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Abstract

The use of SNe Ia to measure cosmological parameters has grown significantly over the past two decades.
However, there exists a significant diversity in the SNIa population that is not well understood. Overluminous
SN1991T-like and subluminous SN1991bg-like objects are two characteristic examples of peculiar SNe. The
identification and classification of such objects is an important step in studying what makes them unique from the
remaining SN population. With the upcoming Vera C. Rubin Observatory promising on the order of a million new
SNe over a 10 year survey, spectroscopic classifications will be possible for only a small subset of observed targets.
As such, photometric classification has become an increasingly important concern in preparing for the next
generation of astronomical surveys. Using observations from the Sloan Digital Sky Survey II (SDSS-II) SN
Survey, we apply here an empirically based classification technique targeted at the identification of SN1991bg-
like SNe in photometric data sets. By performing dedicated fits to photometric data in the rest-frame redder and
bluer bandpasses, we classify 16 previously unidentified 91bg-like SNe. Using SDSS-II host galaxy measurements,
we find that these SNe are preferentially found in host galaxies with an older average stellar age than the hosts of
normal SNeIa. We also find that these SNe are found at a further physical distance from the center of their host
galaxies. We find no statistically significant bias in host galaxy mass or specific star formation rate for these targets.

Unified Astronomy Thesaurus concepts: Observational astronomy (1145); Supernovae (1668); Light curve
classification (1954); Type Ia supernovae (1728)

Supporting material: machine-readable tables

1. Introduction

Following their fundamental role in the discovery of the
accelerating expansion of the universe (Riess et al. 1998;
Perlmutter et al. 1999), SNeIa have been used to determine
cosmological parameters with an increasing level of accuracy
and precision (Betoule et al. 2014; Rest et al. 2014; Scolnic
et al. 2014, 2018; DES Collaboration et al. 2018; Jones et al.
2019). The use of SNeIa as cosmological probes relies on the
fact that SNIa luminosities at the time of maximum brightness
are not only bright but also have low intrinsic scatter. This
scatter can be reduced even further by calibrating their intrinsic
peak luminosity with light-curve width (Phillips 1993; Phillips
et al. 1999) and optical color (Riess et al. 1996; Tripp &
Branch 1999). However, even after applying these corrections
SNeIa remain a heterogeneous collection of objects spanning a
diverse collection of subtypes (Taubenberger 2017).

Early attempts at classifying peculiar SNeIa quickly
identified categories of overluminous, SN1991T-like objects
(Filippenko et al. 1992a; Phillips et al. 1992) and subluminous,
fast-declining objects like SN1991bg (Filippenko et al. 1992b;
Leibundgut et al. 1993; Turatto et al. 1996). More recent works
have introduced additional classifications based on spectro-
scopic properties such as SN2002es-like SNe (Ganeshalingam
et al. 2012), which are subluminous but slow declining, super-
Chandrasekhar-mass candidates (Howell et al. 2006), 2002cx-
like SNe, also known as SNeIax (Li et al. 2003; Jha et al.
2006; Meng & Podsiadlowski 2018), and others with fewer
observed targets. However, the presence of SNe like SN1991T

and SN1991bg make up the predominant population of
observed peculiar SNe.
There is some disagreement in the literature when it comes to

the rate of 91bg-like events. Recent rate estimates using SNe
observed by the Lick Observatory Supernova Search (LOSS)
range from 11% to 15% of the SNIa population (Ganesha-
lingam et al. 2010; Li et al. 2011). Alternatively, González-
Gaitán et al. (2011) and Silverman et al. (2012) estimate that
91bg-like SNe make up a more modest 6–9% using various,
low-redshift data sets. However, González-Gaitán et al. (2011)
note that their estimates increase dramatically with the
inclusion of transitional SN1986G-like SNe, which have
luminosities that lie in the intermediate range between normal
and SN1991bg-like.
The upcoming Vera C. Rubin Observatory will conduct the

Legacy Survey of Space and Time4 (LSST; LSST Science
Collaboration et al. 2009) and observe hundreds of thousands
of new SNe over a 10 year survey, promising a dramatic
increase in the number of observed peculiar SNe. However, the
availability of spectroscopic follow-up observations and, as a
result, spectroscopically determined classifications, will be
heavily limited. The ability to provide accurate, photometric
classifications will thus be increasingly important in the coming
years for maximizing the science that can be done with the
Rubin Observatory.
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One approach to this challenge is the development of
machine-learning classifiers designed to reproduce existing
classification schemes (e.g., Richards et al. 2012; Karpenka
et al. 2013; Varughese et al. 2015; Lochner et al. 2016; Möller
et al. 2016; Sasdelli et al. 2016; Dai et al. 2018; Muthukrishna
et al. 2019; Pasquet et al. 2019). Although machine-learning
classifiers benefit from the ability to scale to large data sets,
they do not reveal the underlying physics that lead to a
classification. The ability of a machine-learning classifier to
identify unexpected, peculiar objects is also extremely sensitive
to the quality and diversity of the initial training sample.

An alternative is to classify SNe based on their light-curve
properties. Empirically based classification schemes are not
only transparent in how they work, but can simultaneously
provide physically motivated values such as light-curve color,
standardized peak luminosities, and decline rates. Furthermore,
many SN analyses already employ the use of a light-curve
fitter, making it easy to incorporate classification into existing
analysis procedures.

In González-Gaitán et al. (2014, G14 hereafter) a photo-
metric identification technique was introduced for discriminat-
ing SN1991bg-like objects in photometric samples. Using
several low-redshift samples from the literature, G14 demon-
strated that this method is not only capable of identifying dim,
fast-declining SNe, but can potentially identify other peculiar
transients such as SNeIax-like, SN2006bt-like, and super-
Chandrasekhar SNeIa. We apply here the same classification
technique to a larger target sample and compare results against
spectroscopically determined subtypes.

We make two significant changes to the original approach
of G14. The first is the use of a newer model for 91bg-like SNe
that has been extended further into the near infrared (NIR) and
ultraviolet (UV). By using this extended model, we are able to
apply the classification to a larger, higher-redshift sample of
SNeIa. Second, we consider multiple implementations of the
technique and discuss potential biases that may arise.

The layout of this paper is as follows. In Section 2 we
discuss the supernova sample considered by this paper. In
Section 3 we present our chosen classification method,
including a detailed outline of our procedure in Section 3.1
and the models employed by our analysis in Section 3.3. Our
photometric classifications are then presented in Section 4
followed by our conclusions in Section 5. A complete technical
outline of this work, including a Python code suitable for
reproducing results, is available online.5

2. Data

In this work, we focus on the photometric classification of
SNe observed by the Sloan Digital Sky Survey II (SDSS II)
Supernova Survey. Since spectroscopic follow-up is limited for
the SDSS SN sample, we additionally consider spectro-
photometric observations taken by the Carnegie Supernova
Project I (CSP-I), allowing us to better estimate the
performance of our classification technique.

2.1. SDSS-II

The SDSS II SN survey Sako et al. (2018, S18 hereafter) was
performed using the 2.5-m Sloan Foundation Telescope (York
et al. 2000; Gunn et al. 2006) at Apache Point Observatory

(APO). The SDSS II SN survey ran over three observing
seasons from 2005 to 2007, covering a 300 square degree stripe
of sky along the celestial equator in the Southern Galactic
hemisphere in the ugriz bands (Fukugita et al. 1996; Doi et al.
2010). All SDSS SNe are referred to in this work using their
associated Candidate Identifier (CID) published in S18.
The SDSS SN data release provides light-curve data for 10,258

variable and transient sources. This includes 540 objects
spectroscopically classified as SNIa, 64 SN II, 3 super-luminous
SN (SLSN), 22 objects classified as either SN Ib or Ic, and 4131
sources that are either variable or AGNs. Additionally, there are
2009 targets with light curves that were deemed too sparse or
noisy to provide a classification. Shown in Figure 1, this
combined sample spans redshifts out to z 0.9.
Initial classification of the SDSS spectra were performed in

Zheng et al. (2008) using the rvsao.xcsao cross-correlation
package of IRAF (Tody 1993). Additional photometric
classifications using the SDSS photometry were performed
by Sako et al. (2011) using an extension of the Photometric SN
IDentification (PSNID) software (Sako et al. 2008). Further
delimitations to each classification were added manually by
Sako et al. (2011) depending on whether the classification was
made photometrically (denoted with a prefix p), spectro-
scopically (no prefix), or using a host galaxy redshift (prefix z).
These classifications are referred to throughout this work as a
reference for those familiar with the SDSS data set or other
uses of PSNID.
No systematic search or subtyping effort for peculiar SNe

was performed beyond the assignment of basic SN types (M.
Sako 2020, private communication). However, a small
selection of targets was manually flagged based on their

Figure 1. Stacked redshift distribution for the objects considered in this paper,
grouped by their classification in S18. Spectroscopic classifications are
available predominately for lower redshift targets, while higher-redshift targets
have fewer photometric or spectroscopic classifications. Reference lines mark
redshift values at which rest-frame u-band observations are equivalent to the
observer frame g and r band as determine by effective wavelength. Not
included are 76 objects with unknown classifications for which a redshift value
could not be determined.

5 See https://Perrefort2020.readthedocs.io/en/latest/.
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spectroscopic or photometric properties. These SNe are listed
in Table 1 and include four SNe possibly similar to
SN1991bg, one SN possibly similar to SN2000cx, two SNe
possibly similar to SN2002ci, and three SNe possibly similar
to SN2002cx.

Photometric zero-points for SDSS-II were determined using
stars from the Ivezić catalog (Ivezić et al. 2007). The position,
band-specific flux, and host galaxy intensity for each target
were then fitted for using Scene Model Photometry (SMP;
Holtzman et al. 2008). Betoule et al. (2013) provides the most
updated calibration of these data using a position-dependent
correction, which were applied in S18 and are also used in
this work.

2.2. CSP-I

CSP-I was a 5 year survey in the optical and NIR run at Las
Campanas Observatory (LCO) from 2004 through 2009.
Optical observations were taken in the ugriBV bandpasses
(Stritzinger et al. 2011) using the SITe3 and Tek5 CCD
cameras on the Swope 1 m and du Pont 2.5 m telescopes,
respectively. NIR imaging was performed in the YJH bands
(Contreras et al. 2010) using the Wide-Field IR Camera
(WIRC; Persson et al. 2002) on the du Pont 2.5 m telescope and
later RetroCam on the Swope 1 m telescope.

CSP-I includes spectrophotometric observations of 134 SNe
Ia spanning <z 0.085 (Hamuy et al. 2006; Krisciunas et al.
2017). Out of these targets, 96 were classified as normal SNe
Ia, 13 as being like SN 1991bg, 5 like SN 1991T, 5 like SN
2002cx, and 4 were unclassified.
In Mosher et al. (2012) overlapping observations between

CSP-I and SDSS-II were compared for nine spectroscopically

Figure 2. CSP observations of the spectroscopically normal SN2004ef are fit separately in the rest-frame blue (top) and red (bottom) bands using the SALT 2.4
(left), H07 (middle), and SN1991bg-like (right) models. We note in the blue bands that the fitted 91bg model is narrower and fainter at peak than the observations. We
also note that the H07 model, which is trained using a more heterogeneous set of template spectra than SALT 2.4, overestimates the u-band. In the red bands we see
that the morphology of each model plays a greater role. In particular, the lack of a secondary maximum in the 91bg-like model lends greater importance to late time
observations (phase 30 days) in constraining the width of the modeled light curve.

Table 1
Objects Identified in the SDSS SN Survey as Being Potentially Peculiar
Objects Based on Visual Inspection of the Spectrophotometric Properties

CID Classification

4524 SN 2002ci
6295 SN 1991bg
7017 SN 2002ci
8151 SN 2002cx
12979 SN 1991bg
13357 SN 2002cx
15340 SN 2000cx
17886 SN 1991bg
18890 SN 1991bg
20208 SN 2002cx

Note. Objects are listed using their Candidate Identifier from Sako et al. (2018).

(This table is available in machine-readable form.)
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confirmed SNe Ia, five of which were classified as peculiar.
Photometric observations in the gri bands were found to agree
within a 1% level in flux with a typical epoch-to-epoch scatter
no greater than 0.05 magnitudes. The u-band scatter was
slightly higher at 0.077 magnitudes, but flux values were still
consistent within 1%. Taking into account the small sample
size along with systematic uncertainties in the analysis, it was
estimated that offsets in observer frame u were conservatively
within 0.04 magnitudes.

3. Classification Method

The classification of 91bg-like SNe relies on them having
distinct spectrophotometric differences from the normal SNIa
population. Most notably, the presence of strong Ti lines in
their spectra indicates that 91bg-like SNe tend to be cooler than
normal SNeIa, which can generally be attributed to a lower
yield of Ni56 synthesized in the explosion (Nugent et al. 1995).
In photometric terms, this means 91bg-like events have light
curves that are both fainter at maximum than normal SNeIa (M

~ -91bg 18B( ) ) and decline more rapidly after peak bright-
ness. The latter of these effects is typically well demonstrated
by the light-curve parameters stretch or Dm15, where typical
values are found to be D m B 1.715( ) (Galbany et al. 2019).

The cooler explosion temperature of 91bg-like SNe also has
an impact on the evolution of light-curve color. The lower
temperatures allow for the recombination of Fe III to Fe II to
happen sooner, which results in redder colors at maximum.
This causes the epoch of peak brightness for redder bands to be
delayed when compared with the normal SNeIa population.
SN1991bg-like explosions also lack the secondary maximum
seen in the redder bands in normal SNeIa. The delay in the
peak brightnesses combined with the lack of a shoulder or
secondary maxima in redder bands make 91bg-like SNe
identifiable by their photometric properties.
In principle, one might attempt to distinguish 91bg-like

events by directly looking for these photometric properties–
specifically the lack of a secondary maximum. However, this
requires an observational cadence with even and complete
sampling from maximum light through the secondary max-
imum. These problems can be alleviated by performing an
overall fit to the data and selecting targets based on a c2 value
or a set of model parameters, but this raises additional
challenges since there may be some normal SNe with
intrinsically lower stretch or redder colors. For example, highly
reddened, normal SNe with a low stretch would look
potentially similar to 91bg-like SNe in terms of c2. We here
instead analyze SDSS-II SN data using the classification
method of G14.

Figure 3. CSP observations of the 91bg-like SN2005ke are fit separately in the rest-frame blue (top) and red (bottom) bands using the SALT 2.4 (left), H07 (middle),
and 91bg-like (right) models. We note that the SALT 2.4 and H07 fits—which represent normal SNeIa—are significantly bluer when fit in the ugB bands than the
SN1991bg model, which is a significantly better fit to the data.
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3.1. Classification Procedure

We employ our classification method following an adaptation
of G14. To start, photometric observations for each target are split
into collections of rest-frame red and blue bandpasses as defined
by the rest-frame effective wavelength of each band lz,eff . When
doing so, we define blue bandpasses as having l < 5500z,eff Å
and red bandpasses as havingl > 5500z,eff Å. The use of 5500Å
is chosen to separate the rest-frame ug bands from the rest-frame
riz and thus puts the secondary maximum in the red bandpasses.

We separately fit each of the blue and red data using two
light-curve models: one representing normal SNeIa and one
representing 91bg-like objects. We calculate the c2 for each
combination based on the modeled flux F for a set of
parameters p̄, the observed flux f, and the of degrees of
freedom, = -d N plen( ¯).

åc
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-

=
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F p f1
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Using the resulting c2 values, we classify targets based on their
position in the following phase space:

c cº -x Ia 91bg , 2blue
2

blue
2( ) ( ) ( )

c cº -y Ia 91bg . 3red
2

red
2( ) ( ) ( )

By construction of the above coordinates, we expect 91bg-like
SNe to fall in the upper right (first) quadrant while normal
SNeIa should fall in the lower left (third) quadrant of the x y,
plane.

Our normal SNeIa and 91bg-like models are imperfect,
particularly in the model variances. Thus the classification
quadrants may not be best separated by intersecting lines at
0, 0( ). An alternative origin may instead provide a higher level
of purity when classifying peculiar SNeIa. Following G14, the
quadrant boundaries are determined by using spectroscopically
classified targets to maximize the figure of merit (FOM)
parameter

=
+

N

N

N

N N
FOM , 4true

total

true

true false
( )

where Ntotal represents the total number of objects with a given
type (e.g., 91bg-like objects), Ntrue is the number of objects
correctly classified as a given type, and Nfalse is the number of
objects falsely classified as a given type.

3.2. Fitting Procedure

We choose to use the SNCosmo Python package to handle
light-curve fits since it allows us to easily implement, modify,
and apply a variety of template-based models (Barbary et al.
2016). Unless otherwise stated, we use the iminuit
minimization routine (sncosmo.fit_lc) to determine best-
fit parameters. By default, the SNCosmo package fits each
model using a single set of global, model-dependent para-
meters. However, we note that this behavior is significantly
different from the original implementation of the classification
technique in G14.
In G14, SNe were classified using the SiFTO light-curve

fitter, which is an empirical fitter that uses magnitude, light-

Table 2
Fitted Parameters Are Listed for a Combination of Models and Bandpass Collections

CID Band Model z z err t0 t0 err c c err x1 x1 err E(B−V ) chisq ndof Bmax DM B 15( )
MJD MJD mag mag mag

679 all Hsiao 0.124 53690.37 0.01 0.50 0.72 0.07 68.10 51.0 −15.80 0.52
679 all sn91bg 0.124 53689.20 0.05 0.00 0.78 1.25 0.06 0.07 81.61 50.0 −15.72 1.45
679 blue Hsiao 0.124 53690.37 0.33 0.30 0.07 16.90 19.0 −15.64 0.65
679 blue sn91bg 0.124 53689.20 0.00 0.92 1.25 0.00 0.07 22.08 18.0 −16.14 1.45
679 g5 Hsiao 0.124 53690.37 0.30 0.31 0.07 7.75 9.0 −15.63 0.68
679 g5 sn91bg 0.124 53689.20 0.00 0.63 1.25 0.00 0.07 12.13 8.0 −16.12 1.45
679 i5 Hsiao 0.124 53690.37 0.50 0.15 0.07 20.59 9.0 −16.54 0.52
679 i5 sn91bg 0.124 53689.20 0.27 0.31 1.25 0.00 0.07 28.69 8.0 −15.18 1.45
679 r5 Hsiao 0.124 53690.37 0.50 0.17 0.07 11.83 9.0 −15.98 0.52
679 r5 sn91bg 0.124 53689.20 0.03 0.55 1.25 0.00 0.07 17.34 8.0 −15.67 1.45
679 red Hsiao 0.124 53690.37 0.50 0.10 0.07 46.75 31.0 −16.14 0.52
679 red sn91bg 0.124 53689.20 0.00 0.62 1.25 0.00 0.07 57.97 30.0 −15.62 1.45
679 u5 Hsiao 0.124 53690.37 0.50 0.85 0.07 8.12 8.0 −16.62 0.52
679 u5 sn91bg 0.124 53689.20 0.00 0.50 1.25 0.03 0.07 9.33 7.0 −17.52 1.45
679 z5 Hsiao 0.124 53690.37 −0.09 0.26 0.07 10.95 9.0 −17.13 1.22
679 z5 sn91bg 0.124 53689.20 0.30 0.65 1.15 0.05 0.07 11.80 8.0 −15.07 1.52
682
685 all Hsiao 0.205 0.012 53654.83 0.85 0.50 0.00 0.05 343.62 85.0 −18.47 0.52
685 all sn91bg 0.050 0.019 53647.87 4.49 0.00 0.01 1.25 0.00 0.05 721.75 84.0 −15.08 1.45
685 blue Hsiao 0.205 53654.83 0.50 0.00 0.05 259.79 51.0 −18.45 0.52

Note. Red and blue bands indicate a collection of bandpasses where the rest-frame effective wavelength is redward or blueward of 5500 Å. Fits to individual bands are
listed using the bandpass name and SDSS CCD column number (see Doi et al. 2010). We note that the version of the Hsiao model used does not include a color
parameter c and thus has one degree of freedom more than the SN 1991bg model. Any redshift values missing a reported error were specified using spectroscopic
measurements. Any remaining missing entries for a particular fit indicate that parameter was not included in the given fit and the result from a fit to all data was used
instead. Results are limited to the first 20 table entries.

(This table is available in its entirety in machine-readable form.)
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curve shape (i.e., stretch), and color to fit a light-curve (Conley
et al. 2008). It is important to note that SiFTO uses band-
specific flux normalizations as opposed to a set of global, light-
curve specific parameters. Instead of relying on a dedicated

color term, SiFTO allows the scale factor of the template to
vary independently for each band. Similarly, the shape of the
SiFTO model is described by a single stretch parameter that is
applied differently in each observed filter as a function of
effective wavelength.

Figure 4. Classification coordinates are shown for objects observed by CSP
(colored squares) and SDSS (gray circles) as determined by fitting rest-frame
red/blue bandpasses independently (top) and as collective sets (bottom). CSP
coordinates in both panels have been scaled by a factor of 0.023 along the x-
axis and 0.030 along the y-axis to match the median S/N of SNe Ia observed
by SDSS. The increased dispersion of points in the bottom panel indicates a
lower sensitivity of the classification on the chosen classification boundaries.

Figure 5. FOM values are shown as a function of classification boundaries.
The higher dispersion of points when fitting red/blue observations as collective
sets results in a significant area of degenerate FOM values that can only be
broken by the inclusion of additional spectroscopically classified SNe Ia.
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The choice of how parameters are varied across bands can
potentially have a major impact on the resulting classification.
In principle, we expect fits performed to red and blue data as
collective sets to be more constrained by intrinsic color.
However, by allowing parameters to vary across bands, the
overall morphology of the light curve is allowed to have a more
significant impact. The drawback to this approach is a
potentially higher sensitivity to the cadence of the observations.
To understand the impact of this choice, we implement fitting
routines for both approaches and compare the results.

Our resulting fitting procedure is as follows:

1. For each target, the Milky Way extinction is determined
using the Schlegel et al. (1998) dust map and the
Fitzpatrick (1999) extinction law. This value is never
varied in any fit.

2. To determine a fiducial set of fit parameters, each light
curve is fit using both the H07 and SN91bg models and
all available data points. At this step, all model
parameters are varied except the redshift, which is only
varied if it has not been determined with a spectroscopic
observation.

3. Using the redshift value determined in the previous step,
the observed bandpasses are separated into the rest-frame
blue (l < 5500z,eff Å) and red (l > 5500z,eff Å)
bandpasses.

4. The red and blue data sets are fit using both models. So
that we can investigate the resulting effect, we perform
fits twice: once allowing fit parameters to vary indepen-
dently across bands, and again using a single set of
parameters for each red/blue data set. At this stage, the
redshift and time of B-band maximum remain fixed to the
value determined in step 2.

3.3. Supernova Models

Although the classification scheme described above only
requires two SN models, we consider three models in our

Figure 6. Differences between the reduced c2 of models for normal and
SN1991bg-like SNe. Fits are performed separately in the rest-frame blue
(l < 5500z,eff Å) and red (l > 5500z,eff Å) bandpasses using a collective set
of parameters for the redder and bluer bandpasses. We expect SN1991bg-like
objects to fall in the upper right quadrant (Q1) and normal SNeIa in the lower
left (Q3). Light curves with better overall fits (smaller c2) to all the data with
the H07 (SN 1991bg) model are shown in blue (orange).

Figure 7. A comparison of fits to SDSS object CID 15749 using models for
normal (left) and SN1991bg-like (right) supernovae. Fits are performed to the
entire data set (dotted green) the blue and red bandpasses as separate sets (dashed
orange), and to each bandpass independently (solid blue). By fitting each model to
subsets of the data, the impact of the observed color in constraining the fit is
lessened and the morphology of each band allowed to play a more influential role.
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analysis: two used for target classification and a third as a
baseline reference for comparison with existing results in the
literature. When discussing the general properties of an
observed light curve, we default to the fitted parameters of
the SALT 2.4 model (Guy et al. 2007). The remaining two
models are chosen to closely mimic those used in G14.

For normal SNe, we use the spectral time series template
from Hsiao et al. (2007, H07 hereafter). This template was
intentionally constructed to incorporate a large and hetero-
geneous sample of observed spectra and is the same model
used by G14. Although the H07 model is already built into
SNCosmo, the default model does not include a stretch-like

parameter. This is problematic for two reasons. First, it lends
the other models a potentially unfair advantage in their
flexibility to fit a given light curve. Second, it limits our
ability to investigate the impacts of fitting each bandpass
independently versus as red/blue sets. To address these issues
we add a stretch parameter - < <x0.5 0.51 to the preexisting
parameters of amplitude A, redshift z, and time of B-band
maximum t0.
Here and throughout this paper, we have chosen the variable

x1 to represent a stretch-like parameter similar in significance to
that of SALT 2.4. However, we note that the full meaning of
this parameter is uniquely dependent on the model being

Figure 8. SNe observed by SDSS are broken down into four categories determined by their spectroscopic classification. If a spectroscopic classification is not
available, the photometric classification determined by the PSNID software is used instead. The difference in reduced c2 for models of normal and SN1991bg-like
SNe are shown for normal SNeIa (top left), SNe II (top right), SNe Ib/Ic (bottom left), and targets with light curves too noisy to determine a classification (bottom
right). We note that SN II events are constrained to quadrants 2 through 4, while SN Ib- and Ic-like objects are clustered near the center of the phase space and SNeIa
are primarily scattered across quadrants 1 and 3. Dashed lines are used to indicate x=3, y=0.
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discussed. For the H07 model, we implement the x1 parameter
such that the flux F is determined from the template lf t,H ( )
as:

l
l

=
-
+ +

F t z A t x Af
t t

x z
, , , , ,

1
,

1
. 5H 0 1 H

0

1
( )

( )
( )

⎛
⎝⎜

⎞
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As a model for 91bg-like SNe, we employ the same
spectroscopic template used in the PLAsTiCC challenge (The
PLAsTiCC team et al. 2018), which includes the same
parameters as the H07 model in addition to a color parameter
c. This template is based on the 91bg model from Nugent et al.
(2002) but is extended further into the NIR and UV using
synthetic spectra from Hachinger et al. (2008) and light curves
observed by Swift (Brown et al. 2009). This allows the model
to cover a broader wavelength range from 1,000 to 12,000Å
and permits the fitting of targets at higher-redshift values. The
parameters of the 91bg model span stretch values from

 x0.65 1.251 and color values from  c0 1.0.
Using observations from CSP (Krisciunas et al. 2017), we

compare fits of all three models to a spectroscopically normal
and 91bg-like SN in Figures 2 and 3, respectively. We note in
the blue bands that the most significant difference between the
fitted models is their color, although the decline rate does play a
secondary effect. Conversely, the biggest difference between
the normal and 91bg-like models in the red bands is the overall
morphology (i.e., the existence or lack of a secondary
maximum). In particular, we see that late time observations
(30 days past maximum) play an important role in
constraining the stretch of the SN1991bg model when fitting
normal SNeIa light curves. We also note that there is a key
difference in the epoch of the first maximum, particularly in the
blue bands, which plays an important role in determining the
resulting chi-square.

4. Photometric Classification Results

Table 2 presents the fitted parameters for each SN using both the
SN1991bg and modified H07 models. Fits are performed for all
targets not classified by S18 as being nontransients (i.e., as either
variable- or AGN-like objects). To ensure fits are well constrained
by the data, we disregard any targets not having observations with
a signal-to-noise ratio S/N�5 in two or more bandpasses.
Furthermore, we require at least one of these observations to fall
between−15 and 0 days of the fitted SALT 2.4 B-band maximum,
and the other between 0 and 25 days. Targets not matching these
criteria are dropped from our sample, leaving a total of 3882
remaining targets.

4.1. FOM Optimization

In order to optimize Equation (4), we require a set of
spectroscopically classified SNeIa. Spectroscopic classification

Table 3
Classification Coordinates for Objects Classified as Being Photometrically

Similar to SN1991bg

CID xBand yBand xCollective yCollective

2778 8.42 2.96 6.46 9.62
11570 −4.53 −33.21 4.34 13.74
12689 6.32 0.75
15204 −19.94 11.02 33.66 137.53
16215 −16.9 −23.6 7.14 29.66
16309 −0.11 −2.39 5.18 2.54
16692 0.88 −4.04 9.06 21.12
17094 1.34 15.82 3.25 13.37
17468 3.59 8.04 6.85 2.43
17886 0.03 6.92 10.64 13.55
18218 3.69 0.14 4.18 0.2
18751 12.28 3.04 12.28 4.59
18890 0.56 5.75 3.64 10.95
19065 −0.22 0.68 4.58 0.86
21678 10.87 8.38 24.23 10.2
21898 0.86 12.67 4.2 28.31

Note. Included are coordinates calculated by fitting photometric bandpasses
independently (xBand, yBand) and as collective red/blue sets (xCollective,
yCollective). SNe are classified as being 91bg-like if they satisfy xCollective
>x 3 and yCollective >0. Missing entries indicate a set of fits where one or

more fits failed to converge.

(This table is available in machine-readable form.)

Table 4
A Comparison of Objects Classified as Anomalies by the Machine-learning
Classifier Published in Pruzhinskaya et al. (2019) and Their Corresponding

Classifications Determined in This Work

CID PSNID Data Sets x y Class

1706 pSNII 8 −9.43 −4.02 Normal
2050 Unknown 7 −0.72 −0.26 Normal
2093 pSNII 2 −1.0 −1.91 Normal
2661 SNII 4 0.35 −0.52 Normal
2809 pSNII 2 −1.43 −0.52 Normal
4226 pSNII 2 −12.5 −0.84 Normal
4330 pSNII 5 −1.66 −1.28 Normal
4652 pSNII 4 −4.52 −2.0 Normal
5314 pSNII 8 −8.71 0.97 Peculiar
6992 pSNII 1 −1.64 −0.38 Normal
12868 pSNII 3 −2.62 −1.02 Normal
13112 pSNII 8 −1.31 −2.55 Normal
13291 pSNII 4 −47.91 −20.57 Normal
13461 pSNII 8 −1.8 −1.77 Normal
13589 pSNII 4 −2.62 −0.63 Normal
13725 pSNII 6 −11.87 −2.37 Normal
13741 pSNII 5 −1.13 −0.64 Normal
14170 pSNII 8 −2.09 −0.75 Normal
15048 pSNIa 3 −0.68 −0.04 Normal
15565 pSNII 8 0.97 0.16 Peculiar
15745 pSNIa 3 −0.56 −0.05 Normal
16302 pSNIa 3 −4.37 −3.21 Normal
17292 pSNII 5 −13.92 −7.07 Normal
17317 zSNII 2 −2.91 −5.5 Normal
17339 pSNII 7 −6.45 −2.0 Normal
17509 pSNII 6 −23.32 −4.59 Normal
17756 pSNII 8 −16.31 −2.53 Normal
17789 SLSN 2 −40.1 −27.26 Normal
18228 pSNII 1 −0.27 0.04 Peculiar
18266 pSNII 3 −31.69 −6.44 Normal
18391 Unknown 2 2.16 −3.79 Normal
18733 pSNII 1 −2.33 −2.06 Normal
19047 zSNII 1 −1.76 −0.16 Normal
19395 pSNII 1 −2.36 −0.28 Normal
19504 SNII 3 0.18 −0.03 Normal
19699 pSNII 3 −2.26 −0.66 Normal
20266 pSNII 4 −1.62 −0.81 Normal

Note. Objects with coordinates > >x y3.00, 0.00 are classified as SN
1991bg-like SNe. Objects with coordinates < <x y3.00, 0.00 are classified
as normal SNe.

(This table is available in machine-readable form.)
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of SDSS targets was attempted for this work following the
prescription of Silverman et al. (2012) using the SN IDentification
software6 (SNID; Blondin & Tonry 2007). Although excellent
agreement was found with S18 when assigning SN types,
subtyping results proved to be unreliable. Overall, this was
attributed to either poor wavelength coverage, strong host
galaxy contamination, and/or a low S/N in the observed
spectra.

As an alternative, we supplement our data set with spectro-
scopically classified objects from CSP (Folatelli et al. 2013).

By virtue of spanning a lower redshift range, photometric
observations taken by CSP have, on average, a higher S/N than
targets observed by SDSS. This is problematic since our
classification scheme relies on a coordinate system that is based
on chi-squared values and thus scales inversely with the
average S/N (see Equation (2)). Our solution is to rescale the
classification coordinates of CSP targets to more closely
resemble SDSS using the median S/N in the rest-frame blue
(S/NB) and red bands (S/NR) as follows:

¢ ºx x
S N

S N
, 6CSP

B,SDSS

B,CSP
CSP ( )

Figure 9. Distributions of the SALT 2.4 light-curve model fit to SDSS photometric observations. Points are color coded according to their position in the phase space
c c= -x Ia 91bgblue

2
blue
2( ) ( ), c c= -y Ia 91bgred

2
red
2( ) ( ). We note that that SN1991bg-like objects in quadrant 1 of the x, y phase space (Q1; orange squares) are

fainter and redder than the normal SNeIa population in quadrant 3 (Q1; gray density plot). Objects in quadrant 2 (Q2; blue triangles) are expected to be non-1991bg-
like peculiar SNe.

6 Version 5.0: https://people.lam.fr/blondin.stephane/software/snid/
index.html.
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Using the above definitions, we determine scale factors of
0.023 and 0.030 for the x and y coordinates, respectively.

Following the prescription of G14, the rescaled CSP coordinates
are used to optimize the value of Equation (4) using a bootstrap
technique (Efron 1979; Felsenstein 1985). In total, we draw 100
random samples, each containing 75% of the available classifica-
tion coordinates, and recalculate the FOM each time. So that the
FOM can be evaluated, each sample is guaranteed to contain at
least one 91bg-like SN. Shown in Figure 4, the final boundaries are
chosen using the average over all randomly realized samples. This
results in a peak FOM value of 0.78 when fitting observations as
red/blue sets and 0.75 when fitting bandpasses independently.

Shown in Figure 5, we note there exists a significant degeneracy
in the maximized FOM value. This makes it possible to shift the
classification boundaries in such a way that the classification of
some targets changes despite the FOM remaining constant. To
address this, we choose to use classification boundaries having the
largest FOM, while also independently minimizing the x and y
cutoffs to be as close to the origin (0, 0) as possible. This results in

classification boundaries of (3, 0) when fitting bandpasses as sets
and (0.5, 0) when fitting bandpasses independently.

4.2. Classification Results

Figure 4 shows the classification coordinates resulting from
fitting bands independently and as collective red/blue sets. We see
that when fitting the red and blue bands as collective sets, fits to red
bandpasses have a stronger impact on the classification. This is
demonstrated by the increased vertical dispersion of points where
>y 0. Similarly, when fitting bandpasses independently the

classification of SN1991bg-like objects is primarily driven by
poor template fits in the red bands. We attribute this to differences
in the light-curve morphology.
We note that fits to the data as collective red/blue sets require

fewer overall light-curve fits than when fitting bandpasses
independently. Fitting the data as two sets only requires fitting
each model twice, whereas fitting individual bands requires a
number of fits equivalent to twice the number of observed bands.
As a result, fitting the observations as collective sets introduces
fewer opportunities for a fit to diverge and the resulting
classification coordinates are more stable. Collective fitting results
also have a higher optimized FOM value. For these reasons, we

Figure 10. Area normalized distributions for host galaxy properties of objects identified as normal (solid blue) and SN1991bg-like (dashed orange) SNe. The
Aderson-Darling test is used to determine whether the two distributions are drawn from different underlying distributions and the resulting p-value is displayed for
each host property. For p-values above the 5% threshold, we conclude SN1991bg-like events are drawn from the same underlying distribution. We find that 91bg-like
events prefer further distances from the centers of their host galaxies and are more likely to occur in hosts with an older average stellar age than normal SNeIa.
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choose to use coordinates determined from the collective fitting
process to classify 91bg-like SNe. This leaves us with 16 remaining
objects: CID 2778, 11570, 12689, 15204, 16215, 16309, 16692,
17094, 17468, 17886, 18218, 18751, 18890, 19065, 21678, and
21898. Classification coordinates for these objects are listed in
Table 3.

Shown in Figure 6, we note that some targets are classified
as normal SNeIa in the red versus blue cn

2 comparison
despite the SN1991bg model having a lower cn

2 when fit to
all available data. An example case is shown in Figure 7,
where we examine fits to observations of SDSS object CID

15749. In this case, we see that significant influence is
exerted by poor fits to observations in ug bands. However,
visual inspection of the light-curve shows that the morph-
ology of these bands is unusual despite normal behavior in
the other bands. By separating the fits to the blue and red
data, the impact of the ug bands is mitigated, and the
morphology of the other bands is allowed to play a more
influential role in the classification.
To further understand the behavior of the employed

classification scheme, in Figure 8 we compare our classification
results against spectroscopic and photometric classifications

Figure 11. The Anderson–Darling test is used to determine whether normal and 91bg-like SNe are drawn from the same underlying distributions of host galaxy
properties. This test is performed as a function of quadrant boundaries for the classification coordinates. The resulting p-values are shown for a collection of host
galaxy properties as calculated by FSPS (top row) and PEGASE (middle row). Considered properties in these rows include host galaxy mass (left), star formation rate
(center), and average stellar age (right). The calculation is also repeated for the physical distance of SNe from their host galaxies (bottom row). The actual quadrant
boundaries used in this work are shown in red for reference. The p values are not qualitatively sensitive to the choice of quadrant boundary—for host mass, average
stellar age, and distance the p values consistently fall either above or below 0.05. The normal SNeIa and 91bg-like SNeIa identified in this work are clearly different
in their host galaxy stellar age and physical distance from the host galaxy center.
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from S18. We note that two of the four SNe with light curves
that were visually flagged by the SDSS SN team as potential
91bg-like objects are also labeled as 91bg-like SNe by our
classifier. We also note that targets classified in the original
data release as SNe II, either spectroscopically or photome-
trically, are primarily constrained to quadrants two and three.
The same cannot be said for other types of core-collapse (CC)
events; however, both Type Ib and Ic SNe tend to be clustered
in the center of the phase space. By asserting a cut at x 3,
y 0, we find that all but one SNe II event can be excluded

from the first quadrant (CID 5052). This indicates that, given
the models we have chosen and their implementation, the
classification scheme is robust against contamination by CC
events.

Given that SN1991bg-like SNe are redder at peak than their
normal SNeIa counterparts (Galbany et al. 2016; de Jaeger
et al. 2018), it is expected for them to be more easily mistaken
as CC explosions. It is thus surprising that so few CC SNe are
classified as SN1991bg-like SNe. In G14, contamination by
CC SNe was explored using observations of 64 CC SNe from
Anderson et al. (2014) and other sources in the literature. Using
a combination of cuts on magnitude, color, and the quality of fit
in various bands, all but one SN were successfully removed.

Our implementation of the classification procedure displays a
similar level of resistance to CC contamination as the original
implementation of G14. However, in this work we are able to
exclude CC events without the need for additional cuts on
individual SN properties. One possible explanation is a significant
intrinsic bias in the types of targets observed by the SDSS survey.
Another possibility are differences in the models chosen for
normal/SN1991bg-like events, but this is minimized since we
have specifically chosen models similar to those used in G14.

We thus conclude that this change in behavior is primarily
driven by changes we have imposed in the way parameters are

varied to fit each model. By choosing to vary parameters either
independently across bands or as collective red/blue sets we
have chosen to favor either light-curve morphology or color in
the fitting process. In comparison, the way in which SiFTO
varies parameters across bands while enforcing inter-bandpass
relationships provides a middle-ground between these
approaches. SiFTO also relies on significantly more free
parameters, thus improving the quality of the overall fit to non-
SNe Ia.
Although the SDSS data release did not include a dedicated

SN subtyping effort, objects classified by SDSS were submitted
to the Open Supernova Catalog (Guillochon et al. 2017), and
that collection was collectively analyzed by Pruzhinskaya et al.
(2019) for anomalous light curves using a random-forest
machine-learning classifier. Listed in Table 4, a total of 37 SN
from the SDSS sample were identified as peculiar objects. Out
of these, none of these targets are included in our selection of
91bg-like SNe.
We note that the number of selected targets is significantly less

than what is expected according to the rate of 6%–15% claimed in
the literature (Ganeshalingam et al. 2010; González-Gaitán et al.
2011; Li et al. 2011; Silverman et al. 2012). However, we expect
to observe fewer SNe than the predicted rates due to intrinsic
survey bias toward the identification of normal (brighter) SNeIa.
Additionally, the faintness and narrowness of SN1991bg-like light
curves mean they spend less time over the S/N=5 limit. This
makes them less likely to be selected for follow-up and also more
likely to be removed by quality cuts.

4.3. Properties of Selected SNe

To understand the intrinsic behavior of our selected SNe, we
fit each target with SALT 2.4 and list the results in Table 5.
Figure 9 shows that objects identified by our classifier follow

Table 5
Parameters Are Listed for Fit Results of the Salt 2.4 Model to SDSS SNe

CID z z err t0 t0 err c c err x1 x1 err E(B−V ) chisq ndof Bmax DM B 15( )
MJD MJD Mag mag mag

679 0.124 53689.20 1.25 0.50 0.19 5.00 9.46 0.07 62.20 43.0 −15.45 0.19
682
685 0.327 0.016 53652.64 0.90 0.04 0.10 5.00 0.13 0.05 577.95 94.0 −19.37 0.18
688 0.067 53621.86 0.00 0.50 0.01 1.35 0.98 0.07 86.74 52.0 −15.48 0.80
691 0.130 53606.20 0.49 0.02 0.05 −0.46 0.31 0.06 32.98 32.0 −19.05 1.14
694 0.126 53622.89 0.00 0.25 0.01 1.11 0.15 0.06 364.52 96.0 −18.89 0.85
696 0.549 0.040 53623.64 1.13 −0.08 0.10 −0.45 0.67 0.03 77.69 71.0 −20.88 1.14
697 0.155 53617.20 1.24 0.50 0.01 1.56 0.66 0.07 193.63 96.0 −17.62 0.77
701 0.205 53609.93 0.00 0.10 0.04 −1.76 0.40 0.05 63.81 56.0 −19.20 1.43
703 0.296 53626.57 0.61 −0.01 0.04 0.72 0.59 0.05 64.60 81.0 −19.50 0.93
704 0.205 53607.94 0.00 0.21 0.07 −0.71 0.63 0.06 54.99 51.0 −18.87 1.18
706 0.174 0.023 53626.04 1.61 0.50 0.08 5.00 0.10 0.02 148.45 63.0 −17.68 0.19
714
716 0.322 53639.38 0.13 −0.04 0.01 5.00 0.00 0.03 3748.20 200.0 −20.87 0.18
717 0.129 53606.80 0.01 0.50 0.01 −0.90 0.58 0.03 63.88 40.0 −17.51 1.20
722 0.085 53613.30 0.05 −0.02 0.02 −0.61 0.13 0.02 67.31 40.0 −19.18 1.17
735 0.189 53610.81 0.00 −0.00 0.06 −2.57 0.42 0.02 44.99 45.0 −18.93 1.66
739 0.106 53612.98 0.00 0.05 0.02 −1.47 0.14 0.03 128.89 40.0 −19.02 1.36
744 0.127 53613.83 0.00 0.08 0.02 1.21 0.21 0.05 41.52 40.0 −19.16 0.84
746 0.179 0.187 53621.32 0.99 −0.34 0.57 5.00 6.63 0.02 1265.86 62.0 −18.64 0.18

Note. Any redshift values missing a reported error were specified using spectroscopic measurements. For each fit the stretch parameter x1 was bounded to the interval
[−5, 5] and the color parameter c to the interval [−0.5, 0.5]. If a spectroscopic redshift was not available, the redshift was bounded to [0, 1] and fit for. Results are
limited to the first 20 table entries.

(This table is available in its entirety in machine-readable form.)
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many of the trends we expect of 91bg-like objects. In terms of
color, selected objects tend to be redder than normal SNe with
an average B—V color of 0.88 mag. They also fall on the
dimmer and faster-declining extremes with an average
Dm B 15( ) of 1.56. We note that SNe selected in quadrant
2 are much more diverse in their parameter distribution, but still
have a notable subset of SNe lying on the faint and fast
extremes of the SNe population.

Figure 10 shows the relationship between SNe and their host
galaxies using properties determined in S18 with the FSPS
(Conroy et al. 2009; Conroy & Gunn 2010) and PEGASE (Fioc
& Rocca-Volmerange 1997) software routines. To understand
whether the selected SNe are drawn from the same underlying
host galaxy distribution as normal SNe, we perform an
Anderson–Darling test (Anderson & Darling 1952). We take
as a null hypothesis that the two populations are drawn from
the same underlying distribution. For a p-value<5% we reject
the null hypothesis and assert that the underlying distributions
are different. In all cases presented by this work, p-values are
bound to the range  p0.001 0.25.

We find no statistical evidence to indicate the selected SNe
are drawn from a different underlying distribution of galaxy
mass or star formation rate (SFR). Although the p-value
determined for SFR using FSPS and PEGASE differ
significantly (24% and 16%, respectively), this can be
attributed to the fact that the FSPS routine was able to
determine SFR values for more 91bg-like targets than the
PEGASE routine. In practice, the number of available points is
considered in the calculation of the p-value (see Scholz &
Stephens 1987). However, we also cannot rule out the
possibility that the subsample enforced by PEGASE is
somehow biased toward a particular distribution of SFR.

We find the only considered properties to indicate a different
underlying distribution is the average stellar age and distance
from the center of the host galaxy. Visual inspection of
Figure 10 shows that objects identified by our classifier as
being 91bg-like prefer galaxies with older stellar populations

and have a higher probability of occurring further away from
the center of the galaxy. This confirms a previous result found
using SDSS data in Galbany et al. (2012, hereafter G12). Using
a subset of 200 spectroscopically or photometrically confirmed
SNeIa at redshifts z 0.25, G12 found that the average fitted
color term (c) from SALT decreased with the projected distance
for SNeIa in spiral galaxies. It was also determined that SNe in
elliptical galaxies tend to have narrower light curves if they
explode at larger distances, although the impact of selection
effects was unclear.
In principle, the results of the Anderson–Darling test are

dependent on the quadrant boundaries used to classify targets.
Figure 11 shows the recalculated p-values for a range of
classification boundaries. We see that for targets that have
passed our quality cuts, there is minimal variation in p-values
surrounding our chosen quadrant boundaries for host galaxy
mass, age, SFR, and distance. For an x and y cutoff large
enough, we do see a slight increase in the p-value for some
properties. However, as shown in Figure 12, there are only a
small number of points selected at those extremes and the
existence of additional selection effects becomes unclear.

5. Conclusion

Using SN observations from SDSS, we explore the
implementation of an empirically based classification technique
targeted at the identification of SN1991bg-like SNe. In the
presented approach dedicated light-curve fits are performed for
observational data in rest-frame blue (l < 5500z,eff Å) and red
(l > 5500z,eff Å) bandpasses. Using models for both a normal
and 91bg-like SN, targets are classified based on the difference
in reduced c2 values for each model in blue and red
wavelengths.
We consider two distinct implementations of this technique.

In the first implementation each observed bandpass is fitted
independently and the c2 values from each fit are summed to
determine the overall c2 for the blue and red bandpasses,
respectively. The second implementation is performed in the
reverse order: observed bandpasses are split into sets of bluer
and redder data and then fit as two collective sets. We find no
significant differences in the classifications generated from
either approach. However, we note that the latter approach
requires a larger number of spectroscopically classified SNe Ia
to fully train the classification procedure.
To understand the potential for contamination by non-

SNeIa, we compare our classification results with spectro-
scopic classifications for a limited subset of SDSS targets. We
find that our classification procedure is robust against
contamination from core-collapse events with only one SNe
II being classified as SN1991bg-like. When performing the
same comparison against photometric classifications from
PSNID, we reach the same conclusion.
In total our classifier identifies 16 SNe from the SDSS-II SN

sample: CID 2778, 11570, 12689, 15204, 16215, 16309,
16692, 17094, 17468, 17886, 18218, 18751, 18890, 19065,
21678, 21898. Existing subtypes for SDSS SNe in the literature
are limited, restricting our ability to compare results. A total of
37 targets from the SDSS sample were identified as anomalous
objects in an external analysis using a random-forest classifier
on photometric data from the OSC. Out of these objects, we
classify none of them as SN1991bg-like events.

Figure 12. The number of objects classified as SN1991bg-like as a function of
quadrant boundaries for the classification coordinates. Contours are shown in
steps of 10 (solid) and 5 (dashed) SNe.
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Using host galaxy properties from SDSS, we investigate
potential differences in the distribution of host galaxy proper-
ties for normal SNe and those selected by our classifier. An
inspection of host mass as measured by the FSPS and PEGASE
routine reveals no statistically significant bias in host galaxy
mass. We also find no significant trend in host galaxy SFR.
However, selected objects are seen to prefer galaxies with older
stellar populations and have a higher probability of occurring
further away from the center of the galaxy.

Future work is currently planned to extend the presented
classification technique to classify other kinds of peculiar SNe.
A more detailed investigation is also planned to explore
potential biases that may be introduced in the way spectro-
scopic templates are varied to fit photometric observations.
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