

# 1      **Optimal Sensor Network Design for Multi-Scale, Time-Varying 2      Differential Algebraic Equation Systems: Application to an 3      Entrained-Flow Gasifier Refractory Brick**

4      **Qiao Huang and Debangsu Bhattacharyya\***

5  
6      Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV  
7      26506, USA

## 8      **Abstract**

9  
10     An algorithm for optimal sensor network design for multi-scale, time-varying differential algebraic  
11     equation systems with non-separable dynamics is presented. As the process is time-varying, an integral  
12     normalized posterior error covariance of a multi-scale filter is minimized to obtain the optimal sensor  
13     locations. For reducing the computational cost, an adaptive sampling rate approach is considered for the  
14     slowly-varying variables. The algorithm is applied to a smart refractory brick with embedded sensors as  
15     part of an entrained-flow gasifier. Thermistors and interdigital capacitors are considered as candidate  
16     measurement technologies for estimating temperature and slag penetration profile along the gasifier wall.  
17     When the optimal set of sensors obtained from the algorithm is used for estimating temperature and slag  
18     penetration profiles in a multi-scale Kalman filter framework, satisfactory estimates are obtained despite  
19     high measurement noise and model mismatch.

## 20     **Keywords**

21     Sensor placement, multi-scale, time-varying, differential algebraic equation, smart refractory, gasifier

---

22  
23     \* Debangsu Bhattacharyya, West Virginia University, Department of Chemical and Biomedical  
24     Engineering, Morgantown, WV 26506, USA

25     Tel:1-304-293-9335, E-mail: Debangsu.Bhattacharyya@mail.wvu.edu

26

27 **1. Introduction**

28 A number of engineered systems evolve over multiple time scales. In various chemical engineering  
29 applications, while variables such as species concentration can have time constants of seconds, variables  
30 such as the temperature can have time constants of minutes or hours. On the other hand, there are several  
31 extremely slow, yet important, mechanisms such as catalyst degradation, heat exchanger fouling that can  
32 evolve over weeks or months or even years. Slowly-evolving catalyst degradation in a reactor can affect  
33 the temperature dynamics in the reactor while the temperature dynamics in the reactor can affect the  
34 dynamics of catalysts degradation. For many such systems, slow and fast dynamics cannot be separated.  
35 For control, monitoring, maintenance planning, etc. of such systems, estimation of both slow and fast  
36 variables is of utmost importance.

37 Optimal sensor network design is critical for estimation of the desired variables. The sensor network  
38 design problem has been widely studied for single time scale systems. Some measure of estimation error  
39 is typically used as the objective of the sensor placement problem (Nabil and Narasimhan, 2012).  
40 Estimation accuracy of an optimal filter such as the Kalman filter (KF) is one of the mostly used measures  
41 in such sensor network design problems (Sen et al., 2016, 2018). In the work of Musulin et al., time-  
42 averaged posterior error covariance matrices calculated over the entire time horizon and asymptotic value  
43 of posterior error covariance matrices was used to obtain the optimal sensor network design for a dynamic  
44 linear system (Musulin et al., 2005). System observability and sensor network costs were considered as  
45 constraints in that work. The sensor network design problem for a nonlinear differential algebraic  
46 equation (DAE) system was studied by Mobed et al. (Mobed et al., 2017a, 2017b) using extended KF  
47 (EKF).

48 Typically, process information which can be obtained from a given sensor network increases as the  
49 number or the accuracy of the installed sensor increases (Muske and Georgakis, 2003). Therefore, several  
50 authors have designed the sensor network taking into account the tradeoff between the process  
51 information and the number/cost of sensors. Based on proper orthogonal decomposition and max-min  
52 optimization, Alonso et al. proposed a systematic approach to the sensor network design for distributed  
53 systems (Alonso et al., 2004). Lee and Diwekar proposed a method to design an optimal sensor network  
54 for nonlinear integrated gasification combined cycle power plant by maximizing the overall Fisher  
55 information with constraint on the cost of sensors (Lee and Diwekar, 2012). Singh and Hahn proposed a  
56 method to determine sensor locations for stable nonlinear dynamic systems with consideration of a  
57 tradeoff between process information, information redundancy and sensor cost (Singh and Hahn, 2005,  
58 2006). Jeremy et al. extended the work of Singh and Hahn (Singh and Hahn, 2006) by taking the

59 covariance of empirical observability Gramians into account for the sensor network design (Jeremy et al.,  
60 2007). An optimal sensor placement problem has been solved by considering observability and principal  
61 component analysis with constraint on number of sensors (Jeremy et al., 2007).

62 The literature on sensor placement presented before has mainly focused on systems with single time  
63 scales or systems where times scales are not significantly different. However there are systems where  
64 time scales can be widely different and distinguishing these time scales is desired while designing the  
65 sensor network. Furthermore, these systems might exhibit non-separable dynamics and they can be time-  
66 varying. To the best of our knowledge, there is no work in the existing literature on the optimal sensor  
67 network design for time-varying multi-scale DAE systems with non-separable dynamics. One relevant  
68 work in this area is by Kadu et al., who designed the optimal sensor network for time-invariant, multi-rate  
69 systems (Kadu et al., 2008). The authors considered different sampling rates for measurements while  
70 designing the sensor network. In that work, system estimation accuracy is evaluated by considering a  
71 multi-rate KF over a time-horizon. As the traditional KF is applicable to single rate systems, the authors  
72 proposed to use updated output (measurement) matrix and measurement error covariance matrix at  
73 different sampling instant. Since the dynamics of state estimation accuracy as captured through the  
74 Riccati equation are taken into account, the authors considered a large enough time interval for simulation  
75 so that the posterior error covariance matrix can reach steady value (Kadu et al., 2008). A straightforward  
76 extension of the approach developed by Kadu et al. (2008) to time-varying multi-scale systems has two  
77 issues. First, multi-scale time-varying system considered in this paper has at least one order of magnitude  
78 difference in the time scales of variables of interest. Since the system error covariance matrix evolves  
79 dynamically over a long time, a large enough time interval, such as months or years, is required for the  
80 simulation. Second, the multi-scale system can have multiple different sampling rates that can be largely  
81 different. As noted out by Kadu et al. (2008) and Gudi et al. (1995), slowly sampled variables can  
82 improve observability of the system, reduce variance of the estimates, and reduce sampling requirements  
83 of the variables that are sampled faster. However, if the time scale of a variable is very slow, like days, or  
84 weeks, then sampling it at a fast rate provides little information. Thus, such multi-scale systems are likely  
85 to have very different sampling rates. Due to the issues listed above, a straightforward extension of the  
86 approach by Kadu et al. (2008) to time-varying systems with widely varying time scales would lead to an  
87 extremely large number of sampling instants that can be computationally intractable. In summary, studies  
88 on the sensor network design for time-varying DAE systems with largely different time scales are still  
89 limited and highly needed.

90 The main contribution of this paper is the development of an optimal sensor placement algorithm for  
91 time-varying DAE systems with non-separable dynamics and largely different time scales. The optimal

92 sensor network is designed by maximizing the estimation accuracy of the time-varying multi-scale DAE  
93 system with constraint on the number of sensors. Due to non-separable dynamics, a bank of filters that are  
94 assigned based on the distinct time scales exchanges information while minimizing the error covariance  
95 individually. Selection of filtering algorithms depends on a number of criteria including the type of the  
96 system (i.e. linear or nonlinear), desired computational expense, user preference, etc. Therefore, one can  
97 use different algorithms for different filters in this sensor network design approach. The usefulness of the  
98 proposed algorithm is demonstrated by the case of the gasifier smart refractory brick with embedded  
99 sensors. Two different kinds of sensors namely, thermistor and interdigital capacitor (IDC) are considered  
100 in this study for estimating temperature and slag penetration profiles along the radial direction of gasifier  
101 wall respectively.

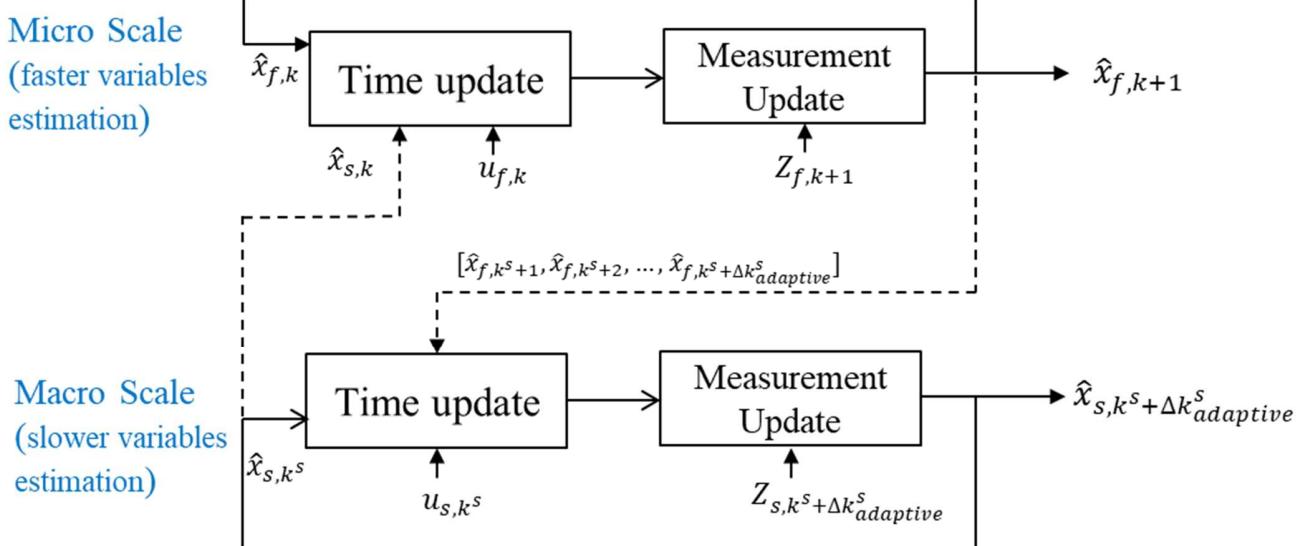
102 The rest of this paper is arranged as follows. In Section 2, the optimal sensor placement algorithm is  
103 developed. The smart brick system where the algorithm is applied to is presented in Section 3. Results are  
104 presented in Section 4 followed by the conclusions.

## 105 **2. Sensor Placement Algorithm Development**

106 In this section, first, the development of the framework of bank of filters is discussed followed by a  
107 discussion on linear and nonlinear filtering algorithms for DAE system. Then, a discussion on adaptive  
108 sampling rate used for slowly changing variables is provided, followed by a discussion on the filtering  
109 algorithm.

### 110 **2.1. Multi-scale filter**

111 The multi-scale filtering framework considered in this study is shown in Fig. 1. For simplicity, only two  
112 levels are shown in Fig. 1. In Fig. 1, the time scale of the faster variable is designated as the micro scale  
113 while that of the slower variable is designated as the macro scale. The figure is developed considering the  
114 possibility of an adaptive sampling rate for the macro scale filter. More details on this is provided later.  
115 As noted earlier, the time scale separations are done such that minimizing the resulting error covariance  
116 calculation individually at each level is equivalent to minimizing the joint error covariance. The error  
117 covariance calculation for traditional and extended KFs depends on the state transition matrix,  
118 output/measurement matrix, and noise (i.e. measurement and process noise). Therefore, the time scale  
119 separation is done such that even if the filters communicate sequentially at the sampling instant of slowest  
120 variable, the resulting error in the covariance calculation is low. For more information on the approach  
121 similar to this work for simulating a bank of filters, interested readers are referred to the work of  
122 Kobayashi and Simon (Kobayashi and Simon, 2003).



123

124 **Fig. 1.** Schematic description for multi-rate dual KF (dashed lines represent the information exchanges,  
125 which happens only when macro scale KF runs)

126 In this framework, linear or nonlinear filters for ODE/DAE systems can be used at any level. Below,  
127 specifically, we firstly describe the filtering approach used for the linear DAE system followed by a  
128 discussion on the nonlinear DAE system.

129 **2.2. Modified TKF for the linear DAE system**

130 The linear time-varying DAE system is given by:

131 
$$\dot{x}(t) = D(t)x(t) + G(t)y(t) + M(t)u(t) \quad (1)$$

132 
$$0 = N(t)x(t) + T(t)y(t) \quad (2)$$

133 For making the notation compact, in the following, we drop the '(t)' notation from the DAE system given  
134 above. Further, differentiating the algebraic equations in Eq. (1),

135 
$$0 = N\dot{x} + T\dot{y} \quad (3)$$

136 
$$\dot{y} = -T^{-1}N\dot{x} = -T^{-1}NDx - T^{-1}NGy - T^{-1}NMu \quad (4)$$

137 
$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} D & G \\ -T^{-1}ND & -T^{-1}NG \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} M \\ -T^{-1}NM \end{bmatrix} u \quad (5)$$

138 Eq. (5) can be written as:

139  $\dot{x}^{aug} = D^{aug}x^{aug} + M^{aug}u$  (6)

140 , where  $x^{aug} = \begin{bmatrix} x \\ y \end{bmatrix}$ ,  $D^{aug} = \begin{bmatrix} D & G \\ -T^{-1}ND & -T^{-1}NG \end{bmatrix}$ ,  $M^{aug} = \begin{bmatrix} M \\ -T^{-1}NM \end{bmatrix}$

141 The corresponding discrete-time system along with the measurement equations for the time-varying  
142 system can be written as:

143  $x_k^{aug} = A_k^{aug}x_{k-1}^{aug} + B_k^{aug}u_{k-1}$  (7)

144  $z_k = H^{aug}x_k^{aug}$  (8)

145 While the estimation algorithm is similar to the typical TKF algorithm for ODE systems (Maybeck and  
146 Siouris, 1980), there are certain differences due to the underlying DAE system. The algorithm is similar  
147 to Mandela et al. (Mandela et al, 2010).

148 Time update:

- 149 • A DAE solver is used for calculating a priori state estimate

- 150 • A priori covariance matrix is calculated as:

151  $\hat{P}_{k|k-1} = A_k^{aug}\hat{P}_{k-1|k-1}A_k^{augT} + \gamma_k\hat{Q}_k\gamma_k^T$  (9)

152 , where  $\gamma = \begin{bmatrix} I \\ -T^{-1}N \end{bmatrix}$

153 Measurement update:

- 154 • The Kalman gain and posteriori state estimates are given by:

155  $\hat{K}_k = \hat{P}_{k|k-1}H^{augT}(H^{aug}\hat{P}_{k|k-1}H^{augT} + \hat{R}_k)^{-1}$  (10)

156  $\hat{x}_{k|k}^{aug} = \hat{x}_{k|k-1}^{aug} + \hat{K}_k(z_k - H^{aug}\hat{x}_{k|k-1}^{aug})$  (11)

- 157 • Using the estimates of the differential states, the posteriori estimates of the algebraic states are  
158 obtained by solving the algebraic equations. i.e. Eq. (2).

- 159 • The posteriori estimate of the covariance matrix is given by:

160  $\hat{P}_{k|k} = (I - \hat{K}_k H^{aug}) \hat{P}_{k|k-1}$  (12)

161 **2.3. Nonlinear filter**

162 For nonlinear filtering, the EKF is considered here even though other nonlinear filters can be used. Given  
163 the following nonlinear process,

164  $\dot{x}(t) = f(x, y, u, w, t)$  (13)

165  $0 = g(x, y, t)$  (14)

166  $z = h(x, y, v, t)$  (15)

167 with  $w \sim (0, Q)$ ,  $v \sim (0, R)$

168 For estimating the error covariance in EKF, a linearized system similar to Eqs. (1)-(2) is generated where:

169  $D = \frac{\partial f}{\partial x}, G = \frac{\partial f}{\partial y}, M = \frac{\partial f}{\partial u}, N = \frac{\partial g}{\partial x}, T = \frac{\partial g}{\partial y}$

170 Then the similar approach as in Section 2.2 is used except the following differences - at the time update  
171 step, the DAE solver is used considering Eqs. (13)-(14) for calculating the a priori state estimates; at the  
172 measurement update step, once the posteriori estimates of the differential states are obtained, the algebraic  
173 states are calculated by using Eq. (14), and Eq. (11) is modified as:

174  $\hat{x}_{k|k}^{aug} = \hat{x}_{k|k-1}^{aug} + \hat{K}_k \left( z_k - h \left( \hat{x}_{k|k-1}^{aug} \right) \right)$  (16)

175 In addition,  $H^{aug} = \begin{bmatrix} \frac{\partial h}{\partial x} & \frac{\partial h}{\partial y} \end{bmatrix}$

176 Other details of standard EKF algorithm can be found in the literature (Haykin, 2001).

177 **2.4. Adaptive sampling rate for the slowly changing variable**

178 Since the computational burden for the filter corresponding to the slowly changing variable can be high  
179 due to the long time window that may be needed, an adaptive sampling rate can be considered by  
180 exploiting the possibility that the rate of change of the error covariance matrix can considerably change in  
181 course of time. The approach for calculating the adaptive sampling rate is similar to the work of Jain and  
182 Chang (2004).

183 Suppose the difference between model results using adaptive and uniform (fast) sampling rate is given by:

184  $\delta_k = |\theta_k - \bar{\theta}_k|$  (17)

185 where  $\theta_k$  and  $\bar{\theta}_k$  represent model results using adaptive and uniform sampling rates respectively.

186 The weighted average difference is calculated by considering the  $j$  most recent difference terms:

187 
$$\Delta_k = \frac{\sum_{j=1}^J \delta_{k-j+1}/j}{\sum_{j=1}^J 1/j}$$
 (18)

188 The sampling interval for the next iteration is calculated by:

189 
$$\tau_{k+1} = \tau_k + \gamma(1 - e^{\frac{\Delta_k - \lambda}{\lambda}})$$
 (19)

190 where  $\tau_{k+1}$  is sampling interval for  $k+1$  time step;  $\lambda$  is target error; and  $\gamma$  is the parameter that controls  
191 the rate of the sampling interval changes.

192 **2.5. Sensor placement algorithm**

193 The objective function for the sensor placement algorithm is considered to be the integral weighted  
194 posterior error covariance matrix from the multi-scale KF as follows:

195 
$$\min [ \sum_{i=1}^n w_i F_{i,c}^N ]$$
  
196 s.t. (20)

197  $\sum_{j=1}^m C_j S_j \leq C^{max}$

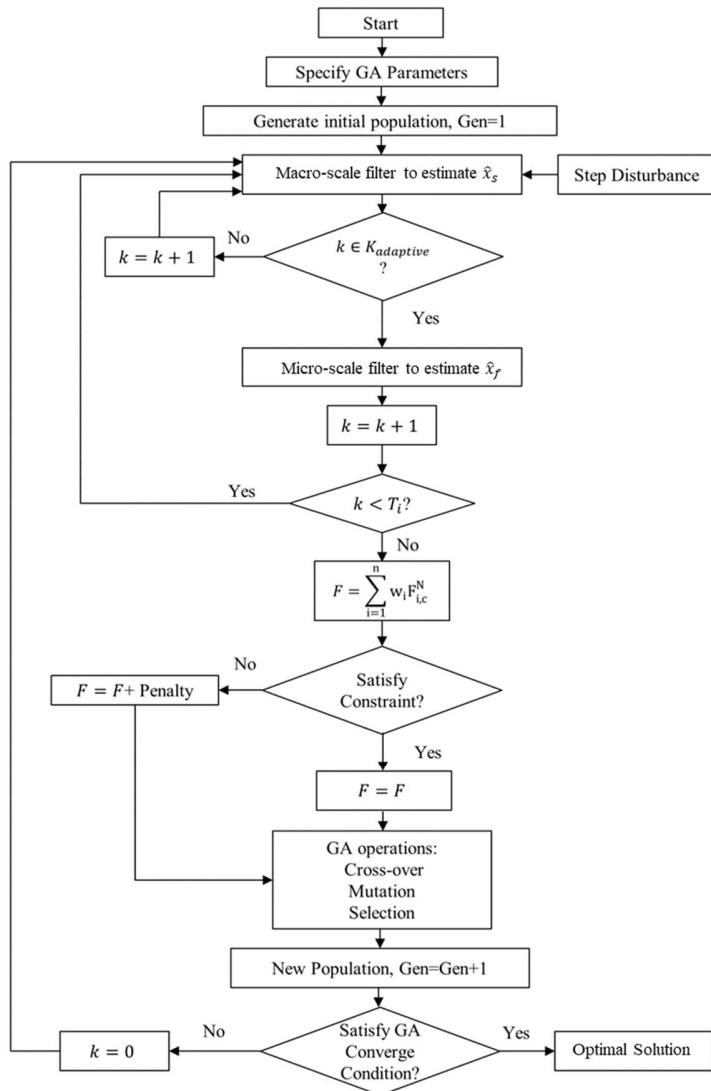
198  $S_j \in S^+, j = 1 \dots m$

199 where  $w$  is a weighting vector,  $S_j$  is a non-negative integer decision variable.  $S^+$  denotes the candidate  
200 set.  $C_j$  denotes some factor such as cost associated with the sensor  $j$ . If it is desired to constrain the  
201 maximum number of sensors instead of cost, then  $C_j = 1$ .  $F_{i,c}^N$  is normalized fitness value for  $x^i$ . The case  
202 where all states are measured is considered to be the “best” case, while the case where no sensor is placed  
203 is considered to be the “worst” case. Let  $k_i = 1 \dots T_i$  be the time horizon for simulation. The normalized  
204 posterior error covariance corresponding to variable  $i$  over the entire time horizon can be calculated with  
205 respect to the “best” and “worst” cases as follows:

206 
$$F_{i,c}^N = \frac{F_{i,c} - F_{i,b}}{F_{i,w} - F_{i,b}}$$
 (21)

207 , where  $F_{i,c} = \frac{1}{T_i} (\sum_{k_i=1}^{T_i} \text{trace} (\hat{P}_{k_i}))$

208 This optimal sensor placement problem can be solved by many integer programming algorithms, such as  
 209 genetic algorithm (GA) (Paul et al., 2015, 2016), tree search algorithm (Nguyen and Bagajewicz, 2008,  
 210 2012), etc. For the specific case when it is solved by GA, Fig. 2 shows the algorithm for solving this  
 211 multi-scale optimal sensor placement problem.



212

213 **Fig. 2.** Optimal sensor placement algorithm for multi-scale system ( $K_{adaptive}$  represents adaptive  
 214 sampling time series,  $T_i$  represents the maximum time step for simulation)

215 **3. Case Study: Smart Refractory Brick for Gasifiers**

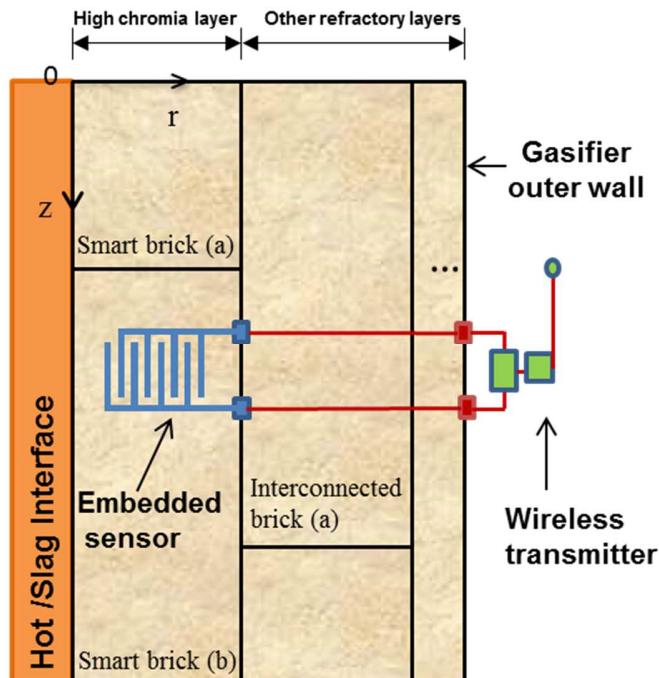
216 The proposed sensor placement algorithm is applied to a smart brick system as part of an entrained-flow  
217 gasifier. Gasifiers are at the heart of the integrated gasification combined cycle plants ([Jiang and](#)  
218 [Bhattacharyya, 2014](#)). Temperature ([Seenmani et al., 2012](#)) and extent of slag penetration ([Ramalakshmi](#)  
219 [et al., 2014](#)) are the two most important variables for structural health monitoring (SHM) of slagging  
220 gasifiers (Pednekar et al., 2016a, 2016b). In our previous work, we have communicated the possibility of  
221 constructing the gasifier wall using a ‘smart’ refractory brick, a brick with embedded sensors, for  
222 estimating the temperature profile in the gasifier wall and extent of slag penetration in the refractory  
223 (Huang et al., 2017a, 2017b).

224 Optimal sensor network design can be helpful for monitoring the long-term structural degradation ([Ansari,](#)  
225 [2005](#)). However, in a smart brick, there are large numbers of candidate locations for placing sensors.  
226 Depending on the type of sensor placed in a given location, it may be possible to obtain information on  
227 multiple variables of interest (Paul et al., 2017). In practical SHM systems, it is not feasible to measure all  
228 variables of interest at all candidate locations ([D'souza and Epureanu, 2008](#)). Sensors can only be placed  
229 in a limited number of locations due to budget constraint, structural inaccessibility and so on (Sun and  
230 Büyüköztürk, 2015). Large number of sensors embedded in the smart brick can also compromise the  
231 structural integrity of the brick. Furthermore, sensors may be redundant, i.e. the measurements provide no  
232 or negligible additional information. While redundant measurements may be helpful for increasing the  
233 reliability of the sensor network, such redundant measurements need to be optimally selected with due  
234 consideration of the sensor failure probability. The gasifier system is multi-scale in nature. While the time  
235 constant of temperature is in the order of minutes, that of slag penetration is in hundreds of hours (Huang  
236 et al., 2017b). For this system, dynamics cannot be separated. The molten slag that penetrates into the  
237 refractory lining leads to changes in the refractory thermal properties (i.e. heat capacity and thermal  
238 conductivity). Therefore, the temperature profile in gasifier wall will be affected not only by the  
239 temperature on the hot face, but also by the extent of slag penetration. On the other hand, a change in the  
240 temperature profile leads to a change in the slag viscosity. As a result, the extent of slag penetration will  
241 be affected by temperature, too. It is desired to design the optimal sensor network for this time-varying,  
242 multi-scale system with inseparable dynamics. Two different kinds of sensors namely, thermistor and  
243 IDC are considered in this study to detect temperature and extent of slag penetration respectively. Unlike  
244 the most types of sensors used in SHM, IDC can only be sensitive to slag within a limited distance  
245 ([Gevorgian et al., 1996](#)) and the length of this sensitive distance depends on the installation direction of  
246 IDC. Therefore, the installation direction of the IDC is determined in this work through sensitivity

247 analysis. After that, the optimal sensor network in the smart refractory brick is designed by using the  
 248 proposed algorithm. The resulting optimization problem is solved by GA.

249 **3.1. Process models**

250 Smart brick is a brick with sensors embedded in it. As discussed in our previous publication (Huang et al.,  
 251 2017b), these bricks are intended to be placed in the high chromia layer of gasifier wall to detect wall  
 252 temperature profile and extent of slag penetration. The layout of gasifier's refractory wall with smart  
 253 brick is shown in Fig. 3. The goal of this paper is to determine the optimal sensor locations for this smart  
 254 brick. The model of the gasifier where the refractory is considered can be found in our previous  
 255 publications ([Kasule et al. 2014, 2012](#)).



256

257 **Fig. 3.** Schematics of the refractory wall with smart refractory brick

258 The thermal model for a given refractory brick is developed considering conduction to be the dominant  
 259 heat transfer mechanism through the wall. At all boundaries between the layers, temperature and flux  
 260 continuities are assumed. The 2-D governing equation for the thermal model is as follows:

261 
$$\frac{\partial(\rho c_p \hat{T})}{\partial t} = \left( \frac{1}{r} \frac{\partial}{\partial r} (r K \frac{\partial \hat{T}}{\partial r}) + \frac{\partial}{\partial z} \left( K \frac{\partial \hat{T}}{\partial z} \right) \right) \quad (26)$$

262 In Eq. (26), material properties such as  $\rho, C_p, K$  are time-varying. The refractory properties depend on  
 263 both the change in the temperature and extent of slag penetration. The effective properties of slag-  
 264 infiltrated brick are calculated using mixing rules by using its composition. For more details about the  
 265 thermal and property models, readers are referred to our previous publications (Huang et al., 2017a,  
 266 2017b).

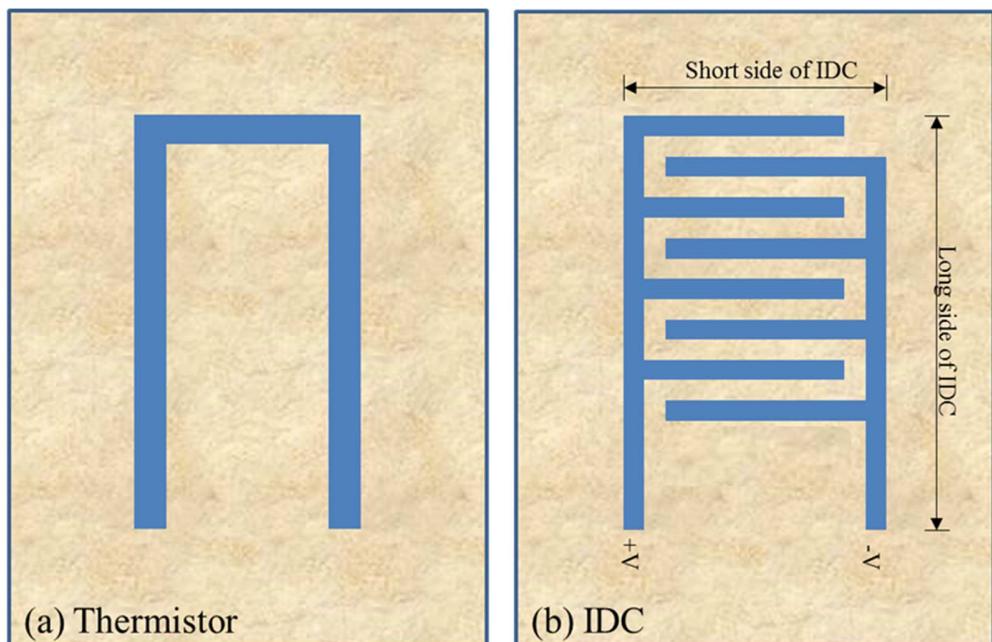
267 The modified Washburn equation (Washburn, 1921) with correction for the tortuosity of the refractory  
 268 pore system is used to evaluate the slag penetration depth. Sag penetration is modeled by (Carbonell et al.,  
 269 2004):

$$270 \quad \frac{dl}{dt} = \frac{\Delta PR^2}{8\eta\sigma^2 l} \quad (27)$$

271 where  $\Delta P$  is the pressure drop across refractory lines,  $R$  is the refractory pore radius,  $\eta$  is slag viscosity,  $\sigma$   
 272 is the tortuosity, and  $l$  is infiltration length. More details of models and model parameter values can be  
 273 found in our previous publications (Huang et al., 2017a, 2017b).

274 **3.2. Sensor models**

275 Two kinds of sensors, namely thermistor and IDC, are considered in this optimal sensor network design  
 276 problem. The layouts of the thermistor and IDC are shown in Fig. 4.



277

278 **Fig. 4.** Schematics of the smart brick with layouts of the (a) the thermistor, and (b) IDC

279 Thermistor is sensitive to temperature mainly because the electrical conductivity of the sensor is more  
 280 than 200 times higher than the slag (Huang et al., 2017b) and, therefore, the extent of slag penetration is  
 281 unlikely to affect the thermistor response. The equivalent circuit method is employed to model the  
 282 thermistor as given below, where the overall resistance of a given thermistor is calculated by summing the  
 283 resistance of the sensor material in each control volume where it exists:

$$284 \quad R = \sum_{i=1}^n \frac{\zeta_i \Delta L_i}{\alpha_i} \quad (28)$$

285 It should be noted that there is considerable spatial variation in the temperature not only along the width  
 286 of the smart brick, but even along the length of the thermistor. Therefore, spatially distributed and  
 287 temperature-dependent electrical conductivity,  $\zeta$ , for the  $\text{WSi}_2\text{-Al}_2\text{O}_3$  thermistor is considered in this  
 288 work. More details about the thermistor model can be found in our previous work (Huang et al., 2017b).

289 The IDC model is developed using a conformal mapping technique where the sensor is mapped to an  
 290 equivalent parallel plate capacitor for easy computation of its response ([Igreja and Dias, 2004](#)). Both the  
 291 extent of slag penetration and temperature affect the refractory dielectric constant considerably and,  
 292 therefore, affecting the resistance of the IDC sensor. The model also considers the temperature-dependent  
 293 dielectric constant of the high-chromia refractory, which is the host refractory material ([Huang et al.,](#)  
 294 [2017b](#)).

295 In this model, the  $n^{\text{th}}$  electrode's interior half-capacitance of a layer  $m$  under the electrode plane,  $C_{lu,m}^n$ ,  
 296 and the  $n^{\text{th}}$  electrode's exterior half-capacitance of a layer  $m$  under the electrode plane,  $C_{Eu,m}^n$ , are given  
 297 by the equations below:

$$298 \quad C_{lu,m}^n = \varepsilon_0 L (\varepsilon_{m,u}^n - \varepsilon_{m+1,u}^n) \frac{K_e(k_{m,l})}{K_e(k'_{m,l})} \quad (29)$$

$$299 \quad C_{Eu,m}^n = \varepsilon_0 L (\varepsilon_{m,u}^n - \varepsilon_{m+1,u}^n) \frac{K_e(k_{m,E})}{K_e(k'_{m,E})} \quad (30)$$

300 where  $\varepsilon_0$  and  $\varepsilon$  are vacuum permittivity and relative dielectric constant, respectively, and  $L$  is the length  
 301 of the IDC finger. It should be noted that the equations above are highly nonlinear partly because of  $K_e(\cdot)$ ,  
 302 that denotes the complete elliptic integral of first kind with modulus  $k_{m,l}$ ,  $k_{m,E}$  and complementary  
 303 modulus  $k'_{m,l}$  and  $k'_{m,E}$  corresponding to the interior and exterior electrode planes, respectively.  
 304 Furthermore, these moduli are dependent on the electrode design parameters such as the width of the IDC  
 305 fingers, distance between the IDC fingers, and the thickness of the dielectric layer. Similarly, the

306 electrode's interior half-capacitances of layers above the electrode plane,  $C_{Ia,m}^n$ , and the electrode's  
307 exterior half-capacitances of layers above the electrode plane,  $C_{Ea,m}^n$ , are obtained.

308 The  $n^{\text{th}}$  electrode total exterior capacitance,  $C_E^n$ , is calculated by using the partial capacitance technique  
309 where the exterior layer capacitances above and under the sensor plane are summed.

$$310 \quad C_{E,a}^n = C_{E,a\infty} + \sum_{m=1}^{Ns} C_{Ea,m}^n \quad (31)$$

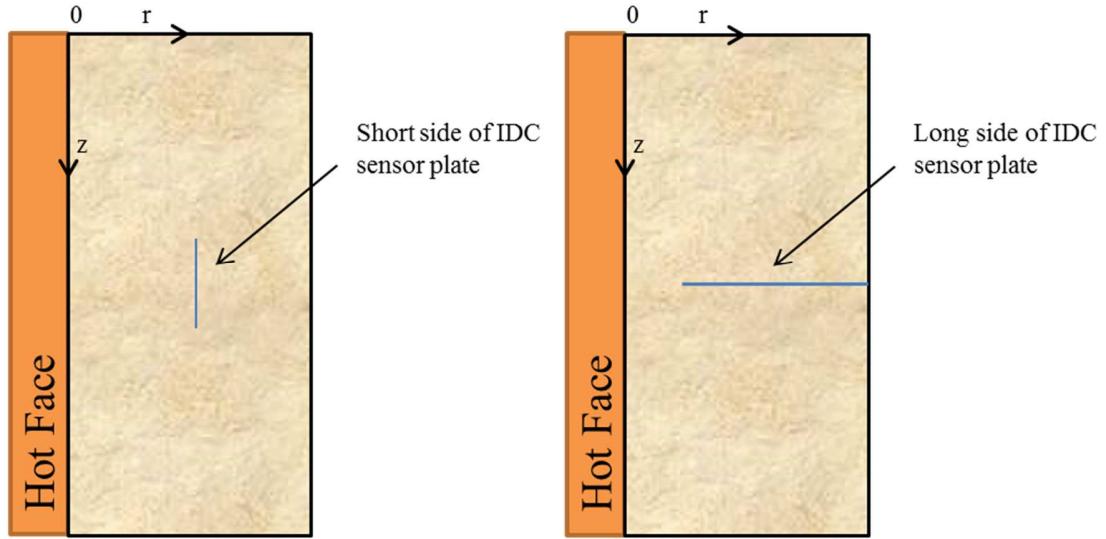
$$311 \quad C_{E,u}^n = C_{E,u\infty} + \sum_{m=1}^{Ns} C_{Eu,m}^n \quad (32)$$

$$312 \quad C_E^n = C_{E,a}^n + C_{E,u}^n \quad (33)$$

313 It should be noted that  $N_s$ , the number of sensitive layers, in the equations above depend on a specific  
314 system. More discussion on this is provided in the next section. Similarly, the total interior electrode  
315 capacitance,  $C_I^n$ , can be calculated. Then the total capacitance of IDC sensor can be calculated by  $C_I^n$  and  
316  $C_E^n$  using equivalent circuit analysis. Interested readers are referred to our previous publication for more  
317 details of the IDC model (Huang et al., 2017b). The IDC sensor model is highly nonlinear and therefore,  
318 linearization of this model, if used in a linear estimator, can lead to high inaccuracies.

### 319 **3.3. IDC sensitive distance analysis**

320 Since thermistor is not directly sensitive to the extent of slag penetration, IDC is the only type of sensors  
321 used to measure the extent of slag penetration. However, it was observed in our previous study that the  
322 embedded IDC sensors are only sensitive to the slag penetration in a short distance (Huang et al., 2017b).  
323 Once the slag penetrates beyond this sensitive area, IDC measurements are not expected to change due to  
324 further slag penetration. Therefore, unlike the thermistor for which the installation direction is not  
325 expected to play a big role in temperature profile estimation, the installation direction of the IDCs does  
326 have a strong impact and, therefore, should be carefully selected. Fig. 5 shows two installation directions  
327 which are evaluated in this work.



**Fig. 5.** Installation directions of IDC considered in the study

### 3.4. Implementation of the sensor placement algorithm.

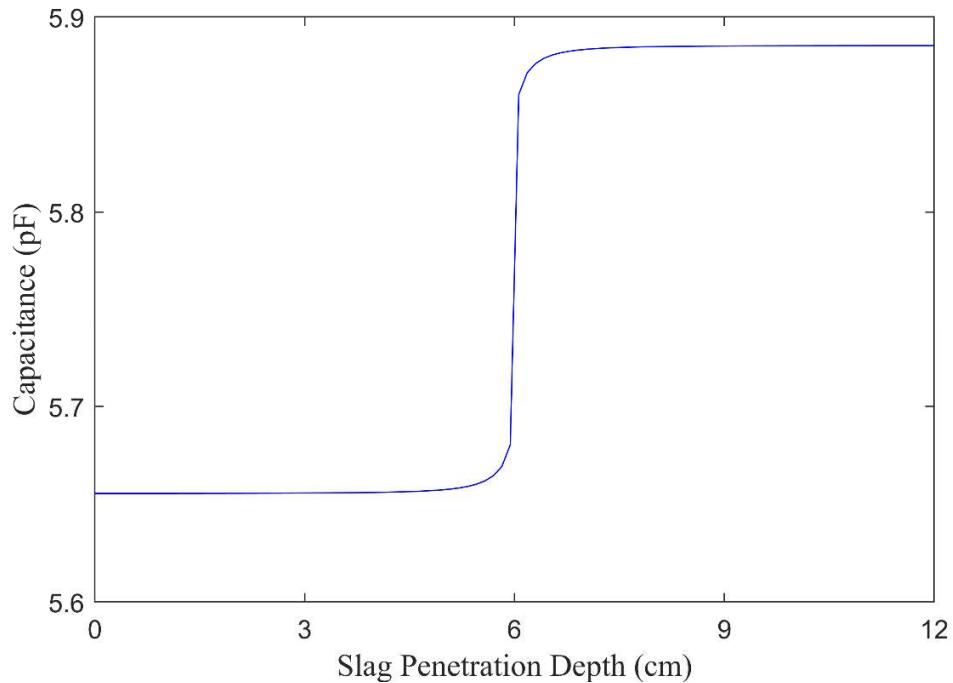
332 In this work, it is assumed that the modified TKF is used for estimating temperature (i.e. fast-changing  
 333 variable) while for estimating slag penetration depth (i.e. slowly changing variable), the EKF is used due  
 334 to the high nonlinearity of the penetration model and the sensor model. Since the slag penetration rate  
 335 varies significantly with time, adaptive sampling rate is employed for slag penetration depth estimation.  
 336 Due to the change in the material properties as a result of continuing slag penetration, the process  
 337 becomes time-varying. Therefore, the corresponding process covariance matrix evolves until slag  
 338 penetrates through the high-chromia layer. Since the embedded sensors in the refractory are novel and the  
 339 manufacturing process is still being improved, no cost data for the sensors are currently available.  
 340 Therefore, instead of a constraint on the maximum cost in the sensor placement problem, it was decided  
 341 to consider a constraint on the maximum number of sensors. The sensor placement problem is solved  
 342 using the GA algorithm with parallel computing toolbox in MATLAB 2016a. The population size and  
 343 maximum generation number of GA are chosen to be 50 and 30, respectively.

## 4. Results and discussion

#### 4.1. Impact of installation direction on the sensitivity of IDC to slag penetration depth

346 The capacitance of the IDC can change as a result of change in the dielectric constant due to change in the  
 347 temperature, slag penetration depth, or both. In this study, the temperature is set to be constant at 1400°C.

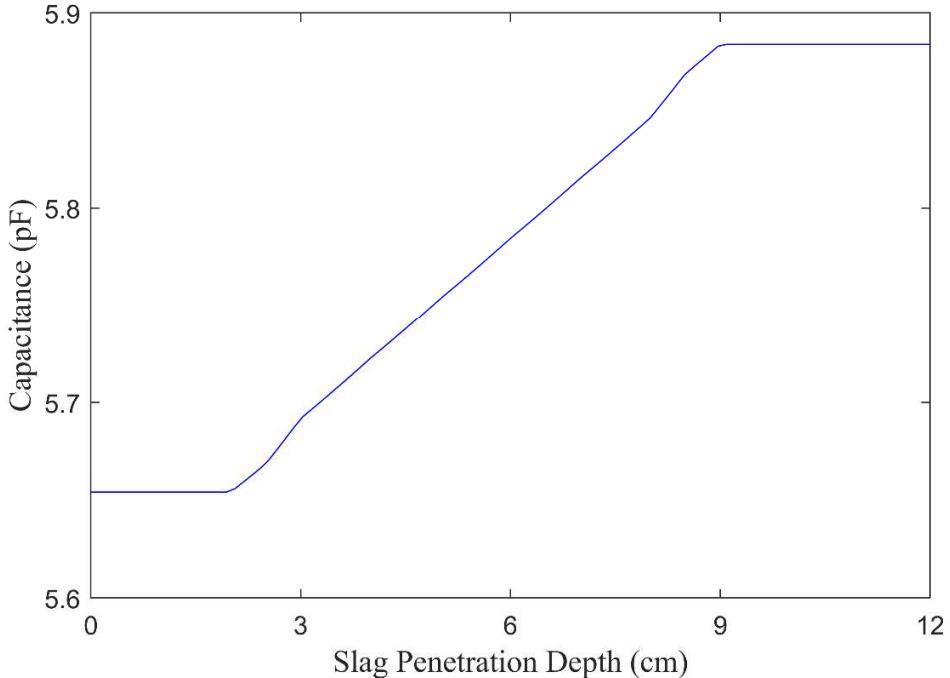
348 The IDC is assumed to be placed on the center of ‘smart’ refractory. The IDC geometry parameters  $W$ ,  $G$ ,  
 349  $L$  as shown in Fig. 4(b) are set to be 0.5 cm, 0.5 cm and 0.3758 cm, respectively. Total number of fingers  
 350 is specified to be 8 in this section. Fig. 6 shows how the capacitance changes as slag penetrates into the  
 351 smart refractory brick when IDC installed as shown in Fig. 5 (a), i.e. when the IDC is placed parallel to  
 352 the hot face.



353 **Fig. 6.** Sensitivity of IDC to slag penetration depth when the sensor is placed parallel to the hot face

354 As observed in Fig. 6, the capacitance of IDC increases sharply when slag passes through the sensor  
 355 plane, but before and after that, it remains largely insensitive in the radial direction, which is of main  
 356 interest. Thus, this orientation will lead to a large number of IDCs. It should be noted that the sensitive  
 357 distance of IDC in the direction perpendicular to the sensor plate can change as the sensor dimension  
 358 changes. (Igreja and Dias, 2004) However, the impact of this change is very limited. Another option is to  
 359 place the sensor perpendicular to the gasifier hot face. Fig. 7 shows the change in the capacitance due to  
 360 slag penetration when IDC installed as shown in Fig. 5 (b), i.e. perpendicular to the hot face.

362



363

364 **Fig. 7.** Sensitivity of IDC to slag penetration depth when the sensor is placed perpendicular to the hot face

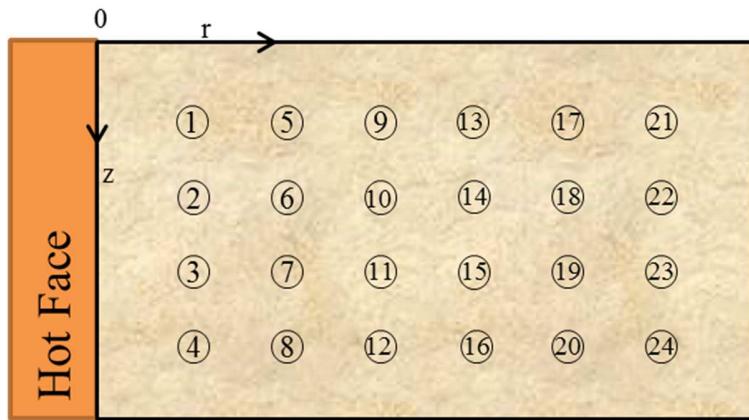
365 As shown in Fig. 7, the sensitive distance for this IDC is 7 cm, which is the length of this IDC sensor. In  
 366 this work, extent of slag penetration is of interest only in the high-chromia layer. If the length of IDC is  
 367 designed to be the thickness of high-chromia layer, then the extent of slag penetration through the entire  
 368 high-chromia layer can be estimated. Therefore, this long IDC placed perpendicular to the hot face is  
 369 considered to be used in the ‘smart’ refractory brick for estimating slag penetration depth. Therefore,  
 370 optimal placement of only the thermistors need to be considered.

371 **4.2. Optimal thermistor placement based on multi-scale KF**

372 Fig. 8 shows the candidate sensor locations in smart refractory brick. The long IDC is placed on the  
 373 centerline of this smart brick. The algorithm developed in Section 2 is applied to obtain the optimal  
 374 thermistor placement. The reason of using two KFs in this case study, even though only the placement of  
 375 thermistors needs to be optimally selected, is that the covariance estimates of both filters are affected due  
 376 to the placement of thermistors. This can be understood by analyzing the time-varying process. The slag  
 377 penetration rate strongly depends on the temperature. If the temperature is low, the slag penetration rate  
 378 can considerably drop due to the significant change in the slag viscosity as seen in Eq. (27). On the other  
 379 hand, slag infiltration affects the material properties such as the specific heat and thermal conductivity  
 380 thereby affecting its temperature profile for given boundary conditions. Since the slag infiltrates through

381 the high temperature region reasonably quickly, a large number of thermistors in these regions is not  
 382 helpful for improving the estimation accuracy, rather the thermistors placed in relatively lower  
 383 temperature regions provide valuable information for long period of time as the slag infiltrates through  
 384 these regions relatively slower and, therefore, improves the integral covariance estimates. These aspects  
 385 can be observed in the results presented below.

386



387

**Fig. 8.** Candidate sensor locations for thermistors in the ‘smart’ refractory brick

388 Weighting factors,  $w_i$ , in the objective function for sensor placement (Eq. (20)) are set to be 1. The time  
 389 interval of the simulation is chosen to be long enough so that the slag penetrates through the entire smart  
 390 brick (high-chromia layer). This is done so that the effect of this time-varying process can be captured  
 391 while designing the sensor network. Table 1 shows the optimal results when the maximum number of  
 392 sensors are set to be 8 and 16 thermistors.

393

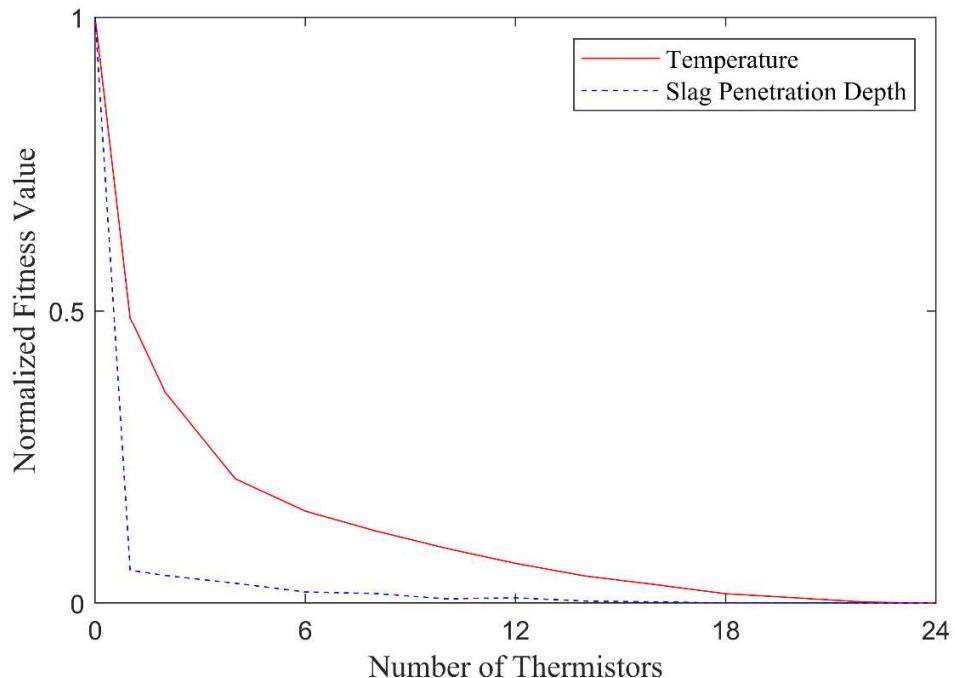
**Table 1.** Optimal placement for 8 and 16 thermistors

| Number of Sensor Installed | Optimal Locations                                           |
|----------------------------|-------------------------------------------------------------|
| 8                          | 8, 10, 13, 16, 20, 21, 22, 24                               |
| 16                         | 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24 |

394

395 It can be observed in Table 1 that the constraint on maximum number of sensors are reached for both  
 396 cases. It is also observed that more number of thermistors are placed near the colder side of the smart  
 397 refractory. As discussed before, thermistors placed near the colder side improves the covariance estimate  
 398 for long time duration. Obviously this aspect is exploited by the optimizer for minimizing the integral  
 399 error covariance of this time-varying process.

401 Fig. 9 shows how the normalized fitness value for the temperature and slag penetration depth change with  
402 respect to the number of thermistors.



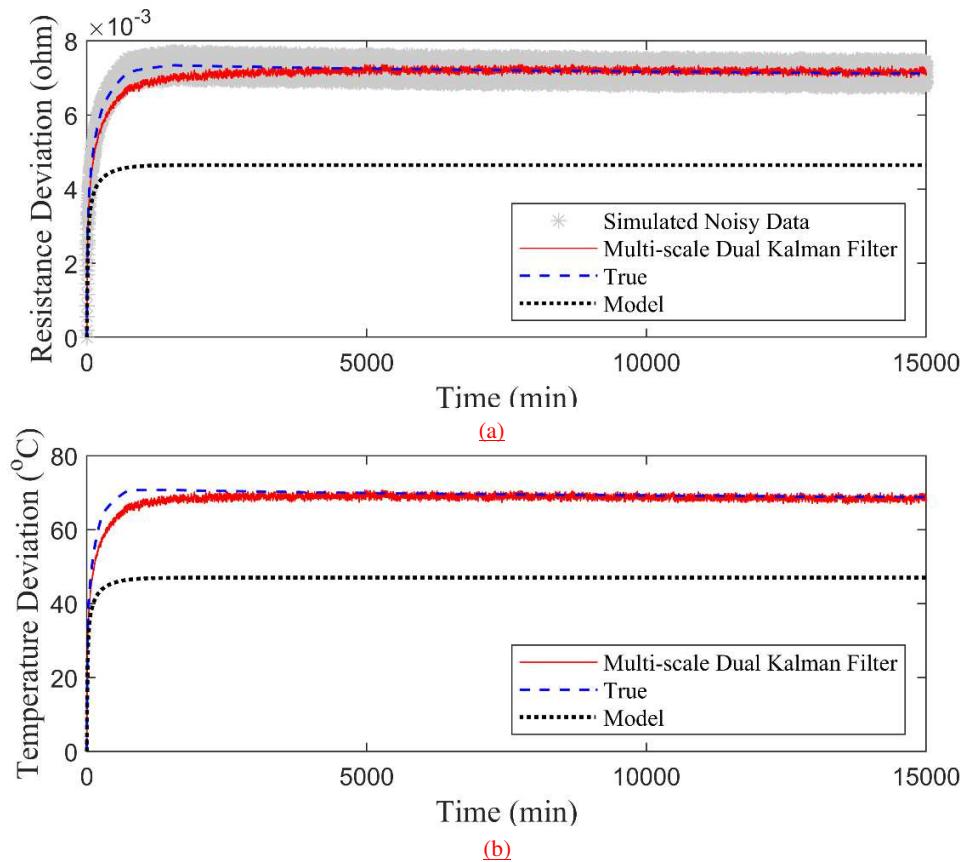
403  
404 **Fig. 9.** Sensitivity of normalized fitness value for slag penetration depth and temperature to the number of  
405 thermistors

406 It can be observed that the estimation error in slag penetration depth decreases quickly as the number of  
407 thermistor increases from 0 to 1. It is because the accuracy of temperature estimates has a strong effect on  
408 the estimation accuracy of slag, but a highly accurate estimation of temperature is not required for  
409 improving the estimation accuracy of slag penetration depth. These results also show why both the filters  
410 need to be considered together even though only placement of thermistors is being considered by the  
411 sensor placement algorithm.

#### 412 **4.3. Estimation of slag penetration depth and temperature with optimal sensor network**

413 As discussed in the previous section, estimation accuracy does not improve much beyond 8 thermistors.  
414 Therefore, 8 thermistors with a long IDC placed in the centerline is considered to be the optimal sensor  
415 network for this smart refractory brick. The system considered here is a complex system with expected  
416 mismatches between the actual system and the model. Therefore, it is desired to study the estimator  
417 performance at the face of model mismatch. Model mismatch is simulated by using different sets of  
418 parameters between the 'true' process and the KF model for calculation of the specific heat of the slag-

419 infiltrated refractory brick and the slag viscosity. The performance of this sensor network is studied using  
 420 the multi-scale KF by simulating a 50°C step increase in the hot face temperature introduced at t=0.  
 421 Estimation of resistance and temperature at sensor location #8 is shown in Figs. 10(a) and 10(b),  
 422 respectively.

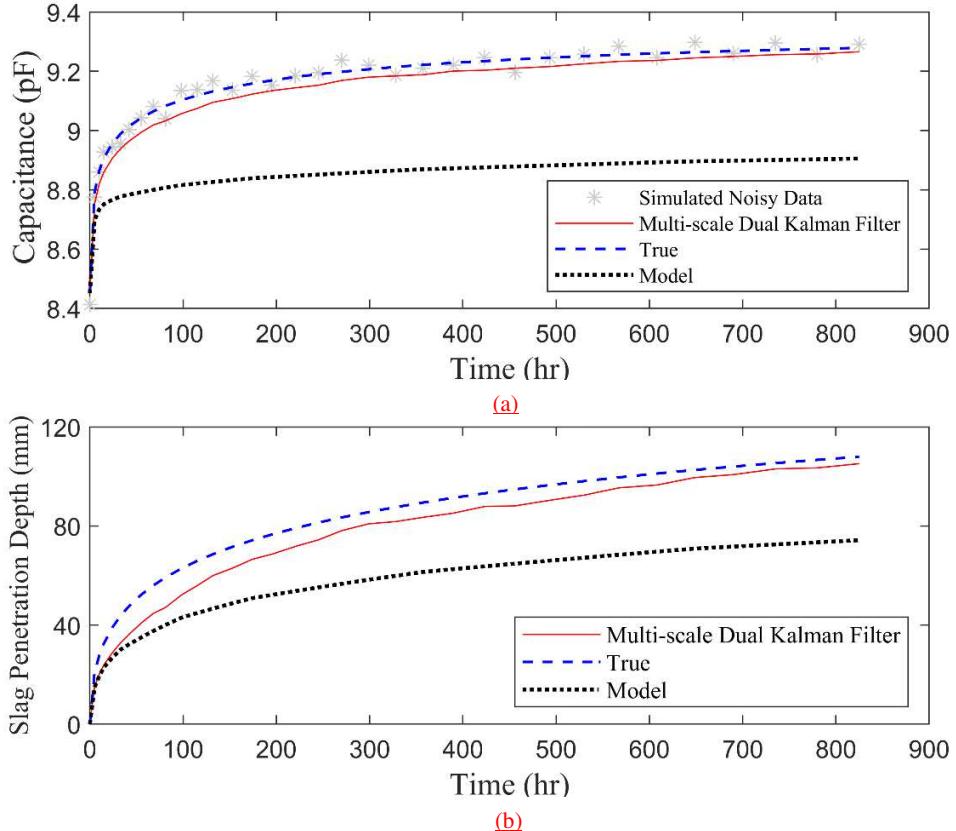


423

424 **Fig. 10.** Estimates using the multi-scale KF and measurements from the optimal sensor network for: (a)  
 425 resistance, (b) temperature

426 As it shown in Fig.10(b), temperature at sensor location #8 increases by about 66°C due to the 50°C step  
 427 increase in the hot face. It is because a higher temperature increases slag penetration depth and a brick  
 428 with higher extent of slag penetration has higher thermal conductivity, thus increasing its temperature  
 429 more than the increase in the boundary temperature. More details about how slag penetration affects  
 430 temperature profile of gasifier's refractory wall can be found in our previous work (Huang et al., 2017b).

431



432

433 **Fig. 11.** Estimates using the multi-scale KF and measurements from the optimal sensor network for: (a)  
434 (b) slag penetration depth

435 Fig. 11 shows the estimates of slag penetration depth and capacitance using the multi-scale KF. As  
436 observed in Fig. 11(b), even though the measurements are noisy and there is large discrepancy in the  
437 model, the optimal sensor network results in a highly accurate estimate of the slag penetration depth.

438 **5. Conclusion**

439 In this paper, an algorithm to design an optimal sensor network for multi-scale, time-varying DAE  
440 systems has been developed. The integral normalized posterior error covariance of the multi-scale KF is  
441 minimized to obtain the optimal sensor locations. In order to reduce the computational cost, the adaptive  
442 sampling rate has been used for the slowly-varying variables. Sensor placement problem for a smart  
443 refractory brick has been used as a case study to illustrate the presented algorithm. For this case, the  
444 sensitivity of IDC installation direction to slag penetration depth has been analyzed first. IDC placed  
445 perpendicular to the hot face is found to be more sensitive to slag penetration depth and is used in the  
446 following case study. Then, the optimal thermistor locations have been obtained by using the proposed

447 algorithm. The GA is used to solve the optimization problem. Finally, using the multi-scale KF  
 448 framework (i.e. two KFs for two different time scales) with the thermistor and IDC sensors embedded in  
 449 the given optimal locations, it is found to provide satisfactory estimates for both the temperature profile  
 450 and extent of slag penetration despite high measurement noise and model mismatch. Even though a  
 451 system with two time-scales is considered as the case study in this paper, the proposed algorithm can be  
 452 easily applied to systems with multiple time scales by using a bank of filters. In addition, even though the  
 453 TKF and EKF are used in this case study, other linear/nonlinear estimators can also be considered in the  
 454 proposed framework.

## 455 Acknowledgements

456 Authors gratefully acknowledge financial support for this research by DOE [grant number DE-  
 457 FE0012383] titled “Smart Refractory Sensor Systems for Wireless Monitoring of Temperature, Health,  
 458 and Degradation of Slagging Gasifiers”.

## 459 Nomenclature

|                       |                                                                |
|-----------------------|----------------------------------------------------------------|
| $C_p$                 | heat capacity ( $J/g \cdot ^\circ\text{C}$ )                   |
| $K$                   | thermal conductivity ( $W/m \cdot ^\circ\text{C}$ )            |
| $\hat{T}$             | temperature ( $^\circ\text{C}$ )                               |
| $R$                   | pore radius ( $m$ )                                            |
| $l$                   | infiltration depth ( $mm$ )                                    |
| $\Delta L$            | Length of the thermistor in a given control volume             |
| $\Delta P$            | pressure difference across refractory lines                    |
| $W$                   | width of the IDC finger ( $cm$ )                               |
| $G$                   | distance between the IDC fingers ( $cm$ )                      |
| $L$                   | length of IDC finger ( $cm$ )                                  |
| $k$                   | time step, modulus                                             |
| $k'$                  | Complementary modulus                                          |
| $\Delta k_{adaptive}$ | adaptive time step                                             |
| $\hat{T}_s$           | estimated temperature from micro-scale KF ( $^\circ\text{C}$ ) |
| $\hat{l}$             | estimated infiltration depth from macro-scale EKF( $mm$ )      |
| $x$                   | vector of differential variables                               |
| $y$                   | vector of algebraic variables                                  |
| $u$                   | vector of system inputs                                        |
| $z$                   | measurements                                                   |
| $\hat{Q}$             | process noise covariance matrix                                |
| $\hat{R}$             | measurement noise covariance matrix                            |
| $\hat{K}$             | augmented Kalman gain                                          |
| $w$                   | Weighting factor, process noise                                |

|           |                                        |
|-----------|----------------------------------------|
| $S$       | non-negative integer decision variable |
| $S^+$     | the candidate set                      |
| $C$       | factor                                 |
| $C^{max}$ | constant                               |
| $N$       | designed number of sensors             |
| $T$       | simulation time                        |

460 *Greek letters*

|                 |                                                                                     |
|-----------------|-------------------------------------------------------------------------------------|
| $\rho$          | density ( $kg/m^3$ )                                                                |
| $\varepsilon_0$ | vacuum permittivity ( $F/m$ )                                                       |
| $\varepsilon$   | relative dielectric constant                                                        |
| $\alpha$        | cross-sectional area of the thermistor ( $m^2$ )                                    |
| $\eta$          | slag viscosity ( $Pa.s$ )                                                           |
| $\sigma$        | tortuosity of refractory pore system                                                |
| $\theta$        | model prediction using adaptive sampling rate                                       |
| $\bar{\theta}$  | model prediction using fast uniform sampling rate                                   |
| $\delta$        | difference between model predictions using adaptive and fast uniform sampling rates |
| $\tau$          | sampling interval                                                                   |
| $\lambda$       | target error                                                                        |
| $\zeta$         | Electrical resistivity of sensor                                                    |
| $\gamma$        | parameter that controls the rate of sampling interval changes                       |

461 *Subscripts*

|     |                                               |
|-----|-----------------------------------------------|
| $j$ | $j^{\text{th}}$ candidate sensor              |
| IDC | interdigital capacitor                        |
| $k$ | time step $k$                                 |
| $i$ | $i^{\text{th}}$ state variable/control volume |
| $m$ | $m^{\text{th}}$ layer                         |
| $c$ | current                                       |
| $w$ | worst                                         |
| $b$ | best                                          |

462 *Superscripts*

|              |                                  |
|--------------|----------------------------------|
| $\text{aug}$ | augmented                        |
| $N$          | normalized                       |
| $n$          | $n^{\text{th}}$ electrode of IDC |

463 *Acronyms*

|     |                        |
|-----|------------------------|
| IDC | interdigital capacitor |
| KF  | Kalman filter          |

|     |                                  |
|-----|----------------------------------|
| EKF | extended Kalman filter           |
| DAE | differential algebraic equations |

464

465 **References**

- 466 Ansari, F., 2005. *Sensing Issues in Civil Structural Health Monitoring*. Springer, Dordrecht.
- 467 Alonso, A.A., Kevrekidis, I.G., Banga, J.R. Frouzakis, C.E., 2004. Optimal sensor location and reduced  
468 order observer design for distributed process systems. *Comput. Chem. Eng.* 28, 27-35.  
469 [https://doi.org/10.1016/S0098-1354\(03\)00175-3](https://doi.org/10.1016/S0098-1354(03)00175-3)
- 470 Carbonell, S., Hey, M.J., Mitchell, J.R., Roberts, C.J., Hipkiss, J., Vercauteren, J., 2004. Capillary flow  
471 and rheology measurements on chocolate crumb/ sunflower oil mixtures. *J. Food Sci.* 69, 465-470.  
472 <https://doi.org/10.1111/j.1365-2621.2004.tb09931.x>
- 473 D'souza, K., Epureanu, B.I., 2008. Sensor placement for damage detection in nonlinear systems using  
474 system augmentations. *AIAA J.* 46, 2434-2442. <https://doi.org/10.2514/1.33493>
- 475 Gevorgian, S.S., Martinsson, T., Linner, P.L., Kollberg, E.L., 1996. CAD models for multilayered  
476 substrate interdigital capacitors. *IEEE Trans. Microw. Theory Tech.* 44, 896-904.  
477 <https://doi.org/10.1109/22.506449>
- 478 Gudi, R.D., Shah, S.L., Gray, M. R., 1995. Adaptive multirate state and parameter estimation strategies  
479 with application to a bioreactor. *AIChE J.* 41, 2451-2464. <https://doi.org/10.1002/aic.690411111>
- 480 Haykin, S.S., 2001. *Kalman Filtering and Neural Networks*. Wiley, New York.
- 481 Huang, Q., Bhattacharyya, D., Pillai, R., Sabolsky, K., Sabolsky, E.M., 2017a. Gasifier health monitoring  
482 using smart refractory bricks. *Proceedings of 11<sup>th</sup> International Workshop on Structural Health  
483 Monitoring*, Stanford University, CA, September 12-14, 2017.  
484 <https://doi.org/10.12783/shm2017/14160>
- 485 Huang, Q., Paul, P., Bhattacharyya, D., Pillai, R. C., Sabolsky, K., Sabolsky, E.M., 2017b. Estimation of  
486 gasifier wall temperature and extent of slag penetration using a refractory brick with embedded  
487 sensors. *Ind. Eng. Chem. Res.* 56, 9858-9867. <https://doi.org/10.1021/acs.iecr.7b02604>
- 488 Igreja, R., Dias, C.J., 2004. Analytical evaluation of the interdigital electrodes capacitance for a multi-  
489 layered structure. *Sens. Actuators A Phys.* 112, 291-301.  
490 <https://doi.org/10.1016/j.sna.2004.01.040>
- 491 Jain, A., Chang, E.Y., 2004. Adaptive sampling for sensor networks. *Proceedings of the 1st International  
492 Workshop on Data Management for Sensor Networks: in Conjunction with VLDB 2004*. Toronto.  
493 <https://doi.org/10.1145/1052199.1052202>

- 494 Jeremy, B., Huang, Z., Singh, A.K., Misra, M., Hahn, J., 2007. Sensor network design via observability  
495 analysis and principle component analysis. *Ind. Eng. Chem. Res.* 46, 8026-8032.  
496 <https://doi.org/10.1021/ie070547n>
- 497 Jiang, Y., Bhattacharyya, D., 2014. Plant-wide modeling of an indirect coal-biomass to liquids (CBTL)  
498 plant with CO<sub>2</sub> capture and storage (CCS). *Int. J. Greenhouse Gas Control* 31, 1-15.  
499 <https://doi.org/10.1016/j.ijggc.2014.09.022>
- 500 Kadu, S.C., Bhushan, M., Gudi, R., 2008. Optimal sensor network design for multirate systems. *J Process  
501 Control* 18, 594-609. <https://doi.org/10.1016/j.jprocont.2007.10.002>
- 502 Kasule, J., Turton R, Bhattacharyya D, Zitney S E, 2014. One-dimensional dynamic modeling of a single-  
503 stage downward-firing entrained-flow coal gasifier. *Energ. Fuel.* 28, 4949-4957.  
504 <https://doi.org/10.1021/ef5010122>
- 505 Kasule, J., Turton R, Bhattacharyya D, Zitney S E, 2012. Mathematical modeling of a single-stage,  
506 downward-firing, entrained-flow gasifier. *Ind. Eng. Chem. Res. Industrial* 51, 6429-6440.  
507 <https://doi.org/10.1021/ie202121h>
- 508 Kobayashi, T., Simon, D.L., 2003. Application of a bank of Kalman filters for aircraft engine fault  
509 diagnostics. *ASME Turbo Expo 2003*, collocated with the 2003 International Joint Power  
510 Generation Conference, 461-470. <https://doi.org/10.1115/GT2003-38550>
- 511 Lee, A.J., Diwekar, U.M., 2012. Optimal sensor placement in integrated gasification combined cycle  
512 power systems. *Appl. Energ.* 99, 255-264. <https://doi.org/10.1016/j.apenergy.2012.04.027>
- 513 Mandela, R.K., Rengaswamy, R., Narasimhan, S., Sridhar, L.N., 2010. Recursive state estimation  
514 techniques for nonlinear differential algebraic systems. *Chem. Eng. Sci.* 65, 4548-4556.  
515 <https://doi.org/10.1016/j.ces.2010.04.020>
- 516 Maybeck, P.S., 1982. *Stochastic models, estimation, and control*. Academic Press, New York.
- 517 Mobed, P., Munusamy, S., Bhattacharyya, D., Rengaswamy, R., 2017a. State and parameter estimation in  
518 distributed constrained systems. 1. Extended Kalman Filtering of a Special Class of Differential  
519 Algebraic Equation Systems. *Ind. Eng. Chem. Res.* 56, 206-215.  
520 <https://doi.org/10.1021/acs.iecr.6b02796>
- 521 Mobed, P., Munusamy, S., Bhattacharyya, D., Rengaswamy, R., 2017b. State and parameter estimation in  
522 distributed constrained systems. 2. GA-EKF based sensor placement for a water gas shift reactor.  
523 *Ind. Eng. Chem. Res.* 56, 216-224. <https://doi.org/10.1021/acs.iecr.6b02797>
- 524 Muske, K.R., Georgakis, C., 2003. Optimal measurement system design for chemical processes. *AICHE J.*  
525 49, 1488-1494. <https://doi.org/10.1002/aic.690490612>
- 526 Musulin, E., Benqlilou, C., Bagajewicz, M.J., Puigjaner, L., 2005. Instrumentation design based on  
527 optimal Kalman filtering. *J. Process Control* 15, 629-638.  
528 <https://doi.org/10.1016/j.jprocont.2005.03.002>

- 529 Nabil, M., Narasimhan, S., 2012. Sensor network design for optimal process operation based on data  
530 reconciliation. *Ind. Eng. Chem. Res.* 51, 6789-6797. <https://doi.org/10.1021/ie202126q>
- 531 Nguyen, D., Bagajewicz, M.J., 2012. Efficient approximate methods for the design and upgrade of sensor  
532 networks. *Ind. Eng. Chem. Res.* 52, 83-90. <https://doi.org/10.1021/ie202186y>
- 533 Nguyen, D., Bagajewicz, M.J., 2008. Design of nonlinear sensor networks for process plants. *Ind. Eng.*  
534 *Chem. Res.* 47, 5529-5542. <https://doi.org/10.1021/ie0708778>
- 535 Paul, P., Bhattacharyya, D., Turton, R., Zitney, S.E., 2017. Nonlinear dynamic model-based multi-  
536 objective sensor network design algorithm for a plant with an estimator-based control system. *Ind.*  
537 *Eng. Chem. Res.* 56, 7478-7490. <https://doi.org/10.1021/acs.iecr.6b04020>
- 538 Paul P., Bhattacharyya D., Turton R., Zitney S. E., 2016. Dynamic model-based sensor network design  
539 algorithm for system efficiency maximization. *Comput. Chem. Eng.* 89, 27-40.  
540 <https://doi.org/10.1016/j.compchemeng.2016.01.018>
- 541 Paul P., Bhattacharyya D., Turton R., Zitney S. E., 2015. Sensor network design for maximizing process  
542 efficiency: an algorithm and its application. *AIChE J.* 61, 464-476.  
543 <https://doi.org/10.1002/aic.14649>
- 544 Pednekar P, Bhattacharyya D, Turton R, Rengaswamy R, 2016a. Dynamic model of a slagging entrained-  
545 flow gasifier including models of slag transport, deposition, and slag layer. *Ind. Eng. Chem. Res.*  
546 55, 279-292. <https://doi.org/10.1021/acs.iecr.5b03317>
- 547 Pednekar P, Bhattacharyya D, Turton R, Rengaswamy R, 2016b. Development of a hybrid shrinking-core  
548 shrinking-particle model for entrained flow gasifiers. *AIChE J.* 62, 659-669.  
549 <https://doi.org/10.1002/aic.15055>
- 550 Ramalakshmi, K., Kaneko, T.K., Mazumdar, B.M., Rozelle, P., Sridhar, S., Kuhlman, J.M., 2014.  
551 Infiltration velocity and thickness of flowing slag film on porous refractory of slagging gasifiers.  
552 *J. Energy Resour. Technol.* 136, 032203. <https://doi.org/10.1115/1.4026918>
- 553 Seenmani, G., Dai, D., Lopez-Negrete, R., Kumar, A., Dokucu, M., Kumar, R., 2012. An outer-  
554 approximation based algorithm for solving integer non-linear programming problems for optimal  
555 sensor placement. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC). Maui.  
556 <https://doi.org/10.1109/CDC.2012.6426360>
- 557 Sen, P., Diwekar U. M., Bhattacharyya D. 2018. Stochastic programming approach vs. estimator-based  
558 approach for sensor network design for maximizing efficiency. *Smart Sustainable Manuf. Syst.* 2,  
559 44-60. <https://doi.org/10.1520/SSMS20180021>
- 560 Sen, P., Sen K., Diwekar U. M. 2016. A multi-objective optimization approach to optimal sensor location  
561 problem in IGCC power plants. *Appl. Energy* 181, 527-539.  
562 <https://doi.org/10.1016/j.apenergy.2016.08.006>
- 563 Singh, A.K., Hahn, J., 2005. Determining optimal sensor locations for state and parameter estimation for  
564 stable nonlinear systems. *Ind. Eng. Chem. Res.* 44, 5645-5659. <https://doi.org/10.1021/ie040212v>

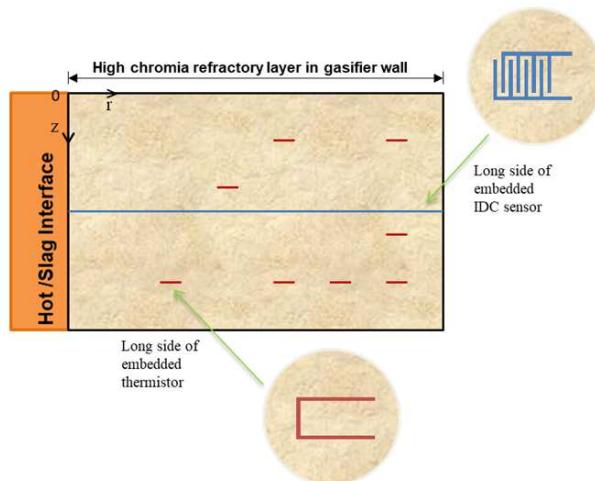
565 Singh, A.K., Hahn, J., 2006. Sensor location for stable nonlinear dynamic systems: multiple sensor case.  
566 Ind. Eng. Chem. Res. 45, 3615-3623. <https://doi.org/10.1021/ie0511175>

567 Sun, H., Büyüköztürk, O., 2015. Optimal sensor placement in structural health monitoring using discrete  
568 optimization. Smart Mater. Struct. 24, 125034. <http://doi.org/10.1088/0964-1726/24/12/125034>

569 Washburn, E.W., 1921. The dynamics of capillary flow. Phys. Rev. 17, 273.  
570 <https://doi.org/10.1103/PhysRev.17.273>

571

572



573

574

**Fig. 12. Graphical abstract**