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Abstract

An algorithm for optimal sensor network design for multi-scale, time-varying differential algebraic
equation systems with non-separable dynamics is presented. As the process is time-varying, an integral
normalized posterior error covariance of a multi-scale filter is minimized to obtain the optimal sensor
locations. For reducing the computational cost, an adaptive sampling rate approach is considered for the
slowly-varying variables. The algorithm is applied to a smart refractory brick with embedded sensors as
part of an entrained-flow gasifier. Thermistors and interdigital capacitors are considered as candidate
measurement technologies for estimating temperature and slag penetration profile along the gasifier wall.
When the optimal set of sensors obtained from the algorithm is used for estimating temperature and slag
penetration profiles in a multi-scale Kalman filter framework, satisfactory estimates are obtained despite

high measurement noise and model mismatch.
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1. Introduction

A number of engineered systems evolve over multiple time scales. In various chemical engineering
applications, while variables such as species concentration can have time constants of seconds, variables
such as the temperature can have time constants of minutes or hours. On the other hand, there are several
extremely slow, yet important, mechanisms such as catalyst degradation, heat exchanger fouling that can
evolve over weeks or months or even years. Slowly-evolving catalyst degradation in a reactor can affect
the temperature dynamics in the reactor while the temperature dynamics in the reactor can affect the
dynamics of catalysts degradation. For many such systems, slow and fast dynamics cannot be separated.
For control, monitoring, maintenance planning, etc. of such systems, estimation of both slow and fast

variables is of utmost importance.

Optimal sensor network design is critical for estimation of the desired variables. The sensor network
design problem has been widely studied for single time scale systems. Some measure of estimation error
is typically used as the objective of the sensor placement problem (Nabil and Narasimhan, 2012).

Estimation accuracy of an optimal filter such as the Kalman filter (KF) is one of the mostly used measures

in such sensor network design problems (Sen et al., 2016, 2018). In the work of Musulin et al., time-

averaged posterior error covariance matrices calculated over the entire time horizon and asymptotic value
of posterior error covariance matrices was used to obtain the optimal sensor network design for a dynamic
linear system (Musulin et al., 2005). System observability and sensor network costs were considered as
constraints in that work. The sensor network design problem for a nonlinear differential algebraic
equation (DAE) system was studied by Mobed et al. (Mobed et al., 2017a, 2017b) using extended KF
(EKF).

Typically, process information which can be obtained from a given sensor network increases as the

number or the accuracy of the installed sensor increases (Muske and Georgakis, 2003). Therefore, several

authors have designed the sensor network taking into account the tradeoff between the process
information and the number/cost of sensors. Based on proper orthogonal decomposition and max-min
optimization, Alonso et al. proposed a systematic approach to the sensor network design for distributed
systems (Alonso et al., 2004). Lee and Diwekar proposed a method to design an optimal sensor network
for nonlinear integrated gasification combined cycle power plant by maximizing the overall Fisher
information with constraint on the cost of sensors (Lee and Diwekar, 2012). Singh and Hahn proposed a
method to determine sensor locations for stable nonlinear dynamic systems with consideration of a
tradeoff between process information, information redundancy and sensor cost (Singh and Hahn, 2005,

2006). Jeremy et al. extended the work of Singh and Hahn (Singh and Hahn, 2006) by taking the
2
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covariance of empirical observability Gramians into account for the sensor network design (Jeremy et al.,
2007). An optimal sensor placement problem has been solved by considering observability and principal

component analysis with constraint on number of sensors (Jeremy et al., 2007).

The literature on sensor placement presented before has mainly focused on systems with single time
scales or systems where times scales are not significantly different. However there are systems where
time scales can be widely different and distinguishing these time scales is desired while designing the
sensor network. Furthermore, these systems might exhibit non-separable dynamics and they can be time-
varying. To the best of our knowledge, there is no work in the existing literature on the optimal sensor
network design for time-varying multi-scale DAE systems with non-separable dynamics. One relevant
work in this area is by Kadu et al., who designed the optimal sensor network for time-invariant, multi-rate
systems (Kadu et al., 2008). The authors considered different sampling rates for measurements while
designing the sensor network. In that work, system estimation accuracy is evaluated by considering a
multi-rate KF over a time-horizon. As the traditional KF is applicable to single rate systems, the authors
proposed to use updated output (measurement) matrix and measurement error covariance matrix at
different sampling instant. Since the dynamics of state estimation accuracy as captured through the
Riccati equation are taken into account, the authors considered a large enough time interval for simulation
so that the posterior error covariance matrix can reach steady value (Kadu et al., 2008). A straightforward
extension of the approach developed by Kadu et al. (2008) to time-varying multi-scale systems has two
issues. First, multi-scale time-varying system considered in this paper has at least one order of magnitude
difference in the time scales of variables of interest. Since the system error covariance matrix evolves
dynamically over a long time, a large enough time interval, such as months or years, is required for the
simulation. Second, the multi-scale system can have multiple different sampling rates that can be largely
different. As noted out by Kadu et al. (2008) and Gudi et al. (1995), slowly sampled variables can
improve observability of the system, reduce variance of the estimates, and reduce sampling requirements
of the variables that are sampled faster. However, if the time scale of a variable is very slow, like days, or
weeks, then sampling it at a fast rate provides little information. Thus, such multi-scale systems are likely
to have very different sampling rates. Due to the issues listed above, a straightforward extension of the
approach by Kadu et al. (2008) to time-varying systems with widely varying time scales would lead to an
extremely large number of sampling instants that can be computationally intractable. In summary, studies
on the sensor network design for time-varying DAE systems with largely different time scales are still

limited and highly needed.

The main contribution of this paper is the development of an optimal sensor placement algorithm for

time-varying DAE systems with non-separable dynamics and largely different time scales. The optimal
3
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sensor network is designed by maximizing the estimation accuracy of the time-varying multi-scale DAE
system with constraint on the number of sensors. Due to non-separable dynamics, a bank of filters that are
assigned based on the distinct time scales exchanges information while minimizing the error covariance
individually. Selection of filtering algorithms depends on a number of criteria including the type of the
system (i.e. linear or nonlinear), desired computational expense, user preference, etc. Therefore, one can
use different algorithms for different filters in this sensor network design approach. The usefulness of the
proposed algorithm is demonstrated by the case of the gasifier smart refractory brick with embedded
sensors. Two different kinds of sensors namely, thermistor and interdigital capacitor (IDC) are considered
in this study for estimating temperature and slag penetration profiles along the radial direction of gasifier

wall respectively.

The rest of this paper is arranged as follows. In Section 2, the optimal sensor placement algorithm is
developed. The smart brick system where the algorithm is applied to is presented in Section 3. Results are

presented in Section 4 followed by the conclusions.
2. Sensor Placement Algorithm Development

In this section, first, the development of the framework of bank of filters is discussed followed by a
discussion on linear and nonlinear filtering algorithms for DAE system. Then, a discussion on adaptive
sampling rate used for slowly changing variables is provided, followed by a discussion on the filtering

algorithm.
2.1. Multi-scale filter

The multi-scale filtering framework considered in this study is shown in Fig. 1. For simplicity, only two
levels are shown in Fig. 1. In Fig. 1, the time scale of the faster variable is designated as the micro scale
while that of the slower variable is designated as the macro scale. The figure is developed considering the
possibility of an adaptive sampling rate for the macro scale filter. More details on this is provided later.
As noted earlier, the time scale separations are done such that minimizing the resulting error covariance
calculation individually at each level is equivalent to minimizing the joint error covariance. The error
covariance calculation for traditional and extended KFs depends on the state transition matrix,
output/measurement matrix, and noise (i.e. measurement and process noise). Therefore, the time scale
separation is done such that even if the filters communicate sequentially at the sampling instant of slowest
variable, the resulting error in the covariance calculation is low. For more information on the approach
similar to this work for simulating a bank of filters, interested readers are referred to the work of

Kobayashi and Simon (Kobayashi and Simon, 2003).
4
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126  In this framework, linear or nonlinear filters for ODE/DAE systems can be used at any level. Below,
127  specifically, we firstly describe the filtering approach used for the linear DAE system followed by a

128  discussion on the nonlinear DAE system.

129  2.2. Modified TKF for the linear DAE system

130  The linear time-varying DAE system is given by:

131 x(t) = D(®)x(t) + GOy (t) + M(O)u(t) (1
132 0=N(t)x(t) + T)y(D) (2)

133  For making the notation compact, in the following, we drop the ‘(t)’ notation from the DAE system given

134 above. Further, differentiating the algebraic equations in Eq. (1),

135 0=Nx+ Ty (3)

136 y=-T 'Nx=-T*NDx—-T 'NGy - T 'NMu (4)
x| _ D G X M

137 [y] - [—T‘lND —T‘lNG] [y] + [—T—lNM] U (5)
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Eq. (5) can be written as:
xaug — Daugxaug + Maugu (6)

D

G aug
“IND —T_lNG] M

, Where x%9 = [;] , D9 = [—T - [—TKINM]

The corresponding discrete-time system along with the measurement equations for the time-varying

system can be written as:

aug _ ,aug .aug aug
X, 0= AT 5] + B Tugq @)
Zp = H™I x, 9 (®)

While the estimation algorithm is similar to the typical TKF algorithm for ODE systems (Maybeck and
Siouris, 1980), there are certain differences due to the underlying DAE system. The algorithm is similar

to Mandela et al. (Mandela et al, 2010).
Time update:
* A DAE solver is used for calculating a priori state estimate

* A priori covariance matrix is calculated as:

~ ~ T ~
Prje—1 = A O P q k1450 + Vi Qi )

, wherey = [—Tl_lN]
Measurement update:
* The Kalman gain and posteriori state estimates are given by:
R = Puyje—r HOT (HAI Py HOuOT 4+ R,) (10)
2 = 2l ) + Ry (zi — H92 ) (11)

»  Using the estimates of the differential states, the posteriori estimates of the algebraic states are

obtained by solving the algebraic equations. i.e. Eq. (2).

*  The posteriori estimate of the covariance matrix is given by:

6
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Pyje = (I = K H*™9) Pgjge—y (12)
2.3. Nonlinear filter

For nonlinear filtering, the EKF is considered here even though other nonlinear filters can be used. Given

the following nonlinear process,

x(t) = f(x,y,u,w,t) (13)
0=g(7v,t) (14)
z = h(x,y,v,t) (15)

with w~(0,Q) , v~(0,R)

For estimating the error covariance in EKF, a linearized system similar to Eqgs. (1)-(2) is generated where:

9 _0f gy O 99 p_ 09
D_ax'G_ay'M_au'N_ax'T_ay

Then the similar approach as in Section 2.2 is used except the following differences - at the time update
step, the DAE solver is used considering Eqgs. (13)-(14) for calculating the a priori state estimates; at the
measurement update step, once the posteriori estimates of the differential states are obtained, the algebraic

states are calculated by using Eq. (14), and Eq. (11) is modified as:

~aug _ saug 74 saug

R =2+ Ry (zk —h (xklk_1)> (16)
... oh 0h

In addition, H%49 = [E e

Other details of standard EKF algorithm can be found in the literature (Haykin, 2001).

2.4. Adaptive sampling rate for the slowly changing variable

Since the computational burden for the filter corresponding to the slowly changing variable can be high
due to the long time window that may be needed, an adaptive sampling rate can be considered by
exploiting the possibility that the rate of change of the error covariance matrix can considerably change in
course of time. The approach for calculating the adaptive sampling rate is similar to the work of Jain and

Chang (2004).

Suppose the difference between model results using adaptive and uniform (fast) sampling rate is given by:

7
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Sk = |0y — Oyl 17
where ), and 0, represent model results using adaptive and uniform sampling rates respectively.
The weighted average difference is calculated by considering the j most recent difference terms:

Y Skjeali

A= 18
LYy (18)
The sampling interval for the next iteration is calculated by:
A2
Ty =T +y(l—e 1) (19)

where 7j,, is sampling interval for k+1 time step; A is target error; and y is the parameter that controls

the rate of the sampling interval changes.

2.5. Sensor placement algorithm

The objective function for the sensor placement algorithm is considered to be the integral weighted

posterior error covariance matrix from the multi-scale KF as follows:

min [ Y7, WiFiI,\é]

s.t. (20)
Y= G S = cmex

S;iestj=1.m

where w is a weighting vector, S is a non-negative integer decision variable. S*denotes the candidate
set. C; denotes some factor such as cost associated with the sensor j. If it is desired to constrain the
maximum number of sensors instead of cost, then (; = 1. F, il,\é is normalized fitness value for x‘. The case
where all states are measured is considered to be the “best” case, while the case where no sensor is placed
is considered to be the “worst” case. Let k; = 1 ... T; be the time horizon for simulation. The normalized
posterior error covariance corresponding to variable i over the entire time horizon can be calculated with
respect to the “best” and “worst” cases as follows:

Fic—Fip

L€ Fyw—Fip

1)
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, where F;. = T%(ZQ:l trace (pki))

This optimal sensor placement problem can be solved by many integer programming algorithms, such as

genetic algorithm (GA) (Paul et al., 2015, 2016), tree search algorithm (Nguyen and Bagajewicz, 2008,

2012), etc. For the specific case when it is solved by GA, Fig. 2 shows the algorithm for solving this

multi-scale optimal sensor placement problem.

I Specify GA Parameters |

I Generate initial population, Gen=1 |

v

of
—;l Macro-scale filter to estimate H Step Disturbance

Satisfy
Constraint?

F = F+ Penalty

GA operations:
Cross-over
Mutation
Selection

v

| New Population, Gen=Gen+1 |

Satisfy GA
Converge Optimal Solution
Condition?

Fig. 2. Optimal sensor placement algorithm for multi-scale system (Kqgqptive represents adaptive

sampling time series, T; represents the maximum time step for simulation)
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3. Case Study: Smart Refractory Brick for Gasifiers

The proposed sensor placement algorithm is applied to a smart brick system as part of an entrained-flow
gasifier. Gasifiers are at the heart of the integrated gasification combined cycle plants (Jiang and
Bhattacharyya, 2014). Temperature (Seenumani et al., 2012) and extent of slag penetration (Ramalakshmi

et al., 2014) are the two most important variables for structural health monitoring (SHM) of slagging
gasifiers (Pednekar et al., 2016a, 2016b). In our previous work, we have communicated the possibility of
constructing the gasifier wall using a ‘smart’ refractory brick, a brick with embedded sensors, for
estimating the temperature profile in the gasifier wall and extent of slag penetration in the refractory

(Huang et al., 2017a, 2017b).

Optimal sensor network design can be helpful for monitoring the long-term structural degradation (Ansari,
2005). However, in a smart brick, there are large numbers of candidate locations for placing sensors.
Depending on the type of sensor placed in a given location, it may be possible to obtain information on
multiple variables of interest (Paul et al., 2017). In practical SHM systems, it is not feasible to measure all

variables of interest at all candidate locations (D'souza and Epureanu, 2008). Sensors can only be placed

in a limited number of locations due to budget constraint, structural inaccessibility and so on (Sun and
Biiyiikoztiirk, 2015). Large number of sensors embedded in the smart brick can also compromise the
structural integrity of the brick. Furthermore, sensors may be redundant, i.e. the measurements provide no
or negligible additional information. While redundant measurements may be helpful for increasing the
reliability of the sensor network, such redundant measurements need to be optimally selected with due
consideration of the sensor failure probability. The gasifier system is multi-scale in nature. While the time
constant of temperature is in the order of minutes, that of slag penetration is in hundreds of hours (Huang
et al., 2017b). For this system, dynamics cannot be separated. The molten slag that penetrates into the
refractory lining leads to changes in the refractory thermal properties (i.e. heat capacity and thermal
conductivity). Therefore, the temperature profile in gasifier wall will be affected not only by the
temperature on the hot face, but also by the extent of slag penetration. On the other hand, a change in the
temperature profile leads to a change in the slag viscosity. As a result, the extent of slag penetration will
be affected by temperature, too. It is desired to design the optimal sensor network for this time-varying,
multi-scale system with inseparable dynamics. Two different kinds of sensors namely, thermistor and
IDC are considered in this study to detect temperature and extent of slag penetration respectively. Unlike
the most types of sensors used in SHM, IDC can only be sensitive to slag within a limited distance

(Gevorgian et al., 1996) and the length of this sensitive distance depends on the installation direction of

IDC. Therefore, the installation direction of the IDC is determined in this work through sensitivity

10
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analysis. After that, the optimal sensor network in the smart refractory brick is designed by using the

proposed algorithm. The resulting optimization problem is solved by GA.

3.1. Process models

Smart brick is a brick with sensors embedded in it. As discussed in our previous publication (Huang et al.,
2017b), these bricks are intended to be placed in the high chromia layer of gasifier wall to detect wall
temperature profile and extent of slag penetration. The layout of gasifier’s refractory wall with smart
brick is shown in Fig. 3. The goal of this paper is to determine the optimal sensor locations for this smart

brick. The model of the gasifier where the refractory is considered can be found in our previous

publications (Kasule et al. 2014, 2012).

High chromia layer  Other refractory layers

0 >
r
Gasifier
LY outer wall
Smart brick (a)
I
§ o
g !
- Interconnected
= E;:::g?ed brick (a) Wireless
- transmitter
24
e
O
I |Smart brick (b)

Fig. 3. Schematics of the refractory wall with smart refractory brick

The thermal model for a given refractory brick is developed considering conduction to be the dominant
heat transfer mechanism through the wall. At all boundaries between the layers, temperature and flux

continuities are assumed. The 2-D governing equation for the thermal model is as follows:

ST _ <1i (rK g—f) +o (x 9 T)) (26)

at rar 5
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In Eq. (26), material properties such as p, €, K are time-varying. The refractory properties depend on
both the change in the temperature and extent of slag penetration. The effective properties of slag-
infiltrated brick are calculated using mixing rules by using its composition. For more details about the
thermal and property models, readers are referred to our previous publications (Huang et al., 2017a,
2017b).

The modified Washburn equation (Washburn, 1921) with correction for the tortuosity of the refractory
pore system is used to evaluate the slag penetration depth. Sag penetration is modeled by (Carbonell et al.,
2004):

dl _ APR?

dt ~ 8no?l @7

where AP is the pressure drop across refractory lines, R is the refractory pore radius, 7 is slag viscosity, o
is the tortuosity, and [ is infiltration length. More details of models and model parameter values can be

found in our previous publications (Huang et al., 2017a, 2017b).
3.2. Sensor models

Two kinds of sensors, namely thermistor and IDC, are considered in this optimal sensor network design

problem. The layouts of the thermistor and IDC are shown in Fig. 4.

. Shortside of IDC
< >

OdIJO 3pIs sUOT

+
<

(a) Thermistor (b) IDC

A-

Fig. 4. Schematics of the smart brick with layouts of the (a) the thermistor, and (b) IDC
12
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Thermistor is sensitive to temperature mainly because the electrical conductivity of the sensor is more
than 200 times higher than the slag (Huang et al., 2017b) and, therefore, the extent of slag penetration is
unlikely to affect the thermistor response. The equivalent circuit method is employed to model the
thermistor as given below, where the overall resistance of a given thermistor is calculated by summing the
resistance of the sensor material in each control volume where it exists:

AL
R=yp, itk (28)

@

It should be noted that there is considerable spatial variation in the temperature not only along the width
of the smart brick, but even along the length of the thermistor. Therefore, spatially distributed and
temperature-dependent electrical conductivity, ¢, for the WSi»-Al,O3 thermistor is considered in this

work. More details about the thermistor model can be found in our previous work (Huang et al., 2017b).

The IDC model is developed using a conformal mapping technique where the sensor is mapped to an

equivalent parallel plate capacitor for easy computation of its response (Igreja and Dias, 2004). Both the

extent of slag penetration and temperature affect the refractory dielectric constant considerably and,
therefore, affecting the resistance of the IDC sensor. The model also considers the temperature-dependent

dielectric constant of the high-chromia refractory, which is the host refractory material (Huang et al.,
2017b).

In this model, the n™ electrode’s interior half-capacitance of a layer m under the electrode plane, C Tums
and the n™ electrode’s exterior half-capacitance of a layer m under the electrode plane, C Fum» are given
by the equations below:

Ke(km,l)
Ke(kpy ) 29

n _ n n
Clu,m - EOL(Sm,u - £m+1,u)

Ke (km,E)
Ke(kpy )

(30)

n _ n n
Cium = €oL(emu — €ma1u)

where g, and € are vacuum permittivity and relative dielectric constant, respectively, and L is the length
of the IDC finger. It should be noted that the equations above are highly nonlinear partly because of K,(.),
that denotes the complete elliptic integral of first kind with modulus k,,;, k;,  and complementary
modulus k;,; and k;, ; corresponding to the interior and exterior electrode planes, respectively.

Furthermore, these moduli are dependent on the electrode design parameters such as the width of the IDC

fingers, distance between the IDC fingers, and the thickness of the dielectric layer. Similarly, the

13
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electrode’s interior half-capacitances of layers above the electrode plane, Cjj,,,,, and the electrode’s

exterior half-capacitances of layers above the electrode plane, Cg,, ,,,, are obtained.

The n™ electrode total exterior capacitance, CY, is calculated by using the partial capacitance technique

where the exterior layer capacitances above and under the sensor plane are summed.

CEa = Craco + Xmi1 Cham 31)
Cg,u = CE,uoo + Z%il Cl?u,m (32)
Cf = cga + Cgu (33)

It should be noted that N, the number of sensitive layers, in the equations above depend on a specific
system. More discussion on this is provided in the next section. Similarly, the total interior electrode
capacitance, C[*, can be calculated. Then the total capacitance of IDC sensor can be calculated by C}* and
Cg using equivalent circuit analysis. Interested readers are referred to our previous publication for more
details of the IDC model (Huang et al., 2017b). The IDC sensor model is highly nonlinear and therefore,

linearization of this model, if used in a linear estimator, can lead to high inaccuracies.
3.3. IDC sensitive distance analysis

Since thermistor is not directly sensitive to the extent of slag penetration, IDC is the only type of sensors
used to measure the extent of slag penetration. However, it was observed in our previous study that the
embedded IDC sensors are only sensitive to the slag penetration in a short distance (Huang et al., 2017b).
Once the slag penetrates beyond this sensitive area, IDC measurements are not expected to change due to
further slag penetration. Therefore, unlike the thermistor for which the installation direction is not
expected to play a big role in temperature profile estimation, the installation direction of the IDCs does
have a strong impact and, therefore, should be carefully selected. Fig. 5 shows two installation directions

which are evaluated in this work.

14
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Shortside of IDC Long side of IDC
Y |~ sensor plate Y |~ sensor plate

Hot Face
Hot Face

(a) IDC is installed parallel to hot face (b) IDC is installed perpendicular to hot face
Fig. 5. Installation directions of IDC considered in the study

3.4. Implementation of the sensor placement algorithm.

In this work, it is assumed that the modified TKF is used for estimating temperature (i.e. fast-changing
variable) while for estimating slag penetration depth (i.e. slowly changing variable), the EKF is used due
to the high nonlinearity of the penetration model and the sensor model. Since the slag penetration rate
varies significantly with time, adaptive sampling rate is employed for slag penetration depth estimation.
Due to the change in the material properties as a result of continuing slag penetration, the process
becomes time-varying. Therefore, the corresponding process covariance matrix evolves until slag
penetrates through the high-chromia layer. Since the embedded sensors in the refractory are novel and the
manufacturing process is still being improved, no cost data for the sensors are currently available.
Therefore, instead of a constraint on the maximum cost in the sensor placement problem, it was decided
to consider a constraint on the maximum number of sensors. The sensor placement problem is solved
using the GA algorithm with parallel computing toolbox in MATLAB 2016a. The population size and

maximum generation number of GA are chosen to be 50 and 30, respectively.

4. Results and discussion

4.1. Impact of installation direction on the sensitivity of IDC to slag penetration depth

The capacitance of the IDC can change as a result of change in the dielectric constant due to change in the

temperature, slag penetration depth, or both. In this study, the temperature is set to be constant at 1400°C.
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The IDC is assumed to be placed on the center of ‘smart’ refractory. The IDC geometry parameters W, G,
L as shown in Fig. 4(b) are set to be 0.5 cm, 0.5 cm and 0.3758 cm, respectively. Total number of fingers
is specified to be 8 in this section. Fig. 6 shows how the capacitance changes as slag penetrates into the
smart refractory brick when IDC installed as shown in Fig. 5 (a), i.e. when the IDC is placed parallel to

the hot face.
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Fig. 6. Sensitivity of IDC to slag penetration depth when the sensor is placed parallel to the hot face

As observed in Fig. 6, the capacitance of IDC increases sharply when slag passes through the sensor
plane, but before and after that, it remains largely insensitive in the radial direction, which is of main
interest. Thus, this orientation will lead to a large number of IDCs. It should be noted that the sensitive
distance of IDC in the direction perpendicular to the sensor plate can change as the sensor dimension
changes. (Igreja and Dias, 2004) However, the impact of this change is very limited. Another option is to
place the sensor perpendicular to the gasifier hot face. Fig. 7 shows the change in the capacitance due to

slag penetration when IDC installed as shown in Fig. 5 (b), i.e. perpendicular to the hot face.
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Fig. 7. Sensitivity of IDC to slag penetration depth when the sensor is placed perpendicular to the hot face

As shown in Fig. 7, the sensitive distance for this IDC is 7 cm, which is the length of this IDC sensor. In
this work, extent of slag penetration is of interest only in the high-chromia layer. If the length of IDC is
designed to be the thickness of high-chromia layer, then the extent of slag penetration through the entire
high-chromia layer can be estimated. Therefore, this long IDC placed perpendicular to the hot face is
considered to be used in the ‘smart’ refractory brick for estimating slag penetration depth. Therefore,

optimal placement of only the thermistors need to be considered.
4.2. Optimal thermistor placement based on multi-scale KF

Fig. 8 shows the candidate sensor locations in smart refractory brick. The long IDC is placed on the
centerline of this smart brick. The algorithm developed in Section 2 is applied to obtain the optimal
thermistor placement. The reason of using two KFs in this case study, even though only the placement of
thermistors needs to be optimally selected, is that the covariance estimates of both filters are affected due
to the placement of thermistors. This can be understood by analyzing the time-varying process. The slag
penetration rate strongly depends on the temperature. If the temperature is low, the slag penetration rate
can considerably drop due to the significant change in the slag viscosity as seen in Eq. (27). On the other
hand, slag infiltration affects the material properties such as the specific heat and thermal conductivity

thereby affecting its temperature profile for given boundary conditions. Since the slag infiltrates through

17



381
382
383
384
385

386

387

388

389
390
391
392
393

394

395

396
397
398
399
400

the high temperature region reasonably quickly, a large number of thermistors in these regions is not
helpful for improving the estimation accuracy, rather the thermistors placed in relatively lower
temperature regions provide valuable information for long period of time as the slag infiltrates through
these regions relatively slower and, therefore, improves the integral covariance estimates. These aspects

can be observed in the results presented below.
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Fig. 8. Candidate sensor locations for thermistors in the ‘smart’ refractory brick

Weighting factors, w;, in the objective function for sensor placement (Eq. (20)) are set to be 1. The time
interval of the simulation is chosen to be long enough so that the slag penetrates through the entire smart
brick (high-chromia layer). This is done so that the effect of this time-varying process can be captured
while designing the sensor network. Table 1 shows the optimal results when the maximum number of

sensors are set to be 8 and 16 thermistors.

Table 1. Optimal placement for 8 and 16 thermistors

Number of Sensor Installed Optimal Locations
8 8, 10, 13, 16, 20, 21, 22, 24
16 6,8,9,10, 11, 12, 13, 14, 16, 17,19, 20, 21, 22, 23, 24

It can be observed in Table 1 that the constraint on maximum number of sensors are reached for both
cases. It is also observed that more number of thermistors are placed near the colder side of the smart
refractory. As discussed before, thermistors placed near the colder side improves the covariance estimate
for long time duration. Obviously this aspect is exploited by the optimizer for minimizing the integral
error covariance of this time-varying process.
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Fig. 9 shows how the normalized fitness value for the temperature and slag penetration depth change with

respect to the number of thermistors.
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Fig. 9. Sensitivity of normalized fitness value for slag penetration depth and temperature to the number of

thermistors

It can be observed that the estimation error in slag penetration depth decreases quickly as the number of
thermistor increases from O to 1. It is because the accuracy of temperature estimates has a strong effect on
the estimation accuracy of slag, but a highly accurate estimation of temperature is not required for
improving the estimation accuracy of slag penetration depth. These results also show why both the filters
need to be considered together even though only placement of thermistors is being considered by the

sensor placement algorithm.
4.3. Estimation of slag penetration depth and temperature with optimal sensor network

As discussed in the previous section, estimation accuracy does not improve much beyond 8 thermistors.
Therefore, 8 thermistors with a long IDC placed in the centerline is considered to be the optimal sensor
network for this smart refractory brick. The system considered here is a complex system with expected
mismatches between the actual system and the model. Therefore, it is desired to study the estimator
performance at the face of model mismatch. Model mismatch is simulated by using different sets of

parameters between the ‘true’ process and the KF model for calculation of the specific heat of the slag-
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infiltrated refractory brick and the slag viscosity. The performance of this sensor network is studied using
the multi-scale KF by simulating a 50°C step increase in the hot face temperature introduced at t=0.

Estimation of resistance and temperature at sensor location #8 is shown in Figs. 10(a) and 10(b),

respectively.
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Fig. 10. Estimates using the multi-scale KF and measurements from the optimal sensor network for: (a)

resistance, (b) temperature

As it shown in Fig.10(b), temperature at sensor location #8 increases by about 66°C due to the 50°C step
increase in the hot face. It is because a higher temperature increases slag penetration depth and a brick
with higher extent of slag penetration has higher thermal conductivity, thus increasing its temperature
more than the increase in the boundary temperature. More details about how slag penetration affects

temperature profile of gasifier’s refractory wall can be found in our previous work (Huang et al., 2017b).
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Fig. 11. Estimates using the multi-scale KF and measurements from the optimal sensor network for: (a)

capacitance, (b) slag penetration depth

Fig. 11 shows the estimates of slag penetration depth and capacitance using the multi-scale KF. As
observed in Fig. 11(b), even though the measurements are noisy and there is large discrepancy in the

model, the optimal sensor network results in a highly accurate estimate of the slag penetration depth.

5. Conclusion

In this paper, an algorithm to design an optimal sensor network for multi-scale, time-varying DAE
systems has been developed. The integral normalized posterior error covariance of the multi-scale KF is
minimized to obtain the optimal sensor locations. In order to reduce the computational cost, the adaptive
sampling rate has been used for the slowly-varying variables. Sensor placement problem for a smart
refractory brick has been used as a case study to illustrate the presented algorithm. For this case, the
sensitivity of IDC installation direction to slag penetration depth has been analyzed first. IDC placed
perpendicular to the hot face is found to be more sensitive to slag penetration depth and is used in the

following case study. Then, the optimal thermistor locations have been obtained by using the proposed
21
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algorithm. The GA is used to solve the optimization problem. Finally, using the multi-scale KF
framework (i.e. two KFs for two different time scales) with the thermistor and IDC sensors embedded in
the given optimal locations, it is found to provide satisfactory estimates for both the temperature profile
and extent of slag penetration despite high measurement noise and model mismatch. Even though a
system with two time-scales is considered as the case study in this paper, the proposed algorithm can be
easily applied to systems with multiple time scales by using a bank of filters. In addition, even though the
TKF and EKF are used in this case study, other linear/nonlinear estimators can also be considered in the

proposed framework.
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Nomenclature

Cp heat capacity (J/g - °C)

K thermal conductivity (W /m - °C)
T temperature (°C)

R pore radius (m)

1 infiltration depth (mm)

AL Length of the thermistor in a given control volume
AP pressure difference across refractory lines

w width of the IDC finger (cm)

G distance between the IDC fingers (cm)

L length of IDC finger (cm)

k time step, modulus

k' Complementary modulus

Ak gaptive adaptive time step

TS estimated temperature from micro-scale KF (°C)

i estimated infiltration depth from macro-scale EKF(mm)
X vector of differential variables

y vector of algebraic variables

u vector of system inputs

7 measurements

0 process noise covariance matrix

R measurement noise covariance matrix

)7¢ augmented Kalman gain

w Weighting factor, process noise
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S

S+

C
Cmax
N

T

Greek letters

gi'b

| YN >OY A OO PDDA I QM

Subscripts

IDC

—

cr‘goa

Superscripts

aug
N
n

Acronyms

IDC
KF

non-negative integer decision variable
the candidate set

factor

constant

designed number of sensors
simulation time

density (kg/m?3)

vacuum permittivity (F/m)

relative dielectric constant

cross-sectional area of the thermistor (m?)

slag viscosity (Pa.s)

tortuosity of refractory pore system

model prediction using adaptive sampling rate

model prediction using fast uniform sampling rate

difference between model predictions using adaptive and fast uniform sampling rates
sampling interval

target error

Electrical resistivity of sensor

parameter that controls the rate of sampling interval changes

j™ candidate sensor

interdigital capacitor

time step k

i state variable/control volume
m™ layer

current

worst

best

augmented
normalized
n electrode of IDC

interdigital capacitor
Kalman filter
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EKF extended Kalman filter
DAE differential algebraic equations
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