a similar wormhole formation process
occurs in more general theories of nearly-AdS2 gravity with matter.

With this goal in mind we will present a gravity picture for the transition we have in the
SYK model. We do not know the precise gravity dual of the SYK model. But we consider a
nearly-AdS2 gravity theory that has some of the same features. For questions that mainly
involve the Schwarzian mode, the SYK and nearly-AdS2 answers match precisely [18–20].
However, wormhole formation goes slightly beyond this approximation, and we need to
incorporate one important feature that is related to the origin of the ground state entropy,
or “zero temperature” entropy, S0, of the SYK model. If we start from a phase consisting
of two thermal states, then the entropy will have a large contribution of size 2S0 (plus
thermal corrections). As the wormhole forms, the system should be able to shed this large
entropy into the bath. In gravity this involves topology change, which would naively be
exponentially suppressed. On the other hand, as we discussed above, this happens without
any such suppression in SYK.

We can reproduce this from a gravity picture as follows. First we view the two cou-
pled systems as a nearly-AdS2 gravity theory with N bulk fermion fields with Neumann
boundary conditions. The two black hole phase consists of two hyperbolic disks with an
interaction between the boundary values of the bulk fields. As we lower the temperature,
this interaction effectively becomes strong and the theory flows to a new IR fixed point.
The new fixed point is simply a theory with different boundary conditions, namely Dirichlet
boundary conditions. This change in boundary conditions is similar to the one discussed
in [21]. The two disks decouple again but the boundary conditions are effectively changed
from Neumann to Dirichlet. Now we use the observation in [22], that eS0 is equal to the
ratio of the Neumann vs Dirichlet disk partition functions for N fermions. This means
that the effective theory in the IR, with Dirichlet boundary condition has now Seff

0 = 0.
This means that topology change “costs us nothing”, and we can easily transition into the
wormhole phase. In fact, by a similar argument we can say that the end of the hot worm-
hole phase also corresponds to the region where the interactions between the two sides of
the global AdS2 strip produce a flow that change the boundary conditions of the fermions
from Neumann to Dirichlet.

In summary, we provide a qualitative gravity mechanism for the formation of the SYK
wormhole. The purpose of this explanation was to contrast SYK with what we expect in a
generic gravity theory. A generic gravity theory can have a number of fields much smaller
than S0. In this case, the change in boundary conditions would not significantly change S0
and it would still be difficult to change the topology. For this reason we could not answer
the question of whether there is an “easy way” of forming the wormhole for more general
gravity theories, such as the case of four-dimensional magnetically charged wormholes in
the Standard Model [13].

The paper is organized as follows. In section 2 we review the two coupled SYK
model [9]. We describe the perturbative approach at high temperatures, for the “two
black hole phase”. We also review the Schwarzian description of the low energy dynamics
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that describes the hot and cold wormhole phases. Section 3 contains our real time anal-
ysis of the formation of the wormhole. We set up the coupling to the bath, we write the
Kadanoff-Baym equations (the real time Schwinger-Dyson equations), and we present the
result of a numerical analysis for some particular values of the parameters. In section 4,
we discuss differences and similarities between SYK and nearly-AdS2 (or JT) gravity and
also provide the qualitative picture of the transition. Various computational details are
discussed in the appendices.

2 The two coupled SYK model and its thermodynamics

2.1 Definition and properties of the ground state

Here we review properties of the two coupled SYK models introduced in [9]. The Hamil-
tonian of the model consists of two SYK terms coupled by an interaction

H = HL
SYK +HR

SYK +Hint, (2.1)

where
HL

SYK +HR
SYK =

∑
1≤i<j<k<l≤N

Jijkl
(
ψLi ψ

L
j ψ

L
k ψ

L
l + ψRi ψ

R
j ψ

R
k ψ

R
l

)
, (2.2)

and the couplings are the same for both factors. They are Gaussian random variables with
variance

〈J2
ijkl〉 = 3!J2

N3 , (no sum). (2.3)

There is also a generalization where we consider a q fermion interaction term, instead of
four. The interaction term has the form

Hint = iµ
N∑
j=1

ψLj ψ
R
j . (2.4)

In the large N limit, µ and J stay fixed. We will mostly consider the case µ/J � 1
and also consider temperatures T/J � 1. This will be true even for what we call “high”
temperatures.

As an aside, let us mention that we can couple the two systems by an operator of
dimension ∆

H∆
int = iFµ(O∆)L(O∆)R, (2.5)

where F is the fermion number of O∆. We will mostly consider the case of (2.4) which cor-
responds to ∆ = 1/4 at low energies. However, we will give certain estimates for generic ∆.

Like a single SYK, this model, (2.1), is solvable in the large N limit. We have four
types of correlators: GLL, GRR, GLR, GRL, each defined in Euclidean space as

Gab(τ) = 〈Tψa(τ)ψb(0)〉 , with a, b = L, R. (2.6)

Since we are dealing with Majorana fermions,

GLL(0+) = GRR(0+) = 1
2 . (2.7)
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We have a closed system of Schwinger-Dyson equations for the two point functions [9]:

∂τGab(τ) =
∑
c

Σac ∗Gcb(τ) + δabδ(τ), (2.8)

Σab(τ) = J2Gab(τ)3 − iµabδ(τ) (no sum), (2.9)

where the convolution ∗ is taken along the Euclidean circle, a, b = L,R, and µab is given by

µab =
(

0 µ

−µ 0

)
. (2.10)

The system has a Z4 symmetry ψL → −ψR, ψR → ψL. Throughout our numerical com-
putation we do not assume that this symmetry in unbroken. We find that it is unbroken,
since the (Euclidean) correlators we obtained obey the following relations:

GLL = GRR purely real , GLR = −GRL purely imaginary. (2.11)

A convenient expression for the energy is

E

N
= J2

4

∫ β

0
dτ

(
−G4

LL −G4
RR − 2G4

LR

)
+ iµGLR(0). (2.12)

The interaction term (2.4) is a relevant perturbation, since for a single SYK model the
fermion ψ has dimension ∆ = 1/4. Therefore at relatively high temperatures we expect
that we have two weakly coupled SYK models, whereas at low temperatures the system
flows into a gapped phase with a gap that scales as [9]

Egap ∝ µ2/3J1/3 , for µ

J
� 1 and q = 4, ∆ = 1

4 . (2.13)

Moreover the ground state is close to the TFD of the two models with effective (inverse)
temperature β̃:

|TFD〉 =
∑
n

e−β̃En/2|Ēn〉L × |En〉R , β̃J ∝
(
J

µ

) 1
2(1−∆)

, ∆ = 1
q
. (2.14)

The energy of the ground state, relative to the energy of the two decoupled SYK models,
scales as

EG − 2E0,SYK ∝ −N
µ4/3

J1/3 , (2.15)

and for general ∆, EG − 2E0,SYK ∝ −µ
1

1−∆ .
Since there is a gap and the ground state is unique, the entropy is small in the “cold

wormhole phase”. Whereas in the two black hole phase, we have a big entropy 2S0, where
S0 ≈ N × 0.23 is the “zero temperature” entropy of a single SYK model. The transition
temperature Tc is estimated by

Tc ∼ −
EG
2S0
∝ µ

4
3

J
1
3
, for q = 4. (2.16)
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Figure 2. Euclidean Green function GLR. The blue points correspond to the exact solution, and
the red ones to the conformal answer (A.3). Left: β = 20. Right: β = 53. For this values of
parameters the transition to the wormhole phase happens around β2BH ∼ 61. The approximation
is better for higher temperatures.

For arbitrary temperatures the Schwinger-Dyson equations can be solved numerically
by starting from GLR = GRL = 0, GLL = GRR = 1

2 and then using an iteration proce-
dure similar to one described in [4]. After obtaining the solution for some value of the
temperature, we can use it as a seed for the iteration procedure at higher/lower temper-
ature. Figure 1 shows energy as a function of beta for particular values of parameters
J = 0.5, µ = 0.0053.

2.2 Perturbation theory at high temperature

Here we use the term “high” temperatures for temperatures for the two black hole branch
of the diagram T � T2BH, but still T/J � 1.

For µ = 0 we have two copies of the conventional SYK correlators [1–3]

G(τ)LL = G(τ)RR = b sgn(τ) 1√
Jβ

(
π2

sin2 πτ
β

)1/4

, GLR = 0, (2.17)

with b4 = 1/(4π).
Now we turn on a small value of µ (2.4). If we are at sufficiently high temperature

then the coupled system is still in the phase with two separate black holes [9]. Nonetheless,
the correlation between left- and right- SYK is not zero. We can try to use the conformal
perturbation theory to study the system.

To linear order in µ, only GLR Green functions receive a correction:

∆GLR(τ1 − τ2) = iµ

∫ β

0
dτ GLL(τ1 − τ)GRR(τ − τ2). (2.18)

This integral is computed analytically in appendix A. We can compare this leading or-
der approximation against exact numerical solution of the Schwinger-Dyson equation for
J = 0.5, µ = 0.05 and different β, see figure 2.
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Also in appendix A we computed the µ2 correction to the energy. So that at low
temperatures we have the following expression for the energy:

E = 2ESYK + ∆E, (2.19)

ESYK = E0,SYK + 2π2αS
√

2
Jβ2 , (2.20)

E0,SYK = −J × 0.04063(1), αS = 0.0071± 0.0004, (2.21)

∆E = 1
2
√

4π
µ2

J

(
2 log π

βJ
− 2− c1

)
, c1 = 1.66(1),

where ESYK is the low-temperature result for a single SYK [4] and ∆E is the leading
µ2 correction derived in appendix A. The comparison between (2.19) and the numerics is
presented in figure 6(b).

This approximation works better for high temperatures and then deteriorates close to
T2BH, where the phase is supposed to connect with the hot wormhole phase.

Let us find out until what temperature we can trust the perturbation series in µ. The
first point is that only even terms are non-zero. The term of order µ2n contains a 2n-point
function on the left and 2n-point function on the right, each of these now computed in
a single SYK model. We are only interested in connected correlators for computing the
corrections to the free energy. Higher point functions in SYK have two contributions: a
purely conformal piece which is independent of β, up to an overall factor of

(
1/
√
Jβ
)4n

as in eq. (2.17), plus contributions from the Schwarzian which are enhanced by an extra
factor of βJ . We claim that the Schwarzian contributions are in fact zero, see appendix B.
The reason behind this cancellation is the following. When we work at large N we are
solving the classical equations. The reparametrization mode has a solution that is time
translation invariant. The two sides are coupled by convolutions of Green’s functions but
this translation symmetry remains unbroken. This means that there is no source for higher
Fourier components of the reparametrization mode, so that the standard thermal solution
continues to be a solution.

The integrals over time give β2n. In total, we have µ2nβ2n

(Jβ)n . So the expansion
parameter is

µβ√
Jβ

for q = 4 , or µβ

(Jβ)2∆ for general q. (2.22)

So we can trust the above perturbative answer until temperature

Tpert ∝ J
(
µ

J

) 1
1−2∆

. (2.23)

For ∆ = 1/4 this scales as µ2, whereas Tc ∝ µ4/3 is much larger.
We conjecture that the transition temperature T2BH, when the two black holes phase

ceases to exist, in fact coincides with Tpert, when the perturbation theory in µ breaks down:

T2BH ∼ Tpert ∝ J
(
µ

J

) 1
1−2∆

. (2.24)
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Figure 3. A reprint of the phase diagram obtained numerically in [9] for J = 0.5. The right solid
black curve indicates TWH, purple line Tc and left solid black line T2BH. The dashed horizontal
line is at µ = 0.05, the value of µ we will use in our real time numerical simulation. In this case
β2BH ∼ 61, βc ∼ 54, βWH ∼ 49.
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Figure 4. The fit for TWH using the numerical
data from [9] in figure 3. The fit is consistent
with the analytical prediction µ ∼ T 3/2. We im-
posed a cut-off µ < 0.03.
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Figure 5. The fit for T2BH using the numerical
data from [9] in figure 3. The fit is consistent
with the analytical prediction µ ∼

√
T . We im-

posed a cut-off µ < 0.03.

We check this prediction for ∆ = 1/4 against the numerical phase diagram obtained in [9].
See figures 3, 4, 5.

One last comment is on the leading result (2.18). In appendix B, we studied the
gravitational dressing of this term, searched for instabilities that would spontaneously
break the U(1) time translation symmetry, but did not find any.
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2.3 Low temperature thermodynamics using the Schwarzian

In this section we review the results of [9] on the Schwarzian description of the wormhole.
We will see that the Schwarzian indeed admits a wormhole solution at low temperatures.
Moreover, by including the matter contribution to the partition function one is able to see
two phases which join at (inverse) temperature βWH. One phase has positive heat capacity
and almost zero entropy. This is a cold and mostly empty wormhole. The second phase
has higher energy longer throat and negative heat capacity. This is wormhole with extra
matter excitations inside. We will see shortly that at small enough µ this approximation
predicts βWH with good accuracy.

As we have mentioned before, the ground state of the system is close to the TFD state.
Since we have global AdS2 we have the following GLR correlator in Euclidean signature:

GLR = ib√
2J cosh

(
tL−tR

2

) , (2.25)

where tL, tR are times on left/right.
The action in the Schwarzian approximation now includes two kinetic terms1 and an

interaction

S = Skin + Sint, (2.26)

Skin = −N
√

2αS
J

∫
du

({
tanh

(
tL(u)

2

)
, u

}
+
{

tanh
(
tR(u)

2

)
, u

})
, (2.27)

Sint = −Niµ
∫
duGLR(u) = Nµb√

2J

∫
du

(t′L(u)t′R(u))1/4√
cosh

(
tL(u)−tR(u)

2

) , (2.28)

with αS in (2.21). The wormhole solution is simply tL = tR = t′u, where t′ is a constant.
The effective temperature, β̃ of the TFD state is given by

β̃ = t′β. (2.29)

Inserting into the action we get the free energy

F/N = αS
√

2
J

t′2 − µb√
2J

t′1/2. (2.30)

We should also include the contribution from matter fields in the wormhole throat. If the
temperature is low enough we excite only the lightest excitation in the bulk, which is the
elementary fermion with mass 1/4. Its contribution to the free energy is:

∆F/N = − 1
β

log
(
1 + e−β̃/4

)
≈ − 1

β
e−t′β/4. (2.31)

Extremizing the free energy with respect to t′, which is the same as extremizing the full
effective action, we have the following equation to determine t′ and correspondingly β̃:

0 = ∂Ftot
∂t′

= 2αS
√

2
J

t′ − µb

2
√

2J
t′−1/2 + 1

4e
−t′β/4. (2.32)

1For q = 4, J =
√

2J hence the extra
√

2.
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This equation has a solution with very small t′ which we can not trust, because we
were assuming that the temperatures are low. For large enough β two additional solutions
emerge. One of them correspond to what we call the cold wormhole and the other to the
hot wormhole. The latter has negative heat capacity and can be viewed as a wormhole
with more excitations in the throat. Figure 6 shows the two branches for two different
values of µ/J and their comparison to the numerical solution to the SD equations.

We can calculate TWH from this equation. We simply need to find when these two so-
lutions merge. To keep the discussion general, we consider general ∆, which corresponds to
the case when the two sides are coupled through the product of two operators of dimension
∆. The equation for t′ now reads as:

2αS
√

2
J

t′ − µb∆
2(2J)2∆ t′2∆−1 + ∆e−t′β∆ = 0. (2.33)

The cold wormhole branch can be approximately found [9] by neglecting the thermal exci-
tations exponent in the above equation, so that t′ is equal

t′ ∝
(

µ

J2∆−1

) 1
2−2∆

. (2.34)

Whereas the unstable branch with excitations can be approximated by neglecting the
Schwarzian kinetic term ∼ αSt′:

µ

J2∆ t′2∆−1 ∝ e−t′β∆. (2.35)

Plugging the t′ from the first solution (2.34) into the above equation we find the TWH:

TWH ∝
µ

1
2−2∆

log J/µ ∼
µ2/3

log J/µ for ∆ = 1/4. (2.36)

Of course, both (2.34) and (2.35) are good for T � TWH. Here we presented just estimates,
but it is straightforward to solve (2.33) numerically, see figure 6.

We can also compute the energy using2

E=F+TS=F+β∂F
∂β

+β∂F
∂t′

dt′

dβ
= 2E0,SYK+αS

√
2

J
t′2− µb√

2J
t′1/2+ t′

4 e
−t′β/4, (2.37)

where E0,SYK is the ground state energy of a single SYK, see (2.21).
In figure 6 we have compared the results computed using eq. (2.37) with the numerical

solution of the SD equation. For the value µ = 0.05, which is the one we will use for the
real time numerical computation, the agreement is not very good, but the qualitative form
of the curve is similar, see figure 6(a). This means that µ is not low enough for an accurate
Schwarzian description. Indeed if we lower µ we get very good agreement. See figure 6(b)
for µ = 0.0053.

2When computing the derivatives one has to keep in mind that t′ is a function of β. And use (2.32).
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Figure 6. Thermodynamics of the model for two different values of µ/J . In both J = 0.5 and in
(a) µ = 0.05 and in (b) µ = 0.0053. The dots correspond to numerical solutions of the SD equation.
The blue ones for the two black hole phase and the green ones for the cold wormhole phase. The
black line is the ground state energy of two decoupled SYK, 2E0,SY K (on the left plot it lies above
the visible area). Blue curve: the perturbative result (2.19) for the energy. Green curve: wormhole
branch of eq. (2.32). Red curve: unstable branch of eq. (2.32). The uncertainties, represented as
shaded regions, come from the uncertainties in E0,SYK and αS . We see that in (b) the agreement
is very good. However, in (a) the agreement is not so good, but the qualitative form of the curve
is similar, if we joint the two end points of the dotted lines.

To summarize, for small µ, we have a hierarchy of temperatures

TWH ∝
µ

1
2−2∆

log J/µ ∼
µ2/3

log J/µ for ∆ = 1/4,

Tc ∝ µ
1

1−∆ ∼ µ4/3, (2.38)

T2BH ∝ µ
1

1−2∆ ∼ µ2,

where the rightmost term corresponds to ∆ = 1/4.

3 Real time results

3.1 Coupling to a bath

In order to study the real-time formation of the wormhole, we need to cool down the
system. Before considering real-time dynamics, first we need to understand how to couple
our system to a thermal bath. Ideally we want the bath to be a large system in order to
avoid back-reaction.

Generally, we can couple a system’s operator OS to a bath operator OB:

∆S = iFV

∫
dτ OSOB, (3.1)

where F is the fermionic number of OS .
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If V is small and the bath is large we can study this interaction in the Lindblandian ap-
proximation by considering the 1-loop result and assuming that there is no back-reaction on
the bath, such that we can substitute the product OB(t1)OB(t2) by VEV 〈OB(t1)OB(t2)〉B:

∆S = −V 2
∫
dτ1dτ2 OS(τ1)OS(τ2)〈OB(τ1)OB(τ2)〉B. (3.2)

For our problem we have a varying temperature that sets an energy scale for the
model. Specially for our numerical analysis, it is convenient to choose an interaction that
is scale invariant (at least approximately), so that the effects of coupling to the bath are
independent of the temperature. Otherwise the bath might be effectively decoupling in
some temperature range and the system would take long to cool down.

A natural model for the bath is another SYK, possibly with larger number of fermions.
We can consider the bath to be another single-SYK model with q = qB with large number
of fermions M , much larger than the number of fermions in our system N . Recently this
problem was studied in [15], we refer to this paper for details. If we denote the bath
fermions by χα, then the coupling can involve an arbitrary number s of system fermions
and p bath fermions.

Again, to warm-up, let us first consider the case when the system consists of a single-
SYK model. The coupling between the bath and the system has the form:

Lbath-system = V
α1...αp

i1...is
ψi1 . . . ψisχα1 . . . χαp , (3.3)

where V is a random Gaussian-distributed coupling. By choosing its variance appropriately,
the back reaction can be made of order N/M � 1. The Euclidean Schwinger-Dyson
equations for the system stay the same except for a correction to the self-energy: the
self-energy acquires an additional term,

∆Σ = ΣB = ηGpBG
s−1, (3.4)

where GB is bath two-point function and η is proportional to the variance of V .
We can get a marginal interaction with s = 1, p = 3, when the bath consists of q = 4

SYK models (with, say JB = JS). This is the bath we will use. More precisely, we introduce
two separate baths, one for each SYK factor

Lbath-system = V α1α2α3
i ψL,iχα1χα2χα3 + Ṽ α1α2α3

i ψR,iχ̃α1χ̃α2χ̃α3 , (3.5)

where V and Ṽ are independent Gaussian-distributed variables. This interaction leaves
ΣLR unperturbed, but the other two self-energies have additional terms now:

∆ΣLL = ∆ΣRR = ΣB = ηG3
B. (3.6)

The above equations are written in Euclidean signature. We now turn to Lorentzian
equations.
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3.2 Kadanoff-Baym equations

We now write down the Lorentzian time version of the SD equations. For details see
appendix C. Here we will discuss the non-equilibrium situation following [4] and [16]. It is
convenient to work right away on the Keldysh time contour, see [23] for a comprehensive
introduction. We will need Lorentzian time correlators which are not time ordered. This
can be achieved by introducing a Keldysh time contour which runs from −∞ to +∞ and
then back from +∞ to +∞. First, one introduces a Wightman function

G>ab(t−1 , t+2 ) = −i〈ψa(t−1 )ψb(t+2 )〉, (3.7)

where t1, t2 lie on different sides of the contour. This simply means that ψb(t2) is always
located to the right of ψa(t1) in the correlator, regardless of time-ordering. This is why the
Keldysh contour consists of two parts. Note the overall i in front of the correlator. Since
we are dealing with simple Majorana fermions the “lesser” function G<ab is given by:

G<ab(t1, t2) = −G>ba(t2, t1). (3.8)

Also we will need retarded and advanced Green functions:

GRab(t1, t2) = θ(t1 − t2)
(
G>ab(t1, t2)−G<ab(t1, t2)

)
, (3.9)

GAab(t1, t2) = θ(t2 − t1)
(
G<ab(t1, t2)−G>ab(t1, t2)

)
.

Schwinger-Dyson equations written on the Keldysh contour are known as Kadanoff-Baym
equations, and are useful for non-equilibrium situations. Let us write them down explicitly
for a single SYK:

i∂t1G
>(t1, t2) = Σ ∗G =

∫ +∞

−∞
dt
(
ΣR(t1, t)G>(t, t2) + Σ>(t1, t)GA(t, t2)

)
,

−i∂t2G>(t1, t2) = G ∗ Σ =
∫ +∞

−∞
dt
(
GR(t1, t)Σ>(t, t2) +G>(t1, t)ΣA(t, t2)

)
, (3.10)

where the self-energy Σ> is given by

Σ>(t1, t2) = −J2 (G>(t1, t2)
)3
. (3.11)

These equations for the complete system of two interacting SYKs and a bath are derived
using the path integral in appendix D.

Remember that the “greater” Green function G>(t−1 , t+2 ) has time arguments lying
on different sides of the Keldysh contour, this is why we do not have a delta-function
on the right hand side of (3.10). The integral in the right hand side of (3.10), which
involves different Green functions, is just a simple convolution Σ ∗ G along the Keldysh
contour [24]. We can show it by writing the anti-time ordered Σ = Σ> −ΣR and the time
ordered G = GA +G>. One can easily see that equations (3.10) are casual.

Let us mention one subtlety. Strictly speaking, if one starts from a thermal state,
then the precise Keldysh contour involves imaginary time strip at the end of the lower
branch, at t = 0. This time strip has length β and prepares the thermal state. One can
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bypass this as follows. First we set the coupling to the bath to zero. Then we find the
real time correlators at thermal equilibrium by solving the real time equations imposing
the appropriate relations between the Green’s functions, see e.g. (C.5). We then evolve
the system for some time t � β and then we turn on the coupling to the bath. For more
details see appendix E.

For two coupled SYK models one has to be very careful with the µ term. To under-
stand its form on the Keldysh contour we can go back to G,Σ effective action derived in
appendix D

i
S

N
= 1

2 Trlog(ω−Σab(ω))−
∑
ab

∫
C
dt1dt2

(
J2

8 Gab(t1, t2)4+ 1
2Σab(t1, t2)Gab(t1, t2)

)
+

+ iµ

2

∫
C
dt (GLR(t, t)−GRL(t, t))− η2

∫
C
dt1dt2 (GLL(t1, t2)+GRR(t1, t2))G3

B(t1, t2).

(3.12)

We see that the µ contribution to Σ(t1, t2) is

∆Σab(t1, t2) = iµabδC(t1 − t2). (3.13)

In this expression t1, t2 can be on either side of the Keldysh contour, this is why Σ does
not have an additional index, like >,R,A. Notice that the delta-function δC is defined on
the Keldysh contour as well. It yields non-zero answer if and only if t1 = t2 and t1, t2
are on the same side of the contour. Let us compute the contribution of this term to the
convolution Σ ∗G along the Keldysh contour:

∆(Σ ∗G)(t−1 , t+2 )ab = iµac

∫
C
dt δC(t−1 − t)Gcb(t− t+2 ) = iµacG

>
cb(t−1 , t+2 ). (3.14)

The final form of the Kadanoff-Baym equations, including the bath, is:

i∂t1G
>
ab(t1, t2) = iµacG

>
cb(t1, t2) +

∫ +∞

−∞
dt
(
ΣR
ac(t1, t)G>cb(t, t2) + Σ>

ac(t1, t)GAcb(t, t2)
)
,

−i∂t2G>ab(t1, t2) = iµacG
>
cb(t1, t2) +

∫ +∞

−∞
dt
(
GRac(t1, t)Σ>

cb(t, t2) +G>ac(t1, t)ΣA
cb(t, t2)

)
,

(3.15)

where µab is defined in eq. (2.10) and the self-energy is

Σ>
ab(t1, t2) = −J2 (G>ab(t1, t2)

)3 − ηδab (G>B(t1, t2)
)3
. (3.16)

3.3 Forming the wormhole

Our numerical setup for solving KB equation (3.15), (3.16) is presented in appendix E.
We prepare initial Lorentz Green’s functions using Lorentz-time Schwinger-Dyson equa-
tions described in appendix C. Our initial Green’s functions correspond to two interacting
SYK models with non-zero µ in the thermal equilibrium. In order to save computational
time, the initial temperature is chosen close to (and slightly higher than) the transition
temperature T2BH.
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Figure 7. Numerical results for J = 0.5 and µ = 0.05, βB = 80 and timesteps dt = 0.2, 0.1. (a)
The energy as a function of time. The initial rise is due to the fact that we are coupling the bath to
the system, and this changes the energy [15]. We then see the energy decreasing monotonically. (b)
The inverse temperature as a function of time. We also see the initial sharp temperature increase
due to the coupling of the bath, then we see a decrease. Then a slight increase of the temperature
signalling the phase with negative specific heat. Finally the temperature decreases again.

Our numerical setup gives us Wightman G> functions which depend on two times
(t1, t2). To extract energy and other thermodynamic quantities we need to choose a 1d
slice. Everywhere in this paper we will use the “corner” slice:

G>T,ab(t) = θ(t)G>ab(T − t, T ) + θ(−t)G>ab(T, T + t). (3.17)

Presumably at each T it yields a two-point function at some inverse temperature β = β(T ).
We extract the temperature using the Fluctuation-Dissipation Theorem(FDT) for the two-
point functions. In thermal equilibrium a certain combination of these Green’s functions
(eq. (3.20)) must be equal to tanh(βω/2) in the frequency domain. So we take the “corner”
slice (3.17), make a discrete Fourier transform in t and fit eq. (3.20) with the tanh. We
refer to appendix E for details about the fitting procedure.

Our benchmark parameters are J = JB = 0.5 (the system and the bath have the same
coupling strength), µ = 0.05. In this case, from figure 3 we expect β2BH ∼ 61, βc ∼ 54,
βWH ∼ 49. We considered a few values for the system-bath coupling, η = 0.04, 0.02, 0.01.
Figure 7 shows the results for βbath = 80, η = 0.04, βinitial = 40 for different time steps.
The energy is computed using eq. (E.5).

We can perform another check, this time taking η much smaller, namely η = 0.01. The
result is shown on figure 8. A few comments are in order. As explained in detail in [15] the
marginal system-bath interaction will renormalize J , making it bigger. This is why expect
that the actual transition will happen at higher β. This is indeed what we see. Moreover,

– 16 –



J
H
E
P
0
4
(
2
0
2
1
)
2
5
8

40 50 60 70 80
beta

0.054

0.052

0.050

0.048

0.046

Energy
DS J=0.5 mu=0.05
KB dt=0.2 eta=0.01
KB dt=0.2 eta=0.01
DS J=0.5 mu=0.05 eta=0.01

Figure 8. The comparison between E(β) in equilibrium(blue points) and the real-time evolution
of the system as it cools down (solid red line). The bath parameters are η = 0.01, βbath = 80. The
initial linear ramp of the red curve occurs because we switch on the coupling with the bath linearly
in time. The dashed red line is the same as the solid line but shifted to match the final energy on
the phase diagram. The green dot shows the equilibrium value of the system+bath energy.

the interaction with the bath will shift the ground state energy. To compensate for this we
shifted the energy vs beta curve in figure 8 to match the final energy.

The red curve in figure 8 has wild oscillations in temperature near the equilibrium for
small η, see also figures 7(b). The reason is the following. Because of the numerical error
there is an additional flux of energy which pushes the system out of equilibrium. From the
phase diagram (blue points) we see that the derivative dβ/dE is very large. If η is not big
enough, the relaxation time is not small enough to smooth out these fluctuations.

The crucial question is whether we indeed have reached the wormhole phase or not.
In principle, we might have ended up in some other phase. To verify that we have reached
the wormhole we can make a precise check of the system’s energy.

In the real-simulation the final value of the energy is(in units where J = 0.5):

EKB = −0.05282(2), (3.18)

where the uncertainty comes from changing the size of the diagonal strip and changing
the timestep. Also we can ask ourselves how carefully is the initial state prepared. For
an exact two-point function we know that Gaa(0) = −0.5i. However, the iterations of the
real-time SD equations have Gaa(0) = −0.5002i. This error has the same magnitude as
the energy above.

How do we compare this result with the equilibrium phase diagram? In fact, we can
solve Euclidean Schwinger-Dyson equation for the coupled system+bath and compare the
equilibrium energy. We start from the Euclidean correlators in the wormhole phase, add
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Figure 9. (Upper part) β as a function of time for η = 0.02 and 0.04. (Lower part) the maximum
of value of GLR for the same values of η.

coupling to the bath and solve the SD equations again. The value of the energy we obtained
this way is(again in units where J = 0.5):

ESD = −0.05276(3), (3.19)

it is represented as green dot in figure 8. The uncertainty is estimated by changing the
number of discretization points and imposing different cutoffs for the iteration procedure.
We observe an agreement with (3.18) within one standard deviation. This suggests that
we indeed reached the wormhole.

To understand what happens near the transition we can look at the maximum value of
GLR, see figure 9 (lower part). We notice that during the transition through the unstable
phase, the imaginary value of the correlator (which is proportional to the anticommutator)
grows rapidly, indicating the increase in the information transmission rate. Another thing
we can see is that coupling to a bath generically thwarts the information transmission
between the sides; for larger bath coupling η the ratio ImGLR/ReGLR is smaller. Figure 8
shows that the system is more or less following the thermodynamic curve, the temperature
and energy are smooth everywhere and the transition goes through a phase with negative
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heat capacity, where the energy decreases and the temperature increases. To check whether
the system remains in equilibrium at all times we performed an additional check. Using
the FDT we can find the temperature two ways, from LL correlator:

Im
(
G>T,LL(ω) +G<T,LL(ω)

)
(−2) ImGRT,LL(ω)

= − tanh βLL(T )ω
2 , (3.20)

and the LR correlator:
Re
(
G>T,LR(ω) +G<T,LR(ω)

)
−2 ReGRT,LR(ω)

= − tanh
(
βLR(T )ω

2

)
. (3.21)

The result for LL is shown in figure 9 (upper part). One can check that the ratio in
eq. (3.20) always stays very close to tanh. However, extracting the temperature from LR

correlator has a subtlety. In our case GLR = −GRL and is easy to show that the numerator
in eq. (3.21), Re

(
G>T,LR +G<T,LR

)
= 2 ReG>T,LR, is even function of ω, whereas the denom-

inator ReGRT,LR is odd. This behavior is problematic, as non-zero ReG>T,LR(ω = 0) can
cause a spike and completely change tanh behavior. We refer to figure 16 in appendix E
for an example of such behavior. Note, this does not happen to GLL, as the numerator is
frequency-odd and denominator is frequency-even, so its behavior is much better. Non-zero
ReG>T,LR(ω = 0) is actually related to being out-of-equilibrium. In appendix E we prove
using that in equilibrium

G>LR(ω = 0) = 0. (3.22)
Hence it is not reliable to extract the temperature from GLR using eq. (3.21), as this ratio
can easily blow-up near ω = 0. As an alternative probe for equilibrium we can plot the ratio

G>T,LR(ω = 0)
G>T,LR(t = 0) . (3.23)

The denominator is needed to normalize this expression, as the absolute value of G>LR is
highly dependent on µ and η. The result is shown in figure 10. We see that it can be quite
big, but it decreases with decreasing bath coupling η.

Our conclusion is that at any time during the transition the system stays very close to
the equilibrium. Decreasing the bath coupling η makes the deviations smaller.

3.4 Time to form the wormhole

In this subsection we provide analytic estimates for the time it takes to form the wormhole.
We will first estimate the time it takes to reach T2BH and then the time it takes to reach
from there to TWH. At this point we basically have a cold wormhole, so we will consider it
to be already formed. We could also consider it formed once we reach T2BH and we start
moving on the hot wormhole region.

In order to estimate these times we need an expression for the rate of energy emission
into the bath. For a general coupling between a system and a large bath the energy loss
rate can be written as (see [15] for more discussion)

dE

dt
= 2iη

∫ +∞

−∞
dt̃ ∂t̃GLL

(
t+ t̃

2 ,
t− t̃

2

)
GB(t̃)3, (3.24)
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Figure 10. The ratio (3.23) as a function of time for different values of η. For all curves µ =
0.05, J = 0.5, dt = 0.2, βbath = 80. The initial spike downwards is related to switching on the
bath coupling.

where factor of 2 comes from having both sides of coupled to a bath. In the above integral,
we can replace the system two point function by the thermal one at the instantaneous
temperature, assuming that the temperature varies slowly. Moreover, for SYK at low
temperatures we can simply use conformal approximations for two-point functions.

If the bath temperature is much lower, than the system’s temperature we can approx-
imate bath Green’s function by the zero temperature one

GB = b
1√

JBi (t− iε)
. (3.25)

3.4.1 Reaching T2BH

In the two black holes phase we assume that GLL is approximated by a single SYK thermal
two-point function

GLL(t) = b

√
π√

Jβi sinh π(t−iε)
β

. (3.26)

Plugging these into (3.24) we see that the answer is determined by dimensional analysis
up to an irrelevant numerical coefficient:3

dE

dt
= − const η

J
3/2
B

√
Jβ2

. (3.27)

Differentiating the energy expression (2.20) with respect to the time, and solving a simple
differential equation for β(t), we find that it grows exponentially

β(t) ∼ βinit exp
(

const η
√
Jt

J
3/2
B

)
(3.28)

3We refer to [15] for the numerical coefficient.
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So that the time ∆t2BH needed to go through the two black hole phase and reach
T2BH ∼ µ2/J depends only logarithmically on µ:

∆t2BH ∼
J

3/2
B√
Jη

log J

µ2βinit
. (3.29)

3.4.2 Reaching TWH

Now let us calculate time ∆tWH which is needed to go through the hot wormhole phase
and reach TWH. To this end we will employ some results from the end of section 2.3
about Schwarzian. This Schwarzian approximation breaks for very hot wormholes with
temperature of order T2BH, but holds for lower temperatures.

Suppressing the numerical coefficients, GLL in this regime is given by:

GLL(t) ∝
√

t′√
J sin (t′(t− iε))

, (3.30)

where t′(t) is determined by the solution of eq. (2.32). The hot wormhole(unstable branch)
is characterized by having t′ � 1, so eq. (2.32) can be simplified by neglecting Schwarzian
kinetic term (the first term in eq. (2.32))

exp
(
−t′β/4

)
∼ µ

t′1/2
. (3.31)

This approximation breaks down near T ∼ TWH, so we further assume that we use this
approximation for temperatures which are slightly below or of order TWH.

From this equation, up to a logarithmic term in µ, t′ and β are related by t′ ∼ 1/β.
Using (3.31), the energy (2.37) can be written as

E − 2E0,SYK ∝ −
µ√
Jβ

. (3.32)

We see that the heat capacity is negative:

Chot wormhole = dE

dT
= −β2dE

dβ
∝ −µ

√
β√
J
. (3.33)

We can compare the absolute value of this expression with the heat capacity of a regular
SYK CSYK ∼ 1

Jβ :
|Chot wormhole|

CSYK
∝ µ
√
Jβ3/2 ∝

(
TWH
T

)3/2
. (3.34)

This ratio is much bigger than 1 for β � 1/(J1/3µ2/3) ∼ βWH. So apart from the region
close to TWH the hot wormhole has a large negative heat capacity, compared to a single
SYK model at the same temperature.

The energy flux can be computed using the expression (3.30) for GLL. The result is
again determined by scale symmetry and it is again proportional to t′2 ∼ 1/β2 as in (3.27).
However, because of the big negative heat capacity, the time it takes to go through this
region is much longer than (3.29). Solving for β(t) we get

β
3/2
0 − β3/2

1 = η

µJ
3/2
B

(t1 − t0) . (3.35)
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In our case we start from β0 ∼ β2BH and end with β1 ∼ βWH. Since β2BH � βWH the
overall time length is mostly determined by the region near T2BH:

∆tWH ∼
J3/2J

3/2
B

ηµ2 . (3.36)

This timescale is much larger than ∆tWH, (3.29), which scaled only logarithmically
in µ. Moreover, it is mostly determined by the region near T2BH, which is where the
approximation is breaking down. So (3.36) should only be viewed as an order of magnitude
estimate.

Our numerical results for β(t) on figures 7 and 9 seem to qualitatively support these
conclusions. Notice that, as expected, the times are inversely proportional to the coupling
to the bath η.

4 Two coupled black holes in gravity

The low energy description of the SYK model has some features in common with certain
two dimensional theories of gravity. In this section, we study a similar problem in a
gravitational theory in order to compare to the answers we found above.

We consider a Jackiw-Teitelboim theory of gravity coupled to matter, see [18–20] for
details. This gravity theory describes a two dimensional black hole with an AdS2 geometry.
The AdS2 space has a boundary. We consider a system containing two such black hole
exteriors and we introduce a coupling for the two dimensional matter fields propagating in
the bulk. We assume that the matter has N flavors. Let us say that χ is a matter field
with a certain mass m in the bulk and quantized with Neumann boundary conditions so
that its dimension is ∆, with ∆ < 1/2. We couple their boundary values through a term,
for each field,

S = iµ̃

∫
duχL(u)χR(u) , µ̃ = µ

J2∆ , (4.1)

were we imagine that J−1 is related to a cutoff in the radial AdS2 direction4 and u is the
physical boundary time.

4.1 High temperature phase

We now consider the high temperature phase where in Euclidean space we have two separate
disks that are connected through the interaction (4.1). Concentrating on the matter system,
this interaction is easy to analyze because the full matter theory is just quadratic. In
principle, we also need to consider the effects of gravity, and we will discuss them later.
This interaction, (4.1), leads to the Feynman diagrams in figure 11(a), which can be easily
summed, as we explain below. Since the interaction is relevant, it becomes important
at low temperatures. For sufficiently low temperatures, the net effect is to change the
boundary conditions for the bulk fermions χ from Neumann to Dirichlet. Namely, at
low temperatures we get two decoupled disks with Dirichlet boundary conditions for bulk
fermions. We now discuss this more explicitly.

4With the AdS metric ds2 = (dx2 + dz2)/z2, this is the cutoff at z = ε, and we are defining J = 1/ε.
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Figure 11. (a) Field theory diagrams when we add an interaction term iµ̃χLχR at the boundary
of two disks. Here we picture one disk and the second as the outside. So χLχL propagators are the
ones inside the disk and χRχR are outside the disk. (b) Diagrams in the two coupled SYK model
that reproduce the field theory diagrams in (a). (c) An example of a diagram in the two coupled
SYK model that is not present in field theory.

When µ̃ = 0 we have two separate disks and the matter partition function is just given
by Z2

N , namely the square of the partition function of a fermion with Neumann boundary
conditions. Starting from this state we can now sum the diagrams in figure 11(a). For each
fermion field, we get

Zµ = Z2
N exp

{1
2Tr[log(1 + iµ̃G)(1− iµ̃G)]

}
= Z2

N

[
det(1 + µ̃2G2

∆)
] 1

2 , (4.2)

where we think of G(u1, u2) ∝ [sin u1−u2
2 ]−2∆ as a matrix with indices u1, u2. We have set

β = 2π for simplicity and we will restore it later.
For large µ̃ we find that the partition function gets an additional factor of the deter-

minant of G∆. It turns out that this produces the Dirichlet partition function [22, 25]

Zµ̃�1 = Z2
N detG∆e

−ε(µ̃)β ∝ Z2
D , ε(µ̃) ∝ −(µ̃)

1
1−2∆ . (4.3)

In the last equality we neglected the energy contribution, since we will be focusing on the
ground state entropy contributions.

The conclusion is that if we start out with two disks with Neumann boundary condi-
tions, after we turn on the relevant perturbation (4.1), for very low temperatures we get
two decoupled disks again but with Dirichlet boundary conditions. This implies that for
very low temperatures, the bulk fermion would be dual to an operator of dimension 1−∆.

Restoring the factors of β, this transition happens at β2BH given by

1 ∼ µ̃β1−2∆
2BH or T2BH ∝

(
µ

J2∆

) 1
1−2∆

. (4.4)

For q = 4 this reproduces (2.24). This is not surprising because we were summing the
same type of diagrams. However, in the gravity case these are all the diagrams, so we can
study the whole flow. The new IR fixed point simply corresponds to flipping the boundary
conditions to Dirichlet. So nothing too dramatic happens in the gravity solution when we
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go to temperatures lower than the temperature T2BH in (4.4), except that the change in
the boundary conditions will change the value of the ground state entropy.

In this discussion, we have ignored the dynamics of gravity. In principle, we could
wonder whether we should consider non-trivial solutions of the Schwarzian theory. If we
assume that the solution is invariant under translations for each disk, then, up to gauge
symmetries of the Schwarzian theory, the only solution is the usual one. In appendix B,
we examine whether non-constant Schwarzian modes could lower the action. We find that
they do not, at least in the approximation we considered. In our analysis we assumed that
gravity is classical, which is correct if φr/β � 1. Here φr is the JT gravity analog of the
coefficient of the Schwarzian, the analog of NαS/J . We have also assumed that we have
a relatively low number of bulk quantum fields so that the effects of integrating them out
does not significantly change the value of S0, the ground state entropy. This is the regime
where the gravity theory is simplest. As we will discuss below, the SYK model is different
in this respect.

4.2 Low temperature phase

At very low temperatures the coupling (4.1) leads to the formation of a wormhole [9]. This
is identical to the small µ coupled SYK model analysis of section 2.3, since the effects of
gravity can also be described in terms of the Schwarzian mode.

When we decrease the temperature along the negative specific heat region (the hot
wormhole phase), the wormhole is getting longer and longer. Or, more precisely, there is
a larger redshift factor between the boundary and the center of the wormhole. Then the
interaction, which is a relevant deformation, becomes stronger. When we considered the
problem for the disks, we found that for strong interactions we get an effective change in
boundary conditions from Neumann to Dirichlet. Here we expect the same phenomenon
when t′ is becomes

t′ ∝ T2BH ∝
(

µ

J2∆

) 1
1−2∆

, (4.5)

where t′ is the variable in (2.32), which is proportional to the value of the redshift factor
at the center of the wormhole. In other words, t′ becomes of the order of the temperature
T2BH in (4.4). We refer to appendix F for details. At this value of t′ the wormhole is so
long that the approximations used in deriving (2.33) are no longer valid. Interestingly, due
to (2.35), this happens also at a temperature of the order of T2BH, which is the temperature
where the two disk solutions starts being corrected. This might appear as a coincidence,
but it is not. In the hot wormhole phase we find that the temperature sets the value
of t′ and thus the amount of RG flow that the relevant left-right interaction undergoes.
Therefore, this interaction becomes relevant at the same place.

This statement can be further verified by checking whether the hot wormhole thermo-
dynamic curve (red curve in figure 6) will join with the two black hole phase (blue curve
in figure 6) at T = T2BH. In the hot wormhole phase the energy is given by (3.32) and in
the two black hole phase by (2.19). Indeed, the two curves join at T ∼ T2BH.

In a gravity theory with a relatively low number of fields, we expect that after T2BH
the wormhole phase might not exist any longer.
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One conclusion is that, in a general JT gravity theory plus matter, we do not seem
to be able to easily join the high temperature phase and the hot wormhole phase. This is
mysterious in the gravity theory because it involves a topology change. Of course, the low
temperature phase and the hot wormhole phase are connected smoothly at TWH in a region
where we can trust the wormhole analysis in the Schwarzian approximation, as discussed
near (2.33).

4.3 Comparison with the SYK model

In the SYKmodel, the addition of the interaction corrects the original diagrams by inserting
µ terms in the propagators. If we insert them outside the self energy correction (the Σ
bubble), then we get diagrams which are identical to the ones we discussed in gravity,
see figure 11(b). However, in the SYK model we can also insert µ inside the self energy
corrections, these are new diagrams that are not present in the gravity discussion, see
figure 11(c).

As we mentioned above the region of the phase diagram near temperatures T ∼ T2BH
is different in a generic JT gravity theory plus matter than in SYK. However, we can
consider the following gravitational model that would look more qualitatively similar to
the SYK model.

First we note that the SYK ground state entropy is given by S0 = Ns0, where s0 can
be found as [2, 3, 22]

es0 = (detG∆)−
1
2 = ZN

ZD
, for one Majorana fermion, (4.6)

where the first equality follows from the usual G,Σ action at low energies. The second
equality was mentioned in (4.3). This implies that if we want to describe the SYK model
in terms of JT gravity, we should think that when the fermions have Dirichlet boundary
conditions, the net entropy, or value of the topological terms in the action should be zero,
φ0 = 0. Then the actual value of the ground state entropy of the usual, single boundary
SYK model, (4.6), is simply given by the contribution of changing the boundary condition
for the bulk fields from Dirichlet to Neumann [22].

Returning now to the coupled model and starting from the high temperature phase,
we see that when we reach the temperature T2BH we are changing back to a Dirichlet
boundary condition. This means that the total S0 now becomes zero, which implies that
the topology change is easy. Similarly, if we start from the canonically unstable wormhole
phase and approach T2BH, we also see a change in the boundary conditions so that S0 again
becomes zero and topology change is easy. So we can join the two phases with a change
in topology at T2BH. In this way we can qualitatively understand the transition. We have
given evidence that this is a smooth transition in the coupled SYK model. What we are
discussing here is just a cartoon for a gravity picture of what is happening.

We also see why SYK is different than a generic JT gravity theory with a smaller
number of fields. In such gravity theories the flow from Neumann to Dirichlet would not
change S0 by too much and the topology change remains suppressed. For this reason we
have not been able to see a general mechanism for the transition that would also work in
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more general gravity theories, such as the Standard Model in the presence of magnetically
charged black holes as discussed in [13].

5 Conclusion

In this paper we studied the approach to the ground state of the two coupled SYK mod-
els [9]. We first discussed the equilibrium thermodynamics picture. In the microcannonical
ensemble we expect a continuous picture with no phase transition. As the energy decreases,
the temperature decreases up to a value T2BH where the system looks like two separate
thermal SYK models with a small coupling. At T2BH this coupling becomes strong and the
system transitions to a “hot wormhole” phase with negative specific heat. Now the tem-
perature increases up to TWH and then the wormhole becomes cooler and shorter, and the
specific heat becomes positive again. This whole picture can be understood using simple
analytic approximations, except for the transition region at T ∼ T2BH.

We found that the real time evolution looked as if the system is following the above
equilibrium phase diagram. Unfortunately, for the parameters we could use in our numer-
ical computation, we could not trust quantitatively the simple analytic approximations.
However, these gave a qualitatively correct answer.

The conclusion is that, starting with a generic state of the two coupled SYK model,
we can find the ground state by coupling the system to the bath and cooling it down. In
particular, the system does not get stuck in a metastable state. This provides a feasible way
to produce a state close to the TFD. We also computed the time to form the wormhole.
Most of the time is spent near the region with T ∼ T2BH.

One of our goals was to extract some general lessons for wormhole formation in gravity.
Unfortunately, the SYK model seems to be special, and its special features becomes man-
ifest in the ease by which we can connect the two black hole phase with the hot wormhole
phase near T ∼ T2BH. These two phases do not seem to be so easy to connect in more
general theories of gravity. We qualitatively explained why topology is simpler in a gravity
theory that is similar to the SYK model, but harder in a more general theory of gravity.

Nevertheless we cannot say how hard forming a wormhole would be in a more general
theory of gravity, such as the one describing the wormholes in [13]. It seems hard, but
maybe there is an “easy” pathway to form it. It would be interesting to answer this
question. We expect that this article would be relevant for efforts that try to do it using
the SYK model, see the proposal in [26], for example.
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A Perturbation theory in µ

Let us start by computing µ correction to GLR. We need to compute

∆GLR(τ1 − τ2) = iµ

∫ β

0
dτ GLL(τ1 − τ)GRR(τ − τ2) =

= i
µb2π

Jβ

∫ β

0
dτ sgn(τ1 − τ) sgn(τ − τ2) 1√

sin
(
π|τ1−τ |

β

) 1√
sin
(
π|τ−τ2|

β

) .
(A.1)

Because of the translational invariance along the thermal circle the answer depends on
τ1 − τ2 only. So one can put τ2 = 0. After changing the variables to x = tan (πτ/β) we
have the following integral:

i(1 + x2
1)1/4 × µb2

J

∫ ∞
−∞

dx sgn(x1 − x) sgn(x) 1√
|x|
√
|x1 − x|

√
1 + x2

. (A.2)

This integral can be computed analytically. Because of the sgn functions there are
three integration domains. So the answer has three parts:

∆GLR(x(τ)) = i
µb2

J
(I1 − I2 + I3)(1 + x2)1/4, (A.3)

where

I1 = 2√
1− ix

(
EllipticK

(
1− 2x

i+ x

)
− iEllipticF

(
π

4 ,
2x
i+ x

))
,

I2 = 2
(1 + x2)1/4EllipticK

(1
2 −

1
2
√

1 + x2

)
, (A.4)

I3 = 2
x

3F2

( 1
2 ,

1
2 , 1; 3

4 ,
5
4;− 1

x2 .

)
Now, let us compute the correction to energy. From the path integral the leading

correction to the free energy is

− β∆F = −µ
2β

2

∫ β

0
dτ GLL(τ)GRR(τ). (A.5)

We can recover the integral by taking τ → 0 limit in the conformal answer (A.3) for
GLR. Unfortunately it produces a logarithmic UV divergence which we cut at τ = 1/J :

∆F = 1
2
√

4π
µ2

J

(
2 log π

Jβ
− c1

)
, (A.6)

where c1 is the cut-off dependent constant. We can not find it from the conformal per-
turbation theory, because it is an effective low-energy theory with a build-in UV cutoff of
order J . From the above expression we read off the energy correction:

∆E = 1
2
√

4π
µ2

J

(
2 log π

Jβ
− 2− c1

)
. (A.7)
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Also notice that the constant −c1 − 2 is not simply a correction to the ground state
energy. As we mentioned in the main text, perturbation theory in µ breaks down at large
β2BH ∼ J/µ2, so we can not take the limit β → ∞ in this expression. This is signalled
by the presence of the logarithm. This divergence has IR nature, and it is not caused by
using the conformal answer in the integral (A.5).

To extract c1 we can compute integral (A.5) using the numerically obtained GLL. We
find that c1 = 1.66(1). This agrees very well with the actual numerical result for the energy
— figure 6.

B Checking whether Schwarzian fluctuations are stable

Let us start from doing a 1-loop calculation for Schwarzian first. We again assume that
we are in the phase with two separate black holes. Then the action will involve two
Schwarzian terms plus the interaction piece. For a moment we can imagine that instead of
a simple interaction µψLψR we have a term involving composite operators iFµOLOR with
zero expectation values: 〈OL(R)〉 = 0. F is the OL(R) fermionic number. The Schwarzians
interact because Schwarzians gravitationally dress OL(R) by time reparametrizations.

In the perturbation theory the leading contribution is of order µ2:∫
DψLDψR exp

(
−SL − SR − iFµ

∫
du OLOR

)
= (B.1)

=
∫
DψLDψR exp

(
−SL − SR − µ2

∫
du1du2〈OLOL〉〈OROR〉

)
.

Explicitly the action is:

S = −
∫
du

NαS
J
{fL, u} −

∫
du

NαS
J
{fR, u}− (B.2)

N
µ2c2
O

J4∆

∫
du1du2

(
f ′L(u1)f ′L(u2)

(fL(u1)− fL(u2))2

)∆ ( f ′R(u1)f ′R(u2)
(fR(u1)− fR(u2))2

)∆
,

where ∆ is the dimension of OL(R), for ψL it is ∆ = 1
4 and {f, u} denotes Schwarzian

derivative:

{f(u), u} = f ′′′

f ′
− 3

2

(
f ′′

f ′

)2
. (B.3)

Finite temperature solution without interaction reads as:

fL = fR = tan πu
β
. (B.4)

We can perturb it by εL, εR:

fL = tan
(
πu

β
+ εL(u)

)
, (B.5)

fR = tan
(
πu

β
+ εR(u)

)
, (B.6)
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and to see whether the two black hole system has a perturbative instability at some tem-
perature. For simplicity we can put β = π and expand ε in Fourier modes:

ε =
+∞∑

n=−∞
εne

2inu. (B.7)

Before doing an actual computation, let us stop and explain why Schwarzian does not
contribute classically here and at higher loops. By classically we mean that its contribution
is suppressed by 1/N . Since we are in a thermal state (B.5) has a translation symmetry
along the Euclidean time u. This is why after expanding in Fourier modes (B.7) we will not
have terms linear in εn. It means that the thermal solution (B.5) is still a classical solution
of Schwarzian equations of motion even with complicated non-local interaction induced by
loops. Since we have an overall N in front of the action, integrating out εn will lead to a
subleading correction.

Let us return to the actual 1-loop calculation. The only subtlety is that one has to be
careful with the time ordering, since the denominator involves

(
sin2

(
u1 − u2 + εL(u1)− εL(u2)

))∆
= sin2∆ |u1 − u2 + εL(u1)− εL(u2)|. (B.8)

The result for the marginal deformation ∆ = 1/2:

S/N = αS
J β

+∞∑
n=2

εl,r−n

(
n4−n2

)
εL,Rn + c2

∆µ
2β2

(Jβ)2

(
8π2|εL2 −εR2 |2+32π2|εL3 −εR3 |2+80π2|εL4 −εR4 |2

)
+. . .

(B.9)
and the coefficients tend to grow. One can also evaluate non-quadratic terms. Below are
the first three. All of them have positive coefficients too:

+ 28π2|εL2 − εR2 |4 + 224π2|εL3 − εR3 |4 + 952π2|εL3 − εR3 |4 + . . . (B.10)

+ 2860π2

9 |εL2 − εR2 |6 + . . .

For the case of relevant deformation µψLψR with ∆ = 1/4 the results are similar. The
interaction term has the expansion:

8
3 |ε

L
2 + εR2 |2 + 8|εL2 − εR2 |2 + 48

5 |ε
L
3 + εR3 |2 + 80

3 |ε
L
3 − εR3 |2 + . . . (B.11)

+ 304
15 |ε

L
2 + εR2 |4 + 4432

105 |ε
L
2 − εR2 |4 + 7146

55 |ε
L
3 + εR3 |4 + 137018

495 |εL3 − εR3 |4 + . . .

+ 135424
693 |εL2 + εR2 |6 + 1053952

2835 |εL2 − εR2 |6 + . . . (B.12)

And the coefficient in front is b2 µ2β2

Jβ .
In principle, we can go to higher orders in µ. Curiously, µ4 correction is negative for ε2.
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Figure 12. Wightman function G> for single q = 4 SYK with J = 0.5, β = 40.

C Lorentz time Schwinger-Dyson equation

C.1 Single SYK

Let us first consider a single SYK in Euclidean time. Then the SD equations have the
form:

Σ(τ) = J2G(τ)3,

(−iω − Σ(ω))G(ω) = 1. (C.1)

Now we want to switch to Lorentzian time. We define the Wightman function with an
extra −i:

− i〈ψi(t)ψi(0)〉 = G>(t). (C.2)

As is well-known, upon the analytical continuation in time domain, the time-ordered
Euclidean two-point function becomes the Wightman function, therefore:5

Σ>(t) = −J2 (G>(t)
)3
. (C.3)

The other SD equation is written in the frequency space, this is why after the analytic
continuation it will involve the retarded components:

GR(ω)(ω − ΣR(ω)) = 1. (C.4)

So far we have not used any information about the state we are considering. This infor-
mation is needed to connect G> and GR. In thermal state we can use the FDT:

G>(ω) = 2i ImGR(ω)
e−βω + 1 . (C.5)

An example of how the Wightman function look is presented in figure 12.
5The minus sign is subtle: one can recover it either from the effective action (3.12) on the Keldysh

contour or doing a careful analytic continuation through the frequency space as was done in [4].
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Figure 13. Wightman function G> for two coupled q = 4 SYK with J = 0.5, µ = 0.05, β = 40.

C.2 Two coupled SYK

Now we have 4 Green’s functions. The self-energies have similar expressions:

Σ>
ab(t) = −J2(G>ab(t))3 + iµab, (C.6)

and the equation (C.4) should be understood as a matrix equation. For the diagonal
Green’s functions the FDT has the same form:

G>(ω)aa = 2i ImGRaa(ω)
e−βω + 1 . (C.7)

However the imaginary part of the off-diagonal components is skew-symmetric in time, so
we have:

G>(ω)LR = ReGRLR(ω)
e−βω + 1 . (C.8)

This system of equations can be solved numerically by the iteration procedure used
for a single SYK model [4]. To ensure that the iteration procedure converges to an actual
solution we monitor the discrepancies of eqs. (2.8):

dab = 1
Npoints

‖∂τGab(τ)− Σac ∗Gcb(τ)− δabδ(τ)‖2, (C.9)

and make sure that dab< 10−10. The typical number of discretization points is Npoints∼ 217.
Before the transition the diagonal Green’s function look similar to single SYK ones —

figure 13.

D Derivation of the effective action

Let us write down explicitly the total action for the system on the Keldysh contour C.
We will suppress the bath action. Bath fermions χα and χ̃α, α = 1, . . . ,M belong to
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independent q = 4 SYK systems with coupling JB. We denote their two-point functions
by GB:

G>B(t−1 , t+2 ) = −i 1
M

∑
α

〈χα(t−1 )χα(t+2 )〉 = −i 1
M

∑
α

〈χ̃α(t−1 )χ̃α(t+2 )〉. (D.1)

The total action consists of four terms:

Stot = Skin + SJ + Sµ + Sbath, (D.2)

• Skin is a standard kinetic term for fermions:

iSkin = i

∫
C
dt
∑
j

(
ψLj ∂tψ

L
j + ψRj ∂tψ

R
j

)
. (D.3)

• SJ is SYK interaction:

iSJ = i

∫
C
dt

∑
i<j<k<l

Jijkl
(
ψLi ψ

L
j ψ

L
k ψ

L
l + ψRi ψ

R
j ψ

R
k ψ

R
l

)
. (D.4)

• Sµ is Maldacena-Qi interaction term:

iSµ =
∫
C
dt µ

∑
j

ψLj ψ
R
j . (D.5)

• Finally Sbath is interaction with the bath:

iSbath = i

∫
C
dt

∑
α1<α2<α3,i

(
V α1α2α3
i ψL,iχα1χα2χα3 + Ṽ α1α2α3

i ψR,iχ̃α1χ̃α2χ̃α3

)
.

(D.6)

As usual, we can integrate out the disorders leading to bi-local expression in terms of ψ, χ
and χ̃. Couplings V and Ṽ are Gaussian with the variance [15]:

〈(V α1α2α3
i )2〉 = 〈

(
Ṽ α1α2α3
i

)2
〉 = 3!η

M3 , (no sum). (D.7)

The action can be made quadratic in fermions by introducing the largrangian multiplier
Σ, which is integrated over along the imaginary axis:

iSlag = −N2

∫
C
dt1dt2

∑
ab

Σab(t1, t2)

Gab(t1, t2)− 1
N

∑
j

ψaj (t1)ψbj(t2)

 . (D.8)

Note that we have an overall minus if front of the action. It is important for the equation
connecting the self-energies Σ and Green’s functions. Integrating out the fermions produces
the effective action (3.12):

i
Stot
N

= 1
2 Trlog(ω−Σab(ω))−

∑
ab

∫
C
dt1dt2

(
J2

8 Gab(t1, t2)4+ 1
2Σab(t1, t2)Gab(t1, t2)

)
+

+ iµ

2

∫
C
dt (GLR(t, t)−GRL(t, t))− η2

∫
C
dt1dt2 (GLL(t1, t2)+GRR(t1, t2))G3

B(t1, t2).

(D.9)

Variation of this action with respect to Σab and Gab yields the KB equations (3.15)
and (3.16).
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t1

t2

Initial

t1

t2

Figure 14. Geometry of the (t1, t2) plane. The initial Green functions are placed inside the
gray box.

E Numerical method

Now let us describe the numerical method for solving Kadanoff-Baym equations. Numerical
solution of Kadanoff-Baym equations for SYK model was described previously in [16, 17]
and our approach is essentially the same.

We will use two-dimensional grid with uniform timestep to discretize (t1, t2) plane. The
timestep dt should be much smaller than the characteristic time-scales in SYK 1/J, 1/µ.
Since µ � J , the 1/J constraint is much stricter. We will work with J = 0.5 this is just
a choice to fix energy units. Our time steps will be 0.2, 0.1, 0.05. The main numerical
limitation comes from the fact that the Green functions have spread ∼ β, so we can not
go to very big β, since we will have to use a huge grid. At finite temperature the Green
functions decay exponentially, so to greatly speed up the computation we will concentrate
on the strip |t1− t2| . cβmax on the (t1, t2) plane — figure 14. We will assume that outside
this strip all the Green functions are zero. The constant βmax is the maximal β in the
problem at hand. In our case βmax = βB — bath’s beta. One can verify that once c is big
enough the result of the computation does not change.

With the computation power available to us, in order to keep the computation time to
be of order of dozens of hours, β should be less than 100. This limits us to µ & 0.05. For
µ = 0.05 the transition beta is ∼ 61 — see figure 6.

The system-bath coupling η should be much smaller than J2 = 0.25 so that the system
remain thermal. We will use η in the range 0.01–0.04. Moreover to avoid large gradients
we will switch on the coupling linearly, with the switch-on time Tswitch = 20.

Initial Green function is found by numerically solving Lorentz-time equilibrium
Schwinger-Dyson equation as described in appendix C. The bath Green function is ob-
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tained in a similar fashion. In order to avoid large spreads in the bath’s Green function,
βB will be in the range 70–100.

To compute the integral in KB equations we will use trapezoid method and for the
time propagation we use predictor-corrector scheme. The same techniques have been used
in [16, 17]. For KB equations one has to be careful with propagating the Green function
along the diagonal. Fortunately, for Majorana fermions there is a simple relation:

G>aa(t, t) = − i2 . (E.1)

However, for the Green function obtained by numerically solving the SD equation the
diagonal value is not exactly −i/2, so on a discrete lattice we will just propagate this value:

G>aa(j, j) = G>aa(0, 0). (E.2)

For the mixed GLR we do not have a simple relation like that. So we will use again the
predictor-corrector scheme. The value on the diagonal can be found by either propagating
along t1 or t2. We will take the average of these results.

Let us define the “corner slice” Green functions as G>T,ab(x):

G>T,ab(t) = θ(t)G>ab(T − t, T ) + θ(−t)G>ab(T, T + t). (E.3)

Then the energy at time t = T can be computed analogously to eq. (2.12):

E

N
= i

4

(
∂tG

>
T,LL + ∂tG

>
T,RR + iµ

2 G
>
T,LR

)
, at t = 0. (E.4)

Computing the time derivatives using the KB equtions one arrives at the following integral
form:

E

N
= −iJ

2

4

∫ ∞
−∞

dt sgn(t)
(
G>T,LL(t)4 +G>T,RR(t)4 + 2G>T,LR(t)4

)
+ iµG>T,LR(0). (E.5)

Along the time evolution the system cools down, so formally the temperature is not
well defined. However, if the cooling process is slow we might expect that at each point
in time the short-time correlators will be thermal. In order to extract the temperature we
need to choose the 1d slice of the Green function G>S,ab to use the FDT. For the same side
correlators and different side correlators it looks slightly different. For the same side case
we have:

Im
(
G>T,aa(ω) +G<T,aa(ω)

)
(−2) ImGRT,aa(ω)

= − tanh β(T )ω
2 , (E.6)

whereas for different sides it reads as:

Re
(
G>T,ab(ω) +G<T,ab(ω)

)
(−2) ReGRT,ab(ω)

= − tanh β(T )ω
2 , a 6= b (E.7)

Then one can fit the left hand side with the tanh function to extract the temperature. We
need to select a frequency range of at least a couple of temperatures in order to really probe
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0 10 20 40-10-20-40

Figure 15. (Orange) The left hand side of eq. (3.20) for β = 80, dt = 0.2. The Green function is
defined on a strip of width L = 1600. (Blue) tanh function. We expect that they should match for
frequencies much less than the inverse discretization timestep: n/L � 1/dt. In on this graph this
UV cutoff is at βnmax/L ∼ 400. The region used for the fit, β|n|/L ≤ 10, is within the dashed lines.

the thermalization. On the other hand, for very large frequencies the numerical data has
a lot of noise coming from discrete timestep, see figure 15. Typically we will fit eq. (3.20)
up to frequencies of order 10 temperatures, i.e. βn/L ∼ 10. Although the results do not
depend much of this choice.

In the main text we also studied the behavior of G>T,LR(ω = 0). Let us show that it is
equal to zero in thermal equilibrium. Using the Kubo-Martin-Schwinger(KMS) condition
and GLR = −GRL we have

G>LR(t) = G>RL(iβ − t) = −G>LR(iβ − t). (E.8)

Now, in the integral for the zero-frequency component,

G>LR(ω = 0) =
∫ +∞

−∞
dt G>LR(t), (E.9)

we can shift the integration contour to three pieces: (−∞+iβ, iβ], [iβ, 0], [0,+∞). The first
piece and the last piece cancel each other because of the equality we just found. The integral
along the imaginary time is equal to zero too, as can be similarly shown from KMS condi-
tion. As we mentioned in the main text, in our real-time simulation G>T,LR(ω = 0) might not
be zero. This might cause a spike at ω = 0 in the ratio (3.21). An example of such behavior
is shown in figure 16. This is why in the main text we used simply G>LR(ω = 0) to quantify
being out-of-equilibrium. Whereas for GLL the ratio (3.20) is always a perfect tanh.

F Change of boundary conditions

First we need derive an analogue of (4.3) for the case of global AdS2. We start from fermions
having Dirichlet boundary conditions on both boundaries and add an extra fermion χL,R
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tanh
Re G_K/(-2 Re G_R)

Figure 16. The ratio (3.21) for GLR at η = 0.02, dt = 0.2, J = 0.5, µ = 0.05 extracted from the
real-time simulation.

on the boundary to initiate the flow from Dirichlet to Neumann boundary conditions.
Essentially this way we perform a Legendre transformation [21]. This way we obtain the
relation:

ZN = ZD

√
det Ĝ1−∆, (F.1)

where Ĝ1−∆ is the matrix (
GLL1−∆ GLR1−∆
GRL1−∆ GRR1−∆

)
, (F.2)

with standard conformal correlators

GLL1−∆ ∝
(

sinh
(
t

2

))2∆−2
, (F.3)

GLR1−∆ ∝
(

cosh
(
t

2

))2∆−2
. (F.4)

Now let us return to our problem with the µ term. So now we have Neumann fermions
plus the interaction term µψLψR coupling the two boundaries. The partition function can
be easily found:

Zµ = Zµ=0

√
det

(
1 + µ̂Ĝ∆

)
, (F.5)

where the matrix µ̂ is given by eq. (2.10). For large µ we have

Zµ�1 ∝ ZN
√

det Ĝ∆. (F.6)

To conclude that Zµ�1 ∝ ZD we need the matrix relation

Ĝ1−∆(ω)Ĝ∆(ω) = id. (F.7)

In fact this relation coincides with the conformal (i.e. neglecting the time derivative)
Schwinger-Dyson equation (2.8).
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