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An adiabatic scheme for separation of the three-dimensional nuclear dynamics on the ground
electronic Born-Oppenheimer potential energy surface of an HaO molecule in hyperspherical co-
ordinates is presented. It is found that the three vibrational modes are weakly coupled and the
3D vibrational wave function can be approximated as a product of three separable functions: one
represented by the hyperradius and two by the two hyperangles individually. This framework is
then used for investigation of the formation and the role of a saddle-like barrier arising in the two
hyperspherical angles that is to moderate the OH + H dissociation process. In order to test the
validity of the framework, vibrational states with energies up to 19 500 cm ™" are constructed under
the assumptions of adiabaticity and separability and compared to full three-dimensional high pre-
cision numerical calculations yielding remarkable correspondence. As a result we present a simple
construction scheme for separated molecular vibration states as the first step towards theoretical
investigation of laser-driven molecular dynamics of triatomic molecules.

INTRODUCTION

With the rapid development of laser technology, fem-
tosecond and even attosecond experimental techniques in
the recent years [IH3], the need for comprehensible theo-
retical models of molecular vibrational states which take
part in the dynamics grows. Although various ab ini-
tio quantum calculation packages allow fast calculation
of normal modes and their frequencies, determination of
higher vibrational states and their energies still requires
knowledge of the potential energy surface (PES) and so-
lution of full-dimensional time-independent Schrédinger
equation. The difficulty owes much to the increasing
number of internal degrees of freedom of a molecule which
grows as 3N — 5 for linear molecules and 3N — 6 for non-
linear molecules, where IV is the number of atoms in the
molecule. Clearly a full-dimensional quantum mechani-
cal numerical solution is prohibitively complicated. The
second complication presents the separability of the vi-
brational states into modes which is directly connected
with suitable choice of coordinate system. While quan-
tum mechanical numerical solution can be, in principle,
obtained in any coordinates, the states may not exhibit
any clear nodal structure required for unambiguous iden-
tification of modes and assignment of quantum numbers.

Separability of vibrational modes can significantly sim-
plify dynamical nuclear problems, e.g., due to symme-
try reasons. Standard and attractive approximation for
complex molecules is to freeze all the degrees of free-
dom except for one interatomic pair or an angle between
two such pairs. This avoids the treatment of a multi-
dimensional surface and the analysis of the dynamics can
be dramatically simplified. On the other hand, such sim-
plification may occur in several distinct regions of the
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multi-dimensional potential surface only, such that con-
necting such regions in a time-dependent way is needed.
Before such an approach can be established, however, it
is critical that one can identify the circumstance where
dynamics in a multi-dimensional potential surface can be
simplified, preferable as separable components. For this
purpose, we aim at examining the ground state potential
surface of water molecules (H2O), with the goal of iden-
tifying the separability of the nuclear degrees of freedom.

Over the years, several models for the nuclear vibra-
tions of HoO have been formulated. The initial attempt
assumed only small displacements of atoms from their
equilibrium position so that the molecular potential ex-
panded at the equilibrium could be diagonalized along-
side with the kinetic term giving rise to the well known
normal modes (see, e.g., [4]). The normal modes, how-
ever, experience various mixings: Fermi [5] at lower ener-
gies and Darling-Dennison [6] at high energies. Moreover,
the anharmonicity of the potential had to be taken into
account by correcting terms [7]. Later it was shown that
the so called local-mode model provides an overall better
fit to vibration energies (see, e.g., Review [8] and refer-
ences therein). Nevertheless, the local mode description
fails for the lower vibration states due to the relatively
small mass of the Oxygen atom and yields a good agree-
ment only from the fourth polyad on [9]. Moreover, for
water molecule not all normal modes get washed out due
to the Darling-Dennison mixing and some survive along-
side the local modes up to high energies [10].

Hyperspherical modes offered an alternative to the two
presented types of modes giving rise to various methods
for hyperspherical modes determination based on adi-
abatic approximation (e.g., see Review [II] and refer-
ence therein) or assume mode separability in the self-
consistent field approach [12]. Selective dissociation
through hyperspherical modes was investigated in [13-
16] and adiabatic separability of stretching and bending
modes in Radau and valence coordinates was addressed
in [I7].
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New era in the theoretical spectroscopy of HoO came
with precise ab initio calculations of molecular potential
energy surface (PES) [I8-26] which allowed to calculate
line lists for HoO with high precision up to 41 000 cm ™!
and J = 72 [27]. These listed PES are either constructed
completely from ab initio calculations or use them as a
starting surface which then is fine-morphed to fit avail-
able spectroscopic data. As we have already mentioned,
both normal-mode and local-mode based methods offer
a unique insight into the internal dynamics of molecules.

In this work, we investigate the separability of the PES
of HyO molecule from [28] in hyperspherical coordinates
[29]. We use the adiabatic approximation to separate
the motion associated with the symmetrical stretch from
the motions in two hyperangles associated with bending
and antisymmetric stretching modes. Further, we sepa-
rate the motion in the two hyperangular coordinates re-
sulting eventually in three independent 1D Schrédinger
equations. As one of our results, we reconstruct the full
3D states within our separability assumption and bench-
mark the found energies against high-precision numerical
results from [30]. The goal of this work is to construct
separated vibration states with trivially given symmetry
and quantum numbers reasonably resembling the real vi-
bration states and energies with lowest effort possible.
We regard development of such a framework as an essen-
tial step towards theoretical investigation of strong-field
processes in triatomic molecules. Especially, we hope
that the hyperspherical coordinates will help us in the
future to shed light on selective dissociation limit for wa-
ter isotopomers (e.g., HOD) as they lose the molecular
symmetry. In such case the bond between the diatomic
remnants will play a crucial role and is well described
within one of the sets which we will introduce later.

The paper is structured as follows: in Sec. [l we in-
troduce the hyperspherical coordinates via three differ-
ent sets of Jacobi coordinates and show how the HoO
molecule and PES behave in these coordinates. Further
in that section, we transform the Hamiltonian in hyper-
spherical coordinates. We further introduce grand an-
gular momentum operator and analyze the modes given
in hyperspherical coordinates. The adiabatic approxima-
tion and decomposition of the 3D Hamiltonian in hyper-
spherical coordinates into two parts is discussed in Sec.[[T}
Moreover, all non-adiabatic correction terms are derived
and a way is shown how to solve the adiabatic 2D Hamil-
tonian with B-Spline basis functions. In Sec. [[TI] we dis-
cuss the main novelty of this work: possible separability
of the PES in the current hyperspherical coordinates. In
the course of this action the 2D vibration wave functions
are constructed in the separability approximation and an-
alyzed. Their role in the OH + H dissociation process is
also discussed. The full separability of the 3D PES in all
three hyperspherical coordinates is addressed in Sec. [[V]
where the total energies are calculated in the adiabatic
approximation neglecting non-adiabatic corrections and
compared to full 3D numerical calculations. Finally, the
results are discussed and concluded in Sec.[V] A deeper

analysis of the atomic displacements associated with the
hyperspherical modes is provided in Appendix[A] Atomic
units are used thorough the text unless stated otherwise.

I. FORMULATION IN HYPERSPHERICAL
COORDINATES

A. DMass-scaled hyperspherical coordinates

Internal degrees of freedom for the triatomic HoO
molecule can be described by Jacobi vectors in three dif-
ferent ways as shown in Fig.[l}] The first Jacobi vector p;
always points from one atom to another whereas the sec-
ond vector ps from the center-of-mass of the two atoms
to the third one.

a-set [B-set y-set
P1
P2
p1
= 12 p = 12 p= 3
p2 =I5 p2 = 1% p2 =g

FIG. 1. Demonstration of the three ways for defining Jacobi
vectors with corresponding reduced masses p1 and po.

Further, it is common to introduce mass-weighted Ja-
cobi coordinates as

&= \/Tpl, & = \/fpm (1)

with an arbitrary parametric mass p and reduced masses
as
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where indices a, b and ¢ depend on the set of Jacobi
coordinates. The masses in p; are the masses of the
atoms connected by p; and the third remaining mass in
wo is the mass of the last atom.

The hyperspherical coordinates can be defined in sev-
eral ways but we will follow the definition from [29] yield-
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Although the values of ¢ and 6 vary when transforming
between the sets, the value R is identical for all three
sets. Configurations of the molecule with respect to the



angles ¢ and 6 are shown in Fig.[2] The figures are carried
out for a constant value of R but are valid for any value
of the hyperradius. The hyperradius is connected only
to the overall size of the molecule and does not change
the internal angles nor the ratio between the two bond
lengths used for determination of the dissociation regions.
In this work we set p = po from the ~-set, which sets the
minimum of the potential to hyperradius R = 1.881 a.u.
and to hyperangles ¢ = 45.52° and 6 = 72.32° for both
- and (-set and to hyperangles ¢ = 36.15° and 6 = 90°
for y-set. The global minimum is marked by a cross in

each of the panels in Fig.
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FIG. 2. Configuration of the molecule (HOH) at a constant
hyperradius R with respect to hyperspherical coordinates ¢
and 0 and the choice of set. The second Jacobi vector is
always oriented along 6-axis. Position of the global minimum
is marked with black cross. The shaded regions indicate which
atom is the furthest from the others: in blue region it is the
first hydrogen (H+OH), in red region the oxygen (H2+0) and
in green region the second hydrogen (HO+H).

The PES of HoO molecule possesses only one global
minimum which is also called equilibrium. Nevertheless,
it is of interest to have a look at position of minimum in
each slice of PES with respect to hyperradius as we do in
Fig.[8] The global minimum is marked by black cross and
lies on purple curve which marks the position of minimum
of 2D PES slice of constant R. Remarkably, position of
the minimum manifest a split starting at R ~ 2.4. Since
the a-set does not exploit the molecular symmetry, the
split minima are located at distinct hyperangles ¢ and 6
as the figure shows. This is different for the -set, which
reflects the molecular symmetry. In this set, both split
minima are located at the same value of hyperangle ¢
and their position in hyperangle 6 respects the axis of
symmetry 6§ = 90°. We will discuss later in the text how
this bifurcation point is connected to two dissociation
channels OH + H.

B. Molecular Hamiltonian

The molecular Hamiltonian in Cartesian coordinates
x; of the ¢th nucleus yields
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FIG. 3. Position of the minima in slices of the potential,
i.e., V(R = const., ¢,0), in hyperspherical coordinates with
respect to R are projected and marked with magenta lines for
a- and S-set in panels (a) and (b) and for y-set in panels (c)
and (d). The position of the global minimum is marked with
black cross. We can see that the minimum of the potential
splits at R ~ 2.4 and two minima are created (denoted with
full and dashed line). In a-, B-set, both minima are located
at different hyperangles. In ~-set, the two minima are located
at the same hyperangle ¢ and in hyperangle 6 they respect
the symmetry axis 6 = 90°. Let us also remark that the two
minima interchange under transformations between a- and
[-set.

with potential V' accounting for the electronic energy
and nuclear repulsion energy. For three atoms, in Jacobi
coordinates, the ro-vibrational Hamiltonian simplifies to
131, 32]
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The terms K. o and K » represent the rovibrational and vi-
bration part of the Hamiltonian, respectively. The quan-
tity I, are the total angular momentum operators which
depend on the Euler angles in such a way that the com-
ponents of the total angular momentum in p; can be
obtained from matrix multiplication

L = —CIL (7)




The volume element for the internal coordinates yields
dV = p?p3sinfdpidpedf and for the Euler angle part it
depends on the sine of the second Euler angle. For further
details about Jacobi coordinates in the embedded body
frame see [31].

From now on, we will concentrate only on the vibra-
tional kinetic term of the Hamiltonian K, which yields
in hyperspherical coordinates
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with the squared grand angular momentum operator
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Let us note that in the calculation the wave function was
rescaled by a factor of R%/?sin¢cos¢ and the volume
element now becomes dV = sindRd¢df. Let us also
remark that transformation of the wave function from
hyperspherical to Cartesian coordinates can be perform
simply by removing the scaling factor.

C. Hyperspherical and normal modes

It is reasonable to exploit the trivial symmetry of the
water molecule and connect the two hydrogen atoms with
the first Jacobi vector, which we call v-set for conven-
tional reasons. Reduced masses in such case yield
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The Jacobi vectors can be fixed in the embedded body
frame following [31] as

sin @ 0
pPL= p 0 ;o p2=p2( 0], (11)
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meaning that the oxygen atom, center-of-mass of the
molecule, and center-of-mass of the two hydrogens lie on
Z-axis.

One could ask how do the changes in the hyperspher-
ical coordinates R, ¢ and 6 manifest? We carried the
change of the positions of the atoms connected with hy-
perspherical coordinates R, ¢ and 6 for a- and ~-set
along with normal coordinates (taken from [33]) in Fig.
We can identify oscillations in ()7 and R as symmetric
stretching, in Q2 and ¢ (y-set) as bending and in Qs
and ¢ (a-set) as asymmetric stretching. Mode in hyper-
angle 0 (vy-set) reflects the symmetry of the asymmetric
bond-stretching in ()3 but does not seem to be a linear
combination of the three normal modes as the position of
the oxygen atom does not change. Let us note that the
modes in Q5 and ¢ (v-set), although similar-looking, are
not identical, and moreover, act in opposite directions:
since for increasing ()2 the molecule straightens whereas

z (au.) z (au.) z (a.u.)
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FIG. 4. Visualization of hyperspherical modes in a- and y-set,
and normal modes, as change in the positions of individual
atoms. Center-of-mass of the molecule is fixed at the origin
and normal coordinates 1, Q2 and (3 and hyperspherical
R, ¢ and 6 coordinates executes oscillation over one whole
period. Positions of the atoms during the first half-period
are carried out with light gray and for the second half-period
with dark gray, respectively. The displacements of oxygen
atom are exaggerated by a factor of 10. For more details see
text.

for increasing ¢ the molecule bends more. To conclude
this comparison we note that the modes in Q3 and ¢
(a-set) are not identical either.

In addition, we have analyzed the atomic displace-
ments in v-set of hyperspherical coordinates analytically
and the results are given in Appendix. [A]

II. ADIABATIC APPROXIMATION IN
HYPERSPHERICAL COORDINATES

A. The Born-Oppenheimer approximation

In order to simplify Eq. , we apply the well-known
Born-Huang expansion of the wave function ¢ (R, ¢,0) in

the form
Z F(

When we insert the expanslon into Eq. . 5) with the vibra-
tional term from Eq. (8) and assume adiabatic behavior
with respect to the R coordmate we arrive at two cou-
pled equations

A?-1/4
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¥ (R, $,0) v (R, 9,0). (12)

V (R, 9)) Dy (R, 6,0) = Uy (R)D, (R, 6,0)
(13

1 d2
<_2udRQ + U,,(R)) F,.(R)=E,,F,,(R), (14
where index v represents the vibrational quantum num-
ber of the 2D wave function @, (R, ¢,0) with energy
U,(R) on slice of the potential, i.e., V(R = const., ¢, 0).



Later we will address the fact that the energies of two dis-
tinct vibrational states can become degenerate and even
cross with changing R. Index n stands for the vibra-
tional quantum number of 1D wave function F,,(R) on
1D potential curve given by U, (R) with fixed value v.
The energy E,,, then represents the total vibrational en-
ergy of the molecule under the adiabatic approximation
applied on the nuclear coordinates. We can treat R as
a parameter in the first equation and as a coordinate in
the second equation. Let us stress that all non-adiabatic
terms in the second equation are omitted so it is equiva-
lent to Born-Oppenheimer approximation for the “slow”
coordinate R. It is known that such approximation leads
to determination of the lower bound on the energy levels
[34]. However the upper bound is usually closer to the
real result [35] and can be obtained by reintroduction of
the non-adiabatic term
W (R) = ! ®,(R @ ®,(R 15
W( )—_ﬂ< V( )|W| V( )>a ( )
into the round bracket on LHS of Eq. [34]. The bra—
ket stands for integration over the hyperangles ¢ and 6.
Let us also note that the energies FE,,, generally do not
correspond to nuclear vibrational energies on the 3D adi-
abatic PES V (R, ¢,0), unless the vibrational modes in
R and (¢, ) truly separate and all non-adiabatic correc-
tions and couplings vanish, e.g., due to a proper choice of
coordinate system. In such case, the energies F,, would
correspond to the full 3D nuclear vibrational energies in
the sense of the Born-Oppenheimer approximation sepa-
rating electronic and nuclear motion.

B. Non-Adiabatic Coupling terms

Eqs. (13l|14]) are obtained by assuming that the non-
adiabatic terms are negligible, thus leading to the con-
clusion that the various states F,,(R) do not interact. If

the non—adiabatic couplings are included, the full equa-
tion Eq. (14) would take the form:
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The Hamiltonian can be decomposed into two terms
1D 1D
H(lD) = Héiag‘.) + H(Eoup)l.' (19)
The diagonal Hamiltonian has the following form
1D 1 d2
((hag.) v T 2 dR2 + U + WVV(R) (20)

and the non-adiabatic couplings can be written as
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1D _
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(21)

C. Solving the 2D angular Schrédinger equation
with 2D B-Splines

Eq. can be solved trivially over some real 2D basis
set. For this purpose we decided to use 2D B-Splines of
some order k, chosen to be the same in both dimensions.
Then, the wave function can be decomposed as

Z cun(R) By (¢, 0), (22)

where B, (¢,0) is the n-th 2D B-Spline and the coeffi-
cients ¢,,(R) are R-dependent constants. The index n
represents a unique product of two 1D B-Splines of order
k constructed on grid of N4 points in one dimension and
Ny points in the other (see, e.g., [36]). We have chosen
k=6 and Ny = 46 and Ny = 91.

In the B-Spline representation, Eq. yields

ZH@D Jevn(R) =Y Luncun(R),  (23)

with the Hamiltonian and overlap matrices as:
Hy5, = (B (6,0)| Hon| B.i(6,0))
When we substitute for the grand angular momentum

operator from Eq. (9) into Eq. (L3), we can evaluate the
matrix elements of the angular Hamiltonian as

HED) = / / d¢dfsin 0B, ( 5 R2>B

0B}, 0B,
/ d¢df sin 0 ( 96 00
n 1 0B, BBn>
sin® gcos2¢ 00 00

where we applied the boundary conditions: (R, 0,0) =
Y(R,7/2,0) =0 and 0¢/00 = 0 at § = 0, 7. The overlap
matrix can be evaluated simply as

Ly = // d¢df sin 0B, B,,. (26)

The diagonalization of this symmetric generalized
eigenvalue problem can be done by standard packages
(e.g., Lapack for Fortran). The energies U, carried out
for R = 1.88 a.u. are presented in Tab.[l] In this table,
quantum numbers vy and vy are assigned from the nodal
structure. Take U; and Us as the elementary quanta,
it can be seen that the 2D eigenvalues are well approxi-
mated by E,, ., = veUr + vpUs.

2R2

(25)



vV |Vg Vo Eyd”ye U, |rel. diff.
(em™) (em™)| (%)
0|0 O 0 0 -
11 0] 1634.3 1634.3 -
212 0] 3268.7 3238.2| 0.9
310 1] 4111.9 4111.9 -
413 0] 4903.0 4803.7| 2.1
5|1 1| 5746.3 5770.1 0.4
6|4 0| 6537.4 6320.3| 3.4
712 1| 7380.6 7397.6| 0.2
8|5 0| 8171.7 7770.9| 5.2
9|0 2| 8223.8 8368.9 1.7
1013 1| 9014.9 8986.8| 0.3
1116 0] 9806.1 9122.8] 7.5
12| 1 2| 9858.2 10050.8 1.9
13| 7 0]11440.4 10343.4| 9.6
141 4 1]10649.3 10527.6 1.1
1518 0(13074.8 11537.5| 13.3
16| 2 2(11492.5 11701.7 1.8
171 5 1]12283.6 12003.9| 2.3
18| 0 3(12335.7 12763.8] 3.4
1919 0(14709.1 12874.7| 14.2
20| 3 2(13126.9 13314.4 1.4

TABLE 1. Analysis of the separation of the potential at
R = 1.88. We compare the quantized energies constructed
via, Eu¢,l/9 = veU1 + v9Us with the calculated energies U, of
2D Eq. . The overall small relative difference indicates
that the potential behaves like separable in the two hyperan-
gles.

III. SEMI-SEPARABILITY OF THE
POTENTIAL IN HYPERSPHERICAL
COORDINATES

Normal vibration modes of the water molecule are
based on the strict assumption that the potential is sep-

J

21 R2

arable in the normal coordinates, for example, at least at
the equilibrium position, and that vibrational states are
independent and quantized with unique quantum num-
bers and unique energies. As we will discuss further, this
is not true for highly excited states. Nevertheless, such
simple picture is not far from reality and this picture
helps us to gain insight into the behavior of molecular
dynamics.

We have already separated the potential into hyperra-
dial and hyperangular parts in our adiabatic approach,
can the equivalent of the three normal modes occur also
in hyperspherical approach?

The answer is not obvious since the grand angular mo-
mentum operator A? from Eq. @ is not separable in the
hyperangles. Nevertheless, we can use a small trick if
we assume separability of the 2D wave function with pa-
rameter R and the quantum numbers v4 and vg in the
form

i)y¢,ue (Ra ¢a 0) = q)l/¢ (R’ ¢)®V9 (R’ 0) (27)

Such a separable form would yield the approximate total
2D energy as

Tyyve = Usy + Usy. (28)

This trick comes handy when separation of the grand
angular momentum operator along with the molecular
potential V(R,¢,0) at the minimum of the potential
(Pmin, Omin) for a given R is set by

A5 —1/8 1
—5— T V(Ra ¢)7 emin) - §V(R, ¢min7 omin) (I)u¢ (R, ¢) - Ul/¢ CI)W, (R7 ¢)7

A2 -1 1
< g /8 + V(Ra ¢min7 0) - §V(R7 ¢min7 Hmin)) @VQ (Ra 9) = Ul/g ®V9 (R7 9)7

2uR?

where the separated grand angular operators yield

62
2
M=
1 0 0
AZ=— I (sing= ). (30
0 Sin? Prmin 082 Grin sin 6 00 (Sm 89> (30)

Let us note that the quantities obtained within sepa-
rability approximation will be marked with a tilde.

Although this separation may seem arbitrary, it is well
founded by the quantization of the 2D wave functions

(29)

(

®, (R, ¢,0) in the quantum numbers vy and vy as we can
see in Tab. [l

This also explains why the resulting potential energy
curves (PEC) U,,, ., are very close to the curves obtained
by full 2D calculations (calculated with B-Spline basis
set), see Fig. || (a) and (b)). Not only the order of the

curves in U,EQD) and U, »we are identical, but also the
positions of all curve crossings. Exact numerical values
at R = 1.88 for these two calculations can be found in
Tab. [
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FIG. 5. Adiabatic PEC US*® obtained by solving Eq.
with 2D B-Spline basis set are shown in panel (a) and Uy, .,
obtained by separable approximation are plotted in panel (b).

r(full (full 2D
Ovps Hion By [U
0.01280 0.01287 0.01283(0.01283
0.02020 0.02047 0.020270.02027
0.02746 0.02808 0.02758(0.02758
0.03152 0.03174 0.03156(0.03156
0.03455 0.03578 0.03472|0.03472
0.03892 0.03977 0.03912|0.03912
0.04142 0.04384 0.04163(0.04163
0.04618 0.04813 0.04653|0.04653
0.04801 0.05322 0.04830(0.04823
0.05093 0.05130 0.050960.05096
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TABLE II. Comparison of energies at R = 1.88 a.u. for low
lying states obtained by several methods as discussed in text.
Energies U, ., are determined under the assumption of sepa-
rable potential while USP) are true adiabatic potential. Diag-

onal full Hamiltonian matrix elements H ((il)ﬂ(lg) gives the energy

of the 2D Hamiltonian if the eigenstates are separable. EN'((S;H)

gives the energy after diagonalization of 2D Hamiltonian with
basis constructed by the separable states. Thus the separable
states can serve as a diabatic basis set.

A. Reconstructing (¢, 0)

The huge advantage of having two 1D Schrédinger
equations instead of one 2D equation is the speed of
calculation. The other great advantage is the trivial
organization of the eigenstates. The 1D eigenstates in
each dimension are quantized with corresponding quan-
tum number vy or vs. Energies of these 1D states in-
crease monotonically with the increasing quantum num-
ber and similar states in various R-slices of the PES can
be easily assigned. Such organization also applies for
the constructed 2D wave functions @, +.v0- Lhis is not

R =188 au.
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FIG. 6. (Top panel) A slice of potential V(R = 1.88,¢,0).
Comparison of the 2D adiabatic wave function (bottom panel)
for the 7th state (v = 6) in Table[[I] with the separable wave
function (middle panel) for <i>4’0+. The superscript + indi-
cates the symmetry in hyperspherical coordinate 6.

true for the adiabatic 2D states as there are slices, where
quasi-separability breaks down and nodes in the two di-
mensions cannot be distinguished. Trying to connect the
2D adiabatic states in neighboring slices via their over-
lap, (@, (R;)|®, (Ri+1)), works for the four lowest lying
states only, while for higher lying states they cannot be
connected correctly via this method through split of the
potential at R =~ 2.43. Further challenge is posed at
R ~ 3.19 a.u. where the full 2D eigenfunctions also lack
clear nodal structure in each dimension making the con-
nection rather nontrivial.

The natural thing to ask is how precise are the 2D wave
functions constructed by two 1D wave functions obtained
from the separation method in Eq. ? To answer this
question we can use two ways. On one hand, we can
evaluate the overlap between the constructed states and
the real 2D states

Qi () = <(I’i <i>(,,)> (31)
where hyperindex (v) represents one particular combina-
tion of quantum numbers vy, V9. The assignment of v4, vg
to the hyperindex v follows the scheme from Tab. [lI| (for



i=\W=0 1H @ B @& 6 © (@) (@ )
0 09990025 0 0 000l 0 0 0 0 0.007
1 0.026 0.997 0.032 0 0.002 0 0.003 0 0.001 0.034
2 0.001 0.038 0.993 0 0.035 0 0.005 0 0.006 0.012
3 0O 0 0 099 0 0075 0 0003 0 0
4 0 0.0020.049 0 0987 0 0.033 0 0.012 0.004
5 0O 0 0 0079 0 098 0 0098 0 0
6 0 0 0004 0 0060 0 0976 0 0.0250.001
7 0O 0 0 0 0 0115 0 0970 0 0
8 0 0 000l 0 0007 0 0073 0 0959 0
9 0.010 0.0370.020 0 0 0 0 0 0 0.989

TABLE III. Projections a; ¢,y at R = 1.88 a.u. Here the row number indicates the level order of the adiabatic state, the column
number is the order v of the separable state (corresponding to the first column in Table . The off-diagonal terms indicate

the degree of coupling.

example, if v = 6 then vy = 4 and vy = 0). We show
the projections in Tab. [[ITl On the other hand, we can
evaluate the full Hamiltonian matrix

A% —1/4

)
211R?

(1) (v2) = (32)

<‘i>(vl> + V‘é<u2>>a

with hyperindices (11) and (v2). The more the diagonal
elements of the matrix H ((lf);l(lz) deviate from the corre-

sponding energy U, e the more the constructed wave
functions deviate from the true adiabatic 2D wave func-
tions. Such deviations start to become prominent for the
7th (v = 6) and 9th (v = 8) levels. The discrepancy can
be attributed to the high quantum number v4 (4 and 5,
respectively) which is connected to a wider spread of the
wave function in the ¢-direction, where the full shape
of the potential starts to play a role. As we can see in
Fig.[6| where we compare the 2D slice of V(R = 1.88, ¢, 6),
the constructed 59(6) with the true 2D ®g. The wave

function 2D ®4 differs from &)(6) mainly in the first lobe
which is somewhat broader and lower, which can be at-
tributed trivially to “opening” of the potential at small
values of ¢. Nevertheless, this difference, although hav-
ing rather small influence on the energy of the state (see

Tab. , does cause a non-negligible mixing with other

states, as evidenced by the significant deviation of H ((g;&))

from ﬁ4,0. We also diagonalized the full Hamiltonian

matrix evaluated over a basis of 400 states <i>l, 5vp With

Vg, vg = 1,...,20 and carried out the ten lowest eigenen-

ergies E((S;H) in Tab.[[Il The correspondence between the

eigenenergies and the real adiabatic 2D values indicates
that the constructed states can be used a diabatic basis
set.

Once the 2D basis functions &)V v ATE constructed for
the range of R of interest, we can trivially carry out the
corresponding 1D U, ,,(R). In particular, as shown in
Fig. [7} the potential curves can be labelled as symmet-
ric or antisymmetric in accordance with the even or odd
quantum numbers vy and with respect to the symmetry
in hyperangle 6.

B. Split of potential in § and appearance of saddle

The OH + H dissociation limit along with the symme-
try of the molecule leads to formation of a barrier at a
particular size (or R) of the molecule when it begins to
be energetically favorable for one of the hydrogen atoms
to shift farther away from oxygen than the other. This
twofold dissociation limit manifests trivially only in the
~-set as the split of the potential minimum appears only
in the hyperangle 8. The barrier arises at the hyperradius
R ~ 2.4 as shown in Fig. [3

The PES in ~-set manifests symmetry in the hyper-
spherical angle € which is also preserved by the 1D wave
functions ©,, and 1D potential V(0) = V (R, ¢min,0) —
V(R, $min, Omin)- Therefore we can restrict our initial
analysis to one dimension only. The formation of the
barrier in the hyperangle 6 is visualized in Fig.

With increasing R the value of the minimum of the
potential increases and a barrier at § = 90° starts to
form. Moreover, the height of the barrier grows with
the increasing hyperradius. As the height of the barrier
increases, the energy difference between the neighboring
states of opposite symmetry decreases till the states be-
come degenerate at some point. The energies of lower ly-
ing states converge to each other faster than the energies
of higher lying states which is trivially understandable
as a creation of two separate potential wells affects low-
est states mostly. We should note that only the states
with opposite symmetry merge together. The rising of
the potential barrier will affect the antisymmetric states
less since they have a node at # = 90°. For the symmetric
states, as the potential barrier rises, the wave functions
at and near § = 90° are in the classical forbidden region,
thus with nonzero but very small probabilities. There-
fore, the energy of the symmetric states will become very
close to antisymmetric states since in both cases the wave
functions in the barrier regions are both very small, re-
sulting in the pair of symmetric and antisymmetric curves
merging at large R where the potential barrier is high.

Now, we can understand why the two neighboring
PECs of opposite symmetry merge together while stay-
ing separated from other PEC pairs of the same v4 in
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FIG. 7. Depiction of several lowest energies U,,(b:o,l,g;ye of the 2D states i)%,,m constructed via the separation method. The
PEC of the same v, are separable without any crossings. The states symmetric in 6 are shown by full lines and marked with
superscript +, the antisymmetric states by dashed lines and superscript —. The potential energy curves for states with opposite
symmetry and vy = 2n — 2 and vy = 2n — 1 are shown with the same color. Each pair merges into a single curve at large R.
As expected, the merging occurs at larger values of R with increasing quantum number vp.

R=24a.u. R=25a.u. R =26 a.u.
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FIG. 8. Formation of the barrier in the molecular potential visualized as 1D slice. The potential V(6) = V(R, ¢pmin,0) —
%V(R, ®min, Omin) is shown in a thick blue line while low-lying states ©,, are shown in thin colored lines. With increasing
hyperradius R, a single potential well at small R will deform into two potential wells, separated by a growing potential barrier.
As the barrier grows, the wave function of the symmetric state in the barrier region become very small, thus its energy becomes
very close to the antisymmetric state, resulting in pairs of degenerate states at large hyperradius. Note that nodal structure of
the wave functions do not change versus R.

Fig. [7]and what role is played by the barrier. In top row of Fig. [9] we demonstrate how the barrier emerges in 2D.
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R = 1.88 a.u. R =25 a.u. R =3 a.u.
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FIG. 9. We plotted three most distinct shapes of the PES slices with respect to value of R on the first line. As we can see the
2D PES slices evolve from having one minimum (R < 2.4 a.u.) towards having two distinct minima (R 2 2.4 a.u.) separated
by a saddle-like barrier with height increasing with R. On the remaining lines we carried out the corresponding 2D functions
®,,.4, which we organized with respect to their symmetries in 6 and energy degeneracy at large R. The deformation of the
symmetric states due to the barrier is more severe than of the antisymmetric states leading to creation of degenerate energy
pairs as we already discussed for the 1D slices in text.

At equilibrium R = 1.88, as seen in the first potential Near R = 2.5, this minimum begins to split, where a sad-
surface in the top row, there is only one minimum in 6. dle starts to form, and the two minima shift apart with



increasing R, as shown for R = 3 (see Fig. [§[c)-(d) for
more details on the position of the minima). In the re-
maining rows of Fig. @ we show how the 2D &, ,, (¢, 0)
wave functions evolve with R for three pairs of states
where each pair becomes degenerate at large R. Before
the saddle, the symmetric state lies much lower that the
antisymmetric state, where the symmetric state has much
larger probability distributions near the symmetry point
0 = 90°. At the saddle, each wave function begins to
spread and eventually the wave function splits into two
distinct parts at R = 3. In doing so, the nodal structure
at # = 90° remains the same. Since the barrier height in-
creases with R, the large probability density for the sym-
metric state at # = 90° begins to diminish. For large R,
the probability density for symmetric and antisymmetric
states in the barrier region both become very small, lead-
ing to two degenerate states at large R in each pair. Such
“bifurcation” at the saddle occurs at increasing R as the
vibrational energies of the states increase. For such de-
generate states, linear combination of the symmetric and
antisymmetric states would result in two localized states,

& ‘io,m + ‘fo,r
H{OH = ———F——,
V2
By g g+ — Do -
Protn = L\/ﬁo’l. (33)

These two localized states would be related to either
case of the attachment of one hydrogen atom to oxygen
atom with the other hydrogen atom far away. Fig.
illustrates such cases at R = 4 a.u. On top frames, we il-
lustrate the 2D potential surface, highlighting where the
potential wells are located in each set of Jacobi coordi-
nates and the exact positions of the minima are marked
by white crosses. For each localized state, the wave func-
tion is confined only to one narrow region, as clearly seen
in each Jacobi set of hyperspherical angles illustrated on
middle and bottom frames.

Each linear combination represents the dissociation
limit for different hydrogen atom as indicated by the sub-
script. Such localization of the hyperspherical modes to-
wards dissociation of one or the other hydrogen atom is
possible only due to the energy degeneracy for symmetric
and antisymmetric neighboring states. We should keep in
mind that the degeneracy of the two neighboring states
appears at a particular value of R which depends on their
energy via quantum numbers v, and vg as discussed in
Fig.

Let us remark that the creation of energy-degenerate
pairs at large hyperadii was also observed for the true
2D wave functions and is well reproduced in the present
approach.

So far, we have developed a framework adiabatically
connecting equilibrium vibration states with dissociative
vibrational states at large hyperradii. Intuitively, the
most efficient control of dissociative products by ultra-
fast pulses is to manipulate these states in the transition
region. Such knowledge would be invaluable for opti-
mization of reaction products in the future.
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FIG. 10. Top row: 2D potential slice V(¢,0) at R = 4 a.u.

for the three sets of hyperspherical coordinates. The dark
blue regions indicate the potential wells with minima marked
by white crosses separated by the saddle which looks differ-
ently in each set. Middle and bottom row: the localized wave
functions given in Eq. . As we can see, each wave function
is represented by a well localized state, corresponding to the
dissociation of a different hydrogen atom via corresponding
potential minimum.

IV. CONSTRUCTION OF THE FULL
VIBRATIONAL STATES

The full vibrational states can now be constructed via
Eq. using PEC from Eq. (28). The correct proce-
dure should involve also the non-adiabatic corrections as
shown in Eq. , but since our PEC was already eval-
uated in the separable approximation of the potential, it
makes little sense to incorporate the relatively small non-
adiabatic terms to increase the precision. Nevertheless,
it is worth noting that the non-adiabatic correction terms
peak at the split of the potential at R ~ 2.4 a.u. which is
the place where the symmetric and antisymmetric states
start to degenerate in energy.

For illustration we carried out the four lowest 1D so-
lutions F,,(R) on the lowest PEC U, _¢ ,,—o+(R) in
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FIG. 11. The four lowest 1D solutions Fy,(R) to the Eq.
with Ty o+ (R).

Fig. One could ask how precise are the energies
Eyp v, after all these approximations are made. In-
terestingly, the computed energies are very precise for
energies up to roughly 19 500 cm™!. In this comparison,
the data were obtained with optimized Discrete Variable
Representation calculated with other type of hyperspher-
ical coordinates but on the same PES in [30]. The zero-
point-energy we determined is 4635.14 cm™!, as com-
pared to the value of 4629.98 cm~! given in Neto and
Costa in [30], a difference of only 5.2 cm™1.

Nevertheless, it is expected that the zero-point-energy
will be reproduced correctly as the ground state lies in
the separability region and the non-adiabatic corrections
are the smallest. As we have already mentioned, the ap-
proximation of separability introduces discrepancies for
highly excited 2D states (e.g., ®4 o+ ) and therefore errors
are expected to rise with increasing quantum state. To
get a better picture of the errors introduced with the ap-
proximations we show a list of low-lying vibrational states
labelled by the three quantum numbers which are readily
available based on the separable approximate wave func-
tions. The vibrational energy levels obtained from the
present calculations are then compared to those given by
Neto and Costa [30] in Tab. The relative error of the
calculated energies at most are about 2-3%, but mostly
are under one percent.

As the largest source of discrepancy between the result
presented here and [30], we regard the breakdown of the
potential semi-separability from Eqgs. in the two hy-
perangles for higher excitation states. We also found that
inclusion of the diagonal non-adiabatic terms W,,(R)
does not generally improve the results in Tab. [[V]

V. DISCUSSIONS

In this report we have addressed the separability of
nuclear vibrational states in a water molecule in its elec-
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tronic ground state in hyperspherical coordinates as an
alternative to the well-known and somewhat complemen-
tary normal-mode and local-mode approaches. As the
starting point, we applied adiabatic approximation in
the hyperradius separating it from the two hyperangles.
Further simplification of the problem was motivated by
the observed semi-separability in the 2D energy spectra
and verified in the separation of the 2D problem into
two independent 1D problems for each hyperangle. The
presented framework was then used for the construction
of adiabatic 1D PECs as functions of the hyperradius.
Classification and separability of all adiabatic 1D PECs
with respect to the underlying quantum numbers asso-
ciated with the hyperangles was discussed. Pair-wise
degeneracy of two neighboring PECs of opposite sym-
metry at large values of hyperradius was observed and
connected to formation of a saddle-like barrier associ-
ated with the twofold OH + H dissociation limit. The
role of the barrier on the 2D vibrational states was thor-
oughly investigated and shape deformation followed by
separation of symmetric states with increasing hyper-
radius was observed while the shape of antisymmetric
states after separation remained unchanged. This not
only explains the pair-wise degeneracy of 1D PECs but
also provides a possibility to control the dissociation pro-
cess as which of the two hydrogen atoms will dissociate
from the molecule will be determined by the linear combi-
nation of the paired 2D wave functions. Possible control
scheme emerges as these states are adiabatically linked
to specific vibrational states near equilibrium geometry.

Finally, we have tested the validity of our framework
by constructing the full 3D vibrational states within the
adiabatic and separability approximation. The result-
ing energies yield an amazing correspondence to the high
precision 3D calculations and differ maximally by 2.9%
for the values up to 19 500 cm™?!.

Among the undeniable advantages of the presented
framework we count the simplicity of vibrational state
construction reducing the generally non-trivial 3D prob-
lem into three trivial 1D problems while yielding reason-
ably precise energies with only small deviations from the
exact values. Let us note that the assignment and inter-
pretation of vibrational quantum numbers in a full nu-
merical 3D calculation can be very challenging especially
when an unsuitable coordinate system was used. Never-
theless, the construction procedure presented here gives
rise naturally to the vibrational quantum numbers which
are easily understandable in the context of the separated
hyperspherical modes.

It is also fair to mention that the present approach
is not aimed at high precision calculation of vibrational
energy levels. Whether approximate separability demon-
strated here for water molecule can be extended to other
molecular systems remains to be studied further. It is
interesting to note that at least the separable vibrational
wave functions constructed in this paper would serve
as convenient diabatic basis functions for scattering cal-
culations, thus replacing the complicated nonadiabatic
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VR Vg Vo ENeto)  plores)Tra] ~ diff. VR Vg Vo E®eto)  plpres) [re] - diff. VR Vg Vg E®eto)  plores) [ro] ~ diff.
(cm™) (em™ )| (%) (cm™") (em™hH)| (%) (cm™) (em™)| (%)
0 0 0 0 5.2 0.1 2 1 1/12155.6 12152.9 0.0 0 1 4]16056.5 16051.6 0.0
0 1 0] 1594.2 1588.6] 0.4 1 6 0/12341.5 12337.8| 0.0 0 9 1]16109.4 16182.3] 0.5
0 2 0] 3151.7 3139.0 0.4 1 1 2(12407.5 12284.5 1.0 0 6 2|16186.4 15952.3 1.5
1 0 0| 3656.1 3654.9| 0.0 0 9 0112504.5 12708.7| 1.6 3 4 01]16524.3 16453.4| 0.4
0 0 1| 3755.6 3773.6| 0.5 0 6 1[12566.5 12449.9| 0.9 2 4 1(16540.1 16387.0] 0.9
0 3 0] 4667.3 4650.7| 0.4 0 1 31(12570.5 12551.0] 0.2 0 12 01]16670.8 17031.4| 2.1
1 1 0| 5233.8 5207.7| 0.5 2 4 01]13194.9 13090.1| 0.8 1 4 2|16783.2 16506.9| 1.7
0 1 1| 5331.6 5318.5 0.2 1 4 1(13251.7 13110.3 1.1 3 2 1]16822.8 16849.8 0.2
0 4 0] 6133.7 6115.7 0.3 0 4 2]13452.8 13296.9 1.2 2 2 21(16825.1 16914.8 0.5
1 2 0| 6774.5 6727.6| 0.7 1 7 0/13605.4 13610.5| 0.0 3 0 2[16898.8 17225.7| 1.9
0 2 1| 68729 6832.6| 0.6 3 2 0113646.8 13654.5| 0.1 2 0 3(16898.6 17398.6| 2.9
2 0 0] 7202.1 7221.1 0.3 2 2 1113657.7 13602.3 0.4 0 4 3|16973.6 16767.3 1.2
1 0 1| 7250.3 7267.8 0.2 0 10 0 |13796.7 14084.6 2.0 2 7 01]17055.7 16992.3 0.4
0 0 2| 7444.4 '7467.5| 0.3 0 7 11(13798.7 13707.4| 0.7 1 7 1|17157.0 16996.9| 0.9
0 5 0] 7539.4 7523.7 0.2 2 0 2[13828.7 14067.0 1.7 4 2 01]17224.9 16988.9 1.4
1 3 0| 8272.6 8208.8| 0.8 3 0 1/(13831.0 13983.9] 1.1 1 10 0(17316.5 17515.0/ 1.1
0 3 1| 8375.0 8310.7| 0.8 1 2 2/13910.7 13727.5| 1.3 1 2 3|17319.1 17123.0/ 1.1
2 1 0] 8762.2 8743.6| 0.2 0 2 31(14075.0 13989.4| 0.6 0 10 1(17378.6 17493.1| 0.7
1 1 1| 8808.9 8780.1 0.3 4 0 0 (14222.4 14092.4 0.9 0 7 2117434.5 17189.0 1.4
0 6 0| 8862.8 8863.8 0.0 1 0 3(14320.5 14288.6 0.2 5 0 01]17460.0 17386.9 0.4
0 1 2] 9001.4 8&8973.1 0.3 0 0 4)14540.4 14627.0 0.6 4 0 1)17495.9 17192.9 1.8
1 4 0| 9719.1 9643.6| 0.8 2 5 0]14548.3 14439.7| 0.8 0 2 4(17541.3 17450.9| 0.5
0 4 1] 9832.0 9746.0 0.9 1 5 1(14629.4 14461.2 1.2 1 0 4(17753.6 17693.6 0.3
0 7 01]10073.4 10142.5| 0.7 1 8 0|14778.4 14877.9| 0.7 3 5 01]17876.8 17775.4| 0.6
2 2 0110284.9 10233.5 0.5 0 5 2|14858.3 14653.3 1.4 2 5 11(17902.1 17706.6 1.1
1 2 1(10331.6 10261.8 0.7 0 8 1]14932.6 14933.0 0.0 1 5 2(18120.0 17829.3 1.6
0 2 21[10524.8 10449.8| 0.7 3 3 0115108.6 15076.8| 0.2 0 13 0]18194.7 18574.6| 2.0
3 0 01]10601.9 10701.4| 0.9 2 3 11(15121.5 15016.0f 0.7 2 8 0(18260.0 18251.8] 0.0
2 0 1]10614.8 10673.0 0.5 0 11 0]15190.2 15530.1 2.2 2 3 2|18273.1 18291.3 0.1
1 0 2]10868.5 10812.9 0.5 2 1 2115349.1 15505.1 1.0 1 11 0 [18695.7 18920.5 1.2
0 0 31(11033.3 11085.5| 0.5 3 1 1/(15354.2 15431.9] 0.5 5 1 0(18957.7 18826.0| 0.7
1 5 0(11081.7 11021.8 0.5 1 3 2(15376.0 15137.0 1.6 0 3 4]18994.9 18820.9 0.9
0 8 0]11234.4 11404.5 1.5 0 3 3|15544.2 15396.6 1.0 3 6 0]19147.8 19044.6 0.5
0 5 1]11234.6 11129.3 0.9 4 1 0/15742.9 15556.6 1.2 1 1 419249.7 19083.1 0.9
2 3 01]11765.3 11684.9| 0.7 2 6 0]15809.5 15732.3| 0.5 1 6 2|19377.1 19096.0/ 1.5
1 3 1|11814.6 11707.5| 0.9 1 1 3|15838.0 15719.2| 0.8 2 9 0(19493.2 19530.8| 0.2
0 3 2]12010.7 11893.1 1.0 1 6 1(15922.4 15753.0 1.1 2 4 21(19664.8 19628.5 0.2
3 1 0]12143.5 12194.2 0.4 1 9 0(16024.7 16171.2 0.9 0 9 2119697.5 19581.5 0.6

TABLE IV. Comparing the determined energies with the highly precise values from [30].

couplings at multi-dimensional conical intersections with
residual interactions from the potential surfaces that were
neglected in the separable one-dimensional potentials.

To conclude, it is fair to say that there still remains
a lot to be done. How the new simplified framework of
treating multi-dimensional nuclear dynamics can indeed
be utilized to predict realistic laser-induced molecular dy-
namics as well as to provide simple interpretation of the
underlying mechanism are yet to be demonstrated. With-
out taking such a step, on the other hand, it is difficult
to expect that one can indeed understand dynamics for
a complex molecule.
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Appendix A: Atomic displacements in v-set

Position of the hydrogen atoms R, Rs and the center
of mass of the molecule Ry is shown in Fig. [12 and the
vectors can be linked to the Jacobi vectors as

— M1 — _&
Ri=—p2— -p1=—p2 5
J— I &
Ry = —p2+ - p1=—p2+ 3
Rom = 550002 = 2 . (A1)

4m

The size of the Jacobi vectors is related to the hyper-



FIG. 12. Definition of Jacobi vectors p; and p2 and their
mutual angle 6 in v-set and the molecular bond vectors R4
and Rz. The center-of-mass of the whole molecule is located
at Rcowm.

spherical coordinates R and ¢ via

_ B
& ,U1\/1+t;3112gzﬁ7
Rtan
P 9 (A2)

@Vl—l—tanQd

The variables p; and p, are interconnected with respect
to derivation

dor _p o dpn

__ K2
dR R’ d¢ /J/lpz,
dp2  p2 dp2 1
AR - R dp W m™

It is possible to show that
Ri2-0rRi2

Ri2|[0rR12|
RLQ : 3RR1,2 N

IR12||0rR 2| a

(A3)

(A4)

where R1,2 =R 2 —Rcwm. Neither of the remaining dis-
placement vectors 0pR 2, quf{m, OpR1,2 and agf{l,g is
generally parallel or perpendicular to the vector Ry > or
RLQ and their mutual angles are given by rather com-
plicated and not much enlightening relations depending
only on angles ¢, # and masses uy, pu2 and u. The dis-
placement vectors with respect to individual coordinates
can be at equilibrium, i.e., # = 90°, expressed for change
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in hyperradius R as

1

Ri=— (- 0, —2
OrR1 2R( pP1, Y, Pz)a
1
R, = — 0, -2
OrR2 2R(+P17 ) p2 ),
H2p2
OrRcMm = 0,0, 1), A5
W = 1272 (0.0, 1) (43
in hyperangle ¢ as
8¢R1: (_’_\/%%7 07 - %p )7
8¢R2: (_ ﬁ%7 07 - %p )7
M2 P1
OsRem =4 /—=—1(0, 0, 1), A6
sRom =/ - 7 ( ) (A6)
and in hyperangle 0 as
89R1:%(0, 0, +1),
agRQ:%(o, 0, —1),
doRen = 2222 (0, 0, 1). (A7)
4

The upper results at the equilibrium can be used to
construct the character table of the displacements and
compare those with the of the normal modes in Table [V}

Cav |E C2 o(zy) o(yz)
v |1 1 1 1
v |1 1 1 1
vs |1 -1 -1 1
vr |l 1 1 1
ve |11 1 1
v |1 -1 -1 1

TABLE V. Character table for the normal modes (v1, v2, v3)
and hyperspherical modes (vr, Vg, vg) of a water molecule.

Nevertheless, displacement in the individual hyper-
spherical coordinates are strictly speaking not the well-
known normal modes since the kinetic part of the Hamil-
tonian in Eq. @[) is not separable in the hyperangular
part.
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