

1 **THE DIRECT AND INDIRECT EFFECTS OF COPPER ON VECTOR-BORNE**
2 **DISEASE DYNAMICS**

3 Erik Neff ^{a,b,*} and Guha Dharmarajan ^a

4 ^aSavannah River Ecology Lab, University of Georgia, Aiken, SC 29801, USA

5 ^bWarnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602,
6 USA

7 * Corresponding author. E-mail address: eneff@uga.edu (E. Neff)

8 **Abstract**

9 Metal pollution is a growing concern that affects the health of humans and animals globally.

10 Copper is an essential insect micronutrient required for respiration, pigmentation and oxidative
11 stress protection but can also act as a potentially toxic trace element. While several studies have
12 focused on the negative fitness effects of copper on the aquatic larvae of mosquitoes, the effects
13 of larval copper exposure on adult mosquito fitness (i.e., survival and fecundity) and their ability
14 to transmit parasites (i.e., vector competence) remains unclear. Here, using a well-studied model
15 vector-parasite system, the mosquito *Aedes aegypti* and parasite *Dirofilaria immitis*, we show
16 that sublethal copper exposure in larval mosquitoes alters adult female fecundity and vector
17 competence. Specifically, mosquitoes exposed to copper had a hormetic fecundity response and
18 mosquitoes exposed to 600 µg/L of copper had significantly fewer infective parasite larvae than
19 control mosquitoes not exposed to copper. Thus, exposure of mosquito larvae to copper levels far
20 below EPA-mandated safe drinking water limits (1300 µg/L) can impact vector-borne disease
21 dynamics not only by reducing mosquito abundance (through increased larval mortality), but
22 also by reducing parasite transmission risk. Our results also demonstrated that larval copper is
23 retained through metamorphosis to adulthood in mosquitoes, indicating that these insects could

24 transfer copper from aquatic to terrestrial foodwebs, especially in urban areas where they are
25 abundant. To our knowledge this is the first study to directly link metal exposure with vector
26 competence (i.e., ability to transmit parasites) in any vector-parasite system. Additionally, it also
27 demonstrates unequivocally that mosquitoes can transfer contaminants from aquatic to terrestrial
28 ecosystems. These results have broad implications for public health because they directly linking
29 contaminants and vector-borne disease dynamics, as well as linking mosquitoes and contaminant
30 dynamics.

31 **Keywords:** *Aedes aegypti*; *Dirofilaria immitis*; Copper; Vectorial capacity; Vector competence

32

33 **Introduction**

34 Metal pollution is an important issue at local and global scales (Driscoll et al., 2013; Islam et al.,
35 2015). Metals can be released into the environment through natural (e.g., geological activity and
36 erosion; Driscoll et al., 2013) or through anthropogenic activity (e.g., industrial; Runck, 2007).
37 Anthropogenic sources are of grave concern due to the release of metal pollutants in more toxic
38 (e.g., Copper(II) Oxide Nanoparticles; Angelé-Martinez et al., 2017) and mobile forms (e.g., Cu
39 (II) complexes; Stohs and Bagchi, 1995). These metal pollutants can have negative consequences
40 at the individual (e.g., behavior, survival, fecundity; Rayms-Keller et al., 1998; Neff et al., 2019)
41 and ecosystem (e.g., aquatic-terrestrial productivity; Kraus, 2019) levels. Aquatic ecosystems are
42 especially vulnerable to metal pollution due to industrial and urban runoff, as well as domestic
43 wastewater and effluent discharge (Sarkar et al., 2004; Barrera et al., 2008; Mireji et al., 2008;
44 Ruchter and Sures, 2015; Schertzinger et al., 2018).

45 Metal pollution in aquatic systems can have important negative consequences at various
46 levels of biological organization. At the ecosystem scale metal pollution can negatively impact
47 both biodiversity and biomass (Carlisle and Clements, 2003; Kraus et al., 2014a). Alternatively,
48 at the individual scale exposure to metals during aquatic development could have lethal (e.g.,
49 increase larval mortality; Rayms-Keller et al., 1998; Sheikh et al., 2010; Reza and Ilmiawati,
50 2020) and sublethal consequences to organisms (e.g., reduced reproduction; Mireji et al., 2010;
51 Perez and Noriega, 2012; Neff et al., 2019) at the adult stage. Aquatic insects have been long
52 recognized as good bioindicators for metal pollution because of their relatively short life span
53 and ease of sampling (Crampton et al., 1997; Batzer et al., 1999; Day, 2016; Erasmus et al.,
54 2020). Research on aquatic insects has primarily focused on the effects of contaminants on
55 aquatic life-history stages (e.g., development rates) (Marinković et al., 2011; Perez and Noriega,

56 2014; Debecker et al., 2017; Oliver and Brooke, 2018). However, many insects – such as
57 mosquitoes – have semi-aquatic life cycles with aquatic juvenile stages and terrestrial adult
58 stages, and such life history transitions could affect contaminant cycling in natural food webs
59 (Kraus et al., 2014a; Kraus et al., 2014b; Kraus, 2019). For example, aquatic and terrestrial
60 invertebrates play a substantial role of energetic provision to insectivores in streams and riparian
61 zones (Baxter et al., 2005), and emerging adult insects could transfer contaminants from aquatic
62 to terrestrial systems (Sullivan and Rodewald, 2012).

63 More than 80% of the world is at risk of vector-borne disease (Golding et al., 2015), and
64 mosquitoes are recognized as a global public health threat because they are an important
65 contributor to vector-borne disease transmission globally (WHO, 2017; Leta et al., 2018).

66 Mosquitoes can also be convenient bioindicators of metal contamination because early
67 development is completely aquatic (Day, 2016), they are ubiquitous and easy to sample
68 especially in urban areas (Frankie and Ehler, 1978; Little et al., 2017), and have a short
69 generation time (14-21 days; Crampton et al., 1997). Previous research has revealed exposure to
70 metals during aquatic development stages can affect adult mosquito fitness directly (e.g., reduced
71 fecundity; Mireji et al., 2010; Perez and Noriega, 2014) and indirectly (e.g., altered behavior;
72 Neff et al., 2019). However, the effects of exposure to metals, such as copper, on vector-borne
73 disease transmission dynamics of diseases remains unknown (Rivera-Perez et al., 2017). We
74 expect that metal exposure could affect mosquito-borne disease transmission dynamics by
75 impacting two critical aspects affecting vectorial capacity (the ability of mosquitoes to transmit
76 parasites): the likelihood of the vector surviving to the extrinsic incubation period (i.e., until the
77 parasite becomes infective) and the likelihood of an immature parasite developing to its infective
78 stage (vector competence) (Kartman, 1954).

79 The overarching goal of this study was to elucidate how exposure of mosquito larvae to
80 sublethal metal concentrations affect mosquito metal accumulation, affect adult mosquito fitness
81 (mortality and reproduction), and vectorial capacity. Copper is an essential micronutrient in
82 insects, and was used for this study due to its long use as an effective algicide, fungicide, and
83 insecticide (Bellini et al., 1998; Romi et al., 2000) and its key role as a component of enzymes
84 associated with respiration (Muttkowski, 1921), pigmentation (Sugumaran and Barek, 2016),
85 immunity (Christensen et al., 2005; Lu et al., 2014), metal homeostasis and detoxification (e.g.,
86 metallothionein; Amiard et al., 2006; Perez and Noriega, 2014; Rivera-Perez et al., 2017).
87 Additionally, copper physiology can also serve as an effective model for other metals that are
88 also detoxified via metallothionein binding (e.g., mercury, silver, zinc and cadmium) (Rivera-
89 Perez et al., 2017) and other metals that tend to be co-correlated in aquatic environments (Sarkar
90 et al., 2004; Ruchter and Sures, 2015).

91 We used the yellow fever mosquito (*Aedes aegypti*) and the dog heartworm (*Dirofilaria*
92 *immitis*) as the model vector-parasite system. *Aedes aegypti*, a common urban mosquito (Jeffrey
93 and Walter, 2013), is responsible for vectoring numerous human pathogens such as Zika,
94 Dengue, Chikungunya Viruses (Marchette et al., 1969; Alto et al., 2008; Weaver et al., 2018) and
95 a natural vector of *D. immitis* (Bowman and Atkins, 2009). This system is ideal to study the
96 interactive effects of metals and parasites on mosquito fitness because *D. immitis* exerts a strong
97 selective pressure on the fitness of *Aedes* mosquitoes (i.e. parasite-mediated mortality; Serrão et
98 al., 2001 Ledesma and Harrington, 2015; Dharmarajan et al., 2019). The major objectives of this
99 study were to: (1) Test the effects of copper on larval development; (2) Test if copper
100 accumulated during larval development is retained through metamorphosis to adults; (3) Test the

101 effects of sublethal copper exposure during larval development on adult female survival and
102 fecundity; (4) Test if copper exposure impacts mosquito vector competence.

103 **Materials and Methods**

104 ***Study system***

105 The mosquito used for investigation was the *A. aegypti*, Liverpool Blackeye strain, a model
106 system for *Aedes* sp. research (Buxton and Mullen, 1981; Dharmarajan et al., 2019). These lab
107 strain mosquitoes are a well-established vector system, wherein infection dynamics have been
108 well characterized (Palmer et al., 1986; Mary et al., 2005; Ariani et al., 2015) and allow easy
109 experimental repeatability (Perez and Noriega, 2012; Perez and Noriega, 2014). *Aedes aegypti*
110 females become infected with dog heartworm, *D. immitis*, when an uninfected mosquito acquires
111 a blood meal from an infected canine. The microfilaria (mf) ingested by the mosquito during a
112 blood meal (Bowman and Atkins, 2009; Evans, 2011) enter the mosquito midgut, and
113 subsequently migrate to the Malpighian tubules. Within the cells of the Malpighian tubules the
114 mf develops into first stage larvae (L1) and will molt two additional times to reach their infective
115 L3 stage. The L3 emerge from the Malpighian tubules, and travel to the head and proboscis of
116 the mosquito, and are thus able to continue their lifecycle if the mosquito bites a susceptible
117 vertebrate host. The development time in the mosquito for dog heartworm is the extrinsic
118 incubation period (EIP), which averages 14 days post-infection in an optimal environment
119 (McCall, 1981).

120 ***Mosquito maintenance***

121 *Aedes aegypti* acquired from the Filariasis Research Reagent Resource Center (FR3) (Michalski
122 et al., 2011), were lab reared in an environmental chamber with a 12:12-hour light diurnal cycle
123 with conditions set to 27 °C and 80 \pm 5% relative humidity. The *A. aegypti* life cycle takes eight

124 days to develop from egg to adult (Crampton et al., 1997). Mosquito eggs were hatched from egg
125 laden paper towels in a pan (35.6 cm × 28.3 cm × 21.9 cm) of deionized water (2 L) and 500 mg
126 of mosquito food. Mosquito food consisted of a thoroughly blended combination of equal parts
127 rodent chow (500g added as PicoLab Irradiated Rodent Diet; Stewarts Feed, St. Louis, MO),
128 lactalbumin (500g added as Lactalbumin; Sigma-Aldrich, St. Louis, MO), and brewer's yeast
129 (500g added as Yeast, Brewer's Powder; Carolina Biological Supply, Burlington, NC). After a
130 day had passed to allow egg hatch, two hundred larvae were allocated into individual 400 mL
131 jars. These larval containers were filled with 300 mL of deionized water and then given 50 mg of
132 mosquito food. The following days post-hatching each container was provided with 100, 300,
133 400, and 500 mg of mosquito food on days two, three, four, and five respectively, as per standard
134 protocols (FR3, 2018). Seven days post-egg hatch, pupae were transferred into a cup with
135 deionized water and these cups were moved into adult mosquito housing containers (henceforth
136 referred to as a “cage”) to allow for adult eclosion. Each cage was a 2 L plastic container with a
137 mesh top and a transfer opening covered with a latex dental dam. Post-adult eclosion, mosquitoes
138 were provided water and sugar. Five days post-adult eclosion, which allowed mosquitoes to
139 mate, females were prepared to blood feed.

140 ***Mosquito Blood Feeding***

141 Mosquitoes were blood fed using a two-chamber inverted glass jacketed feeder (Glass Mosquito
142 Feeder, CG-1835-70; Chemglass Life Sciences; Vineland, NJ). Acquired from FR3, uninfected
143 canine blood and *D. immitis* microfilariae in dog blood were heparinized, to prevent coagulation,
144 for infection protocols. Adult female mosquitoes were removed from each cage, per respective
145 protocol below, and placed into a new blood feeding cage. The blood feeding cages had their
146 sugar removed the day prior and water removed at least 4 hours prior to blood feeding. A blood

147 feeder was assembled by placing parafilm over the open mouth of each feeder and then placed on
148 top of each blood feeding cage, one per cage. After placement, each blood feeder was connected
149 by tubing and into a hot water bath, set to 40°C. The connected blood feeders were connected to
150 a water pump to allow 40°C water to pump through the external chamber of the glass jacketed
151 feeders. Each blood feeder was affixed to each blood feeding cage with a rubber band to
152 efficiently secure the feeding apparatus and press the mouth of the feeder into the top of the
153 mesh. After the feeders were set, each feeder was allocated 200 uL of blood and allowed
154 mosquitoes to feed for approximately two hours or until repletion.

155 ***Copper Treatment***

156 A stock solution was prepared by adding Copper (II) Sulfate Pentahydrate (Sigma-Aldrich, St.
157 Louis, MO, USA) to milli-Q water brought to a copper concentration of 10 mg/mL. For each
158 treatment during the experiment, serial dilutions were made from the same stock solution in
159 order to add 1mL of serial dilution to the final dilution per larval container, a final volume of 300
160 mL per larval container. Larval container copper concentration of the water was measured and
161 acidified before larval development and after mosquito pupation by inductively coupled plasma-
162 mass spectroscopy (ICP-MS) (Nexlon 300X ICP-MS, Perkin Elmer, Norwalk, CT). Scandium 45
163 and Indium 115 were used as internal standards. All samples were acidified using trace metal
164 grade nitric acid (TMG HNO₃).

165 ***Effects of Copper on Larval Development***

166 Mosquito larvae were exposed to 0, 300, 600, 1200, 2400, and 4800 µg/L concentrations of
167 copper. Each treatment had three replicates consisting of an initial count of 200 larvae per jar.
168 These concentrations were based upon previous LC50 copper experiments on mosquitoes
169 (Rayms-Keller et al., 1998; Romi et al., 2000; Mireji et al., 2010). Each larval container was

170 filled with 299 mL of deionized water and 1 mL of a serially diluted stock solution respective to
171 treatment. Feeding protocols followed *Mosquito Maintenance* and treatment followed *Copper*
172 *Treatment* protocols. Mosquito pupae were collected every day after the first day of pupation and
173 the experiment continued for a total of ten days.

174 ***Copper Accumulation***

175 Three replicates of three copper concentrations (0, 300, and 600 $\mu\text{g/L}$) were set up using *Copper*
176 *Treatment* and *Mosquito Maintenance* protocols. We did not consider using concentrations over
177 600 because these concentrations led to a greater than 2-fold increase in larval mortality
178 compared to uncontaminated controls (see Results). Each replicate had three jars, which were
179 pooled for data collection. Prior to Day 1 (Pre) mosquito feeding, and on Day 8 (Post), a sample
180 of water was collected per replicate and treatment by pooling 3 mL of sample from each jar.
181 Water was collected for quality analysis and control for copper treatments. On Day 5, 30 larvae
182 were collected per replicate and treatment by pooling 10 larvae from each jar. On Day 7, 30
183 pupae were collected per replicate and treatment by pooling 10 pupae from each jar. On Day 9
184 thru 11, 75 adult males and females were collected separately per replicate and treatment by
185 pooling 25 females and 25 males from each cage. Male and female pupae were assessed in the
186 same samples because sex differentiation for mosquito pupae is determined by size and sex
187 contaminated samples were incredibly likely. On the same days that adults were collected; 150
188 pupal husks were collected per replicate and treatment by pooling 50 husks from each jar. All
189 samples collected were placed into pre-weighed 15 mL metal free conical tubes (VWR,
190 Suwanee, GA). Additionally, we also collected nine mL of pre-experiment (i.e., before the
191 addition of mosquito larvae) and post-experiment (i.e., after mosquito pupation) water samples
192 for metal analyses, and these samples were acidified to 0.5% acid by adding 0.045 mL of TMG

193 HNO₃. Wet weights of the mosquito tissue samples were obtained for each replicate and
194 treatment once mosquito life stage was fully collected. Samples were frozen and then placed
195 onto a freeze dryer for 24 hours, and then weighed. The dried samples were digested using a hot-
196 block digestion with TMG HNO₃ and diluted with Milli-Q water, due to <0.2 g sample mass
197 whole samples were digested and not ground and homogenized. For each sample, HNO₃ was
198 added based upon what stage the mosquito had reached: Larvae 1.5 mL, Pupae 1.5 mL, Pupal
199 Husk 0.5 mL, Adult 2.5 mL. The amount of acid added to each sample was to ensure the entire
200 sample had been fully digested. Afterwards, the samples were diluted 1:5 prior to ICP-MS
201 analysis (as described earlier). Blanks and a certified reference material were used for quality
202 control. The reference material used was TORT-3 lobster hepatopancreas tissues (National
203 Research Council, Ottawa, On, Canada), and averaged a 90% recovery during analyses.

204 ***Effects of Copper on Adult Mortality***

205 Three exposure levels of copper were used to determine the effects of copper on adult mosquito
206 mortality: 0, 300, and 600 µg/L (see details above). The concentrations were based upon the
207 *Effects of Copper Exposure on Larval Development* experiments (see Results). Briefly, nine
208 larval containers were set up per copper concentration to allow the enough adult female mosquito
209 eclosion to be utilized for experimentation, and the entire experiment was replicated twice. The
210 metal exposure and mosquito rearing protocols followed those outlined earlier (see *Copper*
211 *Treatment and Mosquito Maintenance* sections above, respectively).

212 To ensure similarly aged mosquitoes, pupae were only collected during the first three
213 days of pupation (at which point ~85% of mosquito larvae had pupated). Mosquitoes were
214 moved into pupal cups and placed into cages according to treatment and jar number. After adult
215 mosquitoes emerged, female mosquitoes were pooled by copper exposure and equally allocated

216 into nine containers: 3 for uninfected blood fed (1 per copper dose) and 6 for infected blood fed
217 (2 per copper dose) mosquitoes. We used more containers for infected mosquitoes because we
218 expected higher mortality in these treatments (Ledesma and Harrington, 2015). Five days post-
219 eclosion, females were fed a total of 400 μ L of blood per cage using either uninfected blood or
220 infected blood (at a microfilarial dose of 4,500 mf/mL) depending on the infection treatment the
221 cage was assigned to (see *Mosquito Blood Feeding* protocols described earlier for details), unfed
222 mosquitoes were removed. Mosquito mortality was monitored daily for 17 days post-blood
223 feeding.

224 ***Effects of Copper on Fecundity***

225 Three days post-blood feeding, 33 uninfected and 46 infected female mosquitoes per copper
226 concentration were moved into individual 50 mL conical tubes containing wet paper towels and
227 filled with 7.5 mL of deionized water for mosquito oviposition. Each 50 mL conical tube was
228 covered with three layers of mesh to prevent escape and were supplied with a sugar cube which
229 was replaced daily. Five days after mosquito allocation to the 50 mL conical tubes, mosquitoes
230 were removed, and paper towels were dried prior to egg quantification.

231 ***Effects of Copper on Vector Competence***

232 The same day post-blood feeding, unfed mosquitoes were removed and five fed female
233 mosquitoes per infected container were collected for dissection to determine initial infection
234 (zero hour). Subsequently, on day 15, 16, and 17 mosquitoes were collected, killed, dissected,
235 and investigated underneath a compound microscope for each infected treatment and copper dose
236 to determine individual filarial count and development.

237 ***Data Analyses***

238 We used the statistical program R version 4.0.0 (R Foundation for statistical computing, Vienna,
239 Austria) for all the analyses. Analyses were carried out using three main analytical approaches:
240 (a) Cox proportional hazard mixed effects models (CMM) for survival data; (b) linear mixed
241 effects regression (LMER) for normally distributed dependent variables; (c) generalized mixed-
242 effects regression (GLMER) for dependent variables that had other than normal (e.g., Binomial
243 or Negative binomial) distributions. The CMM analyses were implemented in the R package
244 SURVIVAL, while LMER and GLMER analyses were implemented in and the R package LME4 (Bates
245 et al., 2015). The lowest Akaike Information Criterion (AIC; Burnham and Anderson, 2004)
246 scores was used to select the best fit model, though we retained any variable that was a primary
247 focus of the analysis. The least square means, implemented in the R package EMMEANS (Lenth,
248 2016), were used to visualize regression model results. Details of specific analyses used in this
249 study include: (a) *Effects of Copper on Larval Development*: We first tested for the effects of
250 copper concentration on larval development. We used a CMM to model the cumulative
251 proportion of larvae developing to pupae per day. Any larva that had not pupated after 10 days
252 was considered to be (right) censored data for the purpose of this analysis. We used copper
253 concentration (i.e., zero – 4800 $\mu\text{g/L}$) as the independent variable and Replicate as a random
254 effect. To test for the effects of copper on the overall probability of pupation we used a GLMER
255 with a binomial error distribution (and log link). We used the number of pupae observed
256 (“successes”) given the initial number of larvae (“trials”) as our dependent variable, copper
257 concentration (i.e., zero – 4800 $\mu\text{g/L}$) as the independent variable and Replicate as a random
258 effect. (b) *Copper Accumulation*: To test for the effects of copper concentration on levels of
259 copper accumulation we used a LMER. Briefly, we used the estimated copper concentrations (in
260 g/kg) in mosquito tissues as the dependent variable, and copper concentrations in the treatments

261 (i.e., 0, 300 and 600 $\mu\text{g/L}$) and tissue type (i.e., larvae, pupae, pupal husk, and adult) as
262 independent variables. All models included Replicate as a random effect; (c) *Effects of Copper*
263 *on Adult Mortality*: We tested the combined effects of larval copper exposure and infection on
264 adult mosquito survival using CMM (Therneau and Grambsch, 2000). Replicate was treated as a
265 random factor. Escapees and/or accidental death was treated as censored data; (d) *Effects of*
266 *Copper on Fecundity*: We tested the combined effects of larval copper exposure and infection on
267 fecundity (number of eggs in each tube) using a GLMER (Bates et al., 2015) with a Poisson error
268 distribution. We used Replicate, as random effects; (e) *Effects of Copper on Vector Competence*:
269 Vector efficiency was measured in terms of the proportion of L3 developed mosquitoes and total
270 number of parasites surviving to the extrinsic incubation period using zero-hour data. We used a
271 GLMER (Bates et al., 2015) negative binomial error distribution (and log link) to model the total
272 number of L3s as a linear effect of concentration (0, 300, and 600 $\mu\text{g/L}$). All models included
273 Replicate and Status (i.e. Died or Censored) as random factors.

274 **Results and Discussion**

275 ***Effects of Copper on Larval Development***

276 Our data show copper concentrations $\geq 600 \mu\text{g/L}$ reduced both development rate (Table S2) and
277 the proportion of *A. aegypti* pupating ($N_{\text{GROUP}} = 18$; $N_{\text{INDIV/GROUP}} = 200$, Copper: χ^2 (DF) =
278 194.989 (5); $P < 0.001$; Figure 1; Table S1). Concentrations above 600 $\mu\text{g/L}$ showed similar
279 negative impacts on survival to pupation as reported in other studies (Rayms-Keller et al., 1998;
280 Sheikh et al., 2010). Previous studies on chronic exposure of metals on *A. aegypti* found delays
281 of adult eclosion for copper concentrations $\geq 3200 \mu\text{g/L}$ (Rayms-Keller et al., 1998) and longer
282 larval development period at 1000 $\mu\text{g/L}$ (Perez and Noriega, 2012). In other mosquito studies,
283 copper exposure prolonged pupation for *A. aegypti*, *A. albopictus*, *Anopheles stephensi*, and

284 *Culex pipiens* (Perez and Noriega, 2012; Reza and Ilmiawati, 2020) and reduced pupation on day
285 of maximal pupation for *Anopheles arabiensis* (Oliver and Brooke, 2018). Furthermore, negative
286 effects of copper on the aquatic larval stages observed decrease in larval survival for *Chironomus*
287 *riparius* (Marinković et al., 2011) and Odonata (Tollett et al., 2009).

288 **Copper Accumulation**

289 There were significant main and interactive effects between mosquito life-history stage/tissue
290 (material) and copper dose [No. of groups (N_{GROUP}) = 3; Mean sample size/group ($N_{MEAN/GROUP}$)
291 = 15; Copper: χ^2 (DF) = 209.527 (2); $P < 0.001$; Material: χ^2 (DF) = 130.117 (4); $P < 0.001$;
292 Copper \times Material: χ^2 (DF) = 78.508 (8); $P < 0.001$]. There was no significant decline in copper
293 concentrations in water during the experiment (N_{GROUP} = 9; $N_{MEAN/GROUP}$ = 2; Copper: χ^2 (DF) =
294 818.530 (2); $P < 0.001$; Material χ^2 (DF) = 2.929 (1); $P = 0.087$; Copper \times Material: χ^2 (DF) =
295 13.186 (2); $P = 0.001$; Figure S1). This is likely due to the large volume of waters vs. total
296 copper consumed by the larvae. The highest level of copper contamination (Figure 2; Table S3)
297 can be seen during the larval stages of development, which was expected due to rapid nutrient
298 acquisition during this stage (Merritt et al., 1992). During the pupal and adult stages of the
299 mosquito there were sequential decreases in copper burden. Similarly, patterns of metal
300 accumulation have been observed in *Lymantria dispar L.* life stages (Gintenreiter et al., 1993), in
301 mayfly larvae and subimagoes, *Baetis tricaudatus*, exposed to zinc (Wesner et al., 2017), in *A.*
302 *albopictus* larvae and adults exposed to Chromium and Selenium during larval development
303 (Zhou et al., 2020). A possible mechanism of copper reduction in adult mosquitoes is the
304 excretion of copper in the pupal exuviae (Figure 2). In other studies, metal loss has been
305 observed in the exuvium of Chironomids (Timmermans and Walker, 1989), mayflies (Kim et al.,
306 2012), and other invertebrates (Kraus et al., 2014b).

307 However, not all copper is excreted into the exuvia of the mosquitoes (Figure 2) and a
308 substantial portion is carried into the adult stage. Interestingly, adult female mosquitoes had
309 higher copper concentrations compared to adult male mosquitoes and female mosquitoes had a
310 seemingly proportional copper accumulation respective to copper dose. Previous studies have
311 shown that copper carried to the adult stage could impact adult longevity positively (e.g.,
312 *Anopheles arabiensis* and *A. aegypti*; Perez and Noriega, 2014; Oliver and Brooke, 2018) or
313 negatively (e.g., *Ischnura elegans*; Debecker et al., 2017), and negatively affect egg viability
314 (Mireji et al., 2010).

315 ***Effects of Copper on Adult Mortality***

316 We found a significant negative effect of parasite infection on adult mortality ($N_{GROUP} = 6$;
317 $N_{MEAN/GROUP} = 383$, χ^2 (DF) = 208.599 (1); $P < 0.001$; Figure 3; Table S4), as shown in
318 investigations of *A. aegypti* (Ledesma and Harrington, 2015), *Aedes albopictus* (Lai et al., 2000;
319 Dharmarajan et al., 2019), and *Culex quinquefasciatus* (Lai et al., 2000). However, the main
320 effect of copper exposure and interaction between copper exposure and infection were
321 nonsignificant, indicating that infection had a stronger selective pressure on mortality hazard
322 than larval copper exposure.

323 ***Effects of Copper on Fecundity***

324 We found significant main and interactive effects between copper exposure and infection
325 ($N_{GROUP} = 6$; $N_{MEAN/GROUP} = 79$; Copper: χ^2 (DF) = 14.732 (2); $P < 0.001$; Infection: χ^2 (DF) =
326 325.873 (1); $P < 0.001$; Copper \times Infection: χ^2 (DF) = 53.117 (2); $P < 0.001$; Table S5).
327 Fecundity in infected treatments expressed a hormetic copper exposure effect (Figure 4).
328 Hormesis is a phenomenon where low levels of potentially toxic agents causes stimulatory
329 effects (Stebbing, 1982; Calabrese and Baldwin, 2003; Calabrese and Blain, 2004; Sinclair,

330 2005; Agathokleous et al., 2020). Further experimentation with additional copper concentrations
331 are needed to determine if there is a true effect of hormesis.

332 However, when mosquitoes are infected fecundity was significantly reduced across all
333 copper exposures. Similarly, when *A. aegypti* were infected by ≥ 3 *Brugia malayi* there was
334 significant reduction of eggs laid (Gleave et al., 2016). Although, egg production increased in
335 copper exposed mosquitoes there could be indirect consequences. Another study exposing *A.*
336 *aegypti* to sublethal levels of copper found metal stress can result in compromised adult
337 performance such as lowered adult body mass, neutral storage lipids at emergence, starvation
338 tolerance, fecundity and starvation tolerance of offspring (Perez and Noriega, 2014). However,
339 the same study found larval metal stress had a hormetic effect of increased longevity in female
340 mosquito adults. Which suggests exposed mosquitoes could result in different levels of fitness
341 due to larval metal stress and could result in reduced fitness for subsequent mosquito
342 generations. Although mosquito fecundity increased, further experimentation would be required
343 to assess copper exposed mosquito egg fertility because an increase in fecundity could be offset
344 by reduction in egg fertility. Additionally, higher fecundity for copper exposed mosquitoes could
345 be a way to offset or excrete copper contamination carried over from the larval stage. In *A.*
346 *aegypti*, iron is ingested as hemoglobin and ferric-transferrin from vertebrate host blood, which
347 is either excreted as waste, retained in the body, or allocated to the eggs (Zhou et al., 2007).
348 Additionally, pre- and postpartum *Centroptilum triangulifer* adults were analyzed after juvenile
349 zinc exposure and found prepartum adults had significantly higher levels of zinc than postpartum
350 adults (Kim et al., 2012). Thus, it is possible that contaminated mosquitoes could offset negative
351 consequences of copper through maternal copper transfer to eggs. Further experimentation of
352 pre-and postpartum mosquito adults will have to be analyzed for maternal transfer of copper and

353 to elucidate possible side effects of copper contamination on offspring fitness. Also, experiments
354 could be conducted to determine if egg fertility offsets increased egg production as an indirect
355 tradeoff of maternal copper transfer to eggs.

356 ***Effects of Copper on Vector Competence***

357 We found no significant difference between zero-hour infections of copper exposure treatments

358 (

359 N

360 G

361 R

362 Perturbations to the environment from anthropogenic disturbance can negatively affect
363 ecosystem health (Costanza and Mageau, 1999). For example, metal pollution can negatively
364 affect species richness and diversity (Blanar et al., 2009). Numerous studies have shown that
365 parasites are effective indicators of ecosystem structure and function because they are sensitive
366 to perturbations, including anthropogenic effects on ecological systems, that affect host
367 community structure, species interaction dynamics and/or food web topology (Hudson et al.,
368 2006; Marcogliese et al., 2010; Whiles et al., 2013; Preston et al., 2016; Sures et al., 2017a;
369 Sures et al., 2017b; Vannatta and Minchella, 2018). There is strong evidence that metal pollution
370 can significantly impact parasite species richness as well as infection intensity (Sures et al.,
371 2017a; Sures et al., 2017b; Vannatta and Minchella, 2018). Additionally, parasites that actively
372 feed on host tissue (as in the case of *D. immitis*) occupy a trophic level similar to predators
373 (Nachev et al., 2017), and are thus likely to be exposed to higher concentrations of metal
374 contaminants through bioaccumulation and/or biomagnification pathways (Ryman et al., 2008;
375 Olivero-Verbel and Caballero-Gallardo, 2013). Interestingly, to our knowledge, no previous

376 /

377 G

378 R

411 study has investigated the direct and indirect effects of larval metal exposure on infective
412 parasite burden and mortality rates of insect vectors. These parameters are critical because they
413 jointly affect vectorial capacity and hence control vector-borne disease transmission dynamics.
414 Our study indicates that female mosquitoes exposed to 600 µg/L of copper had a similar
415 mortality hazard to unexposed mosquitoes and significantly reduced *D. immitis* parasite load.
416 This reduction in parasite load likely is driven by importance of copper-containing enzymes
417 (e.g., Laccase 2) on melanization (Dittmer et al., 2004; Dittmer and Kanost, 2010; Sugumaran
418 and Barek, 2016), which is the main immune mechanism mosquitoes use to defend against
419 macroparasites like *D. immitis* (Christensen et al., 2005). Indeed, the suppression of Laccase 2
420 has been shown to reduce resistance to parasites in mosquitoes (Du et al., 2017).

421 Previous studies have also shown that insects play an important role in ecosystem health
422 by affecting contaminant cycling. Most studies on contaminant cycling focus on the transfer of
423 contaminants from terrestrial to aquatic systems (e.g., urban/industrial runoff and erosion; Mason
424 et al., 1994; Schroeder and Munthe, 1998; Driscoll et al., 2013; Rumrill et al., 2018). However,
425 there is increasing interest in energetic pathways that can transfer contaminants from aquatic to
426 terrestrial environments (Sullivan and Rodewald, 2012). Insects with aquatic life history stages
427 are particularly important for contaminant transfer from aquatic to terrestrial systems through the
428 food chain (Menzie, 1980; Walters et al., 2008). Mosquitoes constitute an important taxon of
429 insects, especially in urban areas. However, the potential role of mosquitoes in contaminant
430 transfer from aquatic to terrestrial systems remains unclear. Many organisms have evolved to
431 handle metal stress by offloading contaminants through excretion (e.g., exuvium; Timmermans
432 and Walker, 1989; Kraus et al., 2014b) or through maternal transfer (e.g., eggs; Kim et al.,

433 2012). We found significant copper excretion in the exuvium of the mosquito but retained
434 significant copper concentrations to adulthood at 300-600 $\mu\text{g/L}$ of copper (Figure 2).

435 Copper concentrations in water are highly variable, ranging from 100-69,000 $\mu\text{g/L}$ due to
436 mining drainage, abandoned mines, industrial discharge, and power plant effluent ranging
437 (Dorsey et al., 2004), and from 5-30,000 $\mu\text{g/L}$ in drinking water (WHO, 2004). However, the
438 results from our experiments are of ecological relevance because the levels of copper exposure
439 we focus on (0-600 $\mu\text{g/L}$) are within the range of concentrations found in natural mosquito
440 breeding habitats (50-2880 $\mu\text{g/L}$) (Sarkar et al., 2004; Mireji et al., 2008) and well below the US
441 Environmental Protection Agency mandated limits for copper in drinking water (1300 $\mu\text{g/L}$;
442 EPA, 2020). We feel it is also important to recognize that copper is strongly associated with
443 other metals (e.g., zinc and cadmium) in the aquatic environments (Sarkar et al., 2004; Ruchter
444 and Sures, 2015), and many of these metals also share similar detoxification mechanisms
445 (Rivera-Perez et al., 2017). Consequently, our results could also point to broader connections
446 between vector-borne diseases and the cumulative heavy metal load in natural and anthropogenic
447 environments. Future directions of this research can investigate natural populations of *Aedes* sp.
448 of mosquitoes to acquire data further representative of wild type populations. In conjunction to
449 testing wild type populations, surveying breeding sites in nature to help quantify levels of metal
450 exposure and copper analyses of mosquito larvae and adults to determine aquatic-terrestrial
451 contaminant transfer. Furthermore, predation experiments could elucidate the impact transfer
452 from aquatic larvae to terrestrial adults could impact copper cycling.

453 To conclude, our study indicates that metal contamination can negatively affect vector-
454 borne disease transmission dynamics by reducing adult mosquito recruitment (through increased
455 larval mortality) and vector competence (through reduced parasite load). Our study also shows

456 that mosquitoes could be an important link in transferring metal contaminants from aquatic to
457 terrestrial systems, especially in urban areas where they are common.

458 **Conflict of Interest:** The authors declare they have no conflicts of interest.

459 **Acknowledgements**

460 The following reagents were provided by the NIH/NIAID Filariasis Research Reagent Resource
461 Center through BEI Resources: Uninfected Canine Blood (Not Exposed to Filariae) NR-48922
462 and *Dirofilaria immitis*, Strain Missouri, Microfilariae in Dog Blood (Live) NR-48907. Financial
463 support was provided from the US Department of Energy Financial Assistance Award no. DE-
464 EM0004391 to the University of Georgia Research Foundation. We thank Andrew Moorehead,
465 Erika Burkeman and Christopher Evans (Filariasis Research Reagent and Resource Center), and
466 Pablo Jimenez (Department of Infectious Disease, University of Georgia) for providing expertise
467 and resources. We thank two anonymous reviewers for constructive comments on a previous
468 draft of the manuscript. We thank Shannon Gregory, Manette Tanelus, Spencer Hills and
469 colleagues at SREL for help and support.

470

471

472

473

474

475

476

477

478

479 **Reference**

- 480 Agathokleous E, Kitao M, Calabrese EJ. Hormesis: Highly Generalizable and Beyond
481 Laboratory. Trends in Plant Science 2020; 25: 1076-1086.
- 482 Alto BW, Lounibos LP, Mores CN, Reiskind MH. Larval Competition Alters Susceptibility of
483 Adult *Aedes* Mosquitoes to Dengue Infection. Proc Biol Sci 2008; 275: 463-71.
- 484 Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS. Metallothioneins in Aquatic
485 Invertebrates: Their Role in Metal Detoxification and their use as Biomarkers. Aquatic
486 Toxicology 2006; 76: 160-202.
- 487 Angelé-Martinez C, Nguyen KVT, Ameer FS, Anker JN, Brumaghim JL. Reactive Oxygen
488 Species Generation by Copper(II) Oxide Nanoparticles Determined by DNA Damage
489 Assays and EPR Spectroscopy. Nanotoxicology 2017; 11: 278-288.
- 490 Ariani CV, Juneja P, Smith S, Tinsley MC, Jiggins FM. Vector Competence of *Aedes aegypti*
491 Mosquitoes for Filarial Nematodes is Affected by Age and Nutrient Limitation. Exp
492 Gerontol 2015; 61: 47-53.
- 493 Barrera R, Amador M, Diaz A, Smith J, Munoz-Jordan JL, Rosario Y. Unusual Productivity of
494 *Aedes aegypti* in Septic Tanks and its Implications for Dengue Control. Medical and
495 Veterinary Entomology 2008; 22: 62-69.
- 496 Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4.
497 2015 2015; 67: 48.
- 498 Batzer DP, Rader RB, Wissinger SA. Invertebrates in Freshwater Wetlands of North America:
499 Ecology and Management: Wiley, 1999.
- 500 Baxter CV, Fausch KD, Saunders WC. Tangled Webs: Reciprocal Flows of Invertebrate Prey
501 Link Streams and Riparian Zones. Freshwater Biology 2005; 50: 201-220.

- 502 Bellini R, Carrieri M, Bacchi M, Fonti P, Celli G. Possible Utilization of Metallic Copper to
503 Inhibit *Aedes albopictus* (Skuse) Larval Development. Journal of the American Mosquito
504 Control Association 1998; 14: 451-456.
- 505 Blanar CA, Munkittrick KR, Houlahan J, MacLatchy DL, Marcogliese DJ. Pollution and
506 Parasitism in Aquatic Animals: A Meta-Analysis of Effect Size. Aquatic Toxicology
507 2009; 93: 18-28.
- 508 Bowman DD, Atkins CE. Heartworm Biology, Treatment, and Control. Vet Clin North Am
509 Small Anim Pract 2009; 39: 1127-58, vii.
- 510 Burnham KP, Anderson DR. Multimodel Inference - Understanding AIC and BIC in Model
511 Selection. Sociological Methods & Research 2004; 33: 261-304.
- 512 Buxton BA, Mullen GR. Comparative Susceptibility of 4 Strains of *Aedes aegypti* (Diptera,
513 Culicidae) to Infection with *Dirofilaria immitis*. Journal of Medical Entomology 1981;
514 18: 434-440.
- 515 Calabrese EJ, Baldwin LA. Inorganics and Hormesis. Critical Reviews in Toxicology 2003; 33:
516 215-304.
- 517 Calabrese EJ, Blain R. Metals and Hormesis. Journal of Environmental Monitoring 2004; 6:
518 14N-19N.
- 519 Carlisle DM, Clements WH. Growth and Secondary Production of Aquatic Insects Along a
520 Gradient of Zn Contamination in Rocky Mountain Streams. Journal of the North
521 American Benthological Society 2003; 22: 582-597.
- 522 Christensen BM, Li J, Chen CC, Nappi AJ. Melanization Immune responses in Mosquito
523 Vectors. Trends Parasitol 2005; 21: 192-9.
- 524 Costanza R, Mageau M. What is a Healthy Ecosystem? Aquatic Ecology 1999; 33: 105-115.

- 525 Crampton JM, Beard CB, Louis C. The Molecular Biology of Insect Disease Vectors : A
526 Methods Manual: London ; New York : Chapman & Hall, 1997. 1st ed., 1997.

527 Day JF. Mosquito Oviposition Behavior and Vector Control. Insects (2075-4450) 2016; 7: 1.

528 Debecker S, Dinh KV, Stoks R. Strong Delayed Interactive Effects of Metal Exposure and
529 Warming: Latitude-Dependent Synergisms Persist Across Metamorphosis.

530 Environmental Science & Technology 2017; 51: 2409-2417.

531 Dharmarajan G, Walker KD, Lehmann T. Variation in Tolerance to Parasites Affects Vectorial
532 Capacity of Natural Asian Tiger Mosquito Populations. Current Biology 2019; 29: 3946-
533 3953.

534 Dittmer NT, Kanost MR. Insect Multicopper Oxidases: Diversity, Properties, and Physiological
535 Roles. Insect Biochemistry and Molecular Biology 2010; 40: 179-188.

536 Dittmer NT, Suderman RJ, Jiang HB, Zhu YC, Gorman MJ, Kramer KJ, et al. Characterization
537 of cDNAs Encoding Putative Laccase-like Multicopper Oxidases and Developmental
538 Expression in the Tobacco Hornworm, *Manduca sexta*, and the Malaria Mosquito,
539 *Anopheles gambiae*. Insect Biochemistry and Molecular Biology 2004; 34: 29-41.

540 Dorsey A, Ingerman L, Swarts S. Toxicological Profile for Copper. Atlanta, Georgia: U.S. Dept.
541 of Health and Human Services, Public Health Service, Agency for Toxic Substances and
542 Disease Registry, 2004.

543 Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury as a Global Pollutant: Sources,
544 Pathways, and Effects. Environ Sci Technol 2013; 47: 4967-83.

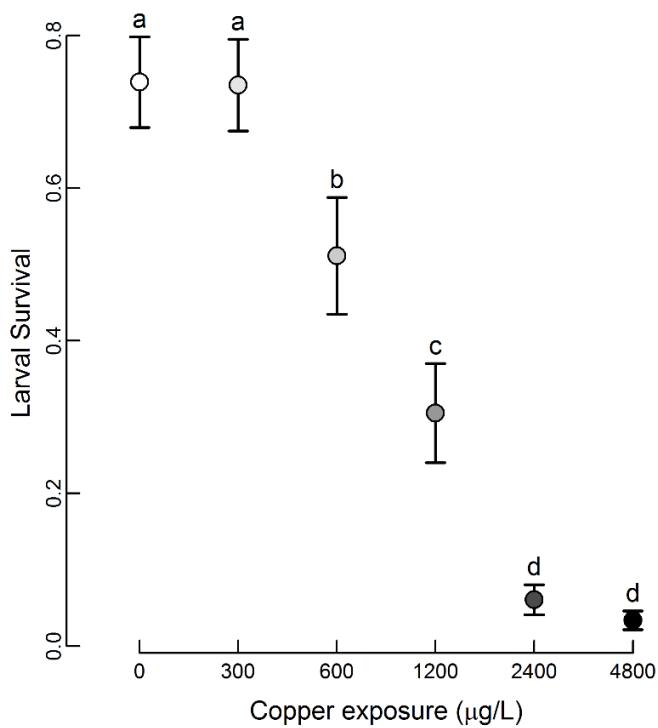
545 Du MH, Yan ZW, Hao YJ, Yan ZT, Si FL, Chen B, et al. Suppression of Laccase 2 Severely
546 Impairs Cuticle Tanning and Pathogen Resistance during the Pupal Metamorphosis of
547 *Anopheles sinensis* (Diptera: Culicidae). Parasites & Vectors 2017; 10: 11.

- 548 EPA. National Primary Drinking Water Regulations. 2020. Environmental Protection Agency,
549 Washington, DC, 2020.
- 550 Erasmus JH, Malherbe W, Zimmermann S, Lorenz AW, Nachev M, Wepener V, et al. Metal
551 Accumulation in Riverine Macroinvertebrates from a Platinum Mining Region. *Science*
552 of The Total Environment 2020; 703: 134738.
- 553 Evans C. An In Vitro Bioassay for Measuring Anthelmintic Susceptibility in *Dirofilaria immitis*.
554 Master of Science. University of Georgia, 2011, pp. 74.
- 555 FR3. Protocols. 2018. Filariasis Research Reagent Resource Center, 2018.
- 556 Frankie GW, Ehler LE. Ecology of Insects in Urban Environments. *Annual Review of*
557 *Entomology* 1978; 23: 367-387.
- 558 Gintenreiter S, Ortel J, Nopp HJ. Bioaccumulation of Cadmium, Lead, Copper, and Zinc in
559 Successive Developmental Stages of *Lymantria dispar L* (Lyantriidae, Lepid) - A Life-
560 Cycle Study. *Archives of Environmental Contamination and Toxicology* 1993; 25: 55-61.
- 561 Gleave K, Cook D, Taylor MJ, Reimer LJ. Filarial Infection Influences Mosquito Behaviour and
562 Fecundity. *Scientific Reports* 2016; 6: 8.
- 563 Golding N, Wilson AL, Moyes CL, Cano J, Pigott DM, Velayudhan R, et al. Integrating Vector
564 Control across Diseases. *Bmc Medicine* 2015; 13: 6.
- 565 Hudson PJ, Dobson AP, Lafferty KD. Is a Healthy Ecosystem One that is Rich in Parasites?
566 *Trends in Ecology & Evolution* 2006; 21: 381-385.
- 567 Islam MS, Ahmed MK, Raknuzzaman M, Habibullah-Al-Mamun M, Islam MK. Heavy Metal
568 Pollution in Surface Water and Sediment: A Preliminary Assessment of an Urban River
569 in a Developing Country. *Ecological Indicators* 2015; 48: 282-291.

- 570 Jeffrey RP, Walter JT. History of Domestication and Spread of *Aedes aegypti* - A Review.
- 571 Memórias do Instituto Oswaldo Cruz., Vol 108, Iss suppl 1, Pp 11-17 (2013) 2013: 11.
- 572 Kartman L. Suggestions Concerning an Index of Experimental Filarial Infection in Mosquitoes.
- 573 American Journal of Tropical Medicine and Hygiene 1954; 3: 329-337.
- 574 Kim KS, Funk DH, Buchwalter DB. Dietary (periphyton) and Aqueous Zn Bioaccumulation
- 575 Dynamics in the Mayfly *Centroptilum triangulifer*. Ecotoxicology 2012; 21: 2288-2296.
- 576 Kraus JM. Contaminants in Linked Aquatic-Terrestrial Ecosystems: Predicting Effects of
- 577 Aquatic Pollution on Adult Aquatic Insects and Terrestrial Insectivores. Freshwater
- 578 Science 2019; 38: 919-927.
- 579 Kraus JM, Schmidt TS, Walters DM, Wanty RB, Zuellig RE, Wolf RE. Cross-Ecosystem
- 580 Impacts of Stream Pollution Reduce Resource and Contaminant Flux to Riparian Food
- 581 Webs. Ecological Applications 2014a; 24: 235-243.
- 582 Kraus JM, Walters DM, Wesner JS, Stricker CA, Schmidt TS, Zuellig RE. Metamorphosis
- 583 Alters Contaminants and Chemical Tracers in Insects: Implications for Food Webs.
- 584 Environmental Science & Technology 2014b; 48: 10957-10965.
- 585 Lai CH, Tung KC, Ooi HK, Wang JS. Competence of *Aedes albopictus* and *Culex*
- 586 *quinquefasciatus* as Vector of *Dirofilaria immitis* after Blood Meal with Different
- 587 Microfilarial Density. Veterinary Parasitology 2000; 90: 231-237.
- 588 Ledesma N, Harrington L. Fine-Scale Temperature Fluctuation and
- 589 Modulation of *Dirofilaria immitis* Larval Development in *Aedes aegypti*. Veterinary Parasitology
- 590 2015; 209: 93-100.
- 591 Lenth RV. Least-Squares Means: The R Package lsmeans. 2016 2016; 69: 33.

- 592 Leta S, Beyene TJ, De Clercq EM, Amenu K, Kraemer MUG, Revie CW. Global Risk Mapping
593 for Major Diseases Transmitted by *Aedes aegypti* and *Aedes albopictus*. International
594 Journal of Infectious Diseases 2018; 67: 25-35.
- 595 Little E, Biebler D, Leisnham PT, Jordan R, Wilson S, LaDeau SL. Socio-Ecological
596 Mechanisms Supporting High Densities of *Aedes albopictus* (Diptera: Culicidae) in
597 Baltimore, MD. J Med Entomol 2017; 54: 1183-1192.
- 598 Lu AR, Zhang QL, Zhang J, Yang B, Wu K, Xie W, et al. Insect prophenoloxidase: the view
599 beyond immunity. Frontiers in Physiology 2014; 5: 15.
- 600 Marchette NJ, Garcia R, Rudnick A. Isolation of Zika Virus from *Aedes aegypti* Mosquitoes in
601 Malaysia. American Journal of Tropical Medicine and Hygiene 1969; 18: 411-415.
- 602 Marcogliese DJ, Dautremepuits C, Gendron AD, Fournier M. Interactions Between Parasites and
603 Pollutants in Yellow Perch (*Perca flavescens*) in the St. Lawrence River, Canada:
604 Implications for Resistance and Tolerance to Parasites. Canadian Journal of Zoology
605 2010; 88: 247-258.
- 606 Marinković M, Verweij RA, Nummerdor GA, Jonker MJ, Kraak MHS, Admiraal W. Life Cycle
607 Responses of the Midge *Chironomus riparius* to Compounds with Different Modes of
608 Action. Environmental Science & Technology 2011; 45: 1645-1651.
- 609 Mary KA, Paily KP, Hoti SL. Suppression of *Brugia malayi* (sub-periodic) Larval Development
610 in *Aedes aegypti* (Liverpool strain) fed on Blood of Animals Immunized with
611 Microfilariae. Memorias Do Instituto Oswaldo Cruz 2005; 100: 403-405.
- 612 Mason RP, Fitzgerald WF, Morel FMM. The Biogeochemical Cycling of Elemental Mercury -
613 Anthropogenic Influences. Geochimica Et Cosmochimica Acta 1994; 58: 3191-3198.

- 614 McCall JW. The Role of Arthropods in the Development of Animal - Models for Filariasis
615 Research. Journal of the Georgia Entomological Society 1981; 16: 283-293.
- 616 Menzie CA. Potential Significance of Insects in the Removal of Contaminants from Aquatic
617 Systems. Water Air and Soil Pollution 1980; 13: 473-479.
- 618 Merritt RW, Dadd RH, Walker ED. Feeding-Behavior, Natural Food, and Nutritional
619 Relationships of Larval Mosquitos. Annual Review of Entomology 1992; 37: 349-376.
- 620 Michalski ML, Griffiths KG, Williams SA, Kaplan RM, Moorhead AR. The NIH-NIAID
621 Filariasis Research Reagent Resource Center. PLoS Negl Trop Dis 2011; 5: e1261.
- 622 Mireji PO, Keating J, Hassanali A, Mbogo CM, Muturi MN, Githure JI, et al. Biological Cost of
623 Tolerance to Heavy Metals in the Mosquito *Anopheles gambiae*. Medical & Veterinary
624 Entomology 2010; 24: 101-107.
- 625 Mireji PO, Keating J, Hassanali A, Mbogo CM, Nyambaka H, Kahindi S, et al. Heavy Metals in
626 Mosquito Larval Habitats in Urban Kisumu and Malindi, Kenya, and their Impact.
627 Ecotoxicology and Environmental Safety 2008; 70: 147-153.
- 628 Muttkowski RA. Copper: Its Occurrence and Role in Insects and Other Animals. Transactions of
629 the American Microscopical Society 1921; 40: 144-157.
- 630 Nachev M, Jochmann MA, Walter F, Wolbert JB, Schulte SM, Schmidt TC, et al. Understanding
631 Trophic Interactions in Host-parasite Associations using Stable Isotopes of Carbon and
632 Nitrogen. Parasites & Vectors 2017; 10: 90.
- 633 Neff E, Coleman AL, Maness RW, Tanelus M, Xu XY, Dharmarajan G. Effects of
634 Methylmercury on Mosquito Oviposition Behavior: Maladaptive Response to Non-Toxic
635 Exposure. Science of the Total Environment 2019; 667: 248-254.


- 636 Oliver SV, Brooke BD. The Effect of Metal Pollution on the Life History and Insecticide
637 Resistance Phenotype of the Major Malaria Vector *Anopheles arabiensis* (Diptera:
638 Culicidae). Plos One 2018; 13: 17.
- 639 Olivero-Verbel J, Caballero-Gallardo K. Nematode and Mercury Content in Freshwater Fish
640 belonging to Different Trophic Levels. Parasitology Research 2013; 112: 2187-2195.
- 641 Palmer CA, Wittrock DD, Christensen BM. Ultrastructure of Malpighian Tubules of *Aedes*
642 *aegypti* Infected with *Dirofilaria immitis*. Journal of Invertebrate Pathology 1986; 48:
643 310-317.
- 644 Perez MH, Noriega FG. *Aedes aegypti* Pharate 1st Instar Quiescence affects Larval Fitness and
645 Metal Tolerance. Journal of Insect Physiology 2012; 58: 824-829.
- 646 Perez MH, Noriega FG. Sublethal Metal Stress Response of Larvae of *Aedes aegypti*.
647 Physiological Entomology 2014; 39: 111-119.
- 648 Preston DL, Mischler JA, Townsend AR, Johnson PTJ. Disease Ecology Meets Ecosystem
649 Science. Ecosystems 2016; 19: 737-748.
- 650 Rayms-Keller A, Olson KE, McGaw M, Oray C, Carlson JO, Beaty BJ. Effect of Heavy Metals
651 on *Aedes aegypti* (Diptera : Culicidae) Larvae. Ecotoxicology and Environmental Safety
652 1998; 39: 41-47.
- 653 Reza M, Ilmiawati C. Laboratory Testing of very Low-Copper-Treated Water to Prolong
654 Pupation and Emerging Time of Mosquito Larvae: An Alternative Method to Delay
655 Mosquito Breeding Capability. bioRxiv 2020: 871400.
- 656 Rivera-Perez C, Clifton ME, Noriega FG. How Micronutrients Influence the Physiology of
657 Mosquitoes. Current Opinion in Insect Science 2017; 23: 112-117.

- 658 Romi R, Di Luca M, Raineri W, Pesce M, Rey A, Giovannangeli S, et al. Laboratory and Field
659 Evaluation of Metallic Copper on *Aedes albopictus* (Diptera : Culicidae) Larval
660 Development. *Journal of Medical Entomology* 2000; 37: 281-285.
- 661 Ruchter N, Sures B. Distribution of Platinum and Other Traffic Related Metals in Sediments and
662 Clams (*Corbicula* sp.). *Water Research* 2015; 70: 313-324.
- 663 Rumrill CT, Scott DE, Lance SL. Delayed Effects and Complex Life Cycles: How the larval
664 Aquatic Environment Influences Terrestrial Performance and Survival. *Environmental
665 Toxicology and Chemistry* 2018; 37: 2660-2669.
- 666 Runck C. Macroinvertebrate Production and Food Web Energetics in an Industrially
667 Contaminated Stream. *Ecological Applications* 2007; 17: 740-753.
- 668 Ryman JE, Van Walleghem JLA, Blanchfield PJ. Methylmercury Levels in a Parasite
669 (*Apophallus brevis metacercariae*) and its Host, Yellow Perch (*Perca flavescens*).
670 *Aquatic Ecology* 2008; 42: 495-501.
- 671 Sarkar S, Duttagupta AK, Mal TK. Effects of Heavy Metals on Population Growth and
672 Metallothionein Gene Expression in the Mosquito *Culex quinquefasciatus*, from Calcutta,
673 India. *Environmental Pollution* 2004; 127: 183-193.
- 674 Schertzinger G, Ruchter N, Sures B. Metal Accumulation in Sediments and Amphipods
675 Downstream of Combined Sewer Overflows. *Science of The Total Environment* 2018;
676 616-617: 1199-1207.
- 677 Schroeder WH, Munthe J. Atmospheric Mercury - An Overview. *Atmospheric Environment*
678 1998; 32: 809-822.

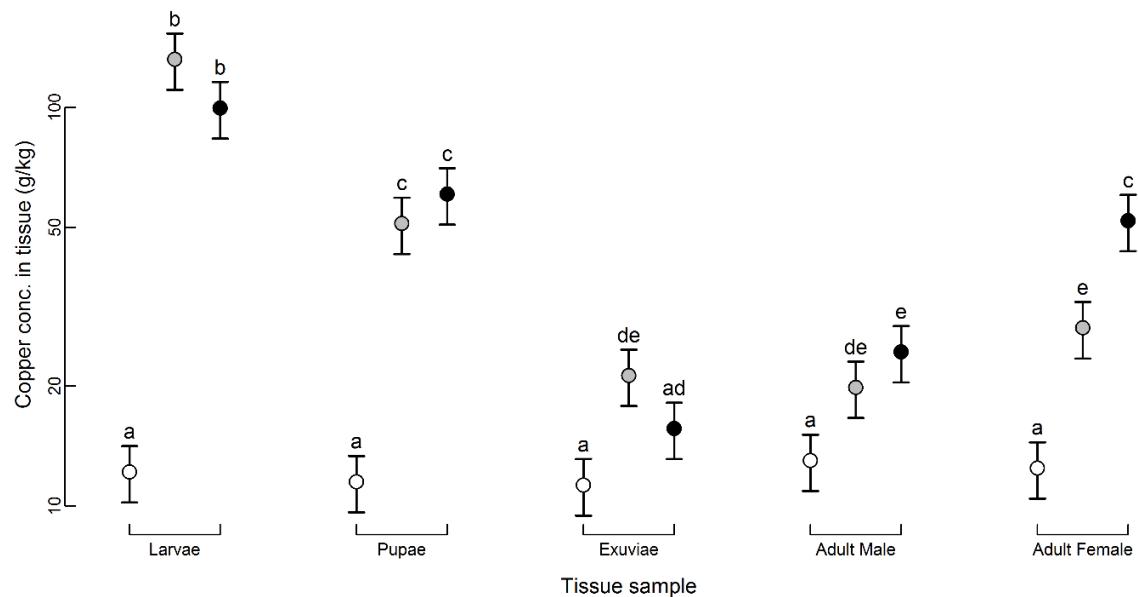
- 679 Serrão ML, Labarthe N, Lourenco-de-Oliveira R. Vectorial Competence of *Aedes aegypti*
680 (Linnaeus 1762) Rio de Janeiro strain, to *Dirofilaria immitis* (Leidy 1856). *Memorias Do*
681 *Instituto Oswaldo Cruz* 2001; 96: 593-598.
- 682 Sheikh M, Fouada M, Hassan M, Abd-Elghaphar A-E, Hasaballah A. Toxicological Effects of
683 Some Heavy Metal Ions on *Culex pipiens* L. (Diptera: Culicidae). *Egypt. Acad. J. Biolog.*
684 *Sci. 2(1): July. 63--76. 2010; 2: 63-76.*
- 685 Sinclair DA. Toward a Unified Theory of Caloric Restriction and Longevity Regulation.
686 *Mechanisms of Ageing and Development* 2005; 126: 987-1002.
- 687 Stebbing ARD. Hormesis - The Stimulation of Growth by Low-Levels of inhibitors. *Science of*
688 *the Total Environment* 1982; 22: 213-234.
- 689 Stohs SJ, Bagchi D. Oxidative Mechanisms in the Toxicity of Metal-ions. *Free Radical Biology*
690 *and Medicine* 1995; 18: 321-336.
- 691 Sugumaran M, Barek H. Critical Analysis of the Melanogenic Pathway in Insects and Higher
692 *Animals. International Journal of Molecular Sciences* 2016; 17: 24.
- 693 Sullivan SMP, Rodewald AD. In a State of Flux: The Energetic Pathways that move
694 Contaminants from Aquatic to Terrestrial Environments. *Environmental Toxicology and*
695 *Chemistry* 2012; 31: 1175-1183.
- 696 Sures B, Nachev M, Pahl M, Grabner D, Selbach C. Parasites as Drivers of Key Processes in
697 Aquatic Ecosystems: Facts and Future Directions. *Experimental Parasitology* 2017a; 180:
698 141-147.
- 699 Sures B, Nachev M, Selbach C, Marcogliese DJ. Parasite Responses to Pollution: What we know
700 and Where we go in 'Environmental Parasitology'. *Parasites & Vectors* 2017b; 10: 19.

- 701 Therneau TM, Grambsch PM. *Modeling Survival Data : Extending the Cox Model*: New York :
702 Springer, 2000., 2000.
- 703 Timmermans KR, Walker PA. The Fate of Trace Metals during the Metamorphosis of
704 Chironomids (diptera, chironomidae). *Environmental Pollution* 1989; 62: 73-85.
- 705 Tollett VD, Benvenutti EL, Deer LA, Rice TM. Differential Toxicity to Cd, Pb, and Cu in
706 Dragonfly Larvae (Insecta: Odonata). *Archives of Environmental Contamination and*
707 *Toxicology* 2009; 56: 77-84.
- 708 Vannatta JT, Minchella DJ. Parasites and Their Impact on Ecosystem Nutrient Cycling. *Trends*
709 *in Parasitology* 2018; 34: 452-455.
- 710 Walters DM, Fritz KM, Otter RR. The Dark Side of Subsidies: Adult Stream Insects Export
711 Organic Contaminants to Riparian Predators. *Ecological Applications* 2008; 18: 1835-
712 1841.
- 713 Weaver SC, Charlier C, Vasilakis N, Lecuit M. Zika, Chikungunya, and Other Emerging Vector-
714 Borne Viral Diseases. *Annual Review of Medicine* 2018; 69: 395-408.
- 715 Wesner JS, Walters DM, Schmidt TS, Kraus JM, Stricker CA, Clements WH, et al.
716 Metamorphosis Affects Metal Concentrations and Isotopic Signatures in a Mayfly (*Baetis*
717 *tricaudatus*): Implications for the Aquatic-Terrestrial Transfer of Metals. *Environmental*
718 *Science & Technology* 2017; 51: 2438-2446.
- 719 Whiles MR, Hall RO, Dodds WK, Verburg P, Huryn AD, Pringle CM, et al. Disease-Driven
720 Amphibian Declines Alter Ecosystem Processes in a Tropical Stream. *Ecosystems* 2013;
721 16: 146-157.
- 722 WHO. Copper in Drinking-water Background Document for Development of WHO Guidelines
723 for Drinking-water Quality. World Health Organization, Geneva, Switzerland, 2004.

- 724 WHO. Global Vector Control Response 2017-2030. World Health Organization, Geneva, 2017.
- 725 Zhou CQ, Huang JC, Zheng LX, He SB, Zhou WL. Trophic Transfer and Biotransformation of
- 726 Selenium in the Mosquito (*Aedes albopictus*) and Interactive Effects with Hexavalent
- 727 Chromium. Environmental Pollution 2020; 262: 10.
- 728 Zhou GL, Kohlhepp P, Geiser D, Frasquillo MDC, Vazquez-Moreno L, Winzerling JJ. Fate of
- 729 Blood Meal Iron in Mosquitoes. Journal of Insect Physiology 2007; 53: 1169-1178.
- 730

731

732 **Figure 1.** Effects of copper exposure on mosquito larval survival. The data indicates the mean
 733 proportion of larvae developing to pupae at each level of larval copper exposure (0, 300, 600,
 734 1200, 2400, and 4800 $\mu\text{g/L}$). Means followed by a common letter are not significantly different
 735 at $\alpha = 0.05$, and error bars represent the standard error of mean.

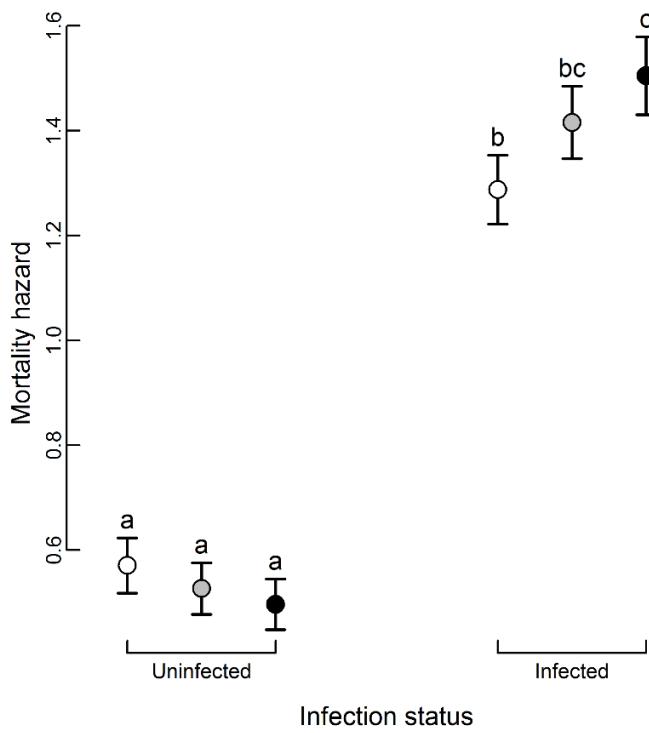

736

737

738

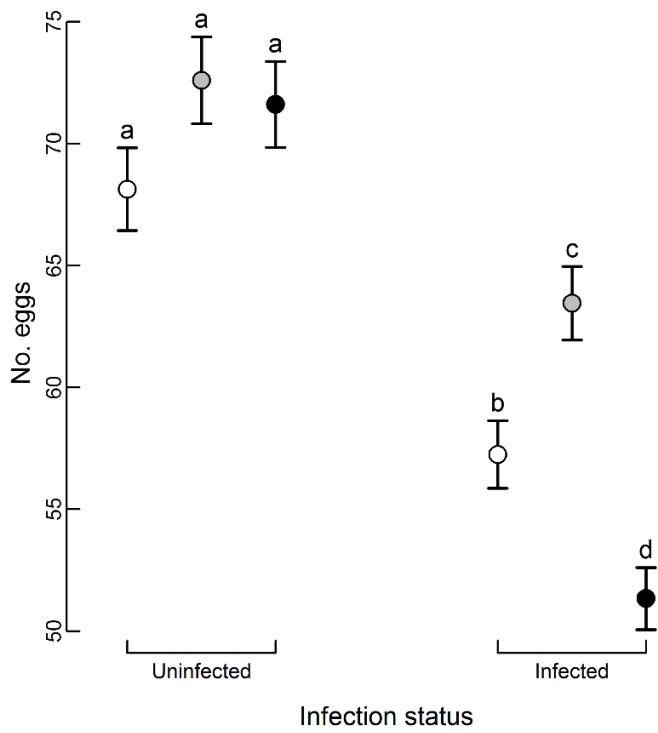
739

740


741

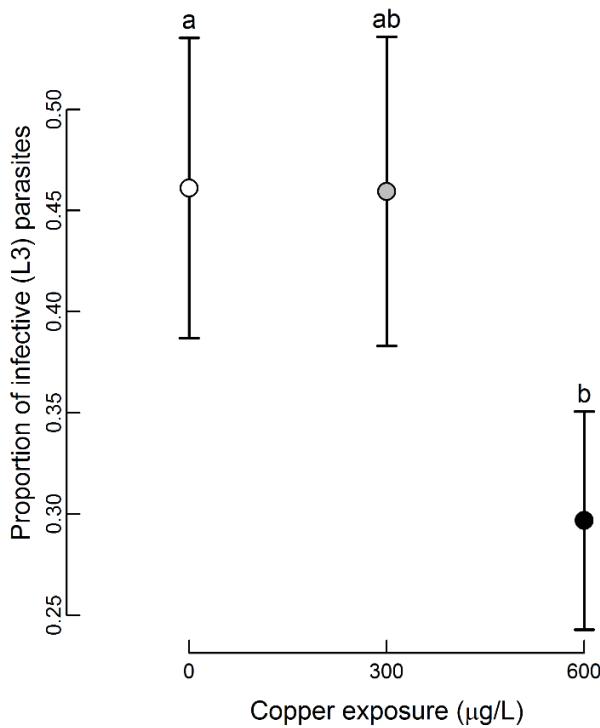
742

743 **Figure 2.** Effects of copper exposure on copper concentration in different tissues collected across
 744 the mosquito life cycle. The data indicates the mean copper concentration (g/kg) in mosquito
 745 tissues at three levels of larval copper exposure: 0 (white symbols), 300 (gray symbols) and 600
 746 (black symbols) $\mu\text{g/L}$. Means followed by a common letter are not significantly different at $\alpha =$
 747 0.05, and error bars represent the standard error of mean.


748

749

750


751 **Figure 3.** Effects of *Dirofilaria immitis* infection and copper exposure on mosquito mortality.
752 Data represents the daily mortality hazard of uninfected or infected female mosquitoes raised
753 from larvae exposed to three levels copper: 0 (white symbols), 300 (gray symbols) and 600
754 (black symbols) $\mu\text{g/L}$. Means followed by a common letter are not significantly different at $\alpha =$
755 0.05, and error bars represent the standard error of mean.

756

Infection status

757 **Figure 4.** Effects of *Dirofilaria immitis* infection and copper exposure on mosquito fecundity.
 758 Data represents the number of eggs oviposited by uninfected or infected female mosquitoes
 759 raised from larvae exposed to three levels copper: 0 (white symbols), 300 (gray symbols) and
 760 600 (black symbols) $\mu\text{g/L}$. Means followed by a common letter are not significantly different at
 761 $\alpha = 0.05$, and error bars represent the standard error of mean.

762

763 **Figure 5.** Effects of copper exposure on the vector efficiency of mosquitoes infected with
 764 *Dirofilaria immitis*. Data represents the proportion of *D. immitis* parasites developing to infective
 765 larvae (L3) in female mosquitoes raised from larvae exposed to three levels copper: 0 (white
 766 symbols), 300 (gray symbols) and 600 (black symbols) $\mu\text{g/L}$. Means followed by a common
 767 letter are not significantly different at $\alpha = 0.05$, and error bars represent the standard error of
 768 mean

769