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Summary. We present a continuum framework to simulate fluid flow through
anisotropic elastoplastic media with double porosity. Two effective stress measures
o’ and " emerge from the thermodynamic formulation, which are energy-conjugate
to the elastic and plastic components of strain, respectively. Both effective stress
measures can be expressed as a combination of the total Cauchy stress o and the
average pore pressure p in the two pore scales. In the effective stress for elasticity,
P is scaled with a rank-2 Biot tensor, whereas the effective stress for plasticity fol-
lows the Terzaghi form in which p is scaled by the Kronecker delta. The Biot tensor
and storage coefficients are derived as functions of elasticity parameters and porosi-
ties. A mixed finite element formulation is introduced to discretize the domain and
solve initial boundary-value problems. A stabilization scheme is employed on equal-
order interpolation for both displacement and pressure fields throughout the entire
range of drainage responses. Numerical simulations reproduce the hydromechani-
cal response of Opalinus shale in one-dimensional consolidation tests throughout
the range of primary and secondary consolidation under different external loads.
Numerical simulations of the consolidation of a rectangular domain subjected to a
strip load demonstrate the efficacy of the proposed stabilization scheme, as well as
illustrate the impacts of stress history, mass transfer, and different pore systems on
the hydromechanical response.

Keywords. Anisotropy, transverse isotropy, double porosity, effective stress,
poroplasticity
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Nomenclature

Dtrans

> ®

Mass transfer coefficient

b— ¢, difference between the equivalent Biot coefficient and
the Eulerian porosity

Coefficient that accounts for the solid matrix geometry
Plastic volumetric strain

A scaling coefficient in @

Permeability coefficient along the axis of anisotropy
Permeability coefficient along the plane of isotropy
Permeability coefficient in micropores

Elastic constants for transversely isotropic material
Plastic multiplier

Plastic compressibility index

Dynamic viscosity of fluid

Eulerian porosity

Volume fraction of phase o, a = s, M, m

Coefficients in mass balance of fluid, i = M, m;j = M, m
Free energy density function

Fraction of porosity of macropores

Fraction of porosity of micropores

Mass density of the mixture

Partial mass density of phase a, « = s, M, m

Intrinsic mass density of phase a, @« = s, M, m

Tunable parameter for stabilization

Bedding plane orientation

Term that is energy-conjugate to pps

Term that is energy-conjugate to p,,

Term that is energy-conjugate to w

Characteristic length of the macropores spacing
Equivalent Biot coefficient

Biot coefficient along the axis of anisotropy

Biot coefficient along the plane of isotropy

Anisotropy parameters for plasticity, i = 1,2,3

Rate of fluid mass transfer from micropores to macropores
Rate of fluid mass transfer from macropores to micropores
Dissipation per unit volume of the mixture

Dissipation triggered by mechanical plastic deformation
Dissipation triggered by fluid mass transfer across the two
pore scales

Internal energy per unit total mass of the mixture
Interface permeability
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K, Bulk moduli of phase a,, o = s, M, m

M Slope of the critical-state line

D Mean pore pressure weighted by corresponding pore frac-
tions

Pa Intrinsic pressure of phase a, o = s, M, m

De Preconsolidation pressure

p* Mean normal alternative stress

q* Deviatoric alternative stress

Sij Storage coefficients, i = M, m;j = M, m

1 Rank-2 symmetric identity tensor

a Rank-2 scaling tensor on P in the definition of o’

X M Term that is energy-conjugate to vy

Xom Term that is energy-conjugate to v,

€ Strain tensor

Elastic strain tensor
eP Plastic strain tensor

€ Alternative strain tensor

€° Alternative elastic strain tensor

& Alternative plastic strain tensor

K Intrinsic permeability tensor in macropores

Km Intrinsic permeability tensor in micropores

T Body force vector exerted on phase o, a = s, M, m

o Total Cauchy stress

o’ Effective stress measure for elasticity

o’ Effective stress measure for plasticity

¢’ Zaremba-Jaumann rate of the effective stress o’

o* Alternative stress tensor to define the anisotropic yield sur-
face

o Partial stress tensor of phase o, « = s, M, m

o Intrinsic stress tensor of phase o, @ = s, M, m

b Rank-2 Biot tensor

c Contribution from fluid mass transfer to the linear momen-
tum of the mixture

d Rate of deformation tensor

d° Elastic part of the rate of deformation tensor

d? Plastic part of the rate of deformation tensor

g Gravitational acceleration vector

l Spatial velocity gradient tensor

m Microstructure tensor

n Normal vector to the bedding plane

du Darcy flux through macropores

q,, Darcy flux through micropores

s* Deviatoric part of the alternative stress tensor
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Vo Velocity of phase a, « = s, M, m

Vg Relative velocity of phase « respect to the solid phase,
a=s,M,m

w Spin tensor

Ce Elastic moduli tensor

I Rank-4 symmetric identity tensor

P Projection tensor to construct o*

1 Introduction

Various theoretical frameworks have been proposed in recent years to solve
the coupled problem of solid deformation and fluid flow in porous media with
double porosity [1, 9, 42, 61, 62, 64, 72, 79, 87, 102, 103, 108, 118]. Most of
these frameworks are only designed for problems with an isotropic elastic solid
matrix. Even then, there has been significant disagreement on the theoreti-
cal formulation of the problem, particularly with the definition of the effec-
tive stress [33]. Among the formulations, Borja and Koliji [17] use continuum
thermodynamics to derive an effective stress tensor that is energy-conjugate
to the rate of deformation of the solid matrix. This paper aims to generalize
this framework to account for anisotropy and inelasticity of the solid matrix.
Although the proposed framework is fairly general, the intent of the paper is
to apply the theory to geomaterials, more specifically, to rocks such as shale,
where the stiffness of the solid matrix is comparable to the stiffness of the
solid grains.

In geologic materials, poorly cemented bedding planes could be weak spots
for the leakage of pore fluids. Connected microcracks embedded along the bed-
ding plane could create flow channels for rocks like shale, which are typically
assumed to be transversely isotropic, leading to an anisotropic permeability
tensor with the preferred direction along the bed-parallel direction. Labora-
tory results revealed that for sedimentary rocks with distinct bedding planes,
permeability along the bed-parallel direction could be several orders of mag-
nitude higher than that along the bed-normal direction [10, 29, 63, 82]. To
account for the anisotropic transport property of transversely isotropic rocks,
Zhang et al. [113] proposed a formulation in which the full permeability tensor
is constructed from the two permeability components along the bed-normal
and bed-parallel directions, along with a microstructure tensor that reflects
the orientation of the bedding plane. Apart from the typically connected fis-
sures, rocks such as shale also possess nanometer-scale pores in the matrix
with poor connectivity [105, 114]. Fluids in these pores could barely flow,
but may discharge and drain into the larger fissures [109]. To describe the
gradation of pore systems with distinctive transport properties and fluid flow
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mechanisms in a continuum framework, Barenblatt et al. [5] proposed the
concept of double porosity in a non-deformable solid matrix.

However, most materials—even rocks—are deformable, and many of them
exhibit anisotropic reversible and irreversible deformation behavior [2, 13, 59,
60, 67, 83, 93, 101, 110]. Plasticity models are commonly adopted to rep-
resent the ductile irreversible deformation behavior of rocks, but they of-
ten rely on the assumption of isotropy in both the elastic and plastic re-
sponses [7, 8, 19, 43, 44, 77]. Anisotropy in rocks can be traced to the grain
responses at the smaller scale, see [18, 20, 99, 100]. To account for material
anisotropy in plasticity modeling, Hill [56] extended the von Mises yield cri-
terion to the orthotropic case using six material parameters that scale the
second-order stress terms in the yield criterion. Boehler and Sawczuk [12]
proposed an approach that takes advantage of isotropic models by substi-
tuting a fictitious stress state projected with a rank-4 tensor to the yield
criterion. Based on this idea, Nova [81] and Crook et al. [38] extended the
Cam-Clay model for transversely isotropic sedimentary rocks using a projec-
tion tensor similar to that used in the model by Hashagen and de Borst [55].
Semnani et al. [90] and Zhao et al. [115] also enhanced the modified Cam-
Clay model for transversely isotropic rocks with a three-parameter projection
tensor. This latter model was further enriched by Borja et al. [22] to include
viscoplasticity and heterogeneity in the mineral distribution in shale rocks.
Bryant and Sun [26] also refined this model with micromorphic regulariza-
tion to accommodate size-dependent anisotropy of geomaterials. More recent
works include constructing the anisotropic yield criterion through inelastic
homogenization [34, 91].

Laboratory tests also suggest that interstitial fluid pressures may have a
significant impact on the yield criterion as well as on the direction of plastic
flow [53, 92, 111]. One common approach to incorporate the effect of inter-
stitial fluid pressures into the plasticity model is to substitute the effective
stress developed for poroelastic material into the yield criterion [69]. How-
ever, whereas this is acceptable for soils where the stiffness of the solid matrix
is significantly lower than the stiffness of the solid grains, it lacks a theoreti-
cal basis for rocks where the two stiffnesses may be of comparable magnitude.
Recently, Zhao and Borja [117] identified two effective stress measures o’ and
o’ that are energy-conjugate to the elastic and plastic components of defor-
mation, respectively. In the effective stress for elasticity, the fluid pressure
is scaled with a rank-2 Biot tensor whereas the effective stress for plasticity
follows the Terzaghi form [97, 98] in which the fluid pressure is scaled by the
Kronecker delta. That an effective stress of the Terzaghi form may be more
appropriate to use in the yield criterion has been suspected by numerous
authors for quite some time now [24, 58, 70, 86, 96, 111].

In this paper, we use continuum thermodynamics to develop a math-
ematical framework for coupled solid deformation-fluid flow in anisotropic
elastoplastic media with double porosity. Like the formulation of Zhao and
Borja [117], two distinct effective stress measures also emerge from the formu-
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lation, both of which can be expressed as combinations of the total Cauchy
stress o and a mean pore pressure p. In the effective stress for elasticity, p is
scaled with a rank-2 Biot tensor, whereas the Terzaghi effective stress again
follows for plasticity in which p is scaled by the Kronecker delta. The proposed
framework is then cast into a w/pys/pm mixed finite element formulation and
later implemented into a code built upon the deal.Il Finite Element library [4].

Because of the additional degree of freedom introduced by two fluid pres-
sure terms, it becomes desirable to employ low-order (equal) interpolation for
both displacement and pressure fields throughout the entire range of drainage
condition, which requires the use of stabilized finite elements [31, 75]. The
proposed framework is then calibrated and employed to reproduce the hy-
dromechanical response of Opalinus shale in one-dimensional consolidation
tests. Numerical simulations of the consolidation of a rectangular domain un-
der a strip load are also conducted to demonstrate the efficacy of the stabi-
lization scheme utilized in this work, as well as to highlight the impacts of
stress history, mass transfer, and different pore systems (either single porosity
or double porosity) on the system response.

As for general notations and symbols, we denote symmetric identity ten-
sors of rank 2 and rank 4 by the symbols 1 and I, respectively. Dot product
and double dot product are defined with symbols - and : respectively. Ten-
sor operators ®, @, and © are defined such that (e ® o) = (®)i;(0)x,
(@ ®0)ijkt = (#)ji(0)ik, and (& & 0)i k1 = (0)i(0) k-

2 Conservation laws

We adopt mixture theory [23] in the derivation of the governing equations,
where the volume of the continuum is decomposed into three phases, including
the solid phase, macropores (connected fissures), and micropores (pores within
the matrix). The volume fraction occupied by phase « is denoted as ¢%, and
we have

o'+ oM 4o =1, M

where s, M, and m stand for solid, macropores, and micropores, respectively.
The overall Eulerian porosity ¢ of the porous medium is the sum of the volume
fractions of macropores and micropores, given as

¢ =M + o™ (2)
Alternatively, we could also define a binary fraction of porosity as
M m
e T AR At (3)

where ¥™ and 4™ are the fractions of porosity of macropores and micropores,
respectively.
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We also define partial mass density of each phase as
p°=0ps, M=o, P =" s (4)

where ps, par, and p,, are the intrinsic densities of solid constituent and pore
fluids, respectively. The partial mass density of phase « is the mass of phase
« per unit volume of the mixture. The total mass density of the mixture is
then given by the sum of the partial mass densities, i.e.,

p=rp°+pM+p" (5)

2.1 Balance of mass

The mass balance equation for each phase in the mixture may be expressed
as [17]

dsp*

dj + PSV ‘v, =0, (6&)
d*p* |

dt +pv'v()¢:c(¥a oz:]\/[,m, (Gb)

where d®(-)/dt stands for the material time derivative of variable (-) following
the motion of phase «, v, is the velocity of phase «, cj; refers to the rate of
fluid mass transfer from micropores to macropores, and ¢, is the rate of fluid
mass transfer from macropores to micropores. For a closed system, we have

cy + e =0. (7)

Next, we rewrite all material time derivatives following the motion of the solid
phase via the transformation

da” d

E(') — %(.) + V() Va, (8)

where v, = v, — v, refers to the relative velocity of phase o with respect to
the solid phase, and d(-)/dt := d*(-)/dt. We can then write the mass balance
equation of each phase following the motion of the solid phase alone,

dS

TV v =0, (9a)
ap® o me

ﬁ-i-p Vv=co—V-(p"v,), a=DMm, (9b)

where v 1= v,.
Assuming compressible flow in which the solid and fluids can change in

volume, we can write the equations of state for isothermal process in the
form [16, 17, 71]
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fa:fa(paapa)zoa a=sM,m, (10)

where the p’s and p’s are the intrinsic pressures and densities of the relevant
constituents. The functional relationships stated above imply a one-to-one
relationship between the intrinsic pressure and density of each phase, from
which we recover the intrinsic bulk relations

d“pq _ Ka(i d®pe

=s M 11
_ ) a=sAm, ()

where

Ko = papl(pa), a=s,M,m (12)

are the intrinsic bulk moduli of the solid constituent s, fluid constituent in
the macropores M, and fluid constituent in the micropores m.

Substituting the definition of partial density p* = ¢%*p, and the derived
intrinsic bulk moduli into the mass balance equations (9), we obtain

do®  ¢* dps

i S\ . — 1
dt+K5dt + ¢°V-v =0, (13a)
do® * dpa o Ca 1
&Y Ha T = % _V.g — — . 1
o7 +Ka 7 +¢*V v . V-q, Kana q. (13b)

where
q, = "0, a=DMm (14)

are the Darcy fluxes of fluid through the macropores and micropores, respec-
tively. Further simplification of the mass balance equations requires an evalu-
ation of the intrinsic pressure on the solid constituent p, [16, 17, 49, 50]. The
following section presents a simple strategy to evaluate ps at the continuum
level.

2.2 The Biot tensor and storage coefficients

We recall that the total Cauchy stress tensor o for double-porosity media can
be expressed as the sum

0':0'5+0'M+0'm:¢Sas+¢M0'M+¢mo-ma (15)

where 0%, o™, and o™ are the partial stresses in the solid matrix and fluid

matrices in the macropores and micropores, respectively; and o, o, and
o, are the corresponding intrinsic stress tensors. For isotropic fluids, we can

write oy = —py1 and o, = —pp, 1, and so equation (15) specializes to the
form

g = (rbsa's - ¢MpM1 - ¢mpm1 = Qbso's — ¢pl, (16)
where

p=1vMpy +ymp™ (17)
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is the weighted pore fluid pressure in which py; and p,, are weighted according
to the corresponding pore fractions.

Following the formulation for single-porosity media [117], we assume that
there exists an effective Cauchy stress tensor o’ that depends solely on the
elastic component of deformation in the solid matrix, and write an effective
stress equation in the form

oc=0 —pa, (18)

where a is a symmetric second-rank tensor. Combining equations (16) and
(18) yields

¢°os=0"+p(¢l — ). (19)
Defining ps = —o5 : 1/3 as the intrinsic solid pressure, we obtain
s 1 / —
¢°ps = —31: 0"+ P, (20)
where L
f=glia-9. (21)

Taking the time derivative of equation (20) following the motion of the solid,
and noting that d¢/dt = —d¢*® /dt, we obtain

s _ o V40T Ly P

¢ a3

where ¢ = do’/dt.
Next, we substitute (22) into (13a) to obtain

do® Bdp 1:0

!/
a TE.w 3k, ToVie=0, (23)

where ¢ = (p — ps)/ K. To explain the physical significance of ¢, consider a
thought experiment in which a dry solid matrix is subjected to a total stress
of 0 = 0° + ¢*pl. The intrinsic stress in the solid constituent is then given by
o /¢* and the intrinsic mean normal stress is p — ps. Thus, ¢ is the intrinsic
solid volumetric strain when a dry solid matrix is subjected to a hypothetical
stress of . Given the assumption of infinitesimal deformation, 9 < 1, and so
expression (23) simplifies to

d¢* B dp 1:¢6

at ' K,dt 3K,

+¢°V-v=0. (24)
We now consider the deformation of the solid skeleton through its solid
velocity field v. The spatial velocity gradient tensor I, rate of deformation

tensor d and the spin tensor w of the solid skeleton are given by the expressions

1 1
l =V, d:§(l+lT), w:§(l—lT). (25)
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For an elastoplastic material, the rate of deformation tensor d may be decom-
posed additively into an elastic part and a plastic part,

d=d" +d. (26)

In the infinitesimal range, the rate of deformation tensor d reduces to the
small strain rate tensor €.
Consider an objective rate-constitutive equation of the form

o =6"+o w—w-o' =C°:d°, (27)

where ¢’ is the Zaremba-Jaumann rate of the effective stress o’ and C¢ is the
elastic moduli tensor. Taking the trace of the expression above and dividing
by 3 yields

1. ., 1
~1:6'=2-1:C°:d"° 2
gl:d =3 C (28)
Note that 1 : (6’ w —w-o’) = 0. Substituting back into equation (24) yields
dg*  f dp
2 df Y .v = 2
dt+KSdt P +¢°V-v=0, (29)
where 1-ce
= . 30
Y= 3K (30)
Next, consider the material time derivatives
do®  dy” d¢®
_——— 1 — S) — @ = M . 1
R I L AN T (31)
Substituting equations (29) and (31) into (13b) yields
dip™ B dp ¢ dpa
_r 1 _ S a g . e _r o .
g 1=+ (stt vid gy TV
Coy 1

We can further simplify the expression by noting that
V-v=1:d=1:(d°+d"). (33)

Substituting back into equation (32) gives

dy® B dp ¢ dpa
W1y rye (LR 2 Doy ge g gr
g 1=+ (stt+Kadt+ +
o 1
:;jfv'qaffavpoé'qaa a:M,m, (34)

where
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b=1—1, (35)

is a rank-2 tensor, which we identify as the same Biot tensor introduced by
Zhao and Borja [117]. We note, however, that this tensor now appears in
the mass balance equations for both the macropore (& = M) and micropore

(o = m) fluids.
Lastly, we can expand the material time derivative of the mean pore pres-
sure as My
d d dpm, dy™
- LN IL L N (36)

Substituting this back into equation (34) yields the mass balance equations
for the two fluids, which we now display separately for « = M, m as

M~ gy

(6+darar) S+ darm o + Mo d ML
dt dt
d dpm c 1
St Sum gt = M =V da — oV ay (37)
and
~ ,(/JM dayp™
Gmas o+ (9 G ) S 0 A L
dpM dpm o Cm 1

where Sarnr, Simm, Sym, and Sy, are elements of storage coefficient matrix
defined as

M M, M
SNIM—%+w ;(p 5) (39a)
M, m
SmM - SMm = wTM ) (390)
and

M
¢MM i [?pM ) (40a)
G = L0, (40D)

_ M
G = 00 (40c)
Frusg = VP01 (40d)
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Observe that some of these coefficients include coupling terms linking variables
in the two porosity scales.

2.3 Balance of linear momentum

Mixture theory allows the solid matrix and the fluids in both the macropores
and micropores to be treated as individual phases. The balance of linear mo-
mentum in the absence of inertia forces can then be written in terms of the
partial stresses and mass densities,

V-o’+7°+p°g=0, (41a)
V. o+ 7%+ p% =cqvy, a=M,m, (41b)

where 7 (for « = s, M, m) are the body force vectors exerted on phase a by
the other two phases. For a closed system, we must have

d m*=0. (42)
s,M,m

Summing up the individual momentum equations over all phases yields the
balance of linear momentum for the mixture

V.o+pg=c, (43)
where €:=),, ¢,V is the contribution from fluid mass transfer between

different pore scales to the linear momentum of the mixture.

2.4 Rate of change of internal energy

Ignoring heat, chemical reaction, etc., and focusing solely on the hydro-
mechanical contributions, the rate of change of internal energy per unit volume
of the mixture is given by the expression

pe = Za’“:da+%anva~va, (44)

s,M,m M,m

where e is the internal energy per unit total mass of the mixture, and d, =
(Vva+v,V)/2. The first term on the right hand side refers to the contribution
from mechanical work, whereas the second term represents the influence of
fluid mass transfer between the two pore scales. We can also write the above
expression in terms of the total Cauchy stress as

~ ~ 1
pi =0 d—pydMV Trr — pud"V Tt 3 D Cava Ve (49)
M,m

Following the formulation in Ref. [17], we note that
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— oMV By = VoM Ty~ V-qy

= VoM vy + oMb d M1 dP

- de - dwm cym
+ (¢+¢MM) L +¢Mm7dt o
+ SMMW+SMmW+K7Mva dnm (46)

and
_¢mv : 5771 = V¢m ' 5m -V q,,

=Vo™ v, +¢¥"b:d°+¢y"1:d°

~  dyM ~ ™ cm
+ Omm i + (¢+ ¢mm) T pim
+ Spmm i + S i + KmVp ., (47)

after substituting the expression for V - q;, and V - q,, from equations (37)
and (38). Inserting equations (46) and (47) into equation (45) and collecting
terms, we obtain

pe =o' :d°+ " dP + Oypar + OmPrm

. - . 1 CaPa
+XM"UM+Xm"Um+Cw+Z 5CaVq " Vo — b » (48)
i \2 Pa

where ¢ := ™ and (-) = d(-)/dt. Each term on the right hand side represents
an energy-conjugate pair related by a constitutive law. As in classic porome-
chanics with one porosity scale [117], two effective stress tensors emerge in
this expression:

which is conjugate to the elastic component of the rate of deformation tensor
d®, and

0" =0+ "py +¢"pn)l = 0 + 71, (50)
which is conjugate to the plastic component d”. The remaining terms in the
expression are given as follows,
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pud™  pMpB

Or = iy + K (51a)
Om = % + djzﬁ, (51b)
Xv = (V¢M + %szw)p% (51c)
Xim = (W” + %:me)pm, (51d)

¢= (¢ + %) (Pv = Pm)- (51e)

Note that both effective stress tensors can be constructed as linear com-
binations of the total Cauchy stress tensor o and the mean pore pressure
p. For o', p is scaled with the Biot tensor b, while for o”, p is scaled with
the Kronecker delta tensor [97, 98]. The two effective stress tensors defined
in equations (49) and (50) reduce to those derived for single porosity media
when pyr = pm = p [117]. Furthermore, for isotropic media the Biot tensor b

reduces to the form i
b_(1 Ks)l, (52)
where K is the elastic bulk modulus of the solid matrix. This last expression
is identical to the one developed by Borja and Koliji [17].
Finally, we recall the assumed form of the effective stress tensor o’ in
equation (18). Comparing this form with equation (49), we readily conclude
that

1:C¢
a=b=1- 3K, (53)
Furthermore,
1 _
ﬁ:§1zb—¢:b—q§, (54)

where b is the equivalent Biot coefficient, which reduces to the conventional
Biot coefficient (1 — K/Kj) for isotropic materials.

Remark 1. An alternative derivation would be to assume that in lieu of equa-
tion (18), we begin with the more general form

o =0 —pyan — PmQm, - (55)

It can be shown that following the same derivation also yields equation (49),
ie., apr = ¥Mb and o, = ¢)™b. This implies that the mean pore pressure p
must be used in defining the effective stresses.

2.5 Reduced dissipation inequality

Consider a free energy density function ¥ that is quadratic in the elastic
strains. Specializing to infinitesimal deformation, we can write the Clausius-
Duhem inequality in the form
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D=pé— W

=o' € +0": €+ 0Py + OmPm + X - VM

CaPa

e

+xm~’6m+<¢+2(1cava~va— )—w'zo, (56)
M,m 2

where the infinitesimal strain rate tensor € replaces the rate of deformation
tensor d. The Coleman relations [71] yield, among others, the elastic consti-
tutive equation ow

' = 9ec = Ce: €, (57)
which suggests that the elastic response is determined by the effective stress
tensor o’.

The reduced dissipation inequality consists of two parts,

D =DP 4 D > 0, (58)

g

where DP is dissipation triggered by mechanical plastic deformation and Dta0s
is dissipation generated by fluid mass transfer across the two pore scales.
Among the terms in DP is the plastic dissipation produced by the effective
stress o,

o >0. (59)
If we define a yield function f(o”,p.) < 0, where p. is some plastic internal
variable that reflects the hardening/softening response of the material [32, 40,
111, 112], and if we impose the associative flow rule [19]

. Of

:p _
€ _)\80'”’

where A > 0is a nonnegative plastic multiplier, then non-negativity of plastic
dissipation requires that
0]
/B f > 0, (61)

0
which is met by a convex yield function f in the stress space o’ [19].
As for dissipation resulting from fluid mass transfer, the condition takes

the form 1
trans __ CaPa
D 72:(5%%-%7 o )zo. (62)

s
Non-negativity of this function must be ensured when developing constitutive
models for the mass transfer term cp; = —¢,,.

(60)

o

Remark 2. Due to the small-strain assumption, the plasticity model employed
in this work and described briefly in the next section does not include changes
in the internal structure of the material in the form of the evolution of pore
fractions 9™ and ¢™. The reader is referred to Borja and Choo [21] on how
to incorporate this feature into the modified Cam-Clay theory for double-
porosity media.
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3 Constitutive equations

The developments of the previous section suggest that the solid deformation
component of the double-porosity theory is essentially the same as the one
developed for classic single-porosity theory except that one must now use the
mean pore pressure P in lieu of the single pore pressure variable p [117]. In
what follows, we briefly summarize the main features of the solid deformation
model and simply refer the readers to Zhao and Borja [117] for further details.

3.1 Solid deformation

We again use the concept of alternative strain € introduced in [117] to elimi-
nate one of the two effective stresses. In the present case, we eliminate o’ and
write the elastic constitutive equation for o as

o' =C°: €, (63)

where
€= +C (1 -b)p (64)

is an alternative elastic strain tensor. Furthermore, we set an alternative plas-
tic strain tensor as

(65)

The alternative total strain tensor is then the sum of the elastic and plastic

parts,
=+, (66)

A transversely isotropic material is characterized by a microstructure ten-
sor given by
m=ng@n. (67)

This tensor can be used to define the five-constant elastic tangent operator
Co=Me1+2url+al@m+mel)+bmedm
+(pr—pr)(ldm+modl+l1om+mol), (68)

where A, pur, pr, a, and b are the aforementioned constants. The Biot tensor
b for a transversely isotropic material can be written in the form

b:bLm+bH(1 —m), (69)
where
3N+4a+b+4up —2
by —=1— + a+3‘;(|- KL — 2pT (70a)
3N+2
by =1- AT 2T Fa (70b)

3K,
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are the Biot coefficients along the axis of anisotropy and plane of isotropy,
respectively, see [36, 88].

In the context of anisotropic elasto-plasticity, we construct an anisotropic
yield surface from the modified Cam-Clay model [22, 90, 115, 116], first by ro-
tating the effective Cauchy stress tensor o’ to a fictitious stress space defined
by

c*=P:o", (71)

and then writing the yield function as
*2

M2

flo",pe) = +p*(p* —pc) <0, (72)

where p* = %1 ot gt = \/§H3*||, and s* = o — p*1. The idea behind the
rotation operation is to write the yield function in terms of the rotated tensor
o™ in a two-invariant isotropic form. To complete the plasticity model, we
write the hardening law as

€
Pc = Pco €Xp ( - E)7 (73)
where €l is the plastic volumetric strain.
The rank-four rotation tensor is given by the expression

]P’zcﬂ—&—%(m@m—i—m@m)

“lem+mel+liem+mel), (74)

i

where cq, ¢o, and c3 are the anisotropy parameters. We note that the rotation
operator P includes the microstructure tensor m defining the orientation of
the plane of isotropy.

To summarize, the plasticity model includes 3 parameters of the modified
Cam-clay theory, namely, M, AP, and p.o; and the anisotropy parameters cy,
ca, and c3.

3.2 Fluid flow and mass transfer

Darcy’s law is adopted to model fluid flow in both macropores and micropores,

~ Ko
q, = ¢“vy = —/Tf(Vpa — pa9), a=Mm, (75)

where g, is the Darcy velocity and k. is the intrinsic permeability in pore
scale o, and py is the dynamic viscosity of fluid. Considering preferential flow
along the plane of isotropy in the macropores, the intrinsic permeability tensor
in the macropores may be written in terms of the components k£, along the
axis of anisotropy and ) on the plane of isotropy as [113]
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Ky = kim+K)j(1—m). (76)

We assume that the intrinsic permeability in the micropores is isotropic and
write
Km = Km 1. (77)

As for the mass transfer terms ¢, and cps, a first-order mass transfer
equation is proposed as follows [113]

|l

oM _pa

(pmpr)a —

5, (78
pM g Pm 2 (78)

Q|

where k is the interface permeability, @ is the characteristic length of the
macropores spacing, B is a dimensionless coefficient that accounts for the
solid matrix geometry, and 7 is a dimensionless scaling coefficient suggested
to be 0.4 to fit experimental results [48]. Inserting the foregoing constitutive
equations into the dissipation inequality yields

_ 1
Dtrans =k (pM *pm)2+§CM (’UM VUM 7’Um"Um) > 0. (79)

The first term on the right hand side is always non-negative; the second term
is non-negative if cpy > 0 and ||var]] > [[vm||, or ear < 0 and |Jvp]| < ||vimll-
This implies that fluid must drain into the pore scale where the fluid is flowing
faster. Given that fluid generally flows faster in the macropores because of
the larger pore sizes, a non-negative dissipation requires that fluid in the
micropores should drain into the macropores, see [21].

4 Mixed finite element formulation

We employ the standard Galerkin mixed finite element formulation in which
the main unknown variables are the solid displacement u and fluid pressures
pum and p,,. Equal-order (linear) interpolation is adopted for the displacement
and pressure fields to reduce the size of the matrix problem, and a numerical
stabilization is implemented to address the inf-sup condition in the incom-
pressible and nearly incompressible regimes.

4.1 Strong Form

Consider a closed domain B = B U 9B. We decompose the boundary 9B
into non-overlaping essential and natural boundaries 9B, and 0By, respec-
tively, where solid displacement and surface tractions are prescribed; 08,,,
and 0B,,,, where fluid pressure and flux through the macropores are pre-
scribed; and 0B, and 0B,,, , where fluid pressure and flux through the mi-
cropores are specified. The following relations must hold on the boundaries:



Anisotropic elastoplastic response of double-porosity media 19

9B, U OB, = 0B,,, U0B,,, = 0B, U0B,, =0B, (80a)
OB, N OB, = 0B,,, N 0By, =0B,, NIB, =, (80b)

where the overline denotes a closure.
The strong form of the initial boundary-value problem is stated as follows.
Find w, pas, and p,, such that the following conservation laws are satisfied:

Balance of linear momentum for the mixture:

V- (6" -pl)+pg=¢ in B. (81)

Balance of fluid mass in the macropores:

e . 1
oMb ;€ +wM1:€p+v'qM+?va'qM
M
. . c .
+SMMPM+SMmpm=p—Z in B. (82)

Balance of fluid mass in the micropores:

-e m : 1
d)mb:(-i +1/J 1:EP+V'qm+7vp7n'qm

+ SonrtPr + S = = in B.  (83)

m

In addition, the following boundary conditions must be satisfied:

Solid deformation:

u=1u on 0B,
. (84)
n-o=t on 9B;
Fluid flow in the macropores:
PMm —ZA)M on 88
: - (85)
—n-qy =dum on 0By,
Fluid flow in the micropores:
Pm = Pm on 0B,
’ (86)
—-n-q,, =Gm on 0By,

We also need the following initial conditions on the unknown variables:
u(x,t =0) = up(x)
pum(x,t =0) = paro(x) (87)
Pm(@,t = 0) = pmo(z)

for all x € B.
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4.2 Weak Form

We first define sets of trial functions
Sy ={ulu e H', u =14 on 9B,}
Spu = {pmlpv € HY, pyr = py on 0B, } (88)
Sp,. = {pm|pm € HY, ppy = pm, on 9B, }

and sets of weighting functions

Vo= {nne€ H, n=0 on 9B,}
VPM = {<PM|80M S Hla onm =0 on aBPIW} (89)
V.. = {Pmlem € H', ¢, =0 on 0B, }

For the weak form, we want to find {w, par, pm} € Sy X Spy, X Sp,, such that
for all {n, o, pm} € Vu X Vp,, XV, the following variational equations are
satisfied:

Balance of linear momentum:
/Vsn:(a”—ﬁl)dV:/n-(pg—E)dV—&-/ n-tdA, (90)
B B OBy

where V? is the symmetric gradient operator.

Fluid flow in the macropores:
My . -e Mq . .p 1 : ;
pml vV b: e+l e +KMVpM-qM+SMMpM+SMum dv
B
CM ~
*/ 80M(7> dv — / Vou -qy :/ omdm dA. (91)
B Pm B By,

Fluid flow in the micropores:
e ma - 1 . .
/ ©m (¢mb o e e’ + K Vpm - q,, + Sm]V[pM + Smmpm)dv
B m
Cm .
—/ wm(—) dVv — / Vom - q,,dV = / OmimdA.  (92)
B Pm B By

4.3 Matrix Form

We next replace the trial and weighting functions with their approximations
uh, pﬁ/p ph o n", gpﬁ/f and ¢! . Then, we integrate in time using the first order,
unconditionally stable backward difference integration scheme, and in space
using standard shape functions, given as
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uh = N,d+ N uEl
Pt = Nppar + pr’M ) (93)
p'r}}n = Nyp,, +Npi7m

where N denotes the shape function matrix that interpolates the variable (.
Nodal values of the unknown variables are assembled in the vectors of un-
knowns d, p,;, p,,; the hat symbols pertain to contributions from the essen-
tial boundary conditions. Gradients of the unknown variables are interpolated
according to the following equations

Vsu" = Bd + Bd
Vol =Epy + Epy | - (94)
Vph = Ep,, + Ep,,
Equal-order interpolations are employed on all the unknown variables (bilinear
for 2D).
Next, we assemble the global matrix equation in residual form for sub-

sequent solution by Newton iteration. For balance of linear momentum, the
residual equation is given by

R, = / BT (¢” —p"1)dV — / Nl(pg —¢)dv — NTtdA. (95)
B B OBy

For fluid flow in the macropores, we have

R,,, :/BN;[le e en) M (B -1): (e~ e)] av

Atce
4 [ NT[Sauna (s = o) + Saim ol — ) = St av
B Pm
+/NT(ﬁvph q )de/AtETq av
P\, M Ay A M
_ / AtNT gar dA. (96)
oB

amM

And for fluid flow in the micropores, the residual equation is given by
Ry, = / N1 (€—€,) + 9™ (b—1): (e — €5)]dV
B

Ate,,
Pm

+ /BNZ St Bhr = Pl ) + S Wy = ) = =] av
At
+ / NT (K—vpfn : qm) av — / AtETq,, dV
B m B

— / AN} G dA. (97)
0By,
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The final step is to solve the system of nonlinear equations using Newton’s
method. The solution requires construction of an algorithmic tangent operator
K for use in the linearized equation

K11 K1y K3 | ( 0d Ru_
K11 Ko Kog | 40Py 0 == Row (> (98)
K31' K35 K33 0P Rp..

where (dd,0p,;,0p,,,) are the search directions [19]. Analytical expressions for
the algorithmic tangent operator are reported in Appendix A.

4.4 Stabilized mixed elements

In this work, we adopt an equal-order (bilinear in 2D) interpolation for both
displacement and pressure fields. A typical numerical issue associated with
equal-order interpolation in mixed finite element analysis is the instability
associated with non-satisfaction of the inf-sup condition [95, 104], which arises
not only in single-porosity formulations [27, 106] but also in double-porosity
problems [31, 35] in the incompressible and nearly incompressible regimes.

To address this issue, we employ the stabilization scheme proposed by
Choo and Borja [31], where a stabilization term is constructed based on the
polynomial pressure projection method proposed by Bochev et al. [11]. This
stabilization term is then scaled with a stabilization parameter ¢, split by the
fractions of porosity and associated with the residual equations of the pressure
fields. To account for the anisotropic and plastic response of the solid skeleton,
a different stabilization parameter similar to the one proposed by White and
Borja [106] is used in this framework, defined as ¢ = 7/2G. Here, G is identified
as the lower value of the elastic shear moduli pz, and p7. Since we adopt the
elastic moduli rather than the elastoplastic tangent moduli in quantifying G
to avoid additional nonlinearity to the overall system, a tunable parameter 7
is introduced to refine the level of stabilization.

5 Numerical examples

5.1 1D consolidation of Opalinus clay shale

Shale is an energy-bearing matrix in unconventional reservoirs. As a tight and
ductile rock, it can serve as a seal for CO2 geological sequestration [51, 52,
74, 119], or a host material for nuclear waste disposal [15, 28, 30, 68, 84, 107].
With a laminated microstructure developed from sedimentation or diagenesis,
shale exhibits an anisotropic mechanical behavior that is more accurately
characterized as transversely isotropic [3, 6, 14, 38, 39, 54, 57, 73, 78, 80, 85,
89, 94]. As a salient character of transversely isotropic rocks, the impact of
bedding plane is typically reflected in the constitutive description of the solid
matrix [25, 41, 65, 66].
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This section reproduces the hydromechanical response of Opalinus clay
shale from Switzerland during one-dimensional consolidation test. This shale is
an overconsolidated sedimentary rock containing partially-bonded laminated
microstructure through diagenetic processes [45]. It has been considered to
serve as the host material for the construction of a nuclear waste repository
in Switzerland, and thus, in recent years, the mechanical response, failure
behaviors, and hydromechanical properties of this shale have been well inves-
tigated [37, 45-47, 76]. The vastly and completely reported experimental data
on Opalinus clay shale in the literature enabled us to calibrate the model and
conduct numerical simulations over the same batch of specimens.

The specimens of Opalinus clay shale we investigated were retrieved from
the Mont Terri Underground Rock Laboratory in northwestern Switzerland
located at a depth of approximately 300 m, and the maximum depth during
its burial history was around 1200 m. Mineral compositions of the specimens
are very similar, the majority of which include clay (66%-67%), quartz (9%
13%), and calcite (13%-17%) [46, 47]. As a matter of terminology for this
specific material where the pore scale is smaller than that of, say, soils, the
term ‘micropores’ pertain to the nanoscale pores of kerogen and clay matrix,
whereas ‘macropores’ pertain to the rock’s micro-fractures [113].

Favero et al. [46] conducted drained triaxial compression tests on Opali-
nus clay shale with samples cored either perpendicular to the bedding plane
(0 = 0°) or parallel to the bedding plane (§ = 90°). Here, we calibrated the
elasticity and plasticity parameters for solid deformation with the reported
experimental data for the case where the confining pressure was 5 MPa, as
shown in Table 1. A comparison between simulation results and experimental
data of stress and volumetric strain development during the triaxial compres-
sion test is shown in Figure 1.

Ferrari et al. [47] conducted one-dimensional consolidation tests on Opal-
inus clay shale cored perpendicular to the bedding plane (6 = 0°). The spec-
imens used in the experiments were 12 mm thick and drained on both the
top and bottom surfaces. Figure 2 illustrates the setup of the test. The con-
solidation process was conducted with different loads w. The experimental
apparatus was unable to apply the load instantaneously, so each load incre-
ment was applied within two stages where each stage was applied at a constant
rate. Sixty percent of the load increment was applied within 60 seconds, the
rest within the next 160 seconds as illustrated in Figure 3.

We used the parameters already calibrated for solid deformation while cal-
ibrating the parameters for fluid flow. For the consolidation problem, we used
a lower initial preconsolidation stress p.o= —4 MPa for purposes of achiev-
ing a better fit with experimental results. Specimens used in the triaxial and
consolidation tests had some uncertainties with respect to stress history, and
so we had to assume an initial preconsolidation stress. The bulk modulus of
solid K was selected according to the literature [47], and the corresponding
effective Biot coefficient was estimated to be around b = 0.88. We assumed
that fluid could not flow within the micropores (., = 0), but could drain into
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the macropores. The load increments were applied in sequence, and for each
load increment the simulation continued until the sample was fully drained.
The solution at the fully drained condition at the current load level was then
taken as the initial condition for simulating the next load increment.

Figure 4 shows the evolutions of settlement and pore pressure during the
1D consolidation test. Different load increments were considered covering load-
ing, unloading, and reloading processes. The figure shows that even with a
single set of calibrated parameters, the model can capture the overall trend of
settlement evolution during different phases including load application, pri-
mary consolidation, and secondary consolidation under different load incre-
ments. Figure 4(f) reveals the evolution of average pore pressure p evaluated
in the middle of the domain for the reloading process, reflecting a typical pore
pressure dissipation process for double porosity media. The initial drop of
mean pore pressure p corresponds to the primary consolidation process where
drainage of fluid in the macropores governs such a response. The drainage
process takes longer to complete as the fluid in the micropores drains into the
macropores, leading to secondary consolidation.

0.020 2e
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o
=
w
\
\

0.0104

Volumetric strain

6
0.005 1

25907 —— experiment
4 ---- simulation

—— experiment
---- simulation

0.0 0.000 ¢
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.000 0005 0010 0.015 0020 0.025 0.030
Axial strain Axial strain
(a) evolution of stress (b) evolution of volumetric strain

Fig. 1. Model calibration for Opalinus clay shale.

5.2 Plane strain consolidation under a strip load

This 2D example demonstrates the performance of the proposed stabilization
scheme as well as investigates the influence of stress history, mass transfer, and
different pore systems (single versus double porosity) on the system response.
The problem consists of a rectangular domain with dimensions 20 m x 10
m and boundary conditions shown in Figure 5. The plane of isotropy (or
bedding plane) is oriented at § = 45° with the horizontal. Parameters adopted
in the simulations are summarized in Table 2. For mechanical deformation,
the parameters were originally calibrated from the properties of Tournemire
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Fig. 2. Illustration of the one-dimensional consolidation problem.

120

100

/

80

60
40 /
20

0 50 100 150 200 250 300
Time (s)

Applied stress increment (%)

Fig. 3. Schematic diagram of the two-staged stress increment application

shale [115]. The bulk modulus K, was chosen such that b = 0.8. Gravity is
ignored in the simulation by setting g = 0.

Both normally consolidated (NC) domain with p,g = —1 MPa and over-
consolidated (OC) domain with p.g = —2 MPa were simulated. The initial
condition was established by applying an overburden pressure of pg = 1 MPa
under a fully drained condition. Then, a strip load of w = 1 MPa covering
a width of 2 m was applied in 10 s, a period short enough that fluid flow
was nearly suppressed to set up a nearly undrained condition in the two pore
scales.

We first present the undrained response with and without numerical stabi-
lization. In the undrained limit, the distributions of py; and p,, are identical;
thus, we only show the results for the micropore pressure p,,. Figure 6 shows
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Fig. 4. Evolution of settlement and pore pressure with different load increments.

that the pore pressure distribution along the vertical centerline oscillates with-
out stabilization. The solution with 7 = 1 shows that the pore pressure oscil-
lation is only partially suppressed, but with 7 = 10 the oscillation completely
disappears for both NC and OC simulations. Figure 7 portrays the spatial
variation of p,, in the vicinity of the strip load with and without numerical
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Table 2. Calibrated parameters for Opalinus clay shale.

Value Unit
FElasticity:
A 429 MPa
a —27 MPa
b 1600 MPa
wr 2360 MPa
pr 1000 MPa
Plasticity:
C1 0.3 -
C2 — 1.3 -
C3 1.4 -
M 0.75 -
Ap 0.014 -
Peo -9 MPa
Fluid flow:
HH 10 nD
K1 3 nD
Km 0 nD
1253 1 cP
k 1 nD
a 5 m ™2
PM 1 ton/ m?
Pm, 1 ton/ m?
Others:
dm 0.19 -
bOm 0.01 -
K 13 GPa
K 2 GPa
K 2 GPa
T 10 -

stabilization. We remark that the peak values of the oscillation in the un-
stabilized solution could be large enough to compromise the accuracy of the
solution.

Having calibrated the stabilization parameter at 7 = 10, we now simulate
the pore pressure dissipation under the same applied strip load of 1 MPa. The
simulation consists of time stepping over 80 time steps with an initial time
increment At = 25 min and increasing each increment by a factor of 1.25 from
its previous value, i.e., At,, ;1 = 1.25A¢,. For the following simulations, we
first ignore the mass transfer of fluid between the macropores and micropores
by setting & = 0, which is equivalent to treating the macropores and micro-
pores as two independent flow channels. The results are compared with the
response of a single-porosity medium with porosity equal to either that of the
macropores or that of the micropores.
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Fig. 5. Illustration of the consolidation problem.
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Fig. 6. Pressure distribution along the vertical center line with different stabilization
parameter 7 right after the strip load is applied.

To show that the proposed stabilization scheme works throughout the full
range of drainage responses, the profile of the two pore pressures along the
vertical centerline as well as the 2D spatial variation of p,, are shown in Figs. 8
and 9 after 10 time steps of consolidation, or around 0.6 day. For the macrop-
ore pressure p)s, no oscillation is observed even with the unstabilized solution,
suggesting that numerical instability only manifests itself during undrained
loading. Furthermore, the calculated values of p,; are nearly identical for
both stabilized and unstabilized solutions, suggesting that the stabilization
scheme does not impact the drained response. The plots also show that with-
out numerical stabilization, the micropore pressure p,, overshoots near the
drainage boundary. This phenomenon is due in part to the high gradient that
exists near the drainage boundary and in part to inf-sup instability [106]. In-
terestingly, the stabilized solution appears to have suppressed this instability
as well.

Figures 10 and 11 compare the pore pressure and ground settlement re-
sponses predicted by the single and double porosity theories. The pore pres-
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Table 3. Parameters used in the simulations.

Value Unit
FElasticity:
A 4270 MPa
a —1870 MPa
b 5420 MPa
ur 9360 MPa
1133 6510 MPa
Plasticity:
C1 0.7 -
Ca —0.36 -
C3 0.6 -
M 1.07 -
Ap 0.00013 -
Pco —1, -2 MPa
Fluid flow:
liH 1 ,U,D
K1 0.1 uD
Km 1 nD
Iy 1 cP
k 1 nD
a 10 m™2
pM 1 ton/ m?
Pm 1 ton/ m?
Others:
bdnr 0.1 -
Pm 0.05 -
Ks 43 GPa
KM 2 GPa
K 2 GPa

sures were calculated at point A on the centerline located 1 m below the
ground (Figure 5), while the surface settlement was calculated in the middle
of the strip load. In the two single-porosity simulations, the total porosity
of the medium was assumed to be the same as that of the double-porosity
medium but with the permeability properties of either those of the macrop-
ores or those of the micropores. Results show that the time histories of p and
the accompanying ground settlement lie in between the pore pressure and
ground settlement time histories of the two single-porosity simulations. Note
that the time history of p exhibits two time scales (double S-shape), whereas
those of the single-porosity simulations exhibit only one time scale. The time
history of the micropore pressure p,, shows the familiar Mandel-Cryer effect,
in which the values increase first and then decays to zero.

An interesting set of responses portrayed in Figure 10 is that the pore
pressures predicted by the two pore systems are the same in the undrained
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(a) NC, unstabilized solution (b) NC, stabilized solution

-

—03

L.
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Fig. 7. Zoom of micropore pressure p,, in the vicinity of the strip load right after
the strip load is applied. Left: unstabilized solution. Right: stabilized solution with
7 = 10. Color bars in MPa.

limit. This result can be verified by looking at the governing conservation
laws, which are expressed as residual equations in (96) and (97). In the limit
as At — 0, only terms involving solid deformation and storage coefficients
survive, which means that we are effectively solving the following equations:

M€ + M1 € 4 Syrnpar + SatmPm =0 in B, (99a)
Y €€+ Y™ €8 4 Spupbar + SmPm =0 in B. (99b)

Now, if the fluid in the two pore scales have the same stiffness, i.e., Ky =
K,, = Ky, then we can add the two equations above to obtain

boecr1:ev+ 2o, (100)

m

where ) p 5
1_¢ . 8 101
m Kf+KS ( )

and m is the Biot modulus defined in the single porosity formulation [117].
Thus, p predicted via the double porosity formulation is the same as p pre-
dicted from the single porosity formulation in the undrained limit. Further-
more, dividing (99a) by ¥ and (99b) by ™ and taking the difference yields

% (52 — ) = 0, (102)
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Fig. 8. Pressure distribution along the vertical center line after 10 steps (= 0.6 day)
of consolidation. Color bars in MPa.
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Fig. 9. Spatial variation of micropore pressure p, after 10 steps (~ 0.6 day) of
consolidation. Left: unstabilized solution. Right: stabilized solution with 7 = 10.
Color bars in MPa.
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which implies that p,, = pas = P in the undrained limit.

Next, we investigate the impact of fluid mass transfer between the two
pore scales during consolidation. Using the same parameters shown in Ta-
ble 2, we reran the simulation with the fluid mass transfer turned on. The
evolutions of pore pressure and ground settlement are shown in Figures 12
and 13, respectively. From these results, we see that consolidation now takes
a shorter period of time to complete since the mass transfer mechanism pro-
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Fig. 11. Evolution of ground settlement.

vides another channel for the pore pressure in the micropores to dissipate.
Also, because the macropores receives additional fluid from the micropores, it
now takes longer for pys to decay to zero. However, regardless of the fluid mass

transfer, the ground settlement at the end of consolidation remains essentially
the same.
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Figures 14-17 show the spatial variations of pore pressures and Darcy ve-
locities at two stages of consolidation in the NC and OC media. Note that
even though we have assumed an isotropic permeability tensor for the micro-
pores, the pore pressures and Darcy velocities at this pore scale still exhibit
an asymmetric pattern with respect to the centerline, which can be attributed
to the anisotropy of the material with respect to mechanical deformation. It
is also interesting to note that even though the macropore pressure pp; has
essentially dissipated at time ¢ = 56 days, the Darcy velocities at that pore
scale remain higher than in the micropores, which implies that fluids in the
micropores continue to drain into the macropores. This results in a faster
overall consolidation of the porous medium.

Lastly, Figure 18 shows the spatial variation of plastic deformation in the
NC and OC media at the end of consolidation. The patterns of localized plastic
strain for both NC and OC simulations are similar to that predicted by the
single porosity theory [117], in which a cone-shaped zone of plastic deformation
forms beneath the strip load in the NC medium, while two conjugate plastic
deformation bands form in the OC medium.
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Fig. 16. Darcy velocity field in a NC medium after 10 time steps (= 0.6 day) and
30 time steps (= 56 days) of consolidation. Vectors are magnitudes of velocities in
x107" m/day.
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Fig. 18. Spatial variation of norm of plastic strain ||€?|| at end of consolidation.
Color bars are strain norms in decimals x107%.

6 Conclusion

We have presented a thermodynamically consistent continuum framework for
coupled fluid flow and solid deformation in anisotropic elastoplastic media
with double porosity. Similar to the single porosity theory, two effective stress
measures, o’ and o, have been identified that are conjugate to the elastic
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and plastic rates of deformation of the solid matrix, respectively. Stabilized
low-order mixed finite elements have been employed to solve initial boundary-
value problems, which alleviate the pore pressure oscillation due to inf-sup
instability in the undrained limit while at the same time preserve the accuracy
of the solution in the drained response.

The formulation has been used to simulate the one-dimensional consoli-
dation of Opalinus Clay shale. With a single set of material parameters, the
model has reproduced the compression-time history of this shale under dif-
ferent loading scenarios that included loading, unloading, and reloading. The
formulation has also been used to simulate plane strain consolidation of a
rectangular domain under a strip load to demonstrate the efficacy of the sta-
bilization scheme in the undrained limit and the impacts of anisotropy, stress
history, mass transfer, and the double porosity representation in general on
the system response.

Some hydromechanical phenomena in science and engineering cannot be
explained by single porosity theory alone, the most obvious one being the
secondary consolidation exhibited by some porous geomaterials such as soils
and rocks under one-dimensional constrained compression. The framework
presented in this paper is a significant advance in the understanding of the
impacts of anisotropy in the mechanical deformation and fluid flow properties
on the response of materials with double porosity.
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Appendix A: Derivation of the tangent matrix

The relationships below are used in the derivation:
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(103)

The submatrix K;; in the tangent matrix for Newton iteration is given as

follows.
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