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1. Introduction 27 

A number of engineered systems evolve over multiple time scales. In various chemical engineering 28 

applications, while variables such as species concentration can have time constants of seconds, variables 29 

such as the temperature can have time constants of minutes or hours. On the other hand, there are several 30 

extremely slow, yet important, mechanisms such as catalyst degradation, heat exchanger fouling that can 31 

evolve over weeks or months or even years. Slowly-evolving catalyst degradation in a reactor can affect 32 

the temperature dynamics in the reactor while the temperature dynamics in the reactor can affect the 33 

dynamics of catalysts degradation. For many such systems, slow and fast dynamics cannot be separated. 34 

For control, monitoring, maintenance planning, etc. of such systems, estimation of both slow and fast 35 

variables is of utmost importance.   36 

Optimal sensor network design is critical for estimation of the desired variables.  The sensor network 37 

design problem has been widely studied for single time scale systems. Some measure of estimation error 38 

is typically used as the objective of the sensor placement problem (Nabil and Narasimhan, 2012). 39 

Estimation accuracy of an optimal filter such as the Kalman filter (KF) is one of the mostly used measures 40 

in such sensor network design problems (Sen et al., 2016, 2018). In the work of Musulin et al., time-41 

averaged posterior error covariance matrices calculated over the entire time horizon and asymptotic value 42 

of posterior error covariance matrices was used to obtain the optimal sensor network design for a dynamic 43 

linear system (Musulin et al., 2005). System observability and sensor network costs were considered as 44 

constraints in that work. The sensor network design problem for a nonlinear differential algebraic 45 

equation (DAE) system was studied by Mobed et al. (Mobed et al., 2017a, 2017b) using extended KF 46 

(EKF).  47 

Typically, process information which can be obtained from a given sensor network increases as the 48 

number or the accuracy of the installed sensor increases (Muske and Georgakis, 2003). Therefore, several 49 

authors have designed the sensor network taking into account the tradeoff between the process 50 

information and the number/cost of sensors. Based on proper orthogonal decomposition and max-min 51 

optimization, Alonso et al. proposed a systematic approach to the sensor network design for distributed 52 

systems (Alonso et al., 2004). Lee and Diwekar proposed a method to design an optimal sensor network 53 

for nonlinear integrated gasification combined cycle power plant by maximizing the overall Fisher 54 

information with constraint on the cost of sensors (Lee and Diwekar, 2012). Singh and Hahn proposed a 55 

method to determine sensor locations for stable nonlinear dynamic systems with consideration of a 56 

tradeoff between process information, information redundancy and sensor cost (Singh and Hahn, 2005, 57 

2006). Jeremy et al. extended the work of Singh and Hahn (Singh and Hahn, 2006) by taking the 58 
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covariance of empirical observability Gramians into account for the sensor network design (Jeremy et al., 59 

2007). An optimal sensor placement problem has been solved by considering observability and principal 60 

component analysis with constraint on number of sensors (Jeremy et al., 2007). 61 

The literature on sensor placement presented before has mainly focused on systems with single time 62 

scales or systems where times scales are not significantly different. However there are systems where 63 

time scales can be widely different and distinguishing these time scales is desired while designing the 64 

sensor network. Furthermore, these systems might exhibit non-separable dynamics and they can be time-65 

varying. To the best of our knowledge, there is no work in the existing literature on the optimal sensor 66 

network design for time-varying multi-scale DAE systems with non-separable dynamics.  One relevant 67 

work in this area is by Kadu et al., who designed the optimal sensor network for time-invariant, multi-rate 68 

systems (Kadu et al., 2008). The authors considered different sampling rates for measurements while 69 

designing the sensor network. In that work, system estimation accuracy is evaluated by considering a 70 

multi-rate KF over a time-horizon. As the traditional KF is applicable to single rate systems, the authors 71 

proposed to use updated output (measurement) matrix and measurement error covariance matrix at 72 

different sampling instant. Since the dynamics of state estimation accuracy as captured through the 73 

Riccati equation are taken into account, the authors considered a large enough time interval for simulation 74 

so that the posterior error covariance matrix can reach steady value (Kadu et al., 2008). A straightforward 75 

extension of the approach developed by Kadu et al.  (2008) to time-varying multi-scale systems has two 76 

issues. First, multi-scale time-varying system considered in this paper has at least one order of magnitude 77 

difference in the time scales of variables of interest. Since the system error covariance matrix evolves 78 

dynamically over a long time, a large enough time interval, such as months or years, is required for the 79 

simulation. Second, the multi-scale system can have multiple different sampling rates that can be largely 80 

different. As noted out by Kadu et al. (2008) and Gudi et al. (1995), slowly sampled variables can 81 

improve observability of the system, reduce variance of the estimates, and reduce sampling requirements 82 

of the variables that are sampled faster. However, if the time scale of a variable is very slow, like days, or 83 

weeks, then sampling it at a fast rate provides little information. Thus, such multi-scale systems are likely 84 

to have very different sampling rates. Due to the issues listed above, a straightforward extension of the 85 

approach by Kadu et al.  (2008) to time-varying systems with widely varying time scales would lead to an 86 

extremely large number of sampling instants that can be computationally intractable. In summary, studies 87 

on the sensor network design for time-varying DAE systems with largely different time scales are still 88 

limited and highly needed.   89 

The main contribution of this paper is the development of an optimal sensor placement algorithm for 90 

time-varying DAE systems with non-separable dynamics and largely different time scales. The optimal 91 
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sensor network is designed by maximizing the estimation accuracy of the time-varying multi-scale DAE 92 

system with constraint on the number of sensors. Due to non-separable dynamics, a bank of filters that are 93 

assigned based on the distinct time scales exchanges information while minimizing the error covariance 94 

individually. Selection of filtering algorithms depends on a number of criteria including the type of the 95 

system (i.e. linear or nonlinear), desired computational expense, user preference, etc. Therefore, one can 96 

use different algorithms for different filters in this sensor network design approach.  The usefulness of the 97 

proposed algorithm is demonstrated by the case of the gasifier smart refractory brick with embedded 98 

sensors. Two different kinds of sensors namely, thermistor and interdigital capacitor (IDC) are considered 99 

in this study for estimating temperature and slag penetration profiles along the radial direction of gasifier 100 

wall respectively. 101 

The rest of this paper is arranged as follows. In Section 2, the optimal sensor placement algorithm is 102 

developed. The smart brick system where the algorithm is applied to is presented in Section 3. Results are 103 

presented in Section 4 followed by the conclusions. 104 

2. Sensor Placement Algorithm Development 105 

In this section, first, the development of the framework of bank of filters is discussed followed by a 106 

discussion on linear and nonlinear filtering algorithms for DAE system. Then, a discussion on adaptive 107 

sampling rate used for slowly changing variables is provided, followed by a discussion on the filtering 108 

algorithm.  109 

2.1. Multi-scale filter 110 

The multi-scale filtering framework considered in this study is shown in Fig. 1. For simplicity, only two 111 

levels are shown in Fig. 1. In Fig. 1, the time scale of the faster variable is designated as the micro scale 112 

while that of the slower variable is designated as the macro scale. The figure is developed considering the 113 

possibility of an adaptive sampling rate for the macro scale filter. More details on this is provided later. 114 

As noted earlier, the time scale separations are done such that minimizing the resulting error covariance 115 

calculation individually at each level is equivalent to minimizing the joint error covariance. The error 116 

covariance calculation for traditional and extended KFs depends on the state transition matrix, 117 

output/measurement matrix, and noise (i.e. measurement and process noise). Therefore, the time scale 118 

separation is done such that even if the filters communicate sequentially at the sampling instant of slowest 119 

variable, the resulting error in the covariance calculation is low. For more information on the approach 120 

similar to this work for simulating a bank of filters, interested readers are referred to the work of 121 

Kobayashi and Simon (Kobayashi and Simon, 2003).  122 
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 123 

Fig. 1. Schematic description for multi-rate dual KF (dashed lines represent the information exchanges, 124 

which happens only when macro scale KF runs) 125 

In this framework, linear or nonlinear filters for ODE/DAE systems can be used at any level. Below, 126 

specifically, we firstly describe the filtering approach used for the linear DAE system followed by a 127 

discussion on the nonlinear DAE system.  128 

2.2. Modified TKF for the linear DAE system 129 

The linear time-varying DAE system is given by:  130 

����� � 	�������� 	 	
������� 	 ����
��� (1)      131 

0 � �������� 	 	������t� (2) 132 

For making the notation compact, in the following, we drop the ‘(t)’ notation from the DAE system given 133 

above. Further, differentiating the algebraic equations in Eq. (1), 134 

0 � ��� 	 	���   (3) 135 

�� � ������� � ������� � ����
� � �����
  (4) 136 

����� � � � � 
������ �����
� �
��� 	 � ��������
  (5) 137 
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Eq. (5) can be written as: 138 

����� �	�������� 		����
 (6)  139 

, where ���� � ���� , ���� � � � 
������ �����
� ,���� � � �������� 140 

The corresponding discrete-time system along with the measurement equations for the time-varying 141 

system can be written as: 142 

����� �	�����	������� 			 �����
��� (7) 143 

 � � !���	�����  (8) 144 

While the estimation algorithm is similar to the typical TKF algorithm for ODE systems (Maybeck and 145 

Siouris, 1980), there are certain differences due to the underlying DAE system. The algorithm is similar 146 

to Mandela et al. (Mandela et al, 2010).  147 

Time update: 148 

• A DAE solver is used for calculating a priori state estimate 149 

• A priori covariance matrix is calculated as: 150 

"#�|��� � �����"#���|��������
% 	 γ�'#�γ�% (9) 151 

, where γ � � (������ 152 

Measurement update: 153 

• The Kalman gain and posteriori state estimates are given by: 154 

)*� � "#�|���!���%+!���"#�|���!���% 	 ,#�-�� (10) 155 

�.�|���� � �.�|������ 	)*� / � � !����.�|������ 0 (11) 156 

• Using the estimates of the differential states, the posteriori estimates of the algebraic states are 157 

obtained by solving the algebraic equations. i.e. Eq. (2). 158 

• The posteriori estimate of the covariance matrix is given by: 159 
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"#�|� � �( � )*�!����"#�|��� (12) 160 

 2.3. Nonlinear filter  161 

For nonlinear filtering, the EKF is considered here even though other nonlinear filters can be used.  Given 162 

the following nonlinear process,  163 

����� � 1��, �, 
, 2, �� (13)    164 

0 � 3��, �, �� (14)      165 

 � ℎ��, �, 5, �� (15)      166 

with 2~�0,'� ,  5~�0, ,� 167 

For estimating the error covariance in EKF, a linearized system similar to Eqs. (1)-(2) is generated where: 168 

� � 78
79 , 
 � 78

7: , � � 78
7� , � � 7�

79 , � � 7�
7:  169 

Then the similar approach as in Section 2.2 is used except the following differences - at the time update 170 

step, the DAE solver is used considering Eqs. (13)-(14) for calculating the a priori state estimates; at the 171 

measurement update step, once the posteriori estimates of the differential states are obtained, the algebraic 172 

states are calculated by using Eq. (14), and Eq. (11) is modified as: 173 

�.�|���� � �.�|������ 	)*� ; � � ℎ /�.�|������ 0< (16) 174 

In addition, !��� � �7=>9 7=
7:� 175 

Other details of standard EKF algorithm can be found in the literature (Haykin, 2001). 176 

2.4. Adaptive sampling rate for the slowly changing variable  177 

Since the computational burden for the filter corresponding to the slowly changing variable can be high 178 

due to the long time window that may be needed, an adaptive sampling rate can be considered by 179 

exploiting the possibility that the rate of change of the error covariance matrix can considerably change in 180 

course of time. The approach for calculating the adaptive sampling rate is similar to the work of Jain and 181 

Chang (2004). 182 

Suppose the difference between model results using adaptive and uniform (fast) sampling rate is given by: 183 
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?� � |@� � @̅�| (17) 184 

where @� and   @̅� represent model results using adaptive and uniform sampling rates respectively. 185 

The weighted average difference is calculated by considering the j most recent difference terms: 186 

∆�� ∑ DEFGHI J⁄LGMI
∑ � J⁄LGMI

 (18) 187 

The sampling interval for the next iteration is calculated by: 188 

N�O� � N� 	 P�1 � R∆EFS
S � (19) 189 

where N�O� is sampling interval for k+1 time step; T is target error; and P is the parameter that controls 190 

the rate of the sampling interval changes. 191 

2.5. Sensor placement algorithm 192 

The objective function for the sensor placement algorithm is considered to be the integral weighted 193 

posterior error covariance matrix from the multi-scale KF as follows: 194 

min	[ ∑ 2YZY,[\]Y^� ] 	195 

s.t.                                 (20)                   196 

∑ J̀aJ^� bJ	 ≤ `a�9     197 

bJ	 ∈ bO, e � 1…g  198 

where w is a weighting vector,  bJ is a non-negative integer decision variable.  bOdenotes the candidate 199 

set. J̀  denotes some factor such as cost associated with the sensor j. If it is desired to constrain the 200 

maximum number of sensors instead of cost, then J̀ � 1.  ZY,[\  is normalized fitness value for �Y. The case 201 

where all states are measured is considered to be the “best” case, while the case where no sensor is placed 202 

is considered to be the “worst” case. Let hY � 1 … �Y be the time horizon for simulation. The normalized 203 

posterior error covariance corresponding to variable i over the entire time horizon can be calculated with 204 

respect to the “best” and “worst” cases as follows: 205 

ZY,[\ � ij,k�ij,l
ij,m�ij,l (21) 206 
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, where   ZY,[ � �
%j �∑ trace	�"#�j��%j�j^�   207 

This optimal sensor placement problem can be solved by many integer programming algorithms, such as 208 

genetic algorithm (GA) (Paul et al., 2015, 2016), tree search algorithm (Nguyen and Bagajewicz, 2008, 209 

2012), etc. For the specific case when it is solved by GA, Fig. 2 shows the algorithm for solving this 210 

multi-scale optimal sensor placement problem. 211 

 212 

Fig. 2. Optimal sensor placement algorithm for multi-scale system ()�r�stYuv represents adaptive 213 

sampling time series, �Y represents the maximum time step for simulation) 214 
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3. Case Study: Smart Refractory Brick for Gasifiers 215 

The proposed sensor placement algorithm is applied to a smart brick system as part of an entrained-flow 216 

gasifier. Gasifiers are at the heart of the integrated gasification combined cycle plants (Jiang and 217 

Bhattacharyya, 2014). Temperature (Seenumani et al., 2012) and extent of slag penetration (Ramalakshmi 218 

et al., 2014) are the two most important variables for structural health monitoring (SHM) of slagging 219 

gasifiers (Pednekar et al., 2016a, 2016b). In our previous work, we have communicated the possibility of 220 

constructing the gasifier wall using a ‘smart’ refractory brick, a brick with embedded sensors, for 221 

estimating the temperature profile in the gasifier wall and extent of slag penetration in the refractory 222 

(Huang et al., 2017a, 2017b). 223 

Optimal sensor network design can be helpful for monitoring the long-term structural degradation (Ansari, 224 

2005). However, in a smart brick, there are large numbers of candidate locations for placing sensors. 225 

Depending on the type of sensor placed in a given location, it may be possible to obtain information on 226 

multiple variables of interest (Paul et al., 2017). In practical SHM systems, it is not feasible to measure all 227 

variables of interest at all candidate locations (D'souza and Epureanu, 2008). Sensors can only be placed 228 

in a limited number of locations due to budget constraint, structural inaccessibility and so on (Sun and 229 

Büyüköztürk, 2015). Large number of sensors embedded in the smart brick can also compromise the 230 

structural integrity of the brick. Furthermore, sensors may be redundant, i.e. the measurements provide no 231 

or negligible additional information. While redundant measurements may be helpful for increasing the 232 

reliability of the sensor network, such redundant measurements need to be optimally selected with due 233 

consideration of the sensor failure probability. The gasifier system is multi-scale in nature. While the time 234 

constant of temperature is in the order of minutes, that of slag penetration is in hundreds of hours (Huang 235 

et al., 2017b). For this system, dynamics cannot be separated. The molten slag that penetrates into the 236 

refractory lining leads to changes in the refractory thermal properties (i.e. heat capacity and thermal 237 

conductivity). Therefore, the temperature profile in gasifier wall will be affected not only by the 238 

temperature on the hot face, but also by the extent of slag penetration. On the other hand, a change in the 239 

temperature profile leads to a change in the slag viscosity. As a result, the extent of slag penetration will 240 

be affected by temperature, too. It is desired to design the optimal sensor network for this time-varying, 241 

multi-scale system with inseparable dynamics. Two different kinds of sensors namely, thermistor and 242 

IDC are considered in this study to detect temperature and extent of slag penetration respectively. Unlike 243 

the most types of sensors used in SHM, IDC can only be sensitive to slag within a limited distance 244 

(Gevorgian et al., 1996) and the length of this sensitive distance depends on the installation direction of 245 

IDC. Therefore, the installation direction of the IDC is determined in this work through sensitivity 246 
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analysis.  After that, the optimal sensor network in the smart refractory brick is designed by using the 247 

proposed algorithm. The resulting optimization problem is solved by GA.  248 

3.1. Process models 249 

Smart brick is a brick with sensors embedded in it. As discussed in our previous publication (Huang et al., 250 

2017b), these bricks are intended to be placed in the high chromia layer of gasifier wall to detect wall 251 

temperature profile and extent of slag penetration. The layout of gasifier’s refractory wall with smart 252 

brick is shown in Fig. 3. The goal of this paper is to determine the optimal sensor locations for this smart 253 

brick. The model of the gasifier where the refractory is considered can be found in our previous 254 

publications (Kasule et al. 2014, 2012).  255 

 256 

Fig. 3. Schematics of the refractory wall with smart refractory brick 257 

The thermal model for a given refractory brick is developed considering conduction to be the dominant 258 

heat transfer mechanism through the wall. At all boundaries between the layers, temperature and flux 259 

continuities are assumed. The 2-D governing equation for the thermal model is as follows: 260 

>+wxy%#-
>t � z�

{
>
>{ �|) >%#

>{� 	 >
>} /) >%#

>}0~                                                                                                   (26)                                        261 
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In Eq. (26), material properties such as �, `s, ) are time-varying. The refractory properties depend on 262 

both the change in the temperature and extent of slag penetration. The effective properties of slag-263 

infiltrated brick are calculated using mixing rules by using its composition. For more details about the 264 

thermal and property models, readers are referred to our previous publications (Huang et al., 2017a, 265 

2017b). 266 

The modified Washburn equation (Washburn, 1921) with correction for the tortuosity of the refractory 267 

pore system is used to evaluate the slag penetration depth. Sag penetration is modeled by (Carbonell et al., 268 

2004): 269 

  
r�
rt � ����

�����                                                                                                                                          (27) 270 

where Δ" is the pressure drop across refractory lines, , is the refractory pore radius, � is slag viscosity, � 271 

is the tortuosity, and � is infiltration length. More details of models and model parameter values can be 272 

found in our previous publications (Huang et al., 2017a, 2017b). 273 

3.2. Sensor models 274 

Two kinds of sensors, namely thermistor and IDC, are considered in this optimal sensor network design 275 

problem. The layouts of the thermistor and IDC are shown in Fig. 4. 276 

 277 

Fig. 4. Schematics of the smart brick with layouts of the (a) the thermistor, and (b) IDC 278 
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Thermistor is sensitive to temperature mainly because the electrical conductivity of the sensor is more 279 

than 200 times higher than the slag (Huang et al., 2017b) and, therefore, the extent of slag penetration is 280 

unlikely to affect the thermistor response. The equivalent circuit method is employed to model the 281 

thermistor as given below, where the overall resistance of a given thermistor is calculated by summing the 282 

resistance of the sensor material in each control volume where it exists: 283 

, � ∑ �j��j
�j

]Y^�                                                                                                                       (28) 284 

It should be noted that there is considerable spatial variation in the temperature not only along the width 285 

of the smart brick, but even along the length of the thermistor. Therefore, spatially distributed and 286 

temperature-dependent electrical conductivity, � , for the WSi2-Al2O3 thermistor is considered in this 287 

work. More details about the thermistor model can be found in our previous work (Huang et al., 2017b).  288 

The IDC model is developed using a conformal mapping technique where the sensor is mapped to an 289 

equivalent parallel plate capacitor for easy computation of its response (Igreja and Dias, 2004). Both the 290 

extent of slag penetration and temperature affect the refractory dielectric constant considerably and, 291 

therefore, affecting the resistance of the IDC sensor. The model also considers the temperature-dependent 292 

dielectric constant of the high-chromia refractory, which is the host refractory material (Huang et al., 293 

2017b). 294 

In this model, the nth electrode’s interior half-capacitance of a layer m under the electrode plane, �̀�,a] ,  295 

and the nth electrode’s exterior half-capacitance of a layer m under the electrode plane, `��,a] , are given 296 

by the equations below: 297 

�̀�,a] � �����a,�	] � �aO�,�] � �����,��
�����,�, �                                                                                                         (29) 298 

`��,a] � �����a,�	] � �aO�,�] � �����,��
�����,�, �                                                                                                       (30) 299 

where �� and ε are vacuum permittivity and relative dielectric constant, respectively, and L is the length 300 

of the IDC finger. It should be noted that the equations above are highly nonlinear partly because of )v(.), 301 

that denotes the complete elliptic integral of first kind with modulus  ha,� , ha.�   and complementary 302 

modulus ha,�,
 and ha,�,

 corresponding to the interior and exterior electrode planes, respectively. 303 

Furthermore, these moduli are dependent on the electrode design parameters such as the width of the IDC 304 

fingers, distance between the IDC fingers, and the thickness of the dielectric layer. Similarly, the 305 
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electrode’s interior half-capacitances of layers above the electrode plane, �̀�,a] ,  and the electrode’s 306 

exterior half-capacitances of layers above the electrode plane, `��,a] , are obtained.  307 

The nth electrode total exterior capacitance,	`�], is calculated by using the partial capacitance technique 308 

where the exterior layer capacitances above and under the sensor plane are summed.  309 

`�,�] � `�,�∞ 	 ∑ `��,a]\�a^�      (31) 310 

`�,�] � `�,�∞ 	 ∑ `��,a]\�a^�    (32) 311 

`�] � `�,�] 	 `�,�]                                                                                                                                     (33) 312 

It should be noted that Ns, the number of sensitive layers, in the equations above depend on a specific 313 

system. More discussion on this is provided in the next section. Similarly, the total interior electrode 314 

capacitance, �̀], can be calculated. Then the total capacitance of IDC sensor can be calculated by �̀] and 315 

`�] using equivalent circuit analysis. Interested readers are referred to our previous publication for more 316 

details of the IDC model (Huang et al., 2017b). The IDC sensor model is highly nonlinear and therefore, 317 

linearization of this model, if used in a linear estimator, can lead to high inaccuracies.                                               318 

3.3. IDC sensitive distance analysis 319 

Since thermistor is not directly sensitive to the extent of slag penetration, IDC is the only type of sensors 320 

used to measure the extent of slag penetration. However, it was observed in our previous study that the 321 

embedded IDC sensors are only sensitive to the slag penetration in a short distance (Huang et al., 2017b). 322 

Once the slag penetrates beyond this sensitive area, IDC measurements are not expected to change due to 323 

further slag penetration. Therefore, unlike the thermistor for which the installation direction is not 324 

expected to play a big role in temperature profile estimation, the installation direction of the IDCs does 325 

have a strong impact and, therefore, should be carefully selected. Fig. 5 shows two installation directions 326 

which are evaluated in this work. 327 
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 328 

(a) IDC is installed parallel to hot face               (b) IDC is installed perpendicular to hot face 329 

Fig. 5.  Installation directions of IDC considered in the study 330 

3.4. Implementation of the sensor placement algorithm. 331 

In this work, it is assumed that the modified TKF is used for estimating temperature (i.e. fast-changing 332 

variable) while for estimating slag penetration depth (i.e. slowly changing variable), the EKF is used due 333 

to the high nonlinearity of the penetration model and the sensor model. Since the slag penetration rate 334 

varies significantly with time, adaptive sampling rate is employed for slag penetration depth estimation. 335 

Due to the change in the material properties as a result of continuing slag penetration, the process 336 

becomes time-varying. Therefore, the corresponding process covariance matrix evolves until slag 337 

penetrates through the high-chromia layer. Since the embedded sensors in the refractory are novel and the 338 

manufacturing process is still being improved, no cost data for the sensors are currently available. 339 

Therefore, instead of a constraint on the maximum cost in the sensor placement problem, it was decided 340 

to consider a constraint on the maximum number of sensors. The sensor placement problem is solved 341 

using the GA algorithm with parallel computing toolbox in MATLAB 2016a. The population size and 342 

maximum generation number of GA are chosen to be 50 and 30, respectively.  343 

4. Results and discussion 344 

4.1. Impact of installation direction on the sensitivity of IDC to slag penetration depth 345 

The capacitance of the IDC can change as a result of change in the dielectric constant due to change in the 346 

temperature, slag penetration depth, or both. In this study, the temperature is set to be constant at 1400�. 347 
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The IDC is assumed to be placed on the center of ‘smart’ refractory. The IDC geometry parameters W, G, 348 

L as shown in Fig. 4(b) are set to be 0.5 cm, 0.5 cm and 0.3758 cm, respectively. Total number of fingers 349 

is specified to be 8 in this section. Fig. 6 shows how the capacitance changes as slag penetrates into the 350 

smart refractory brick when IDC installed as shown in Fig. 5 (a), i.e. when the IDC is placed parallel to 351 

the hot face. 352 

 353 

Fig. 6. Sensitivity of IDC to slag penetration depth when the sensor is placed parallel to the hot face 354 

As observed in Fig. 6, the capacitance of IDC increases sharply when slag passes through the sensor 355 

plane, but before and after that, it remains largely insensitive in the radial direction, which is of main 356 

interest. Thus, this orientation will lead to a large number of IDCs. It should be noted that the sensitive 357 

distance of IDC in the direction perpendicular to the sensor plate can change as the sensor dimension 358 

changes. (Igreja and Dias, 2004) However, the impact of this change is very limited.  Another option is to 359 

place the sensor perpendicular to the gasifier hot face. Fig. 7 shows the change in the capacitance due to 360 

slag penetration when IDC installed as shown in Fig. 5 (b), i.e. perpendicular to the hot face. 361 

 362 
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 363 

Fig. 7. Sensitivity of IDC to slag penetration depth when the sensor is placed perpendicular to the hot face 364 

As shown in Fig. 7, the sensitive distance for this IDC is 7 cm, which is the length of this IDC sensor. In 365 

this work, extent of slag penetration is of interest only in the high-chromia layer. If the length of IDC is 366 

designed to be the thickness of high-chromia layer, then the extent of slag penetration through the entire 367 

high-chromia layer can be estimated. Therefore, this long IDC placed perpendicular to the hot face is 368 

considered to be used in the ‘smart’ refractory brick for estimating slag penetration depth. Therefore, 369 

optimal placement of only the thermistors need to be considered.  370 

4.2. Optimal thermistor placement based on multi-scale KF 371 

Fig. 8 shows the candidate sensor locations in smart refractory brick. The long IDC is placed on the 372 

centerline of this smart brick. The algorithm developed in Section 2 is applied to obtain the optimal 373 

thermistor placement. The reason of using two KFs in this case study, even though only the placement of 374 

thermistors needs to be optimally selected, is that the covariance estimates of both filters are affected due 375 

to the placement of thermistors. This can be understood by analyzing the time-varying process. The slag 376 

penetration rate strongly depends on the temperature. If the temperature is low, the slag penetration rate 377 

can considerably drop due to the significant change in the slag viscosity as seen in Eq. (27). On the other 378 

hand, slag infiltration affects the material properties such as the specific heat and thermal conductivity 379 

thereby affecting its temperature profile for given boundary conditions. Since the slag infiltrates through 380 
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the high temperature region reasonably quickly, a large number of thermistors in these regions is not 381 

helpful for improving the estimation accuracy, rather the thermistors placed in relatively lower 382 

temperature regions provide valuable information for long period of time as the slag infiltrates through 383 

these regions relatively slower and, therefore, improves the integral covariance estimates. These aspects 384 

can be observed in the results presented below.  385 

 386 

 387 

Fig. 8. Candidate sensor locations for thermistors in the ‘smart’ refractory brick 388 

Weighting factors, wi, in the objective function for sensor placement (Eq. (20)) are set to be 1. The time 389 

interval of the simulation is chosen to be long enough so that the slag penetrates through the entire smart 390 

brick (high-chromia layer). This is done so that the effect of this time-varying process can be captured 391 

while designing the sensor network. Table 1 shows the optimal results when the maximum number of 392 

sensors are set to be 8 and 16 thermistors. 393 

Table 1. Optimal placement for 8 and 16 thermistors 394 

Number of Sensor Installed Optimal Locations 

8 8, 10, 13, 16, 20, 21, 22, 24 

16 6, 8, 9, 10, 11, 12, 13, 14, 16, 17,19, 20, 21, 22, 23, 24 

 395 

It can be observed in Table 1 that the constraint on maximum number of sensors are reached for both 396 

cases. It is also observed that more number of thermistors are placed near the colder side of the smart 397 

refractory. As discussed before, thermistors placed near the colder side improves the covariance estimate 398 

for long time duration. Obviously this aspect is exploited by the optimizer for minimizing the integral 399 

error covariance of this time-varying process.  400 
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Fig. 9 shows how the normalized fitness value for the temperature and slag penetration depth change with 401 

respect to the number of thermistors. 402 

 403 

Fig. 9. Sensitivity of normalized fitness value for slag penetration depth and temperature to the number of 404 

thermistors 405 

It can be observed that the estimation error in slag penetration depth decreases quickly as the number of 406 

thermistor increases from 0 to 1. It is because the accuracy of temperature estimates has a strong effect on 407 

the estimation accuracy of slag, but a highly accurate estimation of temperature is not required for 408 

improving the estimation accuracy of slag penetration depth. These results also show why both the filters 409 

need to be considered together even though only placement of thermistors is being considered by the 410 

sensor placement algorithm.   411 

4.3. Estimation of slag penetration depth and temperature with optimal sensor network 412 

As discussed in the previous section, estimation accuracy does not improve much beyond 8 thermistors. 413 

Therefore, 8 thermistors with a long IDC placed in the centerline is considered to be the optimal sensor 414 

network for this smart refractory brick. The system considered here is a complex system with expected 415 

mismatches between the actual system and the model. Therefore, it is desired to study the estimator 416 

performance at the face of model mismatch. Model mismatch is simulated by using different sets of 417 

parameters between the ‘true’ process and the KF model for calculation of the specific heat of the slag-418 
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infiltrated refractory brick and the slag viscosity. The performance of this sensor network is studied using 419 

the multi-scale KF by simulating a 50� step increase in the hot face temperature introduced at t=0. 420 

Estimation of resistance and temperature at sensor location #8 is shown in Figs. 10(a) and 10(b), 421 

respectively. 422 

 423 

Fig. 10. Estimates using the multi-scale KF and measurements from the optimal sensor network for: (a) 424 

resistance, (b) temperature 425 

As it shown in Fig.10(b), temperature at sensor location #8 increases by about 66� due to the 50� step 426 

increase in the hot face. It is because a higher temperature increases slag penetration depth and a brick 427 

with higher extent of slag penetration has higher thermal conductivity, thus increasing its temperature 428 

more than the increase in the boundary temperature. More details about how slag penetration affects 429 

temperature profile of gasifier’s refractory wall can be found in our previous work (Huang et al., 2017b).  430 

 431 

(a) 

(b) 
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 432 

Fig. 11. Estimates using the multi-scale KF and measurements from the optimal sensor network for: (a) 433 

capacitance, (b) slag penetration depth 434 

Fig. 11 shows the estimates of slag penetration depth and capacitance using the multi-scale KF. As 435 

observed in Fig. 11(b), even though the measurements are noisy and there is large discrepancy in the 436 

model, the optimal sensor network results in a highly accurate estimate of the slag penetration depth. 437 

5. Conclusion 438 

In this paper, an algorithm to design an optimal sensor network for multi-scale, time-varying DAE 439 

systems has been developed.  The integral normalized posterior error covariance of the multi-scale KF is 440 

minimized to obtain the optimal sensor locations. In order to reduce the computational cost, the adaptive 441 

sampling rate has been used for the slowly-varying variables. Sensor placement problem for a smart 442 

refractory brick has been used as a case study to illustrate the presented algorithm. For this case, the 443 

sensitivity of IDC installation direction to slag penetration depth has been analyzed first. IDC placed 444 

perpendicular to the hot face is found to be more sensitive to slag penetration depth and is used in the 445 

following case study. Then, the optimal thermistor locations have been obtained by using the proposed 446 

(a) 

(b) 
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algorithm. The GA is used to solve the optimization problem. Finally, using the multi-scale KF 447 

framework (i.e. two KFs for two different time scales) with the thermistor and IDC sensors embedded in 448 

the given optimal locations, it is found to provide satisfactory estimates for both the temperature profile 449 

and extent of slag penetration despite high measurement noise and model mismatch. Even though a 450 

system with two time-scales is considered as the case study in this paper, the proposed algorithm can be 451 

easily applied to systems with multiple time scales by using a bank of filters. In addition, even though the 452 

TKF and EKF are used in this case study, other linear/nonlinear estimators can also be considered in the 453 

proposed framework.  454 
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Nomenclature 459 

`s  heat capacity (� 3 ∙ �⁄ ) 

K  thermal conductivity (  g ∙ �⁄ ) 

�#   temperature (�) 

R   pore radius (g) 

�  infiltration depth (gg) 

Δ� Length of the thermistor in a given control volume 

Δ"  pressure difference across refractory lines 

W width of the IDC finger (¢g) 

G distance between the IDC fingers (¢g) 

L length of IDC finger (¢g) 

h  time step, modulus 

h£
 Complementary modulus 

∆h�rstYuv  adaptive time step 

�#� 	 estimated temperature from micro-scale KF (�) 

�¤ 	 estimated infiltration depth from macro-scale EKF�gg� 
x  vector of differential variables 

y  vector of algebraic variables 

u  vector of system inputs 

z measurements 

'#  process noise covariance matrix 

,#  measurement noise covariance matrix 

)* augmented Kalman gain 

w Weighting factor, process noise  
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S non-negative integer decision variable 

bO
 the candidate set 

C factor 

`a�9 constant 

N  designed number of sensors 

T  simulation time 

Greek letters 460 

�   density (h3/g§) 

ε� vacuum permittivity (F/g) 

� relative dielectric constant 

© cross-sectional area of the thermistor (m2) 

�  slag viscosity ("ª. «) 

�  tortuosity of refractory pore system 

@  model prediction using adaptive sampling rate 

@̅ 	 model prediction using fast uniform sampling rate 

δ 
difference between model predictions using adaptive and fast uniform sampling rates 

τ  sampling interval 

T target error 

� Electrical resistivity of sensor 

P  parameter that controls the rate of sampling interval changes 

 Subscripts  461 

j jth candidate sensor 

IDC interdigital capacitor 

h  time step k 

i  ith state variable/control volume 

m mth layer 

c  current 

w  worst 

b best 

Superscripts 462 

aug  augmented 

N  normalized 

n nth electrode of IDC  

Acronyms 463 

IDC  interdigital capacitor 

KF  Kalman filter 
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EKF  extended Kalman filter 

DAE  differential algebraic equations 

 464 
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