

1 Characterisation of nano-scale precipitates in BOR60 irradiated T91 steel using atom probe 2 tomography

3 Guma Yeli^{1,2*}, Victoria C.I. Strutt¹, Maria. A. Auger^{1,3}, Paul A.J. Bagot¹, Michael P.
4 Moody^{1*}

⁵ ¹Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH

6 ²Centre for Advanced Nuclear Safety and Sustainable Development, City University
7 of Hong Kong, Hong Kong, China

⁸ ³ Department of Physics, Universidad Carlos III de Madrid, Leganés, Madrid, Spain

9

10 *Corresponding author:

11 Guma Yeli, gumayeli@cityu.edu.hk, Centre for Advanced Nuclear Safety and
12 Sustainable Development, City University of Hong Kong, Hong Kong SAR

13 Michael P. Moody, michael.moody@materials.ox.ac.uk, Department of Materials,
14 University of Oxford, Parks Road, Oxford. OX1 3PH

15

16 Highlights

17 • T91 steel was irradiated in BOR60 reactor at five different temperature/dose
18 conditions.

19 • The number density, volume fraction, size and composition of the early stage Mn,
20 Ni, Si -rich clusters have been characterised by atom probe tomography.

21 • After irradiation, Ni, Mn, Si and P segregation to carbide/matrix interface has
22 been observed.

23 • Fe clustering inside a carbide was observed after irradiation at 524 °C:15.4dpa,
24 which has not been reported before.

25

26 Abstract

27 Atom probe tomography has characterised the microstructural changes in T91 steel
28 after BOR60 reactor irradiation at five temperatures between 376 °C and 524 °C to
29 doses between 14.6 dpa and 35.1 dpa. Irradiation-induced precipitation and
30 segregation to carbide/matrix interface induced by neutron irradiation has been
31 characterised. Atom probe tomography characterisation shows that Mn, Ni, Si -rich
32 (MNS-rich) clusters form in T91 steel irradiated in BOR60 reactor at temperatures
33 between 376 °C and 415 °C, which is not observed at higher temperatures 460 °C and
34 524 °C. The number density, volume fraction and composition of MNS-rich clusters
35 have been characterised. Ni, Mn, Si and P is found to segregate at carbide matrix
36 interface after irradiation at lower temperature and only P segregation is observed at
37 524 °C.

38 **Keywords:** T91 steel, BOR60 reactor, MNS-rich clusters, atom probe tomography

39 1 Introduction

40 One of the key factors for safe operation of current reactors and implementation of
41 advanced nuclear energy systems is the long term stability of structural components
42 exposed to a combination of both high temperature and high neutron flux [1]. To this
43 end, ferritic/martensitic (F/M) steels are appealing structural materials for high dose
44 structural components because of their outstanding resistance to radiation-induced
45 swelling, high thermal conductivities and low thermal expansion coefficients [2–4].

46

47 Among various commercial F/M steels, T91, a modified 9Cr-1Mo steel has found a
48 rising number of applications as a structural material for fission reactors in recent
49 years. However, prolonged exposure to neutron irradiation drives microstructural
50 evolution in T91 steel, which has detrimental effects on the mechanical properties.
51 For example, irradiation can alter the distribution and composition of the pre-existing
52 carbide/nitrides. In their tempered state, the main precipitates in F/M steels are
53 carbides and/or nitrides [5–7]. The pre-existing carbides and nitrides contribute to
54 strengthen the material and are expected to be stable under service conditions.
55 However, research has shown that modification of structure, density, size and
56 composition of pre-existing precipitates can occur when exposed to irradiation [8–10].
57 $M_{23}C_6$ was previously shown to increase in size and grain boudary coverage in an

58 11Cr F/M steel after neutron irradiation at temperatures between 500 °C - 650 °C [10].
59 Amorphization of $M_{23}C_6$ carbides has been observed in various F/M steels exposed to
60 neutron irradiation [5,11]. The composition of the carbides can also be altered by
61 irradiation [12]. In T91 steel, when the ion irradiation dose increased from 1 dpa to 10
62 dpa, the carbide size first slightly increased and then decreased [13]. Radiation
63 induced segregation (RIS) of solutes to grain boundaries has been observed in F/M
64 steels. Jiao et al. [14] using scanning transmission electron microscopy (STEM)
65 studied RIS in a set of T91 steel samples subject to a range of irradiation conditions in
66 the BOR60 fast research reactor. Their analyses showed a temperature dependence of
67 RIS magnitude.

68

69 In addition to the modification of pre-existing carbide/nitride precipitates and RIS, the
70 local solute concentration in the vicinity of a defect sink can reach the solubility limit,
71 leading to radiation-induced precipitation. In T91, Mn, Ni, Si -rich (MNS-rich)
72 clusters are known to form under irradiation, leading to embrittlement [9,14–24].
73 Various studies on MNS-rich clustering specific to T91 have been carried out using a
74 variety of characterisation techniques to investigate a range of irradiation conditions.
75 Table 1 summarises results in the literature from previous studies measuring number
76 density, volume fraction and averaged diameter of MNS-rich precipitates resulting
77 from different irradiation experiments. In addition to investigating RIS, in the same

78 BOR 60 irradiated T91 samples Jiao et al. [14] used TEM to measure the number
 79 density of MNS-rich precipitates to be in the order of 10^{21} m^{-3} . T91 samples proton
 80 irradiated to 7 dpa at 400 - 500 °C ([25]) have also been shown to produce MNS-rich
 81 precipitates and copper-rich precipitates (CRPs). The absence of MNS-rich
 82 precipitates under a lower proton irradiation dose in the same study suggests that the
 83 cluster formation is enhanced by irradiation. Analysis of neutron irradiated T91 by
 84 several methods suggests an increase in diameter as temperature and dose are
 85 increased.

86 Table 1 Summary of MNS-rich precipitates analysis in T91 from literature. d = averaged
 87 diameter, f = volume fraction and N = number density.

Study:	Technique	Irradiation	Conditions	d (nm)	f (%)	N (m^{-3})
Jiao [14]	TEM	BOR60-neutron	17.1dpa,376°C	5.8	0.037	3.6×10^{21}
			35.1dpa,378°C	7.0	0.043	2.4×10^{21}
			18.6dpa,415°C	6.7	0.047	3.0×10^{21}
Jiao [12]	TEM	Proton-2MeV	7dpa, 400°C	4.4	/	1.27×10^{23}
			7dpa,500°C	8.0	/	0.14×10^{23}
Pareige [26]	APT	Self-ion irradiated	0.5dpa, 300°C	3.0	/	2.8×10^{23}
			0.5dpa, 420°C	3.8	/	0.52×10^{23}
Kuksenko [27]	APT	MTR-neutron	0.6dpa, 300°C	3.2	/	2.4×10^{23}
Wharry [25]	APT	Proton-2MeV	7dpa, 400°C	4.1	/	7.4×10^{22}

88 From the literature, behaviour of MNS-rich precipitates in T91 under both neutron
 89 and ion irradiation is inconclusive. In particular, the compositional analysis of MNS

90 -precipitates is lacking. To further understand and determine the suitability of T91 for
91 generation IV reactors, compositional analysis on the nanoscale and a correlative view
92 of how this affects materials properties is required. An integrated research project
93 (IRP) has been initiated between different universities and research institutes in US
94 and UK. A fuller description of this project can be found in [28]. One of the main
95 goals of the program was to understand the microstructural evolution of T91 steel
96 under reactor irradiation. The main aim of the present study is to better understand the
97 nano-scale MNS-rich cluster formation at different temperatures and doses and
98 provide compositional data of the irradiated microstructure. As such, atom probe
99 tomography (APT) analyses were carried out to study the microstructure of T91 steel
100 subjected to BOR60 reactor irradiation. The MNS-rich cluster formation,
101 carbide/nitride compositions and solute segregation on the carbide/matrix interface
102 have been examined. The temperature dependence of cluster formation and solute
103 segregation have been characterised and the results are compared with the STEM
104 results from Jiao et al. [14] and previous data from the literature.

105 2 Materials and Experimental Methods

106 All APT analyses were carried out on a Cameca LEAP 5000 XR instrument. Voltage
107 pulsing mode with a 20 % pulse fraction was utilised for the atom probe experiments.
108 The specimen temperature and pulse repetition rate were set to 50 - 55 K and 200 kHz,

109 respectively. CAMECA IVAS software was used to reconstruct the detected
110 information into 3D positions and chemical identity of each ion.

111

112 T91 steel used in this study was received from Pacific Northwest National Laboratory
113 (PNNL). As-received T91 steel sample for APT analyses were prepared from 3 mm
114 TEM disks after diamond lapping to 0.25 μm at the University of Michigan. The
115 composition of as-received T91 measured by APT and chemical composition
116 provided by PNNL are both listed in Table 2. Compared to the bulk chemistry, the Cr
117 and V contents are lower in APT measurements. The loss of Cr and V is about 1.25
118 at. % and 0.09 at. % respectively. Also, the majority of the expected Nb, C and N
119 atoms were not detected in the APT analysed regions. The loss of these elements in
120 the composition measurement is most likely due to the formation of nitrides and
121 carbides outside the analysed region. From previous studies, Cr-rich carbide (~ 100
122 nm) were present along prior austenite grain boundaries (PAGBs) and lath boundaries.
123 The finer V, Cr- rich nitrides (~ 40 nm) were both in the matrix and adjacent to the
124 carbides [12]. Due to the small analysed volumes by APT, such large carbides/nitride
125 were not captured in any of the as-received T91 data. Hence, it is not surprising that
126 contents of carbide/nitride formers obtained via APT are lower.

127 Table 2 Composition of T91 from APT and bulk composition provided by PNNL. The error
128 in APT composition is obtained by averaging data from three different analysed specimens.

	Alloy Chemistry (at. %)									
	Cr	Ni	C	N	Mn	Mo	Nb	Si	V	Fe
Bulk composition provided by PNNL	9.16	0.08	0.37	0.21	0.37	0.51	0.04	0.22	0.23	Bal.
Composition measured via APT	7.91	0.10	0.04	0.05	0.40	0.40	-	0.27	0.14	Bal.
Error (\pm)	0.05	0.02	0.01	0.05	0.04	0.04	-	0.05	0.06	-

129

130 The neutron irradiations were conducted in the BOR60 test reactor in Russia. Due to
131 the radioactive nature of the resulting samples, lamellas were made using a lift-out
132 process [29] for BOR60 irradiated T91 at the Low Activation Materials Development
133 and Analysis (LAMDA) laboratory at Oak Ridge National Laboratory (ORNL). A
134 dual beam microscope FEI Helios NanoLab 600i at Culham Centre for Fusion Energy
135 (CCFE) was used to prepare BOR60 irradiated T91 for APT analysis. The
136 unirradiated T91 specimen were also prepared using the FEI Helios Nano Lab 600i at
137 CCFE. A detailed description of BOR60 irradiation conditions and methods for dose
138 and temperature calculation can be found in Ref. [14]. The average irradiation
139 temperatures and the accumulated irradiation doses at retrieval were calculated as
140 376 °C:17.1dpa (irradiation temperature: final irradiation dose), 378 °C:35.1dpa,
141 415 °C:18.6dpa, 460 °C:14.6dpa and 524 °C:15.4dpa. The dose rate was $6 - 9 \times 10^{-7}$
142 dpa/s. The neutron damage profile is relatively flat. All the BOR60 irradiated samples
143 were taken from a depth between 200 - 600 nm from the surface.

144

145 In the reconstructed APT data, the identification and characterisation of Mn, Ni, Si
146 -rich clusters was undertaken based on the maximum separation method [30,31]. In
147 simple terms, the distance separating a solute atom (defined as Ni, Si and Mn in this
148 case) from its K^{th} (10^{th} in this study) nearest solute neighbour is measured within the
149 data. If this distance is less than a defined value, d_{max} , the two solute atoms are
150 determined to be “core” of the same cluster. Any cluster containing less than a
151 defined number of atoms, N_{min} , is removed from the analysis to remove contributions
152 from very small clusters statistically likely to form from random fluctuations in the
153 matrix. After solute clusters are defined, matrix atoms within a distance L , of the
154 clustered solute atoms, are included in the cluster. This selection of atoms is then
155 eroded back a distance of E (erosion parameter). The parameters chosen to define the
156 maximum separation were $d_{max} = 0.7$ nm, $N_{min} = 20$ atoms, $L = e = 0.5$ nm. The
157 number density, N , of clusters identified within the reconstruction was calculated
158 using the following formula:

$$N = \frac{n\eta}{N_{tot}\Omega} \quad (1)$$

159 where n is the total number of clusters and N_{tot} is total number of atoms in the
160 analysed volume, Ω is the volume of one solute atom, taken as 1.094×10^{-2} nm³,
161 assuming the solutes have a similar atomic volume as Ni. η is the ion detection
162 efficiency of the atom probe instrument, which has been estimated to be 0.52 for the

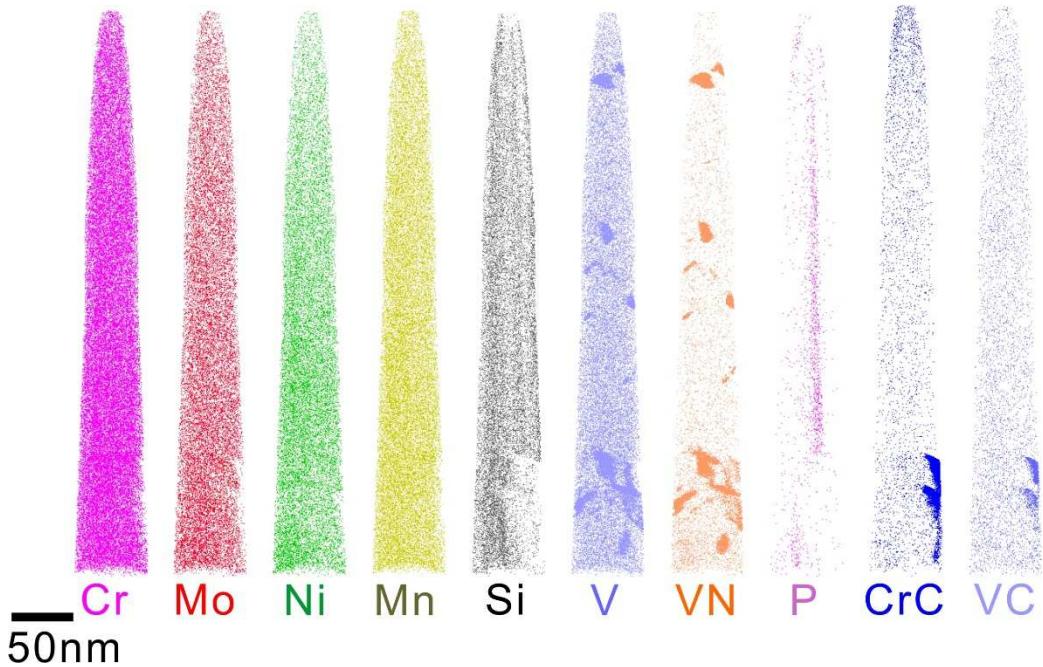
163 LEAP 5000 XR. The volume fraction of clusters is an important factor to estimate
164 their influence on strength and hardness. The volume fraction, f , is estimated by:

$$f = \frac{\sum_{i=1}^n N_{sol}}{N_{tot}} \quad (2)$$

165 where N_{sol} is the total number of solute atoms incorporated within a cluster.

166 The radius, r , of a precipitate was equated to that of the volume equivalent sphere:

$$r = \sqrt[3]{\frac{3N_{sol}\Omega}{4\pi\eta}} \quad (3)$$


167 Excluding the matrix atoms could lead to under-estimation of the size and volume
168 fraction. However, previous studies have provided evidence that the majority of Fe
169 atoms in the clusters, as observed by APT, are due to trajectory aberrations [32].
170 Hence, the systematic method described above was used to estimate the volume
171 fraction f and radius r .

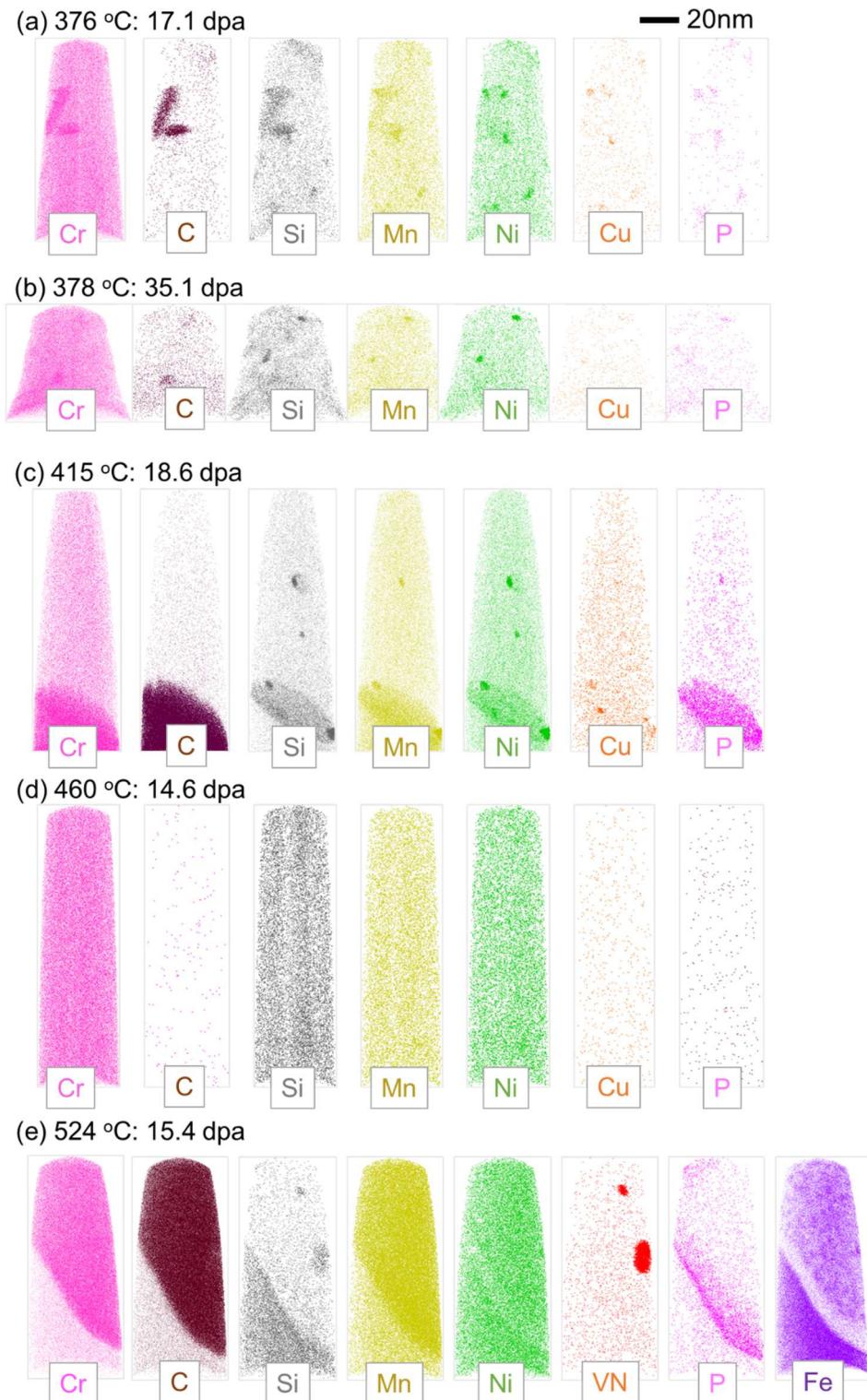
172 3 Results

173 3.1 As-received T91

174 Three tip-shaped specimens of as-received T91 steel were analysed. The obtained
175 datasets included 33.0M, 7.2M and 17.1M ions, respectively. Atom maps of
176 individual elements from Tip 1 are shown in Figure 1. Atom maps from Tip 2 and Tip
177 3 are included in the supplementary materials. Precipitates enriched with V, Cr and
178 VN ions are observed in the as-received T91 samples. From compositional analysis

179 (included in the supplementary materials), the precipitates contain approximately 40
180 at. % V, 20 at. % Cr and 30 at. % N. CrC ions are also found at the bottom edge of the
181 tip.

183 Figure 1 Atom maps of individual elements, nitride and carbide ions in as-received
184 T91


185 3.2 Elemental distributions of T91 steel irradiated in BOR60

186 From each irradiation condition, 2 - 4 needles were analysed using APT. Datasets
187 including between 2.2M - 12.4M ions were analysed. Figure 2 (a) - (e) presents the
188 APT atom maps obtained from the analysis of T91 steel irradiated in BOR60 at the
189 different conditions. Compared to the unirradiated T91, the V-rich nitride particles
190 were not observed in any T91 specimen after irradiation. In all the specimen irradiated
191 at temperature ranges between 376 °C and 415 °C, distinct solute clusters containing

192 Ni, Mn, and Si were detected. However, such clusters were not observed when the
193 temperature was raised to 460 °C and 524 °C, respectively. Cu and P was also found
194 to cluster together with some of these MNS-rich clusters. As shown in Figure 1, this
195 clustering was not present in the as-received T91.

196

197 Cr-rich carbide particles were also captured in some specimens, i.e. Figure 2 (a), (c)
198 and (e). A range of behaviours were observed with respect to the incorporation of
199 these carbides. Ni, Si, Mn and P was found to segregate to the carbide/matrix
200 interface at 415 °C (Figure 2 (c)), whereas at the higher temperature of 524 °C, only P
201 was found to segregate to the interface (Figure 2 (e)). Mn was found to be enriched
202 inside the carbide at 524 °C. As shown in Figure 2 (e), Fe appeared to deplete at the
203 interface and cluster inside the carbide. Clustering of Fe inside the carbide has not
204 been well-documented. V-rich nitride particles were also observed inside the carbide.
205 Except from the specimen containing carbides (i.e the one in Figure 2 (e)), solute
206 elements were found to be randomly distributed after irradiation at higher
207 temperatures (460 °C and 524 °C).

208

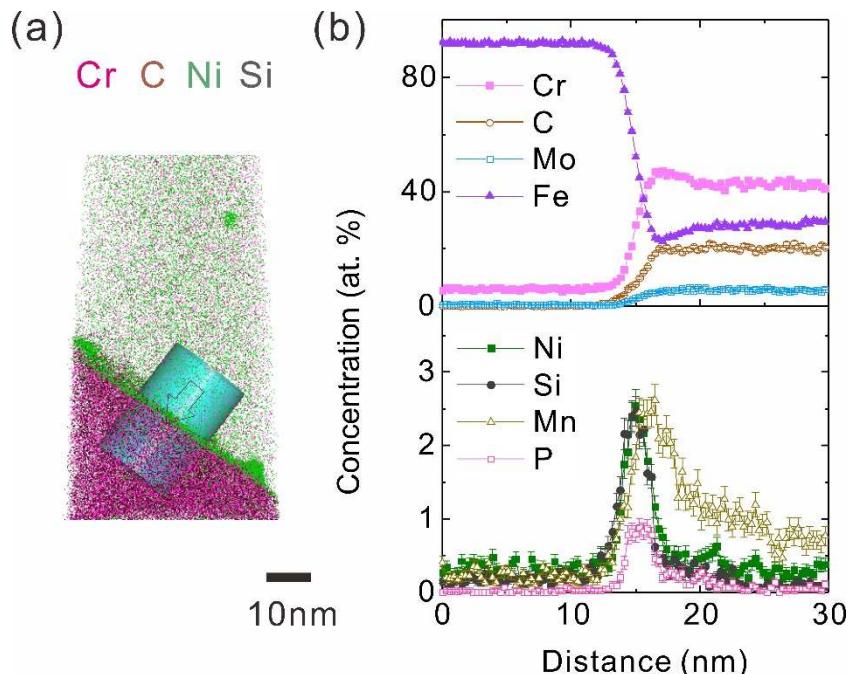
209 Figure 2 Atom maps of T91 steel irradiated in BOR60 (a) 376 °C:17.1dpa, (b)
210 378 °C:35.1dpa, (c) 415 °C:18.6dpa, (d) 460 °C:14.6dpa and (e) 524 °C:15.4dpa.
211 Note that due to the mass-to-charge-state ratio overlap at 14 and 15 Da, which for the
212 purposes of this figure have been assigned to be Si, the majority of the Si enrichment
213 associated to the carbide and nitride are in fact misidentified N ions

214 3.3 Number density, volume fraction and composition of MNS-rich precipitates
 215 The MNS-rich precipitates were analysed using methods described in Section 2. Table
 216 3 presents the measured number density, N , volume fraction, f , and averaged diameter,
 217 d , of the clusters at different irradiation conditions. The error is obtained by averaging
 218 the results of the analyses across multiple APT reconstructions. It needs to be pointed
 219 out that there are still systematical errors caused by the selection of cluster analysis
 220 parameter. The same data analysis parameters were used to minimize the effect of
 221 cluster selection parameters when comparing between datasets. The measured number
 222 densities were all in the order of $10^{23}/\text{m}^3$. It should be noted that, due to the relatively
 223 small volumes of microstructure sample in each APT and the limited number of
 224 clusters observed that the uncertainty of the number density, volume fraction and
 225 diameter might be quite large. This is consistent with the observations from atom
 226 maps such that even at the same irradiation condition, the distributions of clusters
 227 vary significantly analysis to analysis. Hence, no clear trend with temperature and
 228 dose level can be ascertained when considering the relatively large error. When the
 229 irradiation temperature was higher than 460 °C, no clusters were identified using the
 230 same search algorithm applied to all the APT data.

231 Table 3 Number density (N), volume fraction (f) and diameter (d) of MNS-rich precipitates.
 232 The error is obtained by averaging different specimen at the same irradiation condition.

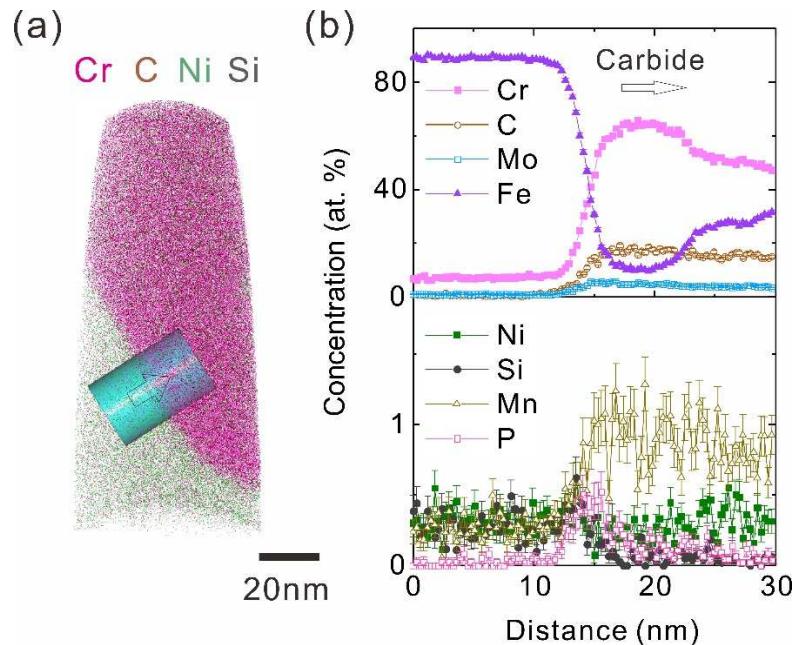
Alloy	$N (\text{m}^{-3})$	\pm	$f (\%)$	\pm	$d (\text{nm})$	\pm
376 °C:17.1dpa	1.37E+23	4.66E+22	0.12	0.04	2.0	0.5
378 °C:35.1dpa	3.00E+23	4.34E+22	0.09	0.06	1.8	0.4
415 °C:18.6dpa	1.53E+23	6.05E+22	0.09	0.1	1.8	0.5
460 °C:14.6dpa &	-	-	-	-	-	-

524 °C:15.4dpa

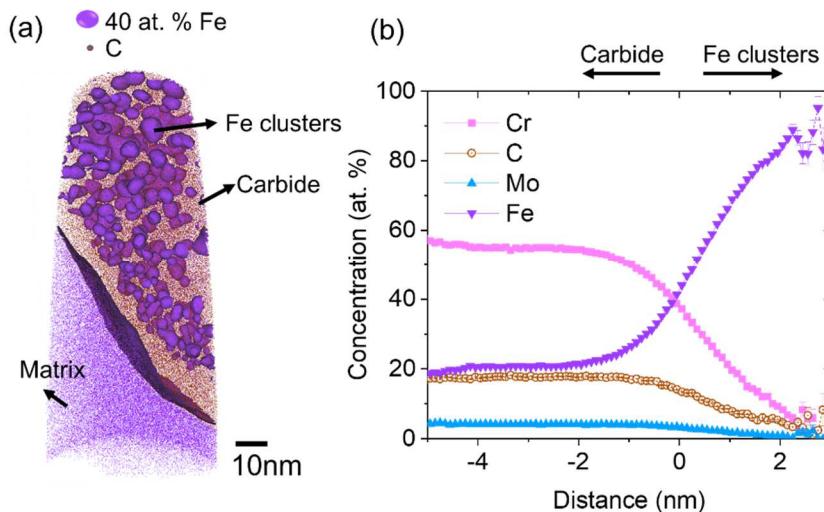

233 Table 4 lists the concentration of the main elements in MNS-rich clusters formed after
234 BOR60 irradiation in T91. When the irradiation dose was increased from 376 °C:17.1
235 dpa to 378 °C:35.1 dpa, the Ni and Mn contents were very similar. However, the Si
236 content in the clusters almost doubled, increasing from 6.9 at. % to 13.3 at. %. It has
237 previously been reported that Si has the highest affinity for vacancies compared to Ni
238 and Mn [33]. At higher doses, the number of defects is higher than that of lower dose
239 level. Thus it is not surprising that the clusters at 378 °C:35.1dpa are more enriched in
240 Si.

241 Table 4 The averaged concentration of the main elements in NMS-rich clusters. The
242 uncertainty is the standard error of different clusters.

Alloy	Composition (at. %)						
	Ni	Si	Mn	Cu	Fe	Cr	P
376 °C:17.1dpa	11.9±4.5	6.9±4.8	8.0±2.4	0.6±0.4	61.1±9.5	8.0±3.2	0.4±0.4
378 °C:35.1dpa	11.8±5.5	13.3±5.9	8.1±2.8	0.2±0.4	56.6±8.5	8.6±5.1	0.3±0.5
415 °C:18.6dpa	12.4±5.3	11.1±6.3	7.4±2.7	0.2±0.4	59.4±9.2	8.7±3.8	0.3±0.5


243 3.4 Carbide composition

244 As shown in Figure 2 (c) and (e), large (several tens of nm) carbide particles were
245 captured in the APT analyses of BOR60 irradiated T91. A close-up of elemental
246 distributions and a 1D concentration profile across the matrix-particle interface in T91
247 irradiated at 415 °C:18.6dpa is shown in Figure 3. The carbide particle is enriched in
248 Cr, Mo and C. The composition matches M₂₃C₆ type carbide. Ni, Si, Mn and P is
249 observed to segregate to the carbide/matrix interface. The peak concentration of Ni, Si
250 and Mn is all around 2.5 at. % at the interface and P content is ~ 1 at. %.


251
252 Figure 3 (a) Close-up of atom maps at the carbide/matrix interface in BOR60
253 irradiated T91 at 415 °C:18.6dpa. The analysed sample is the same as in Figure 2 (c);
254 (b) 1 D concentration profile across the interface

255 When the irradiation temperature was raised to 524 °C, as shown in Figure 4, only P
256 segregation was observed at the carbide/matrix interface. Instead of segregation at the
257 interface, Mn was enriched by ~ 1 at. % inside the carbide and Si was rejected from it.
258 Also, an Fe depleted zone was observed near the interface. Then Fe content increased
259 again inside the carbide. This is due to the formation of small Fe-rich clusters inside
260 the carbide particle. These Fe-rich clusters are highlighted using 40 at. % Fe
261 isoconcentration surface in Figure 5 (a) and the concentration proxigram is displayed
262 in Figure 5 (b). The clusters are 2 - 3 nm in radius and the Fe content in the core
263 regions exceeds 80 at. %. The formation of Fe-rich clusters inside the carbide
264 particles in this material has not been reported before.

265

266 Figure 4 (a) Close-up of atom maps at the carbide/matrix interface in BOR60
 267 irradiated T91 at 524 °C:15.4dpa. The analysed volume is the same as in Figure
 268 2 (e); (b) 1 D concentration profile across the interface

269

270 Figure 5 (a) 40 at. % Fe isoconcentration surface in BOR60 irradiated T91 at 524
 271 °C:15.4dpa. The analysed volume is the same as in Figure 2 (e); (b) Averaged
 272 concentration proxigram across the 40 at. % Fe isoconcentration surface

273 4 Discussion

274 4.1 MNS-rich cluster formation

275 Distinct MNS-rich clusters were observed in all the samples irradiated below 415 °C.

276 MNS clusters were not observed at 460 °C and 524 °C. The results from APT analysis

277 are consistent with the STEM observation on the same set of materials, even though a

278 clear grain boundary segregation of Ni and Si is observed at 460 °C [14]. From Table

279 1, the radius of the detected clusters by TEM was 5 - 7 nm, with a number density in

280 the order of 10^{21} m⁻³. In the present study, the averaged diameter and number density

281 obtained via APT were ~ 2 nm and ~ 10^{23} m⁻³, respectively. The size measured by

282 APT is much smaller than that of TEM and the number density is much higher. In the

283 present study, matrix atoms were excluded to calculate the cluster size. This is based

284 on the findings of previous studies which lead to the assumption that most matrix

285 atoms incorporated into the detected MNS-rich clusters in this steel arise from

286 trajectory aberration and limitations of the atom probe image reconstruction protocols

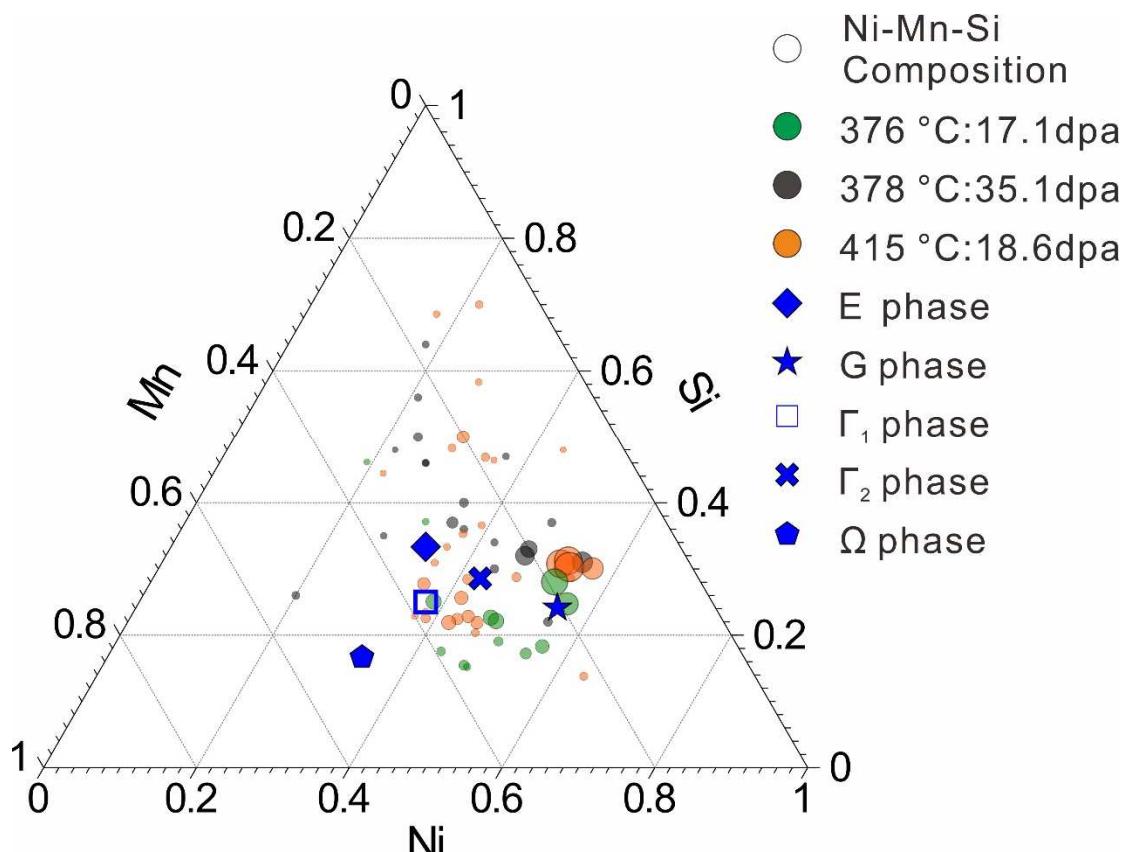
287 [32,34]. Another possible reason is the difference in resolution limits of TEM

288 compared to APT. It is highly likely that larger clusters occurring with lower number

289 density measured via TEM are in fact present in the specimen studied here, but were

290 statistically unlikely to be captured in the APT analyses due to its more limited

291 sampling volume. Conversely, the much more abundant very small clusters detected


292 via APT were not seen in TEM. These two techniques can be complementary to better

293 understand irradiation induced damage in materials and to underpin modelling efforts
294 with microstructural data across a range of scales.

295

296 In this study APT analyses have characterised the compositions of MNS-rich clusters
297 in T91. Previously Gupta [35] summarised several stable MNS-rich phases, namely G
298 ($Mn_6Ni_{16}Si_7$), E ($MnNiSi$), $\Gamma_1(Mn_3Ni_3Si_2)$, $\Gamma_2 (Mn_2Ni_3Si_2)$, $\Omega (Mn_3Ni_2Si)$. Among
299 them, G phase and Γ_2 phase have been reported to be thermally stable in various RPV
300 steels [36–39]. Figure 6 summarises the Ni-Mn-Si relative composition of all the
301 detected MNS-rich clusters in T91. The radius of each circle indicates the size of the
302 corresponding cluster. In the present study, since the clusters are still in their early
303 stage of formation, a large scatter is observed in cluster composition at all the
304 irradiation conditions. Compared to the known Mn-Ni-Si phase, the composition of
305 small clusters was closer to Γ_2 phase. However, the larger clusters contain more Ni
306 than the smaller ones and the composition shifted away from Γ_2 . The larger
307 precipitates possessed a Ni-Mn-Si composition closer to G-phase. The Ni-Mn-Si
308 relative composition of the larger clusters were ~ 54 at. % Ni, 30 at. % Si and 16 at. %
309 Mn. The Si content in the large clusters was still slightly higher than that of G phase
310 and Mn content is slightly lower. Thus the clusters are likely precursors of G phase.

311

312

313 Figure 6 Gibbs triangle plot of APT Mn-Ni-Si compositions observed in BOR60
 314 compared to known MNS phase

315 4.2 Carbide matrix interface

316 In Figure 2 (c), a clear Ni, Mn, Si and P segregation to carbide matrix interface is seen
 317 in BOR60 irradiated T91 at 415 °C:18.6dpa. At higher temperature 524 °C, only P
 318 segregation was observed (Figure 2 (e)). The magnitude of depletion/enrichment are
 319 given in Table 5. At 415 °C Ni, Si, Mn and P at the observed grain boundary were
 320 enriched by 2.1 at. %, 2.2 at. %, 2.0 at. % and 0.8 at. %, respectively. At higher
 321 temperature 524 °C, the segregation of Ni, Si and Mn was not observed and the P
 322 segregation was decreased to 0.4 at. %. The grain boundary segregation of Ni and Si

323 on the same sample has been studied using STEM in Reference [14]. The magnitude
324 of RIS of Ni and Si peaked around 415 °C and decreased at higher temperatures. At
325 524 °C, no clear segregation of Ni and Si was observed using STEM. Results from the
326 APT analyses of the carbide matrix interface were similar to those of the grain
327 boundary segregation behaviour. The segregation of Ni and Si to grain boundaries has
328 been consistently reported in irradiated austenitic steel and F-M steels [14,40–43].
329 The segregation of Ni can be attributed to the Inverse-Kirkendall mechanism. Si is an
330 undersized solute and binds strongly to interstitials, leading to enrichment at the sink.
331 It is known that phosphorus has strong segregation tendency at grain boundaries,
332 which is thought to reduce cohesion, causing the material to fail through
333 inter-granular embrittlement [44–47]. P segregation was also reported at the interface
334 boundaries of precipitate/matrix type [48]. Fraction of brittle intergranular fracture
335 correlates with P segregation level [49]. In this study, P is present in T91 as an
336 impurity. Similarly to the previous experimental and theoretical study, P segregates to
337 the carbide/matrix interface and its contents at the interface decreased with the
338 increasing temperature [50,51].

339 Table 5 Ni, Si, Mn and P grain boundary peak concentrations (at. %) and changes (Δ) from
340 nominal values in T91 irradiated in BOR60. The error was obtained by averaging the
341 concentration value in the range of ± 0.6 nm from the peak position.

Irradiation condition	Ni	ΔNi	Si	ΔSi	Mn	ΔMn	P	ΔP
415 °C:18.6dpa	2.4 \pm 0.2	2.1	2.3 \pm 0.2	2.2	2.5 \pm 0.1	2.0	0.8 \pm 0.0	0.8
524 °C:15.4dpa	-	-	-	-	-	-	0.4 \pm 0.0	0.4

342 4.3 Fe clustering inside carbide

343 Fe-rich clusters were observed to form inside the carbide particle at 524 °C. This was
344 not seen at lower temperatures. In previous studies, APT analyses of carbides after ion
345 or neutron irradiation at temperate between 377 °C - 470 °C were shown [52,53]. Fe
346 clustering inside carbide particles has not been reported. In the present study, the core
347 composition of the Fe-rich clusters exceeded 80 at. %. These clusters were believed to
348 be ferrite clusters. A noticeable difference is that the C concentration inside the carbide
349 particle was ~ 17 at. % when irradiated at 524 °C (Figure 4 (b)). The ratio of
350 metal/carbon exceeded the equilibrium value [54]. It is possible that the supersaturation
351 of Fe inside carbide have caused the Fe clustering. It is known that prior to irradiation,
352 the $M_{23}C_6$ particles were along PAGBs and lath boundaries [14]. The radiation induced
353 enrichment/depletion of elements at PAGBs may have led to change in the Fe
354 concentration of grain boundary and hence altering the composition of carbide
355 particles. Irradiation has also been suggested to alter the composition of carbides [12].
356 Alternatively, the supersaturation of Fe inside the carbide may also exist prior to
357 irradiation due to the fluctuation in carbide composition. Thermo-Calc with the TCFE6
358 database has been used to calculate the equilibrium phase inside the carbide. The actual
359 carbide composition (~ 55 at. % Cr, 17 at. % C, 4 at. % Mo and Fe as balance) after
360 irradiation at 524 °C was used to estimate the thermally stable phases at 524 °C. The

361 results confirmed the presence of ferrite under equilibrium. Irradiation could also
362 accelerate the formation process of the Fe-rich clusters.

363 5 Conclusions

364 Atom probe tomography has offered insight into the detailed clustering and
365 segregation behaviour of T91 steel irradiated in BOR60 reactor. The following
366 conclusions can be drawn:

367 - MNS-rich clusters were observed after BOR60 irradiation at temperatures lower
368 than 415 °C, which were not seen at higher temperatures (460 °C and 524 °C).
369 More abundant and much smaller MNS-rich clusters were captured via APT than
370 that of previous STEM observation, which complements the previous STEM
371 study to provide microstructural information from different scales.

372 - The composition of the early stage MNS-rich clusters was characterised and
373 compared with the thermally stable Ni-Mn-Si phases. The clusters were likely G
374 phase precursors.

375 - Segregation of Ni, Si, Mn and P to the Cr-rich carbide/matrix interface was
376 observed after BOR60 irradiation. The segregation magnitude decreased with
377 increasing temperature. At the highest irradiation temperature 524 °C, only P
378 segregation was detected.

379 - Clustering of Fe atoms inside a carbide was observed at 524 °C:15.6dpa under
380 BOR60 irradiation.

381 6 Acknowledgement

382 This work has been supported by the IRP project fund DOE NEUP IRP under award
383 DE-NE0000639 and EPSRC EP/L025817/1. Access to the LAMDA facility at ORNL
384 was supported by the Department of Energy (DOE) National Science User Facilities
385 (NSUF) under an RTE award. This work is based upon research partially supported
386 under a DOE NEUP Graduate Fellowship. The research used UKAEA's Materials
387 Research Facility, which has been funded by and is part of the UK's National Nuclear
388 User Facility and Henry Royce Institute for Advanced Materials. Atom probe
389 facilities at the University of Oxford were supported by EPSRC EP/M022803/1. The
390 authors would like to thank Prof. Gary S. Was for helpful discussions. The authors
391 also would like to thank Dr Zhijie Jiao and Dr Kevin G. Field for preparing lift-out
392 samples of neutron irradiated T91.

393

394 Reference

395 [1] S.J. Zinkle, G.S. Was, Materials challenges in nuclear energy, *Acta Mater.* 61
396 (2013) 735–758. doi:10.1016/j.actamat.2012.11.004.

397 [2] P. Yvon, F. Carré, Structural materials challenges for advanced reactor systems,
398 *J. Nucl. Mater.* 385 (2009) 217–222. doi:10.1016/j.jnucmat.2008.11.026.

399 [3] R.L. Klueh, A.T. Nelson, Ferritic/martensitic steels for next-generation reactors,
400 *J. Nucl. Mater.* 371 (2007) 37–52. doi:10.1016/j.jnucmat.2007.05.005.

401 [4] E. Getto, Z. Jiao, A.M. Monterrosa, K. Sun, G.S. Was, Effect of pre-implanted
402 helium on void swelling evolution in self-ion irradiated HT9, *J. Nucl. Mater.*
403 462 (2015) 458–469. doi:10.1016/j.jnucmat.2015.01.045.

404 [5] B.H. Sencer, F.A. Garner, D.S. Gelles, G.M. Bond, S.A. Maloy,
405 Microstructural evolution in modified 9Cr-1Mo ferritic/martensitic steel
406 irradiated with mixed high-energy proton and neutron spectra at low
407 temperatures, *J. Nucl. Mater.* 307–311 (2002) 266–271.
408 doi:10.1016/S0022-3115(02)01198-4.

409 [6] R. Schäublin, P. Späti, M. Victoria, Microstructure assessment of the low
410 activation ferritic/ martensitic steel F82H, *J. Nucl. Mater.* 258–263 (1998)
411 1178–1182. doi:10.1016/S0022-3115(98)00182-2.

412 [7] C. Zheng, E.R. Reese, K.G. Field, E. Marquis, S.A. Maloy, D. Kaoumi,
413 Microstructure response of ferritic/martensitic steel HT9 after neutron
414 irradiation: effect of dose, *J. Nucl. Mater.* 523 (2019) 421–433.
415 doi:10.1016/j.jnucmat.2019.06.019.

416 [8] X. Jia, Y. Dai, Microstructure in martensitic steels T91 and F82H after
417 irradiation in SINQ Target-3, *J. Nucl. Mater.* 318 (2003) 207–214.
418 doi:10.1016/S0022-3115(03)00101-6.

419 [9] Z. Jiao, V. Shankar, G.S. Was, Phase stability in proton and heavy ion
420 irradiated ferritic-martensitic alloys, *J. Nucl. Mater.* 419 (2011) 52–62.
421 doi:10.1016/j.jnucmat.2011.08.020.

422 [10] S. Yamashita, Y. Yano, Y. Tachi, N. Akasaka, Effect of high dose/high
423 temperature irradiation on the microstructure of heat resistant 11Cr
424 ferritic/martensitic steels, *J. Nucl. Mater.* 386–388 (2009) 135–139.
425 doi:10.1016/j.jnucmat.2008.12.082.

426 [11] S. Kano, H. Yang, J. McGrady, D. Hamaguchi, M. Ando, H. Tanigawa, H. Abe,
427 Study of radiation-induced amorphization of M23C6 in RAFM steels under
428 iron irradiations, *J. Nucl. Mater.* (2020). doi:10.1016/j.jnucmat.2020.152088.

429 [12] Z. Jiao, V. Shankar, G.S. Was, Phase stability in proton and heavy ion
430 irradiated ferritic-martensitic alloys, *J. Nucl. Mater.* 419 (2011) 52–62.
431 doi:10.1016/j.jnucmat.2011.08.020.

432 [13] J.P. Wharry, Z. Jiao, V. Shankar, J.T. Busby, G.S. Was, Radiation-induced
433 segregation and phase stability in ferritic–martensitic alloy T 91, *J. Nucl. Mater.*
434 417 (2011) 140–144. doi:10.1016/j.jnucmat.2010.12.052.

435 [14] Z. Jiao, S. Taller, K. Field, G. Yeli, M.P.P. Moody, G.S.S. Was, Microstructure
436 evolution of T91 irradiated in the BOR60 fast reactor, *J. Nucl. Mater.* 504
437 (2018) 122–134. doi:10.1016/j.jnucmat.2018.03.024.

438 [15] P.D. Styman, J.M. Hyde, K. Wilford, A. Morley, G.D.W. Smith, Precipitation
439 in long term thermally aged high copper, high nickel model RPV steel welds,
440 in: *Prog. Nucl. Energy*, 2012: pp. 86–92. doi:10.1016/j.pnucene.2011.10.010.

441 [16] E.A. Little, Microstructural evolution in irradiated ferritic-martensitic steels:
442 transitions to high dose behaviour, *J. Nucl. Mater.* 206 (1993) 324–334.
443 doi:10.1016/0022-3115(93)90131-H.

444 [17] J. Van Den Bosch, O. Anderoglu, R. Dickerson, M. Hartl, P. Dickerson, J.A.
445 Aguiar, P. Hosemann, M.B. Toloczko, S.A. Maloy, SANS and TEM of
446 ferritic-martensitic steel T91 irradiated in FFTF up to 184 dpa at 413 ??c, *J.
447 Nucl. Mater.* 440 (2013) 91–97. doi:10.1016/j.jnucmat.2013.04.025.

448 [18] E. Getto, K. Sun, A.M. Monterrosa, Z. Jiao, M.J. Hackett, G.S. Was, Void
449 swelling and microstructure evolution at very high damage level in self-ion
450 irradiated ferritic-martensitic steels, *J. Nucl. Mater.* 480 (2016) 159–176.
451 doi:10.1016/j.jnucmat.2016.08.015.

452 [19] B.H. Sencer, J.R. Kennedy, J.I. Cole, S.A. Maloy, F.A. Garner, Microstructural
453 analysis of an HT9 fuel assembly duct irradiated in FFTF to 155 dpa at 443 ??C,
454 J. Nucl. Mater. 393 (2009) 235–241. doi:10.1016/j.jnucmat.2009.06.010.

455 [20] V. Kuksenko, C. Pareige, P. Pareige, Intra granular precipitation and grain
456 boundary segregation under neutron irradiation in a low purity Fe–Cr based
457 alloy, J. Nucl. Mater. 425 (2012) 125–129. doi:10.1016/j.jnucmat.2011.10.031.

458 [21] Z. Jiao, G.S. Was, Precipitate evolution in ion-irradiated HCM12A, in: J. Nucl.
459 Mater., North-Holland, 2012: pp. 105–111. doi:10.1016/j.jnucmat.2011.12.017.

460 [22] M.J. Swenson, J.P. Wharry, Nanocluster irradiation evolution in Fe-9%Cr ODS
461 and ferritic-martensitic alloys, J. Nucl. Mater. 496 (2017) 24–40.
462 doi:10.1016/j.jnucmat.2017.08.045.

463 [23] J.H. Ke, H. Ke, G.R. Odette, D. Morgan, Cluster dynamics modeling of
464 Mn-Ni-Si precipitates in ferritic-martensitic steel under irradiation, J. Nucl.
465 Mater. 498 (2018) 83–88. doi:10.1016/j.jnucmat.2017.10.008.

466 [24] C.L.L. Liu, G.R.R. Odette, B.D.D. Wirth, G.E.E. Lucas, A lattice Monte Carlo
467 simulation of nanophase compositions and structures in irradiated pressure
468 vessel Fe-Cu-Ni-Mn-Si steels, 1997. doi:10.1016/S0921-5093(97)00450-4.

469 [25] J.P. Wharry, Z. Jiao, V. Shankar, J.T. Busby, G.S. Was, Radiation-induced
470 segregation and phase stability in ferritic-martensitic alloy T 91, in: J. Nucl.
471 Mater., North-Holland, 2011: pp. 140–144. doi:10.1016/j.jnucmat.2010.12.052.

472 [26] C. Pareige, V. Kuksenko, P. Pareige, Behaviour of P, Si, Ni impurities and Cr
473 in self ion irradiated Fe–Cr alloys – Comparison to neutron irradiation, J. Nucl.
474 Mater. 456 (2015) 471–476. doi:10.1016/J.JNUCMAT.2014.10.024.

475 [27] V. Kuksenko, C. Pareige, P. Pareige, Cr precipitation in neutron irradiated
476 industrial purity Fe-Cr model alloys, J. Nucl. Mater. 432 (2013) 160–165.
477 doi:10.1016/j.jnucmat.2012.07.021.

478 [28] High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation, Nucl.
479 Energy Univ. Progr. (n.d.). [https://neup.inl.gov/SiteAssets/FY 2013
480 Abstracts/IRP/IRP-University of Michigan.pdf](https://neup.inl.gov/SiteAssets/FY%2013%20Abstracts/IRP/IRP-University%20of%20Michigan.pdf) (accessed April 3, 2018).

481 [29] K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, B. Gorman,
482 In situ site-specific specimen preparation for atom probe tomography.,
483 Ultramicroscopy. 107 (2007) 131–9. doi:10.1016/j.ultramic.2006.06.008.

484 [30] B. Gault, M.P. Moody, J.M. Cairney, S.P. Ringer, Atom Probe Microscopy,
485 Springer Science & Business Media, New York, 2012.
486 <http://books.google.com/books?hl=en&lr=&id=jSXHPIBjL1UC&pgis=1>
487 (accessed September 25, 2014).

488 [31] L.T. Stephenson, M.P. Moody, P.V. Liddicoat, S.P. Ringer, New techniques
489 for the analysis of fine-scaled clustering phenomena within atom probe
490 tomography (APT) data., *Microsc. Microanal.* 13 (2007) 448–463.
491 doi:10.1017/S1431927607070900.

492 [32] P.D. Edmondson, C.M. Parish, R.K. Nanstad, Using complimentary
493 microscopy methods to examine Ni-Mn-Si-precipitates in highly-irradiated
494 reactor pressure vessel steels, *Acta Mater.* 134 (2017) 31–39.
495 <https://www.sciencedirect.com/science/article/pii/S1359645417304305>
496 (accessed April 16, 2020).

497 [33] L. Messina, M. Nastar, T. Garnier, C. Domain, P. Olsson, Exact ab initio
498 transport coefficients in bcc Fe – X (X = Cr , Cu , Mn , Ni , P , Si) dilute
499 alloys, *Phys. Rev. B.* 90 (2014) 104203. doi:10.1103/PhysRevB.90.104203.

500 [34] D.J. Larson, B. Gault, B.P. Geiser, F. De Geuser, F. Vurpillot, Atom probe
501 tomography spatial reconstruction: Status and directions, *Curr. Opin. Solid*
502 *State Mater. Sci.* 17 (2013) 236–247. doi:10.1016/j.cossms.2013.09.002.

503 [35] K. Gupta, The Mn-Ni-Si (Manganese-Nickel-Silicon) System, *J. Phase*
504 *Equilibria Diffus.* 27 (2006) 529–534. doi:10.1361/154770306x136520.

505 [36] P.B. Wells, T. Yamamoto, B. Miller, T. Milot, J. Cole, Y. Wu, G.R. Odette,
506 Evolution of manganese-nickel-silicon-dominated phases in highly irradiated

507 reactor pressure vessel steels, *Acta Mater.* 80 (2014) 205–219.

508 doi:10.1016/j.actamat.2014.07.040.

509 [37] D.J. Sprouster, J. Sinsheimer, E. Dooryhee, S.K. Ghose, P. Wells, T. Stan, N.

510 Almirall, G.R. Odette, L.E. Ecker, Structural characterization of nanoscale

511 intermetallic precipitates in highly neutron irradiated reactor pressure vessel

512 steels, *Scr. Mater.* 113 (2016) 18–22. doi:10.1016/j.scriptamat.2015.10.019.

513 [38] H. Ke, P. Wells, P.D. Edmondson, N. Almirall, L. Barnard, G.R. Odette, D.

514 Morgan, Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in

515 low-Cu reactor pressure vessel steels, *Acta Mater.* 138 (2017) 10–26.

516 doi:10.1016/j.actamat.2017.07.021.

517 [39] N. Almirall, P.B. Wells, H. Ke, P. Edmondson, D. Morgan, T. Yamamoto, G.R.

518 Odette, On the elevated temperature thermal stability of nanoscale Mn-Ni-Si

519 precipitates formed at lower temperature in highly irradiated reactor pressure

520 vessel steels, *Sci. Rep.* 9 (2019) 9587. doi:10.1038/s41598-019-45944-z.

521 [40] S. Zhang, X. He, T. Ko, Non-equilibrium segregation of solutes to grain

522 boundary - Part III Mechanism of non-equilibrium segregation, *J. Mater. Sci.*

523 29 (1994) 2663–2670. doi:10.1007/BF00356815.

524 [41] E.P. Simonen, L.A. Charlot, S.M. Bruemmer, Quantification of defect-solute

525 coupling from inverse-Kirkendall segregation, *J. Nucl. Mater.* 225 (1995) 117–

526 122. doi:10.1016/0022-3115(95)00063-1.

527 [42] J.P. Wharry, G.S. Was, A systematic study of radiation-induced segregation in
528 ferritic–martensitic alloys, *J. Nucl. Mater.* 442 (2013) 7–16.
529 doi:10.1016/j.jnucmat.2013.07.071.

530 [43] J.P. Wharry, G.S. Was, The mechanism of radiation-induced segregation in
531 ferritic–martensitic alloys, *Acta Mater.* 65 (2014) 42–55.
532 doi:10.1016/j.actamat.2013.09.049.

533 [44] R.G. Faulkner, S. Song, P.E.J. Flewitt, M. Victoria, P. Marmy, Grain boundary
534 segregation under neutron irradiation in dilute alloys, *J. Nucl. Mater.* 255 (1998)
535 189–209. doi:10.1016/S0022-3115(98)00022-1.

536 [45] S.H. Song, R.G. Faulkner, P.E.J. Flewitt, P. Marmy, M. Victoria, Grain
537 boundary phosphorus and molybdenum segregation under irradiation and
538 thermal conditions in a 2.25Cr1Mo steel, *Mater. Sci. Eng. A.* 286 (2000) 230–
539 235. doi:10.1016/S0921-5093(00)00809-1.

540 [46] H. Hänsel, H.J. Grabke, Grain boundary segregation of phosphorus and carbon
541 in ferritic iron, *Scr. Metall.* 20 (1986) 1641–1644.
542 doi:10.1016/0036-9748(86)90411-4.

543 [47] S.G. Druce, G. Gage, G. Jordan, Effect of ageing on properties of pressure
544 vessel steels, *Acta Metall.* 34 (1986) 641–652.
545 doi:10.1016/0001-6160(86)90179-3.

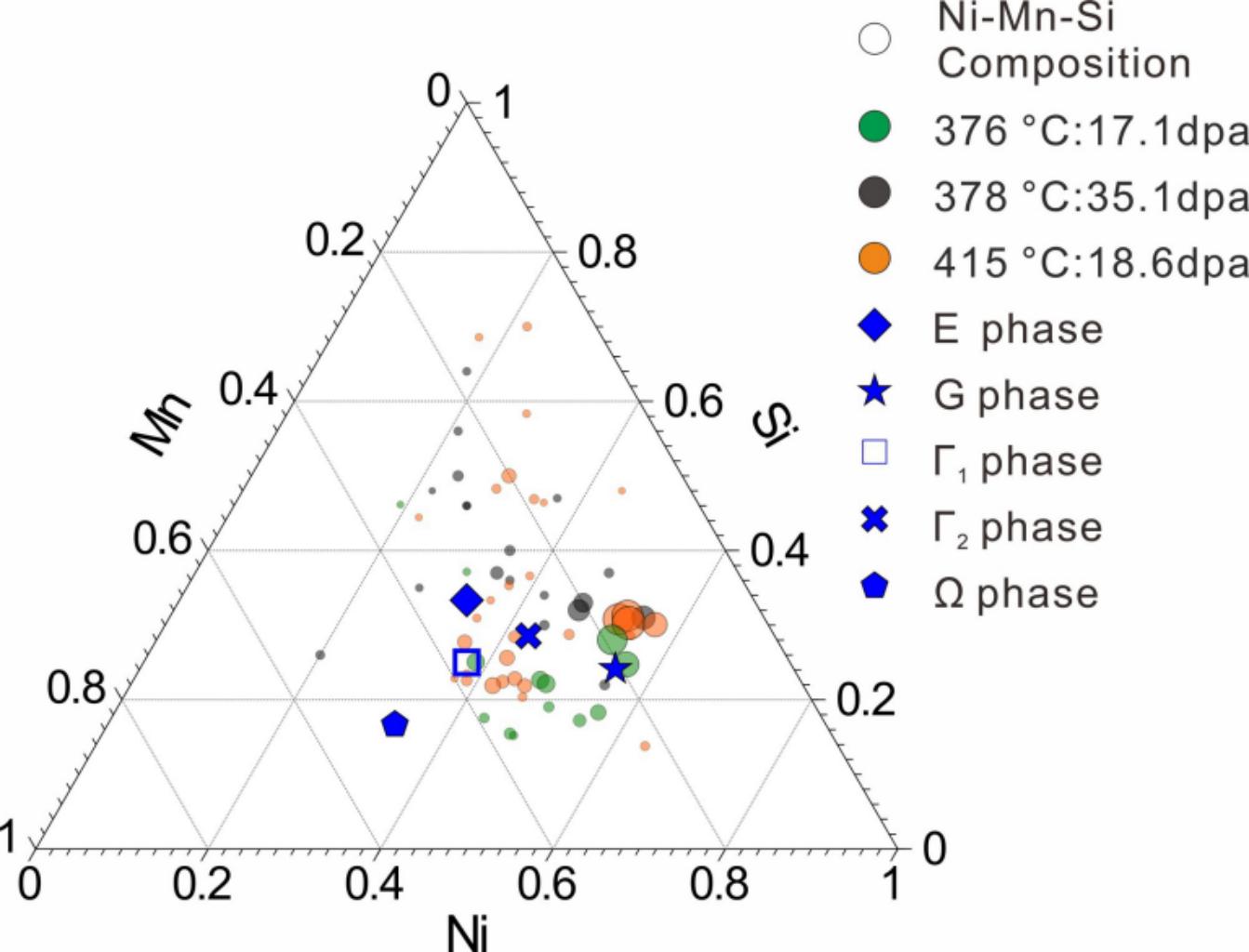
546 [48] B.A. Gurovich, E.A. Kuleshova, Y.I. Shtrombakh, O.O. Zabusov, E.A.
547 Krasikov, Intergranular and intragranular phosphorus segregation in Russian
548 pressure vessel steels due to neutron irradiation, *J. Nucl. Mater.* 279 (2000)
549 259–272. doi:10.1016/S0022-3115(00)00007-6.

550 [49] S.V. Fedotova, E.A. Kuleshova, D.A. Maltsev, M.A. Saltykov, Complex study
551 of grain boundary segregation in long-term irradiated reactor pressure vessel
552 steels, *J. Nucl. Mater.* 528 (2019) 151865. doi:10.1016/j.jnucmat.2019.151865.

553 [50] Y. Yang, S.L. Chen, Thermodynamic and kinetic modeling of grain boundary
554 equilibrium segregation of P in α -Fe, *Calphad Comput. Coupling Phase
555 Diagrams Thermochem.* 57 (2017) 134–141.
556 doi:10.1016/j.calphad.2017.04.002.

557 [51] H. Erhart, H.J. Grabke, Equilibrium segregation of phosphorus at grain
558 boundaries of Fe-P, Fe-C-P, Fe-Cr-P, and Fe-Cr-C-P alloys, *Met. Sci.* 15 (1981)
559 401–408. doi:10.1179/030634581790426877.

560 [52] C. Zheng, E.R. Reese, K.G. Field, T. Liu, E.A. Marquis, S.A. Maloy, D.
561 Kaoumi, Microstructure response of ferritic/martensitic steel HT9 after neutron
562 irradiation: Effect of temperature, *J. Nucl. Mater.* 528 (2020) 151845.
563 doi:10.1016/j.jnucmat.2019.151845.


564 [53] C. Zheng, M.A. Auger, M.P. Moody, D. Kaoumi, Radiation induced
565 segregation and precipitation behavior in self-ion irradiated Ferritic/Martensitic

566 HT9 steel, *J. Nucl. Mater.* 491 (2017) 162–176.

567 doi:10.1016/j.jnucmat.2017.04.040.

568 [54] M. Venkatraman, J.P. Neumann, The C-Cr (Carbon-Chromium) System, *Bull.*
569 *Alloy Phase Diagrams.* 11 (1990) 152–159. doi:10.1007/BF02841701.

570

