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Abstract

Thermodynamics is a science concerning the state of a system, whether it is stable, metastable or
unstable, when interacting with the surroundings. In this overview, fundamentals of
thermodynamics are briefly reviewed through the integration of first and second laws of
thermodynamics for open and nonequilibrium systems to demonstrate that the reversible
equilibrium and irreversible nonequilibrium thermodynamics can be integrated to enhance the
power and utilities of thermodynamics. The recent progresses in computational thermodynamics,
the remaining challenges, and potential impacts in broad scientific fields are discussed. It is
shown that computational thermodynamics enables the modeling of thermodynamics of a state as
a function of both external and internal variables and enables quantitative calculations of a broad
range of properties of a multicomponent system in terms of first and second derivatives of
energy, including not only equilibrium states when there are no driving forces for any internal
processes and but also non-equilibrium states with driving forces for internal processes.
Consequently, external constraints such as fixed strain and internal degree of freedoms such as
ordering and defects can be described in a coherent framework and applied to materials design.
Furthermore, two important but largely overlooked aspects in thermodynamics will be discussed,
1.e. the rigorous application of statistical thermodynamics with the probability of configurations
and their contributions to system properties, and the applications of second derivatives of energy
with respect to either two extensive variables or two potentials or a mixture of them in terms of
understanding and predicting emergent behaviors, critical phenomena, kinetic coefficients, and

mechanical properties.



1. Introduction

Thermodynamics is a science concerning the state of a system, whether it is stable, metastable or
unstable, when interacting with its surroundings. The interactions can involve exchanges of any
combinations of heat, work, and mass between the system and the surroundings, defined by the
boundary conditions. The typical work includes contributions from the external mechanic,
electric and magnetic fields. The first law of thermodynamics describes those interactions,
stating that the net change of energy of the surroundings must be balanced by the opposite
change of the internal energy of the system. While the second law of thermodynamics governs
the evolution of the state inside the system under given interactions between the system and the
surroundings. The second law of thermodynamics declares that any internal processes, when
occurred spontaneously, i.e. irreversibly as commonly named, must result in a positive entropy
production. The combination of the first and second laws of thermodynamics was first derived
by Gibbs,! and he called it the fundamental thermodynamic equation, > which inspired Maxwell
to construct a model of its surface.! The combined law of thermodynamics represents the
integration of the external and internal variables of a system and self-evidently includes both
equilibrium and nonequilibrium states of a system,* though Gibbs focused on applications of the

combined law to equilibrium states in his work. !?

Through a series of seminal publications, Gibbs ! developed the foundation for the equilibrium
of heterogeneous substances through geometrical representation of thermodynamic properties
including tie-lines, tie-triangles, definition of chemical potentials, and criteria of equilibrium and
stability. The introduction of functions that are now called enthalpy, Helmholtz energy, and

Gibbs energy has enabled the theoretical and experimental applications of thermodynamics with
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various boundary conditions between systems and surroundings. Since Gibbs focused on
equilibrium, the nonequilibrium aspect of thermodynamics was developed into a separate branch,
1.e. irreversible thermodynamics that concerns with transport processes and with the rates of

chemical reactions.*®

In this overview, the fundamentals of thermodynamics are reviewed, and computational
methodologies are discussed in terms of models and input data and tools for modeling. The
applications of computational thermodynamics are presented for calculations of phase equilibria
and phase diagrams, modeling of internal degree of freedoms in terms of defects, predictions of
physical properties in terms of derivatives of energy, kinetic coefficients in terms of energy

landscape, and design of materials.

2. Fundamentals of thermodynamics
2.1. Combined first and second law of thermodynamics
The first law of thermodynamics for an open system, whether in an equilibrium or
nonequilibrium state, can be written as follows °

dU = dQ + dW + Z U, dN, Eq. 1
where dU is the change of the internal energy of the system, dQ and dN; are the heat and the
amount of component i added (positive) or removed from the system (negative), respectively,
and dW is the amount of any types of work that the system receives from (positive values) or
release to (negative values) the surroundings, and U; is the partial internal energy of component i
in the surroundings when dN; > 0 or in the system when dN; < 0. For a system in equilibrium

with its surroundings, the U; is the same in both the surroundings and system. The advantage to
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start the first law for an open system is that the chemical potential of a component is naturally
introduced as shown below.? U; can be represented by the internal energy of the system as

follows

U E)U]
i = 3%
oN; dQ=0,dW=0,N j;

Eq. 2

The second law of thermodynamics is introduced by defining the entropy change of an open

system, dS, as follows *-1°

d Eq.
ds =7Q+Zsid1vi +d;pS a3

where T is the temperature, S; the partial molar entropy of component i in the surroundings

(dN; > 0) or in the system (dN; < 0), and d;;,S the entropy production due to spontaneous
internal processes (/P) in the system. The first two terms on the right-hand side of Eq. 3
concern the interactions between the surroundings and the system, while the third term represents
what happens inside the system. Consequently, the right-hand side of Eq. 3 contains both the
external and internal contributions. The second law of thermodynamics dictates that any

spontaneous /Ps must result in positive entropy production, i.e. d;,S > 0.

Combining Eq. 1 and Eq. 3 gives the combined law of thermodynamics. As in most books on
thermodynamics, the work due to the hydrostatic pressure, —PdV, is considered, and the
combined law of thermodynamics is written as follows

dU = TdS — PdV + Z wdN; — Tdy,S = Z YedX® — Tdy,S Eq. 4

where P and V are pressure and volume, respectively, and g, is the chemical potential of

component i in the surroundings (dN; > 0) or in the system (dN; < 0), defined as follows



,Ui = Ui - TSl Eq. 5

The differential form of 4, will be discussed later when d;;,S is defined.

In the last part of Eq. 4, Y® denotes the potentials, i.e., T, —P and L5 and X denotes the molar

quantities or extensive quantities, i.e., S, V and N;.* Y% and X% form a conjugate pair of
variables. It should be emphasized that both dV and dN; in Eq. 4 refer to the changes that the
surroundings imposes on the system, while dS further contains the contributions from /Ps inside
the system as shown by Eq. 3. The works due to elastic/plastic/magnetic/electric fields can be

added when needed, and they will be briefly discussed later in this section.!!-1

It is worth noting that Gibbs ! derived the combined law for a closed system at equilibrium (see
Egs. 11 and 12 on page 63 in ref. !), i.e.
dU = TdS — PdV Eq. 6

and then introduced the chemical potential by considering the exchange of mass between the
system and the surroundings. This approach is commonly used in the literature, e.g. Eqs. 1.49
and 3.1 in the book by Hillert® though the amount of matter was introduced in Eq. 1.7, but not
individual components. From the above derivations, it can be seen that it is important to start the
first law for an open system, Eq. 1, and introduce the entropy change of the system with all
contributions, Eq. 3, so that the chemical potential is defined naturally by Eq. 5.%!° Hopefully,
this procedure can help to enhance the clarity and significance on the definition of chemical
potential and that the entropy includes the production by internal processes when the system is
not at equilibrium. The latter is important when thermodynamics is applied to nonequilibrium

states as shown in the latter part of this paper.



When a system is at equilibrium, the second law stipulates that there are no /Ps that can produce
entropy, i.e., Td;,S = 0. Eq. 4 thus reduces to

dU = TdS — PdV + Z wdN; = Z yedx® Eq. 7
with X% as the independent variables of the internal energy, called nature variables of internal
energy as they are defined naturally by the combined law, i.e. U(X%), and all the potentials are
also the function of X4, i.e., Yi(X @). This is the equation in the work by Gibbs I'and in most

textbooks on thermodynamics. It needs to be emphasized again that Eq. 7 is for systems at

equilibrium only, and the internal variables depend on the external variables.

2.2. Non-equilibrium systems and internal variables

For a system not at equilibrium, there are possible spontaneous /Ps that can result in entropy
production in the system. For the sake of simplicity, let us consider one /P in the system at the
moment, and discussions with more IPs can be found in the literature.?® For one IP, an internal
variable, £, is introduced to define the internal state, and the entropy production due to the
change of the internal variable in terms of the Taylor expansion to the third order is written as
follows °

1 1 .
TdyS = Dd&—5D,(d9? +=D(d2)? Eq. 8

where D is the driving force for the /P, d ¢ the change of the internal variable that represents the
IP’s progress, and D, and D are related to the stability and criticality of the IP.'° It is evident
that there are two possibilities for equilibrium, i.e. D < 0 which will make d& = 0 at the same

time, or D > 0 and d& = 0. The former is called full equilibrium or simply equilibrium, and the



latter is referred as constrained equilibrium or frozen in equilibrium in which some /Ps with D >
0 are prohibited to take place.* D = 0 denotes a smooth equilibrium of which the driving force,

and & can be evaluated by the first derivative as shown below.3

The combined law of thermodynamics, Eq. 4, can be re-written as follows:

1 1 .
U =ZY“dX“ — DA+ D,(d8)? — 2Dy (d)? Eq. 9

The internal energy and all properties are a function of both X% and &, i.e. U(X%, &), Y{(X4, d),
and D; (X%, &), with & as an independent variable for nonequilibrium states. An equilibrium state

is reached by solving the value of internal variable & so that

U :
b [_ _o Eq. 10
&l

At equilibrium with D = 0, &is thus no longer an independent variable and becomes a variable
dependent on X®. Consequently, the internal energy, U(X?), reaches its extreme with all X¢
kept constant, i.e. no exchange of X between the system and the surroundings, and all the

potentials, Y%, are homogeneous in the system.>*

The stability of an equilibrium state is determined by the sign of D, written as

o |2 _[2v
2 [E] - [aomz

when the transfer of X? between two places in the system is considered. The equilibrium state is

x|,

~ [ayb] Eq. 11

Xa

stable when D, > 0 and unstable when D, < 0. At D, = 0, the system is at the limit of stability.
Furthermore, when D = D, = D5 = 0, the system reaches a critical point between the

homogenous and inhomogeneous states. It is to be noted that we have not differentiated the

10



stable vs metastable equilibrium states so far because they are determined by relative values of U

at various states with their signs of D, being positive.

The potentials, Y4, are defined by the first derivatives of internal energy to X¢ with all other

extensive variables and & kept constant. Particularly the chemical potential is defined as>®

_[9U Eq. 12
~ lan;

VSVNjzig

Hi

Both Eq. 2 and Eq. 12 are the partial derivative of internal enery with respec to component i,
but with different variables kept constant. Eq. 2 represented an adiabatic system, while Eq. 12
is for a system with constant entropy defined by Eq. 3, both with no work exchage and close to
all components except the component { with the surroundings. From Eq. 3, one can see that
since S; > 0, dQ is not zero and has the opposite sign of dN; for an equilibrium system with
d;»S = 0. Therefore, the system represented by Eq. 12 must exchange heat with the
surroundings, and the amount of heat exchanged can be calculated from Eq. 3 as follows with
ds =0,

dQ = TS,dN; Eq. 13
It is evident that the system represented by Eq. 12 under constant entropy is different from the

adiabatic system represented by Eq. 2, resulting in Eq. 2 and Eq. 12 differing by T'S;.

It should be emphasized that for nonequilbrium states with D > 0 for some IPs, &is an
independent variable, and S includes the contribution from internal entropy production. Since
entropy and volume can not be controled easily in experiments, several new energy functions are

defined through Lagrange transformation, such as enthaly, Helhomtz energy, and Gibbs
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energy.' The form of the combined law of thermodynamics in terms of the most widely used
Gibbs energy, G = U — TS + PV, is written as

1 1 .
dG = —SdT + VdP + ZuidNi — Ddg+5D,(d2)* — 2 Dy(dD? Eq. 14

The nature variables of Gibbs energy are T, P, N;, and &, i.e., G(T, P, N;, £), and the chemical

potential of a component is defined as

_[96 Eq. 15
~ lan;

YITPNjzi&

i

The differences in the expressions for chemical potential in Eq. 12 and Eq. 15 originate from
how the system interacts with the surroundings, i.e. an isentropic, isovolumetric system vs an
isothermal, isobaric system, both open to component i only. At equilibrium with D = 0, the

Gibbs energy is minimized for an isothermal, isobaric, and closed system, resulting in the

homogeneou chemical potential for each component in the system. The previous discussions on

instability and criticality in terms of D, D,, and D5 apply the same here. The Gibbs energy is
widely used because its natural variables, T, P, and N;, are the variables usually controlled in

experiments.

Eq. 15 becomes more complicated when the Gibbs energy is normalized to per mole of atoms,

i.e. G, = G/ Y. Ny, where G,, is a function of mole fractions defined as x; = N;/ Y. Nj,. While all

N;:s are independent, but x;:s are not due to ). x; = 1. Consequently, Eq. 15 becomes 3

Z [aGm Eq. 16
) x ==
c dx,,

TPXjzks

ac;m]

TP Xjzi,
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It is important to note that the derivatives in Eq. 16 is taken under the condition that all x;:s are
treated as independent variables. Alternatively, one can use x; = 1 — Y;{_, X; to remove the

mole fraction of component 1 from Eq. 16 so the rest mole fractions are independent variables.?

2.3. Equilibrium systems and secondary derivatives of free energy

Based on the above discussion, it is evident that the reason that thermodynamics is commonly
considered for applications to equilibrium systems only is that the internal variable, & becomes a
dependent variable for an equilibrium state. The value of &is obtained by the minimization of
Gibbs energy of the system, thus removed from Eq. 14, which results in the Gibbs energy as a
function of T, P, and N;. This is the following combined law of thermodynamics in almost all

textbooks on thermodynamics, applicable to systems at equilibrium only

dG = —SdT + VdP + Z LdN, Eq. 17

In addition to molar Gibbs energy and mole fraction, G,, and x;, one can also introduce molar
entropy, Sp,, molar volume, V,,, and their partial quantities, S; and V; by Eq. 16.3 In the rest of
the paper, the molar quantities and extensive variables are sometime used interchangeably. The
key to make use the complete thermodynamics, covering both equilibrium and nonequilibrium
states of a system, is to include internal variables as independent variables of the Gibbs energy so
D, D,, and D5 can be evaluated to study stability, instability, and criticality of the system. It is
worth noting that, in complex nonequilibrium systems, there can be multiple /Ps and many
interactions between IPs,!? resulting in the formation of dissipative structures,'® which will not

be discussed in details in the present paper, but briefly mentioned in Sections 5.3 and 5.6.
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The combined law of thermodynamics with elastic, electric, and magnetic fields can be written

as follows for an equilibrium system’

dU = TdS — VZ oy der — VZ E;dD; — VZ 7,dB; + Z wdN; = Z Yedxe Egq. 18

where i, ], k,l = 1,2,3,V is the volume, g; ; and g are the components of stress and strain, E;

and D; are the components of electric field and electric displacement, H; and B; are the
components of magnetic field and magnetic induction. It is to be reminded that by convention
Y@ represents T, —o;j, —Ej, and —H;. The negative sign is that the decrease of the system
volume increases the internal energy of the system as the system receives energy from the
surroundings, the same as in the case of pressure shown in Eq. 4. It is noted that the positive
sign is also used in the literature depending on the definition of strain, magnetic induction and
electric displacement.!? The first partial derivatives of internal energy with respect to its natural
variables give its conjugate variables. The second partial derivatives with respect to the same
natural variable result in a set of physical properties which must be positive for a stable system
based on the stability condition represented by Eq. 11. The second partial derivatives with
respect to a different natural variable denote many other physical properties, though their sign is
not pre-determined by the combined law of thermodynamics, but some constraints can be

derived, which will be discussed in a separate paper.

In typical experiments, most potentials are controlled except chemical potentials, which is the

reason that Gibbs energy with temperature and pressure as natural variables is widely used.
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Consequently, one may define a new free energy and its combined law of thermodynamics from

Eq. 18 as follows

¢>=U—TS+VZaijekl+VZE}.D].+VZ}[].B]. Eq. 19

d® = —SdT + VZ eudoy; + VZ D,dE; + VZ B;dH; + Z wdN, Egq. 20

Table 1 lists various physical properties derived from the derivatives of the conjugate variables
(first column) with respect to the natural variables (first row) of @. These properties are related
to the second derivatives of @ with respect to its natural variables from ref. ° The last column
and last row are newly added in the present paper and will be discussed in next paragraph. The
table is symmetric due to the Maxwell relations with the negative sign for all entropy derivatives
in the present sign convention of Eq. 18 and Eq. 20. The diagonal quantities, including those in
tensors that can be further expanded with more quantities such as those shown in Eq. 54, are
well known physical quantities and all positive for a stable system and approach zero at the limit
of stability as shown by Eq. 11. The off-diagonal terms, including those in tensors, are first
derivatives of two non-conjugate variables, i.e. the second derivatives of @ with respect to two
different natural variables, and give another set of physical properties. These properties
represented by the off-diagonal terms are not prescribed to be positive from the combined law of
thermodynamics and thus can become negative under certain conditions such as thermal

expansion discussed in Section 5.3.%7

It is interesting to see that the piezocaloric effect is the same as thermal expansion and can be

. . . as .
negative t00.!%!° Under hydrostatic pressure, it is (— 5) and does not have a dedicated name
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in the literature. It is related to heat transport under pressure and equals to thermal expansion. It
is assigned the term “compress heat” in the present paper because increasing pressure reduces
the entropy of a system with positive thermal expansion, thus releasing heat to the surroundings.
It is interesting to note that the entropy increases with the increase of pressure for a system with
negative thermal expansion as discussed in Section 5.3.1, connecting the volume that is easier to

measure experimentally with the entropy that is easier to predict based on statistical mechanics.

The quantities in the last row and last column with their tentative names assigned in italic are
worth further discussions. They are the second derivatives of free energy with respect to one
extensive variable and one potential, while other quantities in the Table are with respect to two
potentials, and it is hard to find any discussion of them in the literature. These quantities are
related to the transport properties and discussed in Section 5.5. It shows that the chemical
potential to temperature derivative is related to the partial entropy. This inspired us to consider
the Seebeck coefficient, which represents the potency of electron migration under temperature
gradient and equals to partial entropy of electrons (see the details discussed in Section 5.5.2). By
the same token, one can define other transport properties in terms of the derivative of chemical
potential of a species, including electrons, as follows

ow  9Pd(YS,N) 0X® Eq. 21

aya _ ayeaN, _ aN, M

where Xy denotes the partial molar quantity of X*. It is worth noting that Eq. 21 provides a

significant and important approach for predicting transport properties as briefly discussed in
Section 5.5.3 and can be generalized as follows

Y’ 9%y, x") ox° Eq. 22

aye —  Qyegxb =~ gx°b
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where the free energy, @ (Y%, X b), has Y% and X? as its natural variables with other natural

variables being either potentials or molar quantities depending on experimental conditions.

Table 1. Physical quantities related to the first directives of conjugate variables (first

column) to natural variables (first row) of @, symmetric due to the Maxwell relations with

the negative sign for all entropy derivatives %!’
T, temperature Oy, Stress Ey, electric field H i, magnetic field | N, moles
S, entropy % heat capacity Qyy, piezocaloric | py, electrocaloric my,, magnetocaloric ;TS = Sy, partial
k
effect effect effect
entropy
&), strain a@;;j, thermal Sijki» €lastic Q;ji, converse Qijk> Piezomagnetic g partial strain
ANy’
expansion compliance piezoelectricity moduli
D;, electric pi, pyroelectric Akl piezoelectric | kjp, permittivity bik, %, partial electric
k
displacement coefficients moduli magnetoelectric .
displacement
coefficient
B;, magnetic m;, pyromagnetic | Gy, bik, Uik, permeability :1’31' , partial
k
induction coefficient piezomagnetic magnetoelectric o .
magnetic induction
moduli coefficient
i au; oy Ay . A . au; .
My, chemical 2 thermal 2R stress ZH electric I magnetic B thermodynamic
aT 9oy OEy OHy ONj
potential . . . . X
transport transport migration migration factor

2.4. Phases and configurations

24.1.

Definition of phases, Gibbs-Duhem equation, and Gibbs phase rule

The discipline of materials science and engineering primarily concerns microstructures in

materials which are composed of individual phases, defects in individual phases, and interfaces

between phases and grains, which can all be considered as internal variables. The internal
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variables of a phase include the lattice structures in terms of lattice configuration and atomic
configurations in terms of lattice site occupancies by atoms which further includes the spin
structures in terms of magnetic and polar configurations and the atomic short- and long-range
ordering, and defects such as vacancy, dislocations, twins, and stacking faults. Each set of
internal variables defines a specific configuration, and the statistical combinations of all

configurations define what are usually referred to as a phase.

Considering a homogeneous system at equilibrium, i.e., a classical definition of a phase when all
internal variables are dependent variables, the integration of Eq. 7 in combination with the

definition of Gibbs energy gives
G=U—TS+PV=ZuiNL- Eq. 23
In a space composed of U, S, V, and N;, a phase can be defined by a hyper surface with all the
independent variables being extensive variables. The partial or directional derivatives of U to S,
V, and N; give the potentials of T, —P, and y;, respectively, resulting in that all phases at
equilibrium with each other have the same partial derivatives, i.e. the directional slopes of the
hyper surface. While in a space composed of G, T, —P, and N;, the partial derivatives of G are a
mixture of extensive variables and potentials, i.e. S, V, and y;, resulting in that the equal Gibbs
energy for phases at equilibrium with respect to the potential axes of T and —P , while the same

partial derivatives of Gibbs energy with respect to the axes of extensive variable, N;, which does

make the equilibrium construction more complicated.?”
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What happens if all the extensive variables are replaced by their conjugate potentials in the
combined law of thermodynamics? By differentiating Eq. 23, i.e.
4G = ) GudN; + Nedy) Eq. 24

It is worth mentioning that the differential of chemical potential, dy;, is because y; is a function
of all the natural variables of G even though p; is not independent variables of ¢G. Combining Eq.
17 and Eq. 24, one obtains the Gibbs-Duhem equation at equilibrium as follows

~SdT = Vd(=P) = ) Nidp; = 0 Eq. 25
This equation implies that the changes of all potentials in a phase at equilibrium are not
independent. Consequently, a phase can be defined by a hyper surface in the space composed of
potentials only, T, —P, and p;, and Eq. 25 depicts that the hyper surface is concave with all

partial derivatives of the hyper surface being negative, i.e.

v’ X Eq. 26
avel . x° <0

It should be emphasized that Eq. 26 is different from Eq. 21 and Eq. 22, as they represent

different characteristic functions with different natural variables, @1 and @5, as follows
dd, (X%, YP,Y¢) = YedX® — XPdy? _ZXchc Eq. 27
dd, (Y2, Y2, YC) = d[®, (X%, Y?,Y¢) — X2Y%] = —X%dY® — XPdY? — ZXCdYC =0 Eq. 28
where @1 (X% Y?,Y€) is for Eq. 21 with X* = N, and @, (Y%, Y”,Y°) = constant for Eq. 26.
Furthermore, Eq. 21 and Eq. 22 can be used for non-equilibrium systems with & being

independent variables and d& = 0, while Eq. 26 is for systems at equilibrium only with &being

dependent variables and D = 0.

19



A two-phase equilibrium is reached when two hyper surfaces in the space composed of only
potentials intercept each other so each potential has the same value in both phases, resulting in a
hyper line, and so on. This exercise results in the Gibbs phase rule as follows

v=c+2-p Eq. 29
where v is the number of potentials that can be changed independently without changing the
number of phases in equilibrium, denoted by p, in a system with ¢ independent components.
The number “2” denote T and P and will change if more potentials are added such as electric and

magnetic fields.

2.4.2.  Introduction of configurations and configurational entropy

The definition of phase in the above discussion becomes somewhat ambiguous when the system
is near a critical point which is a zero-dimension point in the space composed of potentials (see
discussions in Section 2.2). A critical point separates a macroscopically homogenous single
phase on one side and a macroscopically inhomogeneous mixture of multiple phases on the other
side. When the system shifts infinitesimally away from the critical point to either side of the
critical point, one can imagine that all phases must be very similar to each other and are formed
from the same set of configurations or building blocks but with slightly different amount of each
configuration.?!?? The entropy due to the mixture of those configurations in the phase based on

statistical mechanics by Gibbs?? can be written as follows %23

m Eq. 30
Sconf — _kB Z pklnpk
k=1
AN A Eq. 31
P77 30
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where kp is the Boltzmann constant, p* and Z* are the probability and partition function of
configuration k, respectively, and Z is the partition function of the phase, i.e. the summation of
the partition function of all configurations. Both equations can be written in the integration form
when the distribution is continuous. The superscript for configurations is used here to
differentiate the subscript for components. We called this approach “partition function”

10,24-27

approach in our previous publications. The total entropy of the phase is thus

S = Z pksk 4 seonf = Z pk(S* — kylnp®) Eq. 32

where S¥ is the entropy of configuration k, which is composed of sub-configurations such as

thermal electrons and phonons computed in the similar fashion as Eq. 30.2%%° From the energy
point of view, one of the unique configurations must have the lowest energy though potentially
with multiplicity or degeneracy based on certain criterion such symmetry or energy, designated

as the ground configuration, g, with a partition function of Z9, and Eq. 31 can thus be re-written

as
P9 = 1 . Eq. 33
1+ 3., 21/29
k
I Eq. 34
1+%,,,2//29  ~ 29

In the classic view of a phase with all p*/p9 = Z¥ /Z9 ~ 0, the phase is practically composed of
the ground configuration only with p9 ~ 1, and S®” = 0. The other extreme is that all
configurations have the same probability, i.e. all degenerated, and are in equilibrium with each
other, i.e. Z¥/Z9 = 1/, with Qbeing the number of the degenerated configuration, and the
probability of each configuration is the inverse of (2, which results in the following well known

form of configurational entropy
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. Eq. 35

1
P"=0

s = kpolnQ Eq. 36

The most common example is an ideal solution used in all textbooks. In an ideal solution, each
atomic configuration is assumed to have the same energy and symmetry and thus the same

probability, resulting in the following ideal configurational entropy in per mole of atoms
Sconf — _RZ xilnxi Eq. 37

where x; = N;/ Y. N is the mole fraction of independent component i, and R the gas constant.

3. Thermodynamic modeling

To make use of thermodynamics efficiently for multicomponent systems, the analytical
mathematical models of Gibbs energy as a function of its natural variables, i.e. G(T, P, N;, £), are
needed. The most commonly used modeling approach in thermodynamics is the CALPHAD
method, which stands for CALculation of PHAse Diagram pioneered by Kaufman. 33! In the
CALPHAD method,*>*3 the Gibbs energy of each phase, typically defined by its lattice structure
and/or atomic long-range ordering, is modeled in the space of its natural variables, T, —P, N;,
and & The usual internal variables are the spin configuration and atomic short- and/or long-
range ordering. The commonly used mathematical model for solid solution phases in the
CALPHAD community is based on the compound energy formalism (CEF) built on the

sublattices of a lattice structure in terms of its Wyckoff positions.3*3

3.1. Phases with one sublattice and third law of thermodynamics
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For solution phases with one type of Wyckoff position, the molar Gibbs energy of phase a, G5,
is written as
GE = Z XFOGE + RTZ X Inx® + *GE Eq. 38
0GE = OfE _ TO5A Eq. 39
where °G{, °H{, and °S{* are the Gibbs energy, enthalpy, and entropy of pure component i in
the structure of phase Q, respectively, and **G,} the non-ideal, excess Gibbs energy of mixing.
The commonly used reference state for each component is the enthalpy of the component in its
stable structure at room temperature and one atmospheric pressure and the entropy at OK as
follows:
°HFER (298 K, 1atm) = 0 Eq. 40
which is called the stable element reference (SER) state. The reference state of entropy is given

by the third law of thermodynamics, i.e. the entropy of the element equals to zero at 0K

°S;(0K,1latm) =0 Eq. 41

Several models for ®*GZ are available in the literature 323 with one commonly used being the
Muggianu extension® of the Redlich-Kister formalism3’ (MRK) due to its symmetrical

characteristics when applied to multicomponent systems as follows
k
G =D xfaf ) S (- Y xEafLy, Eq. 42
i<j k i<j<li
where kL‘l?f j is the kt" order of binary interaction parameters between components i and j, which

can be temperature dependent, and L j,1 the ternary interaction parameter among components , j,

and [, which can be both temperature and composition dependent. For solution phases with

strong short-range ordering, the quasichemical model®® describes the entropy of mixing more
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accurately by considering the differences in various bonding energies, while the associate
model® assumes the explicit formation of various complex species. Both the bond probability

and the amounts of associates in the above models are all part of internal variables, &.

One significant issue in Eq. 38 is when the pure component i is not stable in the structure of
phase 0, and °G{* is thus not known or difficult to obtain from experiments. Kaufman*’
examined this and introduced the concept of “lattice stability” to represent the energy difference
between the stable and non-stable structures of pure component i and estimated their values
through various extrapolation schemes.*! For example, the Gibbs energy of W in the fcc
structure is written as

OGJVCC = ogbee + AanfVcc—bcc Eq. 43
where AOGV{,CC_bCC is termed as “lattice stability”. The concept of the lattice stability formed the
foundation of the CALPHAD modeling.3! Theoretical predictions of lattice stability have been

4147 and further

pursued along the way with significant progresses made in recent years,
improvements may be made using the concept of configurations discussed above for the

instability of non-ground structures of pure elements.*

3.2. Phases with more than one sublattices

For solid phases with multiple sets of Wyckoff positions or interstitial sites, each set can be
treated as one sublattice in the CEF modeling approach, such as (Fe, Cr);C with one sublattice
for Fe and Cr and another sublattice for C. The internal variables are defined by the mole

fractions in each sublattice, called site fraction, i.e., yit for the mole fraction of component i in
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sublattice t with }}; vf = 1. The mole fraction of component i in the phase is computed as

follows

Z aty! /Z Eq. 4

where at is the number of sites of the sublattice t. The corresponding ideal entropy of mixing in

per mole of formula (mf) with Y, a® mole of components, i.e. Eq. 37, becomes

conf _ _RZ Z yfln(yl Eq. 45

The Gibbs energy of such a phase is written as follows
19G&, | +RT ) a' ) yliny! + <Gy,
Yi Yithy; mf
t 7
Eq. 47
exGmf = Z 1_[ YLSZZ,YityJFLg,j;z +Z 1_[ J’lsz Z Z yltthYIgLE,j,k:l q
t Ls#t <] Jj t Ls#t i<j j<k
# 2l L 2 2 2 PP
ls:(tu) i<j Jj<k

where °GZ,, is the Gibbs energy of an endmember (em) with only one component in each

Eq. 46

sublattice such as Fe3C and Cr3C in (Fe, Cr);C, playing the same role as the pure element in Eq.
38; Lﬁ' ju represents the binary interaction between components / and j in sublattice ¢ with other
sublattices containing only one component each, denoted by [; L§ j k1 the ternary interaction
among components , j and k in sublattice ¢ with other sublattices containing only one component

each, denoted by [; and L%* , the reciprocal interaction among components i and j in

i,jmn:
sublattice ¢t and components m and n in sublattice u with other sublattices containing only one
component each, denoted by [, which is used to describe short-ranging ordering among

components i, j, m, and n between the two sublattices, noting that m and n can be the same

components as i and j for an ordering-disordering transition.*® The sublattice model has also
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been used to model ionic phases including both ionic liquid and solid phases with the additional

constraints on charge neutrality.**-?

3.3. Phases with magnetic polarization
The CALPHAD model of the magnetic Gibbs energy was based on the work by Inden’*>3 and
revised by Hillert and Jarl>® for ferromagnetic materials as a function of temperature with the
second-order magnetic transition temperature and magnetic moments as a function of
composition. This model was extended by Hertzman and Sundman®’ to the systems with
ferromagnetism (FM) on one side and antiferromagnetism (AFM) on the other side such as the
Fe-Cr system, which was further revised by Chen and Sundman’® and Xiong et al.>® The latest
revision of the magnetic model is shown in the following equations

Gm® = RTg(m)In(1 + B) Eq. 48
where f is the magnetic moment of the phase, T = T /T, with T, being the critical temperature, i.e.
Curie temperature for FM to paramagnetic (PM) transition and Neel temperature for AFM to PM
transition, and g (t) a function describing the discontinuity of heat capacity above and below T as

follows for phases with one sublattice model

To= Y x0Tei+ T, Eq. 45
. Eq. 50
146 =] [6+ve q
0 0 Eq. 51
Bi=xB+ ) 5B, + B, q
0, <0 Eq. 52

go)={ 1-5[0.38438376 2 +063570895(1-1) (¥ + f5 + dp + o17) |, 0<7<1

L=y =0Ty 4 =95 § W --45
oGt T M T gt Y), 1>1
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D =0.33471979+0.49649686 Gj-]) Eq. 53

where °T; and °B; are the critical temperature and magnetic moment of pure i, ®*T, and ®*f;
represent the non-ideal interaction which can be modeled using the MKS formalism by Eq. 42,
°B; j 1 the magnetic moment of i in pure j, p is the fraction of the total disordering enthalpy
absorbed above the critical temperature, given as 0.28 for fcc and hcp metals and 0.40 for bee
metals, respectively. In the model by Hillert and Jarl*%, the MKS model was directly applied to
B, which resulted in some challenges in modeling of systems where two elements have different
magnetic ordering such as FM for Fe and AFM for Cr in the Fe-Cr system.’’~% Xiong et al.>
further proposed Eq. 50 and two separate equations for AFM and FM in the form of Eq. 49, and
at the same time pointed out the limitation of the revised model when a system experiences a
transition between AFM and FM states as a function of temperature.®®®! Therefore, more works

are needed in further improving the magnetic model in the CALPHAD approach.

As expected, theoretic prediction of Gibbs energy of a magnetic phase as a function of
temperature has progressed, including the quantum Heisenberg model within many-body theory

62-64 our recent approach based on

using the mean-field and random-phase approximation,
statistical mixture of distinct magnetic spin configurations with the entropy shown by Eq. 32, 25~
27.65.66 and the cluster expansions and Monte Carlo simulations in terms of both atomic
disordering and magnetic spin disordering have also demonstrated its potential applicability to

binary and ternary systems.®’% The theoretic predictions serve as input data for CALPHAD

modeling presented above.”’
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3.4. Phases with electric polarization

Phases with electric polarization are dominated by ferrielectric materials with PbTiO3 being one
prototype which is a cubic perovskite structure at high temperatures and transitions to a
tetragonal perovskite structure with ferroelectricity at 760 K through a second order phase
transition.”'~7* Their thermodynamic modeling is largely based on the work by Cross and co-
workers led by Haun 7377 in terms of phenomenological Landau-Ginsburg-Devonshire
formalism 7® with the internal variables including ferroelectric and antiferroelectric polarizations
and oxygen octahedral tilt angel plus strain in a sixth-order polynomial.”” The unpolarized and
unstrained crystal, which is the stable structure at high temperature, is used as the reference state,
and the crystal symmetry is often taken into account to remove some terms, e.g. with odd terms
for a phase being centrosymmetrical.”® The Landau coefficients of common ferroelectric phases
were compiled by Chen.8? One of the drawback using the unpolarized and unstrained crystal
stable at high temperatures is that this crystal is unstable at zero K, and its properties cannot be

predicted theoretically due to the instability as discussed in Section 5.3.

Since the strain is considered as the independent variable, Helmholtz energy is modeled instead

of Gibbs energy with the following equation®

1 1 1
F(e, P) = 50s; P:P; + 3Bk PP+ 3% PP PR Eg. 54
1 1
+35Uklm P:P; P By Py, + Ew‘uumuP.'PJ BBP.,.P,
1 1
+5CikIEiEkL — a;;k€i; P — §Q.jklf.,PkP1 + .-,

where P;:s are the electric polarizations in various directions, @;;, ,Bi].k, Yijr dijkim, and ®jjkimn are

the phenomenological Landau coefficients, and c;j;, a;j, and qyjp Are the elastic, piezoelectric,

and electrostrictive constant tensors (see Table 1 except Dijir involving the third derivative of the
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free energy as shown below), respectively. The Landau coefficients can be modeled as a
function of compositions®! and in principle also as a function of temperature and are related to
the derivatives of the free energy. For example, from Eq. 54, it seems that the following relation

exists among the coefficients'?

day, 3d Eq. 55
aO'ij 60ij6Ek6El

Qijkl = —

In comparison with the modeling of magnetic polarization in Section 3.3, it is evident to see that
coefficients and the tensors need to be modeled as a function of temperatures and compositions
as it was done for elastic tensors.?? Their modeling remains future opportunities for the
CALPHAD community to develop such modeling approaches. Furthermore, since the energy
differences between various configurations are relatively small, the author anticipates that the
modeling of configurations can play significant roles for ferroelectric materials.”* Theoretical
prediction based on the ferroelectric effective Hamiltonian can also provide finite-temperature

thermodynamic properties through Monte Carlo simulations.33-87

3.5. Polymer solutions

A polymer molecule consists of the same repeating units of one or more monomers such as a
DNA (Deoxyribonucleic acid), which can be an atom or a small molecule. The number of
repeating units can be as large as 10*-10° with variable molecular mass. Gibbs energy functions
of polymers with a single molecular mass can be treated similarly as in previous sections. The
mixtures of different polymer molecules are often called polymer blends or polymer solutions

when one of them has only one or a few repeating units, which will all be called polymer
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solutions here. There are three typical architectures of polymerization: a linear chain, a branched
chain, and a cross-linked polymer. Nearly all polymers are mixtures of molecules with a
different degree of polymerization, i.e. repeating units, with a molecular mass distribution,
complicating the modeling of their thermodynamic properties because of the dependence of

properties on molecular mass.

The ideal entropy of mixing in a polymer solution is quite different from that of atomically
random solutions because the monomers in a polymer molecule are connected to each other and
cannot move freely. One common approach to calculate the ideal entropy of a polymer solution
is to evoke a lattice model and assume that one monomer occupies a lattice site with a fixed
volume. The number of translational states of a single molecule is equal to the number of lattice
sites available. The ideal mixing entropy of a solution in per mole of lattice sites can be written

as’

¢, Eq. 56
S, = —R Zi#iln@

where m; and ¢, are the number of lattice sites per molecule i and the volume fraction of

molecule i in the solution, respectively.

Gibbs energy of a multicomponent random polymer solution can be written as

Gy = Z :;l;’l 9G;m + RT <Z %’l Ing, + Z ¢i¢jxij> Eq. 57
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where °G;,, is the Gibbs energy of molecular i per mole of lattice site, and Xij the unitless

interaction parameter between molecule i and j. Eq. 57 is similar to the Flory—Huggins solution

equations.®8-8?

More thermodynamic modeling approaches for liquid-liquid and liquid-vapor equilibria
nonelectrolyte including polymer solutions were developed almost in parallel with the
CALPHAD method, with the UNIversal QUAsiChemical (UNIQUAC) model *° being one of the
major models. The UNIQUAC model generalizes the Guggenheim’s quasi-chemical analysis
through introduction of the local area fraction as the primary concentration variable and can
reduce to several well-known equations with well-defined simplifying assumptions, including
the Wilson °! and Non-Random Two-Liquid (NRTL) °> models. In the UNIQUAC model, the
effects of molecular size and shape are introduced through structural parameters obtained from
pure-component data and the use of Staverman’s combinatorial entropy 3, which extends the

Flory-Huggins model discussed above to include molecules containing rings and crosslinks.

Different from the CALPHAD method, the UNIQUAC approach models the expression of the
molar excess Gibbs energy with the activity coefficient analytically derived from the partial
derivative of total excess Gibbs energy with respect to the component, which is prone to errors.
Recently, Li et al. ** re-cast the UNIQUAC model in the CALPHAD framework and
implemented it in OpenCalphad,®® aiming for better equilibrium calculations than existing
computational implementations of the UNIQUAC model in the literature and the exchange of
ideas and experiences between the CALPHAD and UNIQUAC communities.”>% The
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UNIQUAC model is represented in the CALPHAD nomenclature with combinatorial, ™?G,p,,

and residual, "®5G,,,, contributions as follows

G = Z x; (°G; + RTInx,) + ™G,y + 7%5G,, Eq. 58
b, z o, Eq. 59
ambg = RTZ X lnx—; + EZ X qilnali
resGm — _RTZ x; Qzlnpi Eq. 60
®; = TiXi Eq. 61
215 %;
R L Eq. 62
XL
Eq. 63
pi = Z 0;7j; 1
Wii Eq. 64
= e () 4

where g; and x; are a surface-area and a volume parameter of constituent i, respectively, z is the
average number of nearest neighbors of a constituent, always assumed to be 10, and wj; # wy;

are the model parameters.

Calculations of thermodynamic properties and phase diagrams for binary, ternary, and
quaternary systems among water, 2,2,4-trimethylpentane, acetonitrile, aniline, benzene,
methylcyclopentane, n-heptane, n-hexane, and n-octane. Furthermore, the evaluation of model
parameters of the acetonitrile-benzene-n-heptane ternary system is demonstrated and compared
with the modeling and experimental results in the literature. It was found that the parameters in
the acetonitrile-benzene and the benzene-n-heptane binary systems are substantially different
from those in the literature, with the new modeling showing similar agreement on activity
coefficients, but better agreement on excess enthalpies when compared with experimental data.
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It is anticipated that the new modeling capability will enhance the modeling of multicomponent

polymer solutions.

3.6. Phases with defects

Defects play significant roles in determining the properties of materials. Defects in a phase
include vacancy, dislocation, twin, and stacking fault, and defects between phases include grain
boundary and phase interfaces. For materials with small sizes, surface can be important and may
be considered as a defect due to the structure and property differences from those of the bulk. It
is important to realize that the defects alter both lattice and atomic configurations through lattice
distortions and elemental redistributions such as segregations. As defects can form a range of
configurations, the “partition function” approach discussed in Section 2.4.2 can be used to

calculate their probability of various metastable configurations in the phase.

The formation of defects usually requires additional energy as a penalty, but at the same time
increases the entropy of the phase by introducing disorder to stabilize the defects. The
competition between formation energy, entropy, and segregation can sometimes result in
thermodynamically stable configurations of defects in a phase or even become a separate phase
by itself such as the long period structure order (LPSO) in Mg alloys (see further discussion in
Section 3.6.3). This competition can be described by three contributions: the amounts of defects,
dnp, segregation to the defects, dn;, and configurational entropy due to the defects with the

combined law under constant P and N; as follows

dG = Z peonS {GanD + Z(#LP - “ani} _ Sgonde Eq. 65
conf
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where the summation with conf is for various defect configurations with probability of p<°™f, G,
is the Gibbs energy of formation per defect, u” and y; are the chemical potentials of component
i at the defect and in the interior away from the defects, all for one configuration, and S [C,onf the
configurational entropy by Eq. 30 for various defect configurations, respectively. When u? #
ui, the component i will segregate or de-segregate to the defect to reduce the energy of the

system. Eq. 65 was first formulated for the thermodynamics of nanograins for a given defect

configuration, i.e. grain structure without S ;onf , which illustrates that nanograins can be

thermodynamically stable when the two internal processes are coupled to give dG = 0.7 It is
plausible that the same approach can be applied to stabilized other defects through segregations
98,99

due to the strong binding energy between elements and defects such as oxygen and vacancy.

Some common defects are discussed in following sections.

3.6.1. Vacancy

Modeling of vacancy is not only important to thermodynamics, but also essential to kinetics of
vacancy-mediated diffusion.'® In the CALPHAD modeling, the vacancy is treated as a non-
conserved component in the compound energy formalism as shown in Eq. 38 and Eq. 46, in
which the Gibbs energy of vacancy, °Gy,, needs to be defined first before the interaction
parameters with other components are evaluated. It is evident that the amount of vacancy is not
controlled from the surroundings, but internally determined by the system, thus an internal
variable, £ Furthermore, vacancies can group to form divacancy and trivacancy clusters,
resulting in more internal variables. Therefore, the amounts of vacancy and vacancy clusters are

internal variables of the system, np in Eq. 65.
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Various values were suggested in the literature for °Gy,. The most intuitive one is zero 101-1%4)
since the vacancy-endmember is “nothing”. Other choices include RTIn10 ' and 30T J/mol.
33,106,107 A more recent work !9 analyzed previous results and found that the behavior of the
model is very sensitive to the value of °G,, through numerical simulations. When °Gy,, is zero
or negative, there is no equilibrium state at the vacancy-lean side. When °Gy,, is positive but
below a critical value, there are multiple equilibrium states. When °Gy,, exceeds this critical
value, there is one unique solution associated with the equilibrium vacancy concentration. Based
on these observations, it was concluded that °Gy,, should be larger than a critical value, (In2 —
1/2)RT, to ensure a unique equilibrium state. Moreover, it was often mentioned that °Gy,, is
just a formal parameter without any physical meaning. Another work '°7 also noticed the
problems caused by a zero or negative °Gy,. In practice this problem is solved with part of the

Gibbs energy of formation of vacancies in a unary system coupled with the interaction

parameter.'®®

We presented a physical model to enable a unified thermodynamic treatment of the vacancy-
bearing solid and the gas, i.e. the vapor of the solid, for CALPHAD modeling.!'® The model
parameters are related to quantities that can be calculated by first-principles or measured
experimentally. Since the formation of vacancy has significant impact on volume, the pressure

effect must be considered in the Gibbs energy model by defining °Gy, as
°Gyq = °Gygp=o + PVyq Eq. 66

where P is the pressure, Vy,, the molar volume of the vacancy, and °Gy, p—, the Gibbs energy of

vacancy at P=0 and °Gy, p—o = 0. Here the pressure effect is ignored for the solid element
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without vacancies, since its volume changes little. The pressure effect is considered for the
vacancy-endmember, making its molar Gibbs energy non-zero. The reason is that although a
vacancy has nothing inside, it occupies certain amount of volume, subject to energy penalties

from pressure.

For a one-component system with vacancy, the sublattice model is (A, Va), and the Gibbs energy
in one mole of component A is written as

11—y, 1-y,

Eq. 67
PVy, + RTlIny, + RT a- 6

G, —G—G+
m Ya 4 Ya

(1 —=ya)+ (1 -yl
where y, is the site fraction of component A, equal to y, = 1 — yy, with yy, being the site
fraction of vacancy, G, the Gibbs energy of component A without vacancy, and L the MRK
interaction parameter between A and vacancy. Either y, or yy, can be considered as the internal
variable, & The equilibrium states are found by solving the following equation at a constant

temperature

G,  PVy,
Y4 Va?

oL
0Ya

Eq. 68

RT
——nA-y) - L+ A =y)5—=0
Ya
It is shown that there are two solutions from the above equation: one is the solid, and the other is
the ideal gas.!'0 It is evident that when these two solutions give the same G, in terms of one
mole of component A, the solid phase with vacancy and the gas phase, both with one mole of

atoms, are in equilibrium with each other, i.e.

Grglas — G;lalid Eq. 69
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Solving Eq. 68 and Eq. 69, one obtains the values of the two unknows, yf % and ygoud,

depending on the values of Vj,, and L along with its derivative. The pressure thus obtained
represents the vapor pressure of the solid in terms of the ideal gas law as follows

pravor — 99 pT Y7, Eq. 70
P¥POT and y5°44 are two well defined physical quantities that can be measured experimentally,

but not y/‘f *_Eq. 70 shows that y/‘f ** is a function of V,,, for given P**°" and T. It is also

evident that Vy, and L jointly determine the value of y§°“? as shown by Eq. 68 and discussed in

109

As in the spirit of CALPHAD modeling, to make the thermodynamic models of different
elements consistent, a universal value for Vy,, is needed, and the interaction parameters can then
be evaluated. We suggested to use V;,, = 10~7m?3 /mol for mono-vacancy, since the molar
volumes of most elements are around this value.!'® Furthermore, the vacancy model denoted by
Eq. 67 and Eq. 68 not only presents a physics-based approach, but also treats the solid and its
vapor in one formula and demonstrates that vacancy is an equilibrium feature of the system. It is
worth mentioning that the sum of partial pressures of all components equals to the system’s total
pressure when there are no other gaseous species in the system, which will be further discussed

with applications involving the gas phase in Section 5.4.5.

In addition to mono-vacancy, vacancy clusters can also be treated similarly. Furthermore, in
systems with more than one component, the interactions between vacancy and different
components are important, resulting in the formation of vacancy/component clusters and

redistribution of components in the phase similar to short-range ordering mentioned above.
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When all these clusters exist, their energetics result in different probabilities for them to exist in
the phase, and the “partition function” approach discussed in Section 2.4.2 can thus be used with
the internal configurations represented by various clusters so their respective statistical
probabilities can be evaluated. Both vacancies and vacancy clusters can be the equilibrium

features of a phase with the driving force, i.e. Eq. 10, for their changes being zero.

3.6.2. Dislocation

While the energetics of vacancy and clusters of vacancies and vacancy/components are modeled
using the CALPHAD approach, the energetics of dislocations have not been modeled in the same
framework in the literature due to the complexity of dislocations in a phase. The central question
is to define the internal variables to describe the configurations involving dislocations and
develop models to represent the Gibbs energies of configurations, while the configurational
entropy among various configurations and total entropy can be evaluated in terms of Eq. 30 and
Eq. 32 discussed before.

While thermodynamics of dislocations has always been part of discussion on dislocations,!!!-113
it was Langer, Bouchbinder, and Lookman (LBL) who emphasized the importance to explicitly
take the internal variables into consideration of thermodynamics of dislocations.!'* One key
internal variable is the population of dislocations by a single, averaged, area density p, which can
be replaced by a set of densities for different types of dislocations and different orientations. In
LBL thermodynamic model, the internal degrees of freedom of a solid-like material can be
separated into two weakly interacting subsystems: (1) configurational subsystem defined by the

mechanically stable positions of the constituent atoms and (2) kinetic-vibrational subsystem
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defined by the momenta and the displacements of the atoms at small distances away from their
stable positions, each with its own “effective temperature”, defined as

U, Eq. 71
X =

where U, is the energy of any configuration of dislocations with the entropy, S., defined by the
number of such configurations in any energy intervals. The rate at which inelastic external work
is being done by the stress is introduced in their thermodynamic analysis in terms of plastic strain
rate, plus a new equation for the dependence of the dislocation density on external strain.
Consequently, an equation for the hardening rate was derived with dislocation density as the
internal variable and a set of physical parameters including the magnitude of the Burgers vector,

lattice parameter, formation energy of dislocation, and elastic constants.

The concept of “effective temperature” in various forms similar to Eq. 71 has been used in the
literature extensively, particularly in the field of astronomy.!!>!16 As shown by Bouchbinder and

Langer!'!”

, its essence is to separate various entropy contributions to the energy of the system,
and it thus should not affect the fundamentals of thermodynamics discussed in this paper. It can
be seen from the work by Langer, Bouchbinder, and Lookman,''# the only internal variable is the

dislocation density with the external variables being the strain and strain rate. In a one-

component system, one can thus formulate the energetics of a system as follows
G? = °G, + AHP? — TASP Eq. 72
where AH? and AS?Y are the enthalpy and entropy of formation of dislocation as a function of T,

—P, N; and p; where p; is the dislocation density for the type [ dislocation.
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In the spirit of the CALPHAD approach (see Eq. 42), one may be tempted to write the general

form for a one-component system as follows

AGP = MHP =TASP = ) pidf+ ) pipmllnm Eg. 73
m

where L? = AHP — TASP is the model parameter related to the enthalpy and entropy of
formation of type [ dislocation which includes the elastic energy associated with its formation,
and L?m denotes the interaction parameter between the same or different types of dislocations in
terms of both elastic deformation and dislocation multi-junctions.!'®1"® Higher order interaction
parameters can be added. Both L? and L?m can be the functions of temperature, strain, and strain
rate and can be modeled in the framework discussed by Langer, Bouchbinder, and Lookman,''#
with inputs from first-principles calculations and experiments.!?’ Their dependences on
dislocation density can be modeled in terms of the MRK formalism shown in Eq. 42 with the
compositions replaced by dislocation densities. At the same time, the pressure needs to be

replaced by stresses as the natural variables of Gibbs energy.

In multicomponent systems, there are additional internal variables to describe the redistribution
of components between dislocations and the matrix because the interaction parameters are
composition dependent, see Eq. 65. This redistribution can result in the formation of clusters
around dislocations that reduces the energy of the system, such as the Cottrell atmosphere.!!!121-
123 These interactions and the formation of clusters can also be modeled using the MRK
formalism discussed in Section 3.1 though diffusion of component at low temperatures could be

too slow to reach equilibrium except for interstitial elements. The different configurations of

dislocations and clusters with different energetics and thus their statistical probability of
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existence in the phase can be treated by the “partition function” approach discussed in Section

2.4.2 with S5 in Eq. 65.

3.6.3.  Twin boundary and stacking fault

The CALPHAD modeling of twin boundaries and stacking faults are not available in the
literature. The internal variable of a twin boundary or a stacking fault can be the area of the twin
boundary or stacking fault in a given volume of the phase. The Gibbs energy can have the
similar form as Eq. 73 for pure components and the MRK formalism discussed in Section 3.1

for interactions between elements and defects in multicomponent materials.

Even though twin boundaries and stacking faults are both planar defects in a phase, they are
significant different as a twin boundary only changes the crystal orientation, while a stacking
fault changes the crystal structure, usually between fcc and hep crystal structures. As a matter of
fact, the alternating configurations can result in the formation of new LPSO structures, 24128
which may thus be called “defect phases” in contrast to “defected phases™ or “defects in phases”
because the periodic arrangements of stacking faults result in different long-range lattice
structures. The divisions among “defects in phases”, “defected phases”, or “defect phases”, can
be fuzzy when the defect configurations change their stability from unstable to metastable or
even stable due to the interactions among themselves and multicomponents. A defect phase with

long-range ordering can be modeled as a regular phase as shown in Sections 3.1 and 3.4 such as

the LPSO phases in Mg alloys.!?812

3.6.4.  Grain boundary, surface, and phase interface
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As an interface between two grains of the same phase, the contribution of grain boundary to the

energy of the system is usually represented by the first term in Eq. 65, 1.e.
dG = y,dA Eq. 74

where Y is the grain boundary energy as a function of its five degrees of freedom, and A the
grain boundary area. It is evident from this equation that the decrease of grain boundary area
reduces the free energy of a polycrystal material until it becomes single crystal without grain

boundary.

Even though the segregation of components to grain boundary has been known for a long time,
Yo in Eq. 74 is usually assumed to be a constant and independent of segregation. It was until
relatively recent that the reduction of grain boundary energy is considered, partially related to the
development of nanograined materials where the composition in the grain boundary is closely
related to the overall composition, resulting in the grain boundary energy as a function of grain
boundary composition.””13-133 There are thus two independent internal variables, & the grain
size represented by the grain boundary area and the grain boundary composition. Applying Eq.
65 to grain boundary with the first two terms, one obtains the following combined law of

thermodynamics °7
4G = vdA+ )" (uf" - ul)dn, Eg. 75
where ¥, is the grain boundary energy which is a function of grain boundary composition, /,t;g b

and p! are the chemical potentials of component i in the grain boundary and in the grain interior,
respectively, and dn; denotes the amount of component i migrated from grain interior to grain

boundary.
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The grain boundary energy, y, can be defined as follows®’

daG an; Eq. 76
= = gb _ "t q
y_dA yg—l—Z(#t #1) 9A

an; . . .
where 6—7: represents the grain boundary solute excess. When the grain boundary and the grain

interior have the same composition, i.e. a fresh grain boundary, there is no migration of

components, i.e. dn; = 0 and y = ¥4 = y,, which can be considered as a constrained

equilibrium in terms of redistribution of components, but u;g " u! due to their different

structures, resulting in a driving force for segregation and the reduction of grain boundary energy.

e . aG . o .
When the equilibrium is reached in terms of = 0 for a given over-all composition and a given
i

grain size by adjusting the grain boundary composition, i.e. uf b= i, and the grain boundary
energy reaches a minimum value, i.e. ¥y = y; < yo. When this minimum grain boundary energy
becomes zero by adjusting the grain size, i.e. y =y, = 0, the polycrystal structure becomes

thermodynamically more stable than a single crystal structure.

The thermodynamic modeling of a polycrystal has be carried out in terms of Eq. 76 for the grain
boundary energy in binary systems of 44 solvents and 52 solutes®’ or through summation of
Gibbs energies of grain boundary and grain interior plus the transitional region between them for
various binary alloys.!3* It should be noted that thickness of grain boundary can change with
respect to composition and temperature and thus needs to be considered as an internal variable in
addition to grain size and grain composition in thermodynamic modeling of grain boundaries at

high temperatures. '3
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A surface may be considered as an interface between the condensed phase and its vapor using the
formalism discussed in Section 3.6.1, while a phase interface is between two condensed phases.
In principle, thermodynamic modeling of surface and phase interfaces can be carried out
similarly as described for grain boundary though the segregation to phase interfaces is more

difficult to define as two phases usually have difference compositions.!'3¢

3.7. Tools for thermodynamic modeling

As can be seen in Eq. 38, Eq. 42, Eq. 46, and Eq. 47, the evaluation of model parameters is
carried out in a hierarchical structure sequentially from those of pure elements, their lattice
stability, binary interaction parameters to ternary and multicomponent interaction parameters.
Through the CALPHAD annual conferences, the nonprofit foundation CALPHAD, Inc., and the
CALPHAD journal started in 1973, 1975, and 1977, respectively, this hierarchical procedure
resulted in several versions of thermodynamic parameters of pure elements and their lattice
stability values with the latest one published in 1991 by the Scientific Group Thermodata Europe
(SGTE),"¥7 which significantly enhanced the international collaborations, along with continued
development.'?%13° The available computational tools are reported in two special issues of the
CALPHAD journal,'*14! with multicomponent thermodynamic databases of technological
important materials available commercially.!4>-14* Even though the operational procedures of
commercial computational tools are available, the algorithms for Gibbs energy minimization and
the database structures in commercial tools and the associated databases are usually proprietary,

which significantly hinder the development of new algorithms and new models. Consequently,
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there are recent developments of open source codes, such as OpenCalphad,’>*® PyCalphad,'4>-146

and Thermochimica.!4’

It is evident from the hierarchical procedure that modification of a constitutive subsystem has a
snowball effect on the description of a multicomponent system in that it affects every Gibbs
energy function of every phase in systems that contain that subsystem, e.g., a change in the
binary A-B system affects the description of all phases in ternary systems A-B-C, A-B-D, etc.,
making remodeling of all of these ternaries necessary which is very challenging with the existing
computational tools.!*® To address this challenge, the ESPEI software!'*® was developed for high
throughput CALPHAD modeling. It is built on DFT data and can efficiently re-evaluate the
thermodynamic parameters of higher order systems when a sub-system is being updated, and the

latest version of ESPEI 130-152 yses PyCalphad %146 as the computation engine.

PyCalphad is a free and open-source Python library for designing thermodynamic models,
calculating phase diagrams and investigating phase equilibria using the CALPHAD method. It is
capable of reading thermodynamic databases and solving the multicomponent, multi-phase
Gibbs energy minimization problem. A unique feature of PyCalphad is that the thermodynamic
models of individual phases are internally decoupled from the equilibrium solver and the models
themselves are represented symbolically. Consequently, the databases can be programmatically
manipulated and overridden at run-time without modifying any internal solver or calculation
code. The general architecture of PyCalphad software package is shown in Figure 1. The
Database object is the fundamental representation of CALPHAD data in PyCalphad and supports

reading and writing a large subset of the SGTE thermodynamic database file format (TDB). The
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Model is an abstract representation of the molar Gibbs energy function of a phase, built around
the computer algebra library SymPy.!5315* The calculate() function is the core property
calculation routine of pycalphad and performs calculations for the case when all independent
external and internal variables, i.e., temperature, pressure, sublattice site fractions, are specified,
i.e. any nonequilibrium states. Custom models can be specified via the model keyword argument
to override the default model for all phases or a specific phase’s model. The equilibrium()
function is responsible for equilibrium property calculations, and its return value is a multi-
dimensional labeled array, including the equilibrium values of the molar Gibbs energy and
chemical potentials. Furthermore, it was shown that the combination of random sampling with
uniform grid points significantly increases performance in effective sampling to capture key

details about the energy surfaces of multicomponent, multisublattice phases.!>

The complexity of PyCalphad necessities the implementation of strategies to avoid the regression,
or accidental breakage. The popular Git source code control (SCC) system ' is used to manage
the source of PyCalphad, allowing its complete history of changes to be recorded for all released
and unreleased versions and concurrent work on, e.g., new major features and bug fixes to
existing versions through different versions of the software to be stored in separate “branches”.
PyCalphad has a suite of continuous integration (CI) tests designed to verify that a revision to the
code does not cause unintended behavior, which are run automatically every time a new revision
is pushed to the Git repository on GitHub. When a bug is reported and fixed a minimal test case
is added to the suite whenever possible to prevent the problem from appearing again in future
releases. The rigor and current and future impacts of PyCalphad enabled its winning of the

runner-up (2™ place) in NASA Software of the Year competition in 2019.1%7 Tt should be
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mentioned that the global minimization of Gibbs energy in multicomponent system with
complex sublattice models remains a challenging balance between efficiency and robustness of

algorithms, which are subject to continuous improvements, '3>8

Figure 1. General architecture of the PyCalphad software package.!46

ESPEI implements two steps of model parameter evaluation: generation and Markov Chain
Monte Carlo (MCMC) optimization.'3%!152 The parameter generation step uses experimental and
first-principles data describing the derivatives of the Gibbs energy to parameterize the Gibbs
energy of each individual phase, resulting in a complete thermodynamic database based solely on
those derivatives, commonly called thermochemical data, along with the reference states
described by Eq. 40 and Eq. 41. Experimental thermochemical data for virtually all real alloy
systems are too sparse to fully describe the Gibbs energies of the phases and are often unable to
access the energetics of metastable configurations defined within the CEF, requiring that
available experimental data is augmented with thermochemical data from estimates, empirical

160,161 o first-principles calculations,’ all of which only

models, > machine learning models,
give approximate energies. For each fitting step, the residual sum of squares between the
evaluated parameters and the data are used to score and compare the models within the corrected
Akaike information criterion (AICc).!6> The model with the lowest score is the optimal
combination of model fitness and complexity. The AICc is a modified version of the AIC that

avoids overparameterization when the data is sparse, which is often the case for thermochemical

data.
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The phase equilibrium data require the Gibbs energies of all phases to be refined, so parameters
must be optimized iteratively to be self-consistent by the modeler. Currently, ESPEI uses
MCMC to perform a Bayesian optimization of all model parameters simultaneously. Since the
parameters for each phase are often correlated to each other because increasing the value one
parameter and decreasing another can give the same Gibbs energy for any given set of conditions,

ESPEI uses an ensemble sampler, as introduced by Goodman and Weare '6?

. Ensemble samplers
use an ensemble of Markov chains to form the proposal distribution for the parameters. This
allows the proposals to be invariant under affine transformations, solving the problems of scaling
proposal length and differing parameter magnitudes in multidimensional parameter space
simultaneously. Proposed parameters are accepted or rejected based on the Metropolis criteria.
ESPEI uses an ensemble sampler algorithm implemented in the emcee package '* with
parallelizable ensemble samplers. It provides emcee with an initial ensemble of chains as
Gaussian distributions centered on the parameters generated by single phase fitting and defines a
probability function that calculates point posterior log-probabilities from the prior and likelihood.

Prior distributions for the parameters are the main way that modelers input domain knowledge

into ESPEI’s MCMC optimization.

Three main types of data are considered by the likelihood function defined in ESPEI: single
phase thermochemical data of the temperature derivatives of the Gibbs energy, activity data
(converted into chemical potential) related to the composition derivatives of the Gibbs energy,
and multi-phase equilibria data. For all data types, the error is assumed to follow a normal
distribution with default values for the standard deviations of each type of data provided in

ESPEI. Users can modify the values by adding a weight for each type of data or for each
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individual dataset. The errors for thermochemical data are straightforward, but less so for multi-
phase equilibria data. The method implemented in ESPEI is similar to the rough search method
implemented in the PanOptimizer software !9 with the residual being the driving force between
the target equilibrium and current hyperplanes, obtained by equilibrium calculations at each
measured tie-line vertex with all phases active and with only the desired phase active,

respectively.

In addition to evaluation of model parameters, another important feature of PyCalphad and
ESPEI is the uncertainty quantification in terms of models, model parameters, and model
predictions.'® Parameter uncertainty concerns the distribution of each parameter and is
evaluated within the MCMC optimization step of ESPEI by quantifying the distribution of the
parameter values that make up each converged Markov chain. The parameter uncertainty
enabled the development of a suite of tools to represent uncertainty in forms that surpass
previous limitations, including the distribution of phase diagrams and their features, as well as
the dependence of phase stability and the distributions of phase fraction, composition, activity
and Gibbs energy irrespective of the number of components.'®® Examples are shown in Figure 2
for the model parameters of the liquid phase!>! and the uncertainty intervals of the fcc-Laves—

liquid eutectics'® in the Cu-Mg system.

Figure 2. (a) Corner plot of the parameters in the Cu-Mg liquid phase with the diagonal
images for the histogram of each parameter in the Markov chain and the off-diagonal

images for the covariance between two parameters; ! (b) FCC - Laves - liquid eutectics in
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Cu-Mg plotted for all 750 sampled parameter sets with 68% and 95% uncertainty intervals.

166

4. Input data for thermodynamic modeling

Input data for thermodynamic modeling can broadly be divided into two categories:
thermochemical data and phase equilibrium data as mentioned above, with the former being the
first and second derivatives of Gibbs energy and the latter being the amounts and compositions
of phases in equilibrium with each other.”® The data are primarily from three sources:

70,159 and predictions

experimental measurements,'67-1% theoretical estimations and predictions,
from machine learning,'¢!1% with their timespans from weeks to months, days to weeks, and

seconds to hours, respectively. The theoretical estimations are not discussed in the present paper.

4.1. Experimental measurements

In the book led by the author,’ experimental methods for phase equilibrium and thermochemical
measurements are discussed and can be grouped into two categories: compositions and energy,
including equilibrated materials, diffusion couples/multiples, vapor pressure, and
electric/magnetic/high pressure techniques for phase equilibrium data, and solution/heat capacity
calorimetry, combustion, direct reaction, and electromotive force techniques for thermochemical
data. In general, the uncertainties in measurements of heat are larger than those in compositions.
One key promise of experimental measurements is that the material reaches a state of
equilibrium when the data are collected, i.e. with respect to small fluctuations of all &, the
material returns back to its equilibrium state with well-defined values of & Furthermore, one

needs to keep in mind that every experimental observation combines the contributions from all
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configurations as articulated in Section2.4.2, while theoretical prediction often considers the

contributions individually.

4.2. First-principles calculations

It is noted that the limitation of theoretical prediction is at the same time its strength as it can
investigate the contributions of individual configuration to the system and provide insights and
be complimentary to experimental observations. Particularly, the development of first-principles
calculations based on the density functional theory (DFT)!7%17! and a range of efficient computer
programs'’? have revolutionized the theoretical predictions in terms of both accuracy and
efficiency in the last few decades.!”>-'7> The fundamental theorem is that there exists a universal
functional of the electron density that minimizes the energy of the ground state of a system, and
this electron density can then be used to calculated all properties of the ground state. It is thus
self-evident that the DFT-based calculations are for individual configurations as discussed in
Section 2.4.2. Through constraints on volume and perturbations of atomic positions, the

Helmholtz energy of a configuration can be obtained as follows 2%176:177

F(, T) = EC(V) + Fyip v, T) + Fy (V' T) Eq.77

where E_ is the static total energy at 0 K calculated directly by first-principles,'”® and F,;;, and
F,; are the lattice vibrational free energy and the thermal electronic contribution, respectively,
related to contributions at finite temperatures. Fy; is evaluated from the electronic densities of
state at different volumes.?® F,;;, can be obtained from first-principles phonon calculations for

177 using a modified scaling factor.!”
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The results from DFT-based calculations can also be used to develop interatomic potentials or
molecular force fields for molecular dynamic (MD) simulations of the physical movements of

180 or evaluate the coefficients for effective cluster interaction in

atoms, molecules and defects,
the cluster expansion approach which are then used as a Hamiltonian for Monte Carlo

simulations (CE-MC). 181182

In addition to the crystal structure corresponding to the ground state, DFT-based calculations
have also been extensively performed for non-ground state atomic configurations with several
online open databases.'83-18 However, the free energy of unstable structures cannot be directly
calculated due to the their imaginary vibrational modes.*> It was shown that for an element with
the fcc structure as its ground state, it is unstable in the bcc structure at zero Kelvin, and vice
versa.** Progresses have been made in terms of ab initio molecular dynamics (AIMD)
simulations 86187 and using the limit of stability,***” and these approaches provide useful data in
the desired smooth extrapolation behavior between stable, metastable, and unstable regions in the
CALPHAD method. However, if one would like to predict the transition between the unstable
and stable structures with the change of external fields, i.e. the critical point and associate
anomalies, one may need to use the “partition function” approach discussed in Section 2.4.2 and
in ref. '° by considering the statistical competition among various configurations. The author
anticipates that this approach is applicable to properties of any phases under conditions that the
probabilities of metastable configurations become statistically significant. By the same token,
DFT-based calculations can be used to predict properties of phases with those defects discussed

in Section 3.6 as demonstrated in the literature.!20:127:128.188-192 For non-stoichiometric phases, in
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addition to the MD and EC-MC simulations mentioned above, one can use the coherent potential

approximation (CPA) '°3 and special quasirandom structures (SQS).!941%7

The accuracy of DFT-based calculations is often evaluated by comparing the calculated
energetics with experimental measurements. Kirklin et al. compared the formation energies in
the Open Quantum Materials Database (OQMD) database with 1670 experimental formation
energies of compounds with an apparent mean absolute error (MAE) being 0.096 eV/atom
(09.3kJ/mol).'”® They also pointed out that the MAE between different experimental
measurements from multiple sources is about 0.082 eV/atom ([77.9kJ/mol). Hautier et al.
compared the reaction energies of 135 reactions of the formation of ternary oxides from
chemically similar binary oxides and modeled the errors by a normal distribution with a mean
close to zero and a standard deviation of 24 meV/atom ([2.3kJ/mol).!” The experimental
tabulated data at 298K were extrapolated to zero K in order to compare with the computed data.
In both cases, generalized gradient approximation (GGA) with a Hubbard U parameter were used

for some transition metal elements (GGA+U).

4.3. Machine learning

DFT-based calculations significantly reduce the time in obtaining thermochemical data in
comparison with experimental measurements, but still take considerable amount of computer
resources and time for each calculation. Furthermore, the number of calculations needed for a
phase increases exponentially with the numbers of sublattices and components. It is thus

desirable to find more efficient procedures to generate input data for thermodynamic modeling.
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The current trend points to machine learning as an exciting tool available to materials

science. 161,169,200

There are three key components in machine learning: databases, descriptors, and algorithms. In
an effort to predict formation energies of compounds, Ward et al. ¢! utilized the OQMD
database of 435000 formation energies 84291 with over 30000 entries from the Inorganic Crystal
Structure Database (ICSD) and the remainder derived by replacing elements in known crystal
structures with different elements, i.e. various atomic configurations. They created total 271
attributes/descriptors based on the Voronoi tessellation and composition of structures. The
random forests algorithm was used due to its superior performance and robustness against
overfitting. Through systematic test of training set size, a 72 meV/atom (~ 7kJ/mol) MAE in
cross validation was achieved, a significant improvement in comparison with existing
approaches. The training and running times are in the order of 3000 and 0.1 seconds,

respectively.

Bartel et al. '%° used the SISSO (sure independence screening and sparsifying operator) approach
to a massive (~10'°) space of mathematical expressions and identify a simple descriptor to
predict Gibbs energy for stoichiometric inorganic compounds. They used experimental data for
262 solid compounds to identify the descriptor and tested on a randomly chosen excluded set of
47 compounds and 131 compounds with first-principles computed Gibbs energy. The following
descriptor was obtained

eV
G — AHy (m) = (—248%107* x In(V) — 8.84 * 10~ >mV 1T + 0.181 * In(T) — 0.882 Eq. 78
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where AHp is the formation energy of the compound at 298K, V the calculated atomic volume

(A3/atom), and m the reduced atomic mass (amu). This descriptor was selected by SISSO from a
space of ~3x10'° candidate three-dimensional descriptors, where the dimensionality is defined as
the number of fit coefficients (excluding the intercept). 262 compounds with 2991 data points
was randomly selected from 309 inorganic crystalline solid compounds as the training set, and
the remaining 47 compounds with 558 data points were for cross validation. The resulted MAE
was ~50 meV/atom (~5 kJ/mol) for temperatures ranging from 300-1800 K. The selected three
quantities, T, V, and m, are among the key factors affecting the magnitude of vibrational entropy,
i.e. the right-hand side of Eq. 78.292 This descriptor was further applied to 29,525 compounds in
ICSD, enabling the prediction of thousands of temperature-dependent phase diagrams of

inorganic compounds.

In a recent work, we tested a range of deep neural network (DNN) architectures using the same
database and descriptors by Ward et al. '°!. During the DNN design process, around 50 networks
belonging to 19 architectures were created and tested with cross-validation on a randomly
selected test set comprising 5% of the OQMD database (21,800 test entries). The best network
achieved a MAE of [28 meV/atom ([BkJ/mol).2°32% Furthermore, the improved prediction
speed enabled the screening of the whole databases and identification of entries that do not fit the
discovered patterns. This, in turn, combined with more in-depth analysis, allows us to pinpoint
entries that are likely to contain poor quality data, as well as those at risk of having a systematic
error in the DFT-based calculations. Such DNN models can also be trained for specific
benchmarks such as memory constrained applications, improved performance on non-OQMD

datasets, and enhanced transfer learning capability.?03204

55



5. Applications

) 295 and Materials

In the spirits of Integrated Computational Materials Engineering (ICME
Genome Initiative (MGI),?% computational materials science and engineering plays a central role
in the advancement of industrial manufacturing. Manufacturing is a combination of many
processes in which external variables are adjusted to induce internal processes, transform
materials from one state to another state, and ultimately produce a product that possesses one or
multiple functionalities.?” Such one transformation can be schematically shown in terms of
energy profile as a function of one internal variable in Figure 3. More complex energy landscape
such as fractal free energy landscapes with simple basins, metabasins and fractal basins in
structural glasses 2% can in principle be considered as being composed of many such individual
energy profiles shown in Figure 3 at various time and spatial scales. The applications of
computational thermodynamics can be schematically articulated by this diagram in terms of
derivatives of energy in following aspects:
1. For a given set of internal variables, é‘j, the first and second derivatives with respect to its
extensive natural variables give a range of physical properties of the system as shown in
.9,10

Table 1, including new sets of kinetic coefficients;

2. For a given set of natural variables, the first and second derivatives with respect to (fj

determine

2.1. whether the system is at equilibrium with the first derivative being zero,
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2.2. whether the equilibrium is stable with the second derivative being positive, or unstable
with the second derivative being negative, or at the limit of stability with the second
derivative being zero,

2.3. which stable equilibrium is the ground state with the lowest energy,

2.4. the driving force for the transformation from the metastable to stable states along with
the transformation barrier denoted by the maximum energy difference between the
unstable and metastable states,

2.5. For stable, nonequilibrium systems with second derivative being positive, the first

derivative with respect to §j gives the driving force for the transformation towards a

local equilibrium state;

2.6. For unstable systems with second derivative being negative, self-assembly, dissipative
structures form,'® including the spinodal decompositions in bulk and grain
boudaries.?%210

The usage of third derivative is currently limited to the critical point where all first, second,

and third derivatives are zero. At a critical point, all internal variables, fj, become dependent

variables because the system is at equilibrium with first derivative being zero. The second
and third derivatives being zero add two constraints, resulting in a zero-dimension point in
the space defined by two independent potentials. When a third independent potential is
introduced, the zero-dimension critical points in three two-dimensional spaces of two
independent potentials extends into the three-dimensional space as lines which merger
together to form a zero-dimension critical point in the three-dimensional space. These lines

denote the instability limit of the system with three independent potentials, and the zero-
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dimensional critical point represents an invariant critical point (ICP) which can be extended
to multidimensional spaces of potentials.?!! Tt may be noted that these instability lines were
termed as line of critical end points (LCEP) in the literature.?'?

From Eq. 11, it can be seen that when the limit of stability is approached from the stable
region, D, changes from positive to zero, resulting in the following mathematical singularity
at the limit of stability

[axb Eq. 79

W] -
This indicates that all extensive variables diverge at the limit of stability, including the
critical point and LCEP. It is evident that in the vicinity of the critical point, the system will
start to change from normal behavior towards the divergency, demonstrating emergent
behaviors such as the colossal positive, zero, or negative thermal expansion,'%?>?7 and giant
electromechanical response in ferroelectric relaxors.?!>2!3 The property of thermal expansion
is represented in the temperature-pressure space, while the electromechanical response is in

the temperature-electric field space, resulting in the divergence of physical properties. >!7

Figure 3. Schematic diagram of energy landscape as a function of one internal variable

The above list of applications can be broadly categorized into the groups of stability,

metastability, and instability for emergent behaviors in terms of materials discovery, design,

processing, and performance that are discussed in the following sections.!?

Stability
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Knowing the space of stable phases as a function of independent variables is the key for
materials design and manufacturing.?07-212.214215 Thig space is traditionally represented by phase
diagrams, but usually limited to diagrams with two independent variables. With computational
thermodynamics, multi-dimensional spaces can be explored numerically more efficiently. There
are three types of phase diagrams: potential, mixed, and molar phase diagrams with the axes of
the phase diagrams being all potentials, mixture of potentials and molar quantities, and all molar
quantities, respectively. Each type of phase diagrams has its own characteristics. The Gibbs
phase rule can only be directly applied to potential phase diagrams and may be modified for
mixed and molar phases diagrams.®> In mixed and molar phase diagrams, the concepts of tie-
lines that connect the phases in equilibrium and lever rule based on balance of molar quantities

are introduced to define the phase compositions and calculate phase fractions.

For visualization purposes, multidimensional phase diagrams are sectioned along one or more
axes. When sectioned along potentials, the number of independent potentials, thus the number of
independent variables, is reduced by the number of sectioned potentials, and the Gibbs phase rule,
tie-lines, and lever rule can apply based on the types of phase diagrams. However, when
sectioned along molar quantities, tie-lines are usually not on the resulted phase diagrams, and the
lever rule can thus no longer be used. If a mixed phase diagram is sectioned exactly along the
tie-line, it is equivalent to section along a potential because the potential remains constant along
the tie-line, and the resulted phase diagrams are called pseudo- or quasi-binary and ternary phase

diagrams.

5.1.1. One-component systems and phase boundary rule

59



Four phase diagrams for one-component pure Fe system are shown in Figure 4, and one can
easily plot any one of them using the computational tools after calculations.®>%%-142-146 [n the T —
P potential phase diagram, the Gibbs phase rule dictates the two-dimensional areas, one-
dimensional lines, and zero-dimension points for single-, two-, and three-phase regions,
respectively. The T —V,,,, S;, — P and S,,, — V;,, phase diagrams are less common in the
literature, and the tie-lines are plotted in them which can be used to calculate the phase fractions
along them using the lever rule for the balances of molar entropy and molar volume. The Gibbs
phase rule cannot be used to analyze the dimensionality of phase regions anymore. As it can be
seen, the dimensionality of phase regions in the molar phase diagram is the same of that of the
phase diagram, which is true for systems with more than two independent potentials, and there is
the MPL phase boundary rule as follows 3

D*+D =r—b Eq. 80
where D* and D~ are the numbers of phases that appear and disappear, respectively, as a phase
boundary of dimensionality b is crossed, and r is the number of axes in the molar diagram. The
MPL phase boundary rule can also be applied to mixed phase diagrams when the dimension of

two neighboring phase regions equals to that of the phase diagram.

Figure 4. Four types of phase diagrams of pure Fe: (a) T — P; (b) T — V,;;5 (¢) S;, — P; (d)

S — V. with the green lines being tie-lines.

In thin films, the volume is replaced by two in-plane strains with two in-plane stresses as
conjugate potentials, resulting in one more independent variable. Strains can be introduced into

thin films through differences in lattice parameters, thermal expansion behavior between the film
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and the underlying substrate, or defects formed during film deposition.?!> Furthermore, strain
energy in thin films is a function of film thickness, which can be considered as another external
variable, and the spatial arrangements of polarization configurations which are internal variables

and reduce the total strain energy.

For example, the stability of individual polarization configurations of PbTiO3 on a cubic
substrate is shown in Figure 5a with the paraelectric, a, ac, aa, ¢ and r phases considered. Their
polarization configurations along the [100], [010], and [001] directions are P, = P, = P; = 0;
Pp#0and P, =P;=0;P, #0,P, =0and P; # 0; P, = P, # 0and P; = 0; P, = P, = 0 and
P; # 0;and P, = P, # 0 and P; # 0, respectively.?!¢ The film thickness was over 50nm, much
larger than the ferroelectric correlation length. With the stoichiometry of PbTiOs fixed, the
system behaviors as a one-component system with the misfit strain as an external variable. Since
the external constrain is that all configurations must have the same misfit strain, the misfit strain
represents a potential of the system in place of stress in the Gibbs phase rule equation. As shown
in Figure 5a, the transition between ¢ and 7 is second-order down to near zero K, indicating that
the strain and stress in both configurations at the transition strain are the same. While the
transition between aa and 7 is first order at low temperatures and reaches a critical point at high
temperature, i.e. becoming second-order and merging with the second order transition between ¢
and r. The second-order transition revert back to first-order transition at higher temperatures
between paraelectric and ¢ phases and between paraelectric and aa phases, respectively.
However, this change does not represent a critical point because the first- and second-order
transitions involve different phases, rather than the same phases as in the aa and r/c case where

all of them merger into one phase.
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On the other hand, Li et al. 2!7 used the phase-field method to simulate the three-dimensional
arrangements of three possible polarizations orientation variants with the tetragonal axes along
the [100], [010], and [001] directions of the cubic paraelectric phase, denoted by a, a,, and ¢
domains, and obtained the phase diagram shown in Figure 5b. The a,/a, and c/a,/a, domain
configurations are in analogy to the aa and r phases above though not identical, but the stability
regions of phases are rather different in Figure 5a and b. Particularly, Figure 5a is asymmetrical
with respect to strain, while Figure 5b is symmetrical with the strain energy and domain wall

energy taken into account.

Figure 5. Temperature-strain phase diagrams of (001),-oriented PbTiOs3: (a) with each
polarization configuration considered separately and the second- and first-order phase
transitions shown by thin and thick lines, respectively.;?!¢ (b) with the strain interactions

and interface energy between configurations (domain wall) considered.?”

One interesting observation is the four-phase equilibrium point of a, /a,, c/a,/a,, c, and
paraelectric phases in Figure 5b using the phase-field method, which was also shown for BaTiO3

216218 This is probably related to the mixture of configurations

with individual configurations.
discussed in Section 2.4.2 since the second-order transitions are not determined by free energy
comparison of different configurations or phases as in the first-order transition of a one
component system, and rather they are determined by the entropy of mixing of various

configurations denoted by Eq. 30. This entropy of mixing should be significant because the

energy differences between various configurations are in the range of a few meV/atom.?!¥ This
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is further supported by the conclusions that the transitions between ¢ and r and aa and r
configurations are smooth even at zero K and second order at high temperatures as shown in

Figure 5a 216218 and the AIMD simulations discussed in Section 5.3.2.

Since the paraelectric cubic phase is unstable at zero Kelvin, its properties cannot be predicted
from DFT-based first-principles calculations due to imaginary phonon modes.?'%??° One way to
address this issue is to compute the phonon frequencies of a high temperature structure using the
force constants calculated for related low-temperature stable structures. This approach was
successfully applied to SrTiO3,??' and PbTi03,%?? which is in line with the “partition function”
framework discussed in Section 2.4.2 and worth of further investigations as it provides an
approach to predict the properties of high temperature phases which are unstable at low
temperatures. We are actively working on the prediction of ferroelectric to paraelectric transition

using the partition function approach discussed in Section 2.4.2.

5.1.2. Binary and ternary systems

Phase diagrams for binary systems are usually presented under fixed total pressure and are
geometrically identical to those of one-component systems. For example, the T — ¢, and T —

Xcr Fe-Cr binary phase diagrams are shown in Figure 6.

Figure 6. (a) T — uc, and (b) T — x,- phase diagrams of the Fe-Cr binary system under

ambient pressure.
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The phase diagrams of ternary systems are the same as those of one-component and binary
systems when sectioned along two potentials. The common molar phase diagram of ternary
systems is the isothermal section under fixed T and P with two compositions plotted in Gibbs
triangle so that all three elements are treated symmetrically. When sectioned along the
composition of one component, one usually plots a phase diagram between temperature and the
composition of another component, i.e. an isopleth. As mentioned before, sectioning along the
tie-line results in the reduction of one independent potential, and the isopleth thus behaves like a
binary system called pseudo- or quasi-binary systems that are commonly used for ternary oxide

systems.

5.1.3.  Multicomponent systems

The isopleth is the primary phase diagram for multicomponent systems sectioned through a
mixture of potentials and molar quantities. Figure 7 shows the isobaric T — w, phase diagram
for the Fe-1.5Cr-0.4Mn-3.5Ni-0.3Si-C (in weight percent) system calculated using the TCFE6
thermodynamic database.!*> The numbers denote the zero-phase fraction (ZPF) boundaries,
depicting that the phase is stable on one-side of the boundary only. The similar isopleth can be
plotted with respect to other elements. The single fcc phase region is at the upper left corner of

the phase region and critically important for homogenization treatment of materials.

Figure 7. Isopleth of the Fe-1.5Cr-0.4Mn-3.5Ni-0.3Si-C (in weight percent) system

The phase fractions for a given alloy can be plotted with respect to temperature to understand the

evolution of phases under equilibrium conditions with an example showing in Figure 8 for the
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Fe-25Cr-7Ni-4Mo-0.27N-0.3Si-0.3Mn (in weight percent) duplex stainless steel using the

TCFE6 database. 42

Figure 8. Phase fractions of the Fe-25Cr-7Ni-4Mo-0.27N-0.3Si-0.3Mn (in weight percent)

duplex stainless steel as a function of temperature

5.2. Metastability

A metastable system is with D < 0 and D, > 0 in Eq. 8 for a smaller enough d¢&, but its energy
is higher than those of more stable states with lower energies. Practically majority systems
around us are metastable including most pure elements on the chemical periodic table and their
alloys because they could be oxidized under ambient conditions to become more stable. Our
metal-based civilization is in terms of the extraordinary kinetic stabilities of the reactive metals
in oxidizing environments, attributed to the existence of a thin reaction product film on the metal

surface that isolates the metal from the corrosive environment.2??

In addition to this passivity, another main contributor is the high kinetic barrier (see Figure 3) so
that the probability for the system to overcome the barrier is negligible, such as both diamond
and cementite (Fe3C) with respect to graphite in its pure form and in the Fe-C binary system.
Metastable states can be obtained by removing the more stable phases from the equilibrium
calculations of the system. The stability of cementite is particularly interesting. The Gibbs
energy of formation of Fe3;C from pure Fe and graphite is negative, e.g. equal to —1620J/mole of

formula of FesC at 1169K. So FesC should be stable based on the following reaction
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3Fe+C = Fe3C Eq. 81

However, Fe and C can form an interstitial solution to lower its Gibbs energy with respect to
pure Fe and C, resulting in the Gibbs energy of Fe;C above the tie-line between the Fe-C
solution and graphite so that Fe;C becomes metastable as shown in the Gibbs energy diagram in

Figure 9.

Figure 9. Gibbs energy diagram of Fe-C binary system at 1169K and 1atm.3

The stability of a metastable state is usually discussed in terms of the transformation barrier
represented by the maximum energy difference between the metastable and unstable equilibrium
states as shown in Figure 3, with contributions from the interfacial energy and strain energy
between the two states. However, the system reaches the limit of stability, i.e. the inflection
points where D, = 0 marked by the two red filled circle between the metastable and top of the
unstable equilibrium states, before it reaches the top of the unstable equilibrium state marked by
the middle red filled circle. In the metastable region, the evolution of a system is usually
considered to be deterministic based on physical laws though microscopically the system does
not have to cross over the barrier, i.e. reaching the top of the unstable states first unless it is
constrained along one given trajectory only such as diffusion. If the system in the unstable
region has more than one possible trajectories, its evolution is in principle no longer
deterministic and thus becomes stochastic. It is noted that van de Walle er al. 447 used the limit
of stability to represented the lattice stability used in the CALPHAD modeling approach, while

the SGTE lattice stability used in the CALPHAD community 37 was obtained by extrapolations
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from the stable region to the unstable region, and the results from these two approaches seem

agree with each other and will be further discussed in Section 5.3.3.

5.3. Instability

Modeling instability is challenging due to the divergency of the inverse of the 2" derivative as
shown by Eq. 79, i.e. mathematical singularity for the derivative of each extensive variable with
respect to its conjugate potential. As discussed in the beginning of Section 5, there are two types
of instability: the limit of stability with only the 2" derivative being zero and the zero-dimension
ICP with all derivatives being zero. The limit of instability can be seen in Figure 3 by the two
red dots separating the stable and unstable regions, i.e. inflection points, where the system is not
at equilibrium because its 1% derivative is not zero. While the ICP is when all the
stable/metastable/unstable equilibria merge together into one point, so do the two inflection

points, where the system is also at equilibrium because its 1 derivative vanishes.

5.3.1.  Theory of critical point and its applications to Ce and Fe3 Pt in relation to Clausius-Clapeyron
equation
Let us consider the critical point in the T — P potential phase diagram for one component
systems using Ce and Fe3 Pt as two examples as shown in Figure 10. Both have the fcc lattice
structure, and their critical points are related to the change of magnetic spin configurations. The
ground states of Ce and Fe3 Pt at zero K are non-magnetic (NM) and ferromagnetic (FM), and
above the critical point they become ferromagnetic and paramagnetic (PM), respectively. As
discussed earlier, if an external magnetic field is added, one can imagine that this critical point

will become a line in the T — P — H space until it ends at an ICP.
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It is interesting to see that the signs of the two-phase equilibrium lines are opposite to each other
in the two potential phase diagrams, positive for Ce and negative for Fe; Pt. Based on the
Clausius-Clapeyron equation, the slope of a two-phase equilibrium line is related to the
differences of their molar volume, AV,,, and molar entropy, AS,,, as follows

d_T = % Eq. 82
dP ~ AS,,

So that the high temperature FM Ce has a larger volume than the low temperature NM Ce, while

the high temperature PM Fe; Pt has a smaller volume than the low temperature FM Fe; Pt.

Figure 10. T — P potential phase diagrams for (a) Ce,” and (b) Fe; Pt **

From the stability criteria shown by Eq. 11, the conjugate variables in a stable system change in
the same direction of increase or decrease, i.e. T vs S, and —P and V, so the sign of Eq. 82
depends on the change of V,,, vs T and §,,, vs —P. It is thus evident that at the regions slightly
away from the critical point, V},, of Ce and Fe;Pt would increase and decrease with the increase
of temperature, respectively, indicating that the negative thermal expansion in the homogeneous
Fe3 Pt phase originates from the negative slope of the two-phase equilibrium line. Consequently,
the divergence of extensive variables with respect to their non-conjugate potentials, i.e., V,, vs T
and S, vs —P, is +oo for Ce and —oo for Fe;Pt at the critical point, i.e., the non-conjugate
variables in a stable system can change in different directions for different systems as discussed

in Section 2.1 in relation to Table 1.
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The sign of Eq. 82 was used to search for elements and compounds with potential negative
thermal expansion through temperature-pressure phase diagrams.??* It was found that all
systems with experimentally observed negative thermal expansion exhibit negative slopes of
two-phase equilibrium, i.e. Eq. 82, while there are many systems with negative slopes, but no
negative thermal expansion was reported. It is noted that none of systems examined contain
critical points in their equilibrium temperature-pressure phase diagrams. This can be understood
by considering the two-phase equilibrium line extends into its metastable region at higher
temperature, and ultimately becomes unstable at its metastable critical point, resulting in either
positive or negative divergence of extensive variables with respect to their non-conjugate
potentials.?> As will be discussed shortly below, whether the anomaly is observed in the stable
single-phase region depends on how close the system is to the critical point when the potential

diagram is converted to a mixed potential-molar phase diagram for Ce and Fe;Pt.

As discussed in the literature and in the text above, an ICP is usually presented as the instability
of a homogenous system. However, it can be equally viewed as the merger of different phases,
of which each is homogenous, into a macroscopically homogeneous system when the ICP is
approached from the side of a heterogeneous system. This prompted us to develop a theory that
the homogeneous system is a superposition of many possible stable and metastable
configurations based on statistical mechanics that results in Eq. 32, which is briefly discussed

below.

In statistical mechanics for a system with a number of possible configurations, the partition

function of the system equals to the sum of partition function of possible configurations, i.e.
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Z=sz Eq. 83

The assumption is that all configurations are independent with each other, so that their
probabilities can be represented by Eq. 31. However, this assumption is not valid when the
probability of a metastable configuration in a stable matrix is considered as shown by Eq. 34 and
Eq. 33. This is because when a metastable configuration appears statistically in the matrix of a
stable configuration, an interface between the metastable and stable configurations is created,
which generates elastic deformation due to their volume differences. The resulted interfacial
energy and strain energy can not and should not be accounted for by the statistical mechanics, i.e.
Eq. 83. These challenges can be approximately resolved by designing important configurations
that contain those interfaces and using Helmholtz energy in the statistical mechanics instead of

total energy commonly used in the literature.!%-23-27

The Helmholtz energy of the system is thus obtained as follows

F = —kyTinZ = Z prFE — Z prFY — kpTinZ = Z pFFE + kBTZ p*InZ¥ — kyTinZ Eq. 84
= Z pFFk + kBTZ p*inp*
—Fk/kpT
e Tk Eq. 85
p e—F/kBT

where F¥ is the Helmholtz energy of configuration k that can be computed from Eq. 77 in terms
of DFT-based first-principles calculations. It is important to mentioned that Eq. 77 can only be
used for stable and metastable configurations and cannot be applied to unstable states because
the vibrational entropy of unstable configurations cannot be calculated due to their imaginary

vibrational frequencies.

70



For Ce, three magnetic configurations were considered, i.e. NM, antiferromagnetic (AFM), and
FM configurations®® While for Fe;Pt, a supercell with 12 atoms was considered, resulting in

2° = 512 magnetic spin flipping configurations (SFC), in which 37 SFCs are unique in terms of
symmetry.?® Their energies as a function of volume at zero K, i.e. E.(V) in Eq. 77, are plotted in
Figure 11, showing the equilibrium between NM and AFM configurations/phases for Ce at
negative pressure (common tangent with positive slope), and the equilibrium between FM and
SFC configurations/phases at positive pressure (common tangent with negative slope). The
increase of p* for metastable configurations has the potential to result in the increase (for Ce) or
decrease (for FezPt) of the system volume with the increase of temperature. The net change of
volume for Fe; Pt depends on the relative magnitudes of the decrease of volume due to the
increase of p* for metastable configurations with smaller volumes and the increase of volume of
individual configurations due to their individual positive thermal expansions. This is
demonstrated by the plot of the Helmholtz energy differences, (F¥ — F)/kgT (see Eq. 85), for

37 SECs of Fe; Pt in Figure 12.

Figure 11. E.(V) in Eq. 77 for (a) Ce % and (b) Fe; Pt ¢

Figure 12. (F¥ — F) /kgT as a function of temperature plotted for 37 SFCs of Fe3Pt.?**

By replacing P in Figure 10 with its conjugate variable, V or V,,,, one obtains the mixed potential-
molar quantity phase diagram shown in Figure 13 along with several isobaric volume curves.?’

The anomaly, i.e. the dramatic increase or decrease of volume on each isobaric curves with the
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increase of temperature in the single phase region, is marked by the pink open diamonds, and the
critical point is denoted by the green open circle. Below the critical point, the homogeneous
system with a mixture of various magnetic configurations is no longer stable and decomposes
into a two-phase mixture in the area of miscibility gap with both phases being mixtures of

various magnetic configurations, but with different proportions.

Figure 13. T — (V/Vy) phase diagrams for (a) Ce, and (b) Fe; Pt, with V), being the

equilibrium volume at atmospheric pressure and room temperature.

The thermal populations of three configurations for Ce, two major SFCs, and all SFC for Fe; Pt
are plotted in Figure 14. For Ce, the population of the AFM Configuration at high temperatures
is way higher than those of both FM and NM configurations, and the overall magnetic spin
configuration is FM. For Fe;Pt, even though the FM configuration has the lowest Helmholtz

energy at all temperatures considered, its population is lower than 20% at high temperatures.

Figure 14. (a) Thermal populations of the nonmagnetic (red dot-dashed),
antiferromagnetic (green dashed), and ferromagnetic (blue solid) as a function of
temperature in Ce at the critical pressure of 2.05 GPa;** (b) Thermal populations of the
FMC (black solid line) and that of the sum over all SFCs (black dot-dashed line) with the
two major contributions to the PM phase from SFCSS and SFC41, plotted using red

dashed and long dashed lines, respectively, for Fe; Pt at 1atm, respectively.?
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The phase diagrams in Figure 13 resemble the miscibility gap commonly seen in binary
temperature-composition phase diagrams. Miscibility gap has been routinely modeled in
CALPHAD databases, such as the fcc-based three-phase miscibility gap in multicomponent
steels.??> However, it was pointed out that CALPHAD modeling does not really address the
instability because the divergency of molar quantities is not considered, and it is not clear how
the singularity can be efficiently addressed by a closed mathematical form, and thus more work

is needed.!?

It is natural to think that if there is a technique with higher time and spatial resolutions
comparable to the residence times and dimensions of metastable configurations, one would see
many different configurations rather than a homogeneous system away from the critical point in
the areas marked by the pink open diamonds in Figure 13, which can be far away from the
critical point itself as shown. Even though there are no reports in the literature for Ce and Fe;Pt,
there are reports for other materials such as water,?2%2?7 ferroelectrics, 228232 and
thermoelectrics.?® The ferroelectric PbTi05 is particularly interesting as introduced in Section
5.1.1 and discussed below. Of course, it should be noted that the microscopic mechanisms in
different materials are different when their critical points are approached due to their intrinsic
electronic structures and atomic interactions, demonstrating the importance to find the key
configurations for each individual system. But the general statistical approach based on

fundamental thermodynamics discussed here should be applicable to all systems.

5.3.2.  Configurations in PbTi0O;
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Under ambient pressure, X-ray measurements indicate a structure transition of PhTi0O5 from
ferroelectric tetragonal (FE) to paraelectric cubic (PE) at 763K,?** and the cubic structure is
unstable at zero K.21%235 The volume of the tetragonal FE phase decreases with the increase of
temperature and increases in the cubic PE phase.?** However, when both Pb and Ti edges were
measured in XAFS (x-ray-absorption fine structure) analysis with the time and spatial resolutions
being ~1071% sec (0.1fs) and 1% to 4" nearest neighbor shells, it was found that the displacements
of the atoms within the unit cell vary little with temperature below the transition and decrease
only slightly above the transition temperature.??-23° In the PE phase, the Pb and Ti distortions
are about 50% and 70% of the corresponding low temperature values, respectively. The
presence of this distortion is readily apparent in the high-temperature data as the first ‘‘edge
peak’” above the Fermi energy does not disappear or become small as in centrosymmetric

structures.

The local tetragonality is plotted Figure 15 in terms of lattice parameters of PbTi0O5 unit cell
with the data from the x-ray diffractions?** and AIMD simulations superimposed.” The AIMD
simulations were performed with the lattice parameters of the supercell fixed to the values from
the x-ray diffractions, i.e. tetragonal and cubic below and above the transition temperature,
respectively.?3* In contrast to conventional molecular dynamics analyses where results are
averaged over time, the atomic configurations in the AIMD simulations were categorized as a

function of time in terms of the individual Ti-O bond lengths in the nearest-neighboring shell.
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Figure 15. Temperature dependence of the lattice parameters a, ¢ of PbTiO3 unit cell with

228

data in the open symbols from the XAFS measurements, 225-23 the closed symbols from the

234 and the crossed symbols from AIMD simulations’

x-ray diffraction,
The AIMD simulations indicate that the cubic configuration exists at temperatures about 300 K
even though the time-averaged overall atomic configuration is tetragonal. The quantitative
results depict that as the temperature increases, the population of the cubic configuration
increases and that of the tetragonal configuration decreases, and both become constant above the
transition temperature as shown in Figure 16 with the majority of tetragonal configurations
polarized. By following individual Ti atoms, it was observed that the tetragonal configurations
with different polarization directions switch between each other with the cubic configuration as
the intermediate state (see Figure 17).!7 It is thus concluded that the negative thermal expansion
in the tetragonal phase region is due to the increased population of the transitory cubic
configuration that has smaller volume and higher entropy than the tetragonal matrix, originated
from the more frequent switching of the polarization directions and the longer total residence

time at the cubic configurations at high temperatures.

When a group of tetragonal configurations change their polarization directions, the domain walls
are created with neighboring tetragonal configurations with the original polarization directions.
There are two types of domain walls in PhTi03, i.e. 90° and 180°.23¢ Considering the
multiplicities of these two domain walls, we are able to predict the FE-PE transition of PbTiO5

in excellent agreement with experimental data. The details will be reported in a separate paper.
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Figure 16. Fractions of the cubic (closed circles) and tetragonal (closed squares)

configurations as a function of temperature, obtained from the AIMD simulations.”

Among the tetragonal configurations, the fractions of the polarized and unpolarized ones in

the <001> direction are shown in the open squares and open diamonds, respectively

Figure 17: Instantaneous lattice parameters of PbTiO3 measured in all three directions as a

function of AIMD simulation steps, (a) 623K, and (b) 753K. 17

5.3.3.  Limit of instability with D, = 0, D # 0 and D3 # 0

It is commonly accepted that the system needs to overcome the full barrier in order to transform

from a metastable state to a more stable state as shown by Figure 3. This is true when there is
only one pathway between the metastable and stable states. One example is atomic diffusion
during which the moving atom must cross over the top of the barrier to reach the next vacancy
site, and the inflection point with D, = 0 only indicates that the increasing rate of resistance
decreases moving forward. However, when there are more than one states that the system can
attend after it crosses the limit of stability, the system can transform into those states
spontaneously without barrier because the system is unstable. The spinodal decomposition in
binary and multicomponent materials is such an example, in which an unstable homogeneous
solution spontaneously separate into two or more states with different compositions and lower
total energy without barrier, and the spatial arrangements of those states can be drastically
different with small stochastic perturbations,??>10 resulting in structures similar to those
dissipative structures.>'¢ Therefore, the limit of stability alone cannot determine whether the

system undergoes spontaneous transformations.
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Recently, van de Walle et al. connected the energetics at the limit of stability, i.e. D, = 0,D # 0
and D3 # 0, with the SGTE lattice stability obtained through extrapolations in the CALPHAD
approach.*” Their approach is based on three complementary points of view: (1) a topological
partitioning of phase space in terms of curvature criterion of potential energy hypersurface; (2)
stabilizing the system by constraining the minimum number degrees of freedom by neglecting
the few unstable modes at the thermodynamic limit; and (3) smooth extrapolation of free
energies from local minima through inflection points to cross the instability. The Ir-Re—W alloy
system was selected as a benchmark because it combines elements that each favors a different
lattice: Ir in fcc, Re in hep and W in bee. Furthermore, the difference of lattice stability for fcc
W between CALPHAD modeling and the DFT-based first-principles calculations is about

30kJ/mole-atom, among the largest.**

Figure 18 plots the formation energies of bce/hep/fec ideal solutions in the three binary systems
in the [Ir-Re-W ternary system from three methods: the inflection method and two DFT-base
calculations with or without constraints on symmetry.*’ The energies at the inflection point are
calculated by finding a path of steepest descent that connects the unrelaxed unstable
configuration to the fully relaxed stable configuration in one of two ways: (i) the generalized
nudged elastic band method with cell shape variations?*’ or (ii) the ‘damped’ dynamics with the
atoms repeatedly displaced in the direction of the force upon on them by a fixed distance. It can
be seen that in stable regions, all three methods agree, but the inflection-detection method
provides the smoothest extrapolation behavior into the unstable regions and agree with the values

in the CALPHAD community (labeled as SGTE).!*” The DFT-based calculations with
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symmetry-constrained relaxations, i.e. no change of space group during relaxations, give much
higher formation energy, while the calculations for unstable structures without symmetry

constrain resulted in full relaxation towards nearby stable phases.

Figure 18. Formation energies of ideal solid solutions in all binary subsystems of the Ir-Re—

W alloy system, obtained via various methods. 4’

The work by van de Walle et al.*’ implies that the energy at the limit of stability represents the
“apparent” energy of an unstable structure when extrapolated from various stable regions. This
approach seems reasonable because after the system crosses the limit of stability, there is no need
for the system to increase its energy anymore because the system can spontaneously assembly
itself into a dissipative structure '® with spatially distributed higher and lower energy regions
with the summed energy lower than that of the original homogeneous system. Consequently, the
higher energy region can venture further into the more unstable territory and can continuously
dissipate itself in the same fashion until the high energy region crosses over the barrier and may

even develop oscillating patterns,'6 in the same fashion as the spinodal decomposition discussed

209,210,238 239-241

above with the formation of self-assembly of complex structures.
One can imagine that repetitive impacts from the surroundings to a system can bring the system
across its limits of stability cyclically in a multidimensional space and result in more and more
complex internal structures in the system. As pointed out by Prigogine, many systems can
spontaneously organize themselves if they are forced away from thermodynamic equilibrium

into unstable regions.>!® This is in analogy to the hypothesis by Oparin?*? that energy from the
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Sun, electrical activity like lightning (or possibly impact shocks or ultraviolet light), and Earth's
internal heat triggered chemical reactions to produce small organic molecules which were further
organized into the complex organic molecules (such as proteins, carbohydrates and nucleic acids)
as the basis of life. The key is that the external inputs bring the system across its limit of
stability. Various concepts were elaborated in many recent publications,?*-?*> demonstrating its
extremely complex and controversial characteristics. Hopefully, the thermodynamics of limit of
stability can help to enhance our understanding of the formation of dissipative structures and

life.!0

5.4. Materials design

The detailed understanding of stability, metastability, and instability of a system enables the
design of materials for specific applications. As Olson articulated, the conceptual design of
multilevel-structured materials is possible with a systems approach that integrates processing,
structure, property, and performance relations through a hierarchy of computational models to
define subsystem design parameters that are integrated through CALPHAD-based computational

thermodynamics.?!4246

5.4.1.  Phase stability in alloys

The best example of materials design in terms of phase stability is probably the materials system
chart for a high-performance alloy steel schematically shown in Figure 19 with three subsystems:
strength, toughness, and embrittlement resistance.?'* The strength of the steel comes from the
metastable lath martensite as the matrix of the steel and the nano-scale precipitates. The stable

bee phase is prevented to form due to sluggish diffusion with respect to fast cooling. The
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martensitic transition temperature (M) is modeled as a function of composition when the Gibbs
energies of the high temperature fcc phase (austenite) and the martensite with the same
compositions equal to each other. The accurate calculations of M, temperatures require an
improved thermodynamic model of the martensitic phase. For further strengthening, the driving
forces for the formations of undesirable carbides and topologically close pack (TCP) phases need
to be made negative or minimized, while the driving forces for the MC and M2C carbides must
be enhanced through the optimal combinations of compositions and processing parameters to
increase their nucleation rates. The sizes of the precipitates are to be maintained at nanometer
scale through the coherent interfaces between the precipitates and matrix with the lowest

interfacial energy to minimize the driving force for coarsening.

Figure 19. Materials system chart for high-performance alloy steel.?'4

The toughness is regulated by the lath thickness of martensite, austenite grain size that affects the
packet size and lath thickness of martensite, and the amount of retained austenite that is softer
than martensite and transforms to martensite under deformation with an increase of volume and
at the same time absorb energy, that deflect the crack propagation and improv the toughness.

The stability of grain refiner agents must be carefully controlled so they would not dissolve
during the high temperature processing and be effective in reducing the grain size of austenite
through nucleant particles. The stability of the retained austenite is determined by the alloy

concentrations and the enrichment of carbon during the martensite formation.
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The embrittlement resistance centers on the control of grain boundary segregation/desegregation
to enhance the grain boundary cohesion and avoid the intergranular cracking. The
thermodynamic description of intergranular embrittlement is related to the segregation energy
difference to the free surface versus a grain boundary. Correlated with experimental
embrittlement sensitivity data with the segregation energy difference from DFT-based first-
principles calculations, it is possible to predict the embrittlement potency of a segregating solute
with or without prior segregation of other solutes. Furthermore, the charge-transfer plots from
the DFT-based calculations reveal that embrittling P and S with positive segregation energy
differences undergo a nonhybridized electrostatic interaction with Fe and promote the formation
a free surface, whereas the cohesion-enhancing B and C exhibit anisotropic hybridized bonding
across the grain boundary. The DFT-based calculations also demonstrate that the embrittling
effect of Mn is related to the strengthened in-plane bonding and thus the weakened out-plane

bonding.

Another example is shown for the design of corrosion-resistant landing gear steel allowing a
drop-in replacement for current non-stainless landing-gear steels, eliminating the need for

9,246 which was also listed as

cadmium plating with the strategy similar to that shown in Figure 1
an ICME success example in a recent publication by National Research Council.?*” Another
ICME success example in the same publication >#7 is on the development of Ni-based superalloy
GTD262 at GE to replace tantalum (Ta), a critical refractory element subjected to high risks of
supply and price disruptions, in superalloy GTD222. Through integrating CALPHAD-based

computational thermodynamic predictions of phase equilibria with GE’s internal materials

property models and databases, four alloys with niobium (Nb) replacing Ta and with
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modifications to the concentrations of other elements to optimize and balance key properties and
producibility. The best of the four alloys doubled creep-resistance performance with other
properties remained comparable to those of the Ta-bearing GTD222 and successfully passed the

248 The new

industrial-scale production trial and qualifications without any technical hurdles.
alloy was introduced into GE power generation gas turbines in about 4 years from concept to
industrial production at less than 20 percent of the typical alloy development cost. High-
confidence CALPHAD-based thermodynamic predictions not only eliminated several of the
experimental iterations that are usually needed to obtain the right alloy compositions, but also

eliminated the long-term thermal exposure experiments that are generally required to test the

propensity to form detrimental phases.

5.4.2.  High entropy materials
In last two decades or so, a new group of materials, called high entropy alloys (HEA) or more
generally high entropy materials (HEM), with equal atomic ratios of multicomponent elements

has been extensively investigated.?4*-253

The key argument is that the atomic mixing entropy,
denoted by Eq. 37, is maximized for a given number of components in a solution phase when all
components have the same mole fraction, i.e. central regions of multicomponent phase diagrams,
thus lowering the Gibbs energy of the phase and increasing its stability. The development of

HEMs includes single solution phases with one sublattice and compounds with more than one

sublattices>*-2%7 for both structural and functional applications.?>?

Senkov et al. 2260 uged the then available CALPHAD databases developed by CompuTherm!'#?

to analyze thousands of 3-, 4-, 5-, and 6-component alloys at equiatomic compositions of the
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alloying elements with the validity and reliability of the calculated phase diagrams estimated
through the comparison with experimental binary and ternary systems. Based on a number of
criteria they selected 27 elements from the chemical periodic table, i.e. Ag, Al, Co, Cr, Cu, Dy,
Fe, Gd, Hf, Lu, Mg, Mn, Mo, Nb, Ni, Re, Rh, Ru, Sc, Si, Ta, Ti, Tm, V, W, Y, and Zr, with 2925,
17,550, 80,730, and 296,010 alloys in 3-, 4-, 5-, and 6-component systems, respectively. It was
found that though most binary systems were modeled comprehensively, many CALPHAD
modeling of ternary systems was lacking because databases were usually developed for alloys
with one major element and relatively low contents of alloying elements. Nevertheless, their
CALPHAD-based thermodynamic calculations predicted that the majority of the equiatomic
alloys contain both solid solution, i.e. bcc/hcp/hep with bee being the most common one
followed by hcp and fcc, and various intermetallic phases at the melting temperature and 600°C.
Total 453 different phases were identified. The fraction of the solid-solution alloys decreases
significantly with the increase in the number of alloying elements, e.g. from 46% to 10% in 3-
and 6-component alloys at the melting temperature as shown in Figure 20, and from 30 to 4% at
600°C (not shown here), respectively. The elements that more often appear in solid solution
phases at melting temperatures are Al, Cr, Hf, Mg, Mn, Mo, Nb, Re, Rh, Ru, Ta, Ti, V and W.
The elements that appear less frequently in solid solution alloys are Fe, Ni, Sc, Y and Zr with Si
completely absent. Further down selection was made by alloy density, Young's modulus, and

cost.

Figure 20. Distributions of the N-component equiatomic alloys by the number of phases at

the melting temperature with SS for solid solution and IM for intermetallic compounds.
259,260
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The more recent HEA CALPHAD database?®! developed by ThermoCalc included the enthalpy
of mixing data for bcc, fcc and hep solutions from the DFT-based calculations using the SQS
approach.!®+197 Since the single solid solution phase regions depend on the Gibbs energies of
both the solid solutions and intermetallic compounds, it is important to also improve the
modeling of intermetallic compounds in the central regions of multicomponent phase diagrams.
Due to the lack of experimental data, the large composition space in HEAs, and the complex
structures of intermetallic phases, efficient theoretical predictions such as high-throughput DFT-
based calculations and ML approaches are highly critical. As an example, we recently studied

the 0 phase in the Cr-Fe-Ni ternary system with the unit cell containing 30 atoms on 5 Wycoff

positions.22 The Gibbs energies of the 3° = 243 end-members were calculated using the high-
throughput DFT-based first-principles calculations, and the data is publicly accessible online at

Citrine Informatics.203

The site occupancies in various sublattices with ideal mixing in each
sublattice are plotted in Figure 21 for the three binary systems in the Cr-Fe-Ni ternary system at
925K. The o phase is stable in the Cr-Fe binary system, and the agreement between the
predicted and experimental site occupancies are reasonable and can be improved by introducing
vibrational entropy and interaction parameters in sublattices as shown in Eq. 47. The systematic
inclusion of thermochemical data from DFT-based calculations can significantly speed up the

development of multicomponent databases for HEMs with enhanced accuracy.?64+26

Figure 21. Predicted equilibrium site occupancies at 925K for the Cr-Fe, Cr-Ni and Fe-Ni

262,263 jn comparison with experimental data.?6%267
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For the entropy-stabilized oxide investigated by Rost et al.,>>, (Mg, Ni, Co, Cu, Zn)0 with
equiatomic cation elements, i.e. 0.2 each, transforms from the two-phase mixture of rocksalt and
tenorite to the single-phase rocksalt solution at temperatures above 875°C. Rocksalt MgO, NiO
and CoO oxides are stable, while tenorite CuO and wurtzite ZnO oxides are stable. As the
configurational entropy over kg at equiatomic fractions is 1.609, the maximum theoretically
expected configurational entropy difference at the transition temperature 875°C between the
single species and the random five-species solid solution results in an energy of [115 kJ/mole-
atom, which is 5 kJ/mole-atom larger than the enthalpy of transition calculated from tenorite
Cu0 and wurtzite ZnO to the rocksalt structure. Rost et al.?>> attributed this 5kJ/mole-atom
difference to the enthalpy of mixing at the equiatomic composition. When the mole fraction of
one cation changes to 0.10 or 0.30 with equiatomic fractions for other four cation elements, the
decomposition temperature increases to 960°C on both sides for Mg0, 985°C and 1010°C for
NiO, 1000°C and 1050°C for ZnO, 1025°C on both sides for CoO, and 1025°C and 1050°C for
CuO, respectively, as shown in Figure 22. The ideal configurational entropy over kj is the same
for all cation elements at 0.10 or 0.30 mole fraction of one cation element, i.e. 1.573 and 1.581,
respectively, resulting in the increase of the decomposition temperature by about 20 to 27°C with
respect to the 0.2 equiatomic composition. The differences of decomposition temperature of
65°C for 0.1 mole fraction of one cation element and 155°C for 0.3 mole fraction from MgO to
CuO0, respectively, are due to the enthalpy effect, which can be estimated to be about 850 and
2040 J/mole-atom, respectively. Further DFT-based first-principles calculations can be used to

validate the above estimations.
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Figure 22. Partial phase diagrams showing the transition temperature to single phase as a
function of composition (solvus) in the vicinity of the equimolar composition where
maximum configurational entropy is expected. Error bars account for uncertainty between
temperature intervals. Each phase diagram varies systematically the concentration of one

element. 25°

In an investigation of high-entropy high-hardness metal carbides, Sarker et al. 23 proposed a
entropy-forming-ability (EFA) descriptor based on the energy distribution spectrum of

randomized calculations as follows

Eq. 86

EFA | (i, g9 -1 Cr, g -1

1 JZﬁzlg"(H" — Hmix) _ JZ?=1gk(Hk — [¥k=19*H"1/ ¥k=19")

where H* and g* are the enthalpy at zero K and the degeneracy of the configuration k,
respectively. The middle portion of Eq. 86 denotes the standard deviation of enthalpy of all n
configurations with H,,;, being the simple average of enthalpy of all configurations. They
hypothesized that the larger the EFA value, i.e. the smaller the standard deviation of the energy
distribution spectrum above the ground state, the higher the configurational disorder capable of
accessing equally-sampled states near the ground state and stabilizing high-entropy

homogeneous phases. This is in accordance with the configurational entropy represented by Eq.

30 or Eq. 32.

A total of 56 five-metal compositions were generated using the eight refractory metals of interest
(Hf, Nb, Mo, Ta, Ti, V, W, and Zr), resulting in a total of 2744 configurations with 10-atom
supercells. Nine candidates were chosen for experimental synthesis and investigation with three

86



candidates of the highest values of EFA, two candidates with the lowest values of EFA, and four
chosen at random with intermediate EFA values. It was a great success that the six five-metal
carbides with the high EFA values are all single-phase materials after spark plasma sintering at
2200°C. It is noted that Eq. 86 is within the same framework as Eq. 84 and Eq. 85 by
considering enthalpy only with the smaller difference representing the higher probability of
metastable configurations and thus higher entropy among configurations as denoted by Eq. 30 or
Eq. 32 if the entropy of individual configurations including vibrational and thermal electronic

contributions (see Eq. 77) is considered.

5.4.3. Energy materials

The energy materials can be broadly defined as materials that convert energy between
thermal/mechanical/electrical/magnetic/chemical energies as shown in Table 1 such as
chemical/electrical in batteries and fuel cells, solar/chemical in photosynthesis, solar/electrical in
photovoltaics, mechanical/electrical in ferroelectrics, electrical/magnetic/mechanical in motors,
chemical/thermal/mechanical in engines, and so on. The conversion between chemical and
electrical energy in battery fits to the current discussion the most as it involves the change of
composition and energy storage in addition to energy conversion, and particularly the
rechargeable Li-ion batteries (LIB) have revolutionized the industry in terms of energy

conversion and energy storage.

In LIBs, the Li ions migrate through a lithium-containing electrolyte and interclade into cathodes
(positive electrodes made of metal oxides such as LiCo0O, and LiFeP0,) during charging and

into anodes (negative electrodes such as the commonly used graphite) during discharge,
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respectively. The chemical potential difference of Li between the cathode and anode gives the

voltage through the Nernst equation as follows

al; Eq. 87
—Apy; = —RTIn—= = zfe a
ar;

where z = 1 represents the moles of electrons in the cell reaction, f the Faraday constant equal to
96,485 J/V/mole-electron, ¢ the potential difference, often referred as electromotive force (emf)
in the literature and being -3.0 Volts for the Li* /Li electrode, and a;; and a;; are the Li activities
in cathode and anode, respectively. The negative sign is because the system does work to the

surroundings when the chemical potential, thus the Gibbs energy of the system, decreases.

For LiCo0, batteries, the graphite anode and cathode reactions can be written in simple forms as
follows
Liy_,Co = (1= x)Lit + (1 —x)e” + 6C Eq. 88
(1-=x)Li*+ ({1 —x)e” + Li,CoO, = LiCoO0, Eq. 89

with the net reaction and electric potential being

Liy_yCg + Li,Co0, = LiCo0, + 6C Eq. 90
1 , , , Eq. 91
c=— {60GC + OGLECDOZ _ GLzl_xC(, _ GLLxCDOZ}
1-0f
= _l{ 'ubf'xCOOZ _ 'ubfl—xC _ 1 ML{'xCOOz _ OGLL‘COOZ)}
f Li Li 1—x LiCoO;

The electric potential is a function of x. The value in the first parenthesis in Eq. 91 denotes the
chemical potential difference of Li between two electrodes, and the value in the second

parenthesis represents the chemical potential difference of LiCoO, between the states in the
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solution phase of Li,,Co0, and by itself. Gibbs energies of Li;_,C¢ and Li,CoO, need to be

obtained as a function x in order to calculate the electric potential of the battery.

The phase diagram for Li, Co0O, with x from O to 1 was predicted by first-principles calculations
as shown in Figure 23.2%% The partition function and free energy in terms of Eq. 83 to Eq. 85
were utilized by omitting the electronic and vibrational degrees of freedom, i.e. F\i» and Fe; in Eq.
77 for F¥, and considering only the contributions to the free energy of the configurational
degrees of freedom associated with Li and vacancy distributions within different CoO5hosts, i.e.
the last term in Eq. 84 or Eq. 30 multiplied by —T. The energies of various configurations were
calculated by the CE method with three host structures: O1 with an ABAB oxygen stacking, O3
with an ABC oxygen stacking, and H1-3 with an ABABCACABCBCAB mixed O1/03 stacking.
The finite temperature thermodynamic properties were obtained by MC simulations.!8!182 The
three host structures O3, O1, and H1-3 are very similar to each other in that the O-Co-O slabs
consist of edge-sharing CoOg octahedra and can be derived from the other by a simple gliding of
the O-Co-O slabs with respect to each other adjacent to an empty Li plane. The charge density
plots showed that although the Li ions are ionized, the electron transfer from Li to the host is
very local through a significant increase in the electron density at the oxygen sites immediately

surroundings the Li ions. 268

Figure 23. Calculated Li,C00, phase diagram with x plotted on the x-axis and the insets

showing the in-plane Li ordering predicted to be stable at x = 1/2 and 1/3, respectively.?63
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It can be seen in Figure 23 that the O3 host is stable for Li concentrations above x = 0.3. For Li
concentrations above x = 0.6, the Li ions and vacancies remain disordered within the O3 host at
all temperatures. The order-disorder transition temperature of the O3 phase is about 160°C,
which is 100 °C higher than the experimentally measured value. The authors attributed this
overprediction as typical of most first-principles phase diagram calculations within the local-
density approximation, and it may also be related to the omission of Fy;» and F; since both would

stabilize the disordered configurations,?**

plus the configurational entropy from various
configurations with relatively small energy differences denoted by Eq. 30 or Eq. 32. Atx =
0.3, a new ordered structure was predicted though not observed experimentally. At even lower

Li concentrations centered around x = 0.15, the H1-3 configuration was found to be stable in

qualitative agreement with experimental observation.

The computed voltage of Li,,CoO, as a function of x is plotted in Figure 24 with various
functionals used in the DFT-based calculations,?® showing that the hybrid HSE06 with the
mixing parameter of 0.17 gives the best agreement with experimental data.?’® In two-phase
regions, the calculated voltage remains constant because the chemical potential of Li does not
change though the experimentally measured voltages are not constant as the full equilibrium may

not have reached with the finite charging and discharging rates.

Figure 24. Computed voltage profiles of Li,Co0, with various functionals with the

experimental data superimposed.>%’
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For LiFeP O, batteries with metallic lithium as the anode, the half-cell and net cell reactions are

as follows
(1—x)Li={1—x)Li* + xe~ Eq. 92
(1-x)Li*+ (1 —x)e” + Li,FePO, = LiFePO, Eq. 93
(1 — x)Li + Li,FePO, = LiFePO, Eq. 94

Its electric potential is also a function of x, i.e.

e=— a —1x)f {OGLIFePOs _ (1 — x) OGLI — GLixFePOs} Eq. 95
_ 1 LiyFePO, 0 1 LixFePOy _ 0, LiFeP0O,
= - ]7 Uy - .uLi) T 1 = x \MLiFePo, T G )

The value in the first parenthesis in Eq. 95 denotes the chemical potential difference of Li
between two electrodes, and the value in the second parenthesis represents the chemical potential
difference of LiFeP O, between the states in the solution phase of Li, FeP0, and by itself.
Consequently, Gibbs energy of Li, FeP 0, needs to be obtained as a function x in order to
calculate the electric potential of the battery. Through the CE-MC method mentioned above,?”!
the predicted phase diagram is shown in Figure 25. In the CE, the dependences of the energy on
the arrangements of Li*/V and Fe**/Fe’*, i.e., both ionic and electronic degrees of freedom are
considered with the generalized gradient approximation + U (GGA+U) calculations for 245

Li,FePO, configurations and ferromagnetic high-spin Fe ions.

Figure 25. Li, FeP O, phase diagram. (a) Experimental phase boundary data;?"??73 (b)

calculated with both Li and electron degrees of freedom, and (c¢) with explicit Li only. 2!
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The calculated phase diagram shows a miscibility gap between FePO,and LiFeP O, at low
temperatures and an unusual eutectoid transition to the solid solution phase around 400K about

272273 Tt was also shown that without the

20-70 K off from experimental estimations.
consideration of electronic degrees of freedom, i.e. Fe>*/Fe’* ordering, the calculated phase
diagram (Figure 25c) shows one typical two-phase miscibility gap only, qualitatively different
from experimental observations. The CALPHAD modeling of the Li, FeP O, phase diagram is
shown in Figure 26 with various models.?”* The calculated voltage shown in Figure 27 is in
good agreement with the experiments.?’> It is noted that three-phase miscibility gap has been
observed in multicomponent systems such as in high strength low alloying steels,?? but it is rare

in binary or pseudo-binary systems as shown here for the Li, FeP0, system due to the internal

degree of freedom in terms of the short-range ordering between Fe?* and Fe** as demonstrated.

Figure 26. Phase diagrams of FeP0,and LiFeP 0, with various CALPHAD models.?’*

Figure 27. Calculated open-circuit voltage (OCYV) curves obtained by: (a) delithiating
LiFeP 0, via equilibrium phase transformation at various temperatures (298, 448, and
563 K) where the two voltage plateaus at 563 K are marked; and (b) delithiating LiFePO,
and lithiating FeP 0, via spinodal decomposition and delithiating/lithiating via solid

solution route at 298 K. 274

Figure 28. Open-circuit voltage curves of LiFePO4 particles: open and solid circles denote

the measured values during the discharging and charging process, respectively.?”>
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It may be noted that when the electrolyte in an electrochemical system is an aqueous solution,
the electric potentials for cathode reduction reactions are usually plotted with respect to pH =
—log[H*], where [H™] is the concentration of H* in the solution, in a Pourbaix diagram after its
inventor to depict the stability relationships of ionic species and solid phases at constant
temperature, pressure, and a constant concentration of one metallic element. With the
CALPHAD thermodynamic models available, Pourbaix diagrams for complex materials can be

calculated with one example shown in Figure 29 for a multicomponent amorphous alloy.?’6

Figure 29. Calculated Pourbaix diagram at 90°C in a solution containing 1000 g of H20,
0.68 mol of NaCl (4 wt%) and one gram of alloy (Fe-2.5 at.% Mo-19 at.% Cr-4 at.% C-16-

at.% B and 1.7 at.% W)?7¢

5.4.4. Thermodynamically stable nanograins

Nanocrystalline alloys possess simultaneously superior strength and ductility in comparison with
coarse grained alloys. However, they are usually not stable due to the large amount of grain
boundary that provides huge driving force for rapid growth of their grains even at low
temperatures, preventing their engineering applications. Segregation of alloying elements to
grain boundaries and other interfaces has been studied for a long time, including the work by
Gibbs.! Tt seems that Weissmiiller started to discuss the reduction of the grain boundary energy
by grain boundary segregation and articulated the concept for the stabilization of nanocrystalline
solids against grain-growth by grain boundary segregation and the possibility of zero grain

boundary energy in systems with large heat of segregation.!**!3! Through MD simulations of
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bicrystals and a nanocrystalline network in fcc copper with oversized hypothetic dopants, Millett
et al. 277 demonstrated theoretically that the grain boundary energy can be reduced to zero with
systematically increasing dopant coverage and atomic radius mismatch in bicrystals and
determined the critical dopant concentration required to eliminate grain growth in bulk and thin

film structures.

Trelewicz and Schuh 78 developed a Gibbs energy function of a binary nanograin system by
considering the intergranular bonds within the intergranular region and transitional bonds
between the atoms in the intergranular and bulk regions with intergranular region assigned as a
shell of finite thickness as shown in the following equation

AGmix =(1 _fig)AGh +figAGig Eq. 96

mix mix

+20fp) [Xip(Xig = Xp) = (1 = Xip) (Xig — X Jj,

Q
—:(Xig_xb)(YB_ 'YA)}' (

The key model parameters are the grain boundary energies of the pure solvent and solute (y, and

yg), the regular solution interaction parameters in the grain and intergranular regions included in

AG2,. and AG'Y

mix» the coordination number (z), and the solvent atomic volume () along with
approximations related to the bond distribution between the grain and intergranular regions (v).
For a given grain size which determines the fraction of intergranular region (f;4), the equilibrium
composition in the intergranular region is obtained by letting the derivative of the Gibbs energy
with respect to the composition (X}, for grain or X;4 for intergranular regions) equal to zero, and

the corresponding grain boundary energy is calculated by the derivative of the Gibbs energy with

respect to the fraction of the intergranular region. When both derivatives equal to zero, a
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thermodynamic stable grain configuration is obtained. Systematic parametric investigations
were carried out for a range of model parameters, and qualitatively agreements with the
experimental observations for the Ni-W and Ni-P systems were observed. 278

Chookajorn et al. 132

used the model to predict the nanostructure stability map for tungsten based
binary alloys, and the results at 1100°C are shown in Figure 30 with the enthalpy of segregation
plotted with respect to the enthalpy of mixing in the bulk. The enthalpy of segregation is related
to the differences of the regular solution interaction parameters in the grain and intergranular
regions and the atomic volume and grain boundary energies of pure elements. The experimental
validations were carried out using the pure W and the binary W-20at.%Ti alloy with the alloys
processed by high-energy ball milling and about the same grain size of 20nm. The powders were
then equilibrated at 1100°C in an argon atmosphere for one week. The unalloyed nanocrystalline
W exhibits the normal grain growth to about 600nm, while the W-20at.% Ti alloy keeps its
nanostructure with its nominally average grain size unchanged. This model has been
successfully applied to a range of binary and ternary alloys.?’-282 Similar approach has also

been developed by Saber et al.?%3

Figure 30. Nanostructure stability map for tungsten based binary alloys at 1100°C. 132

Darling et al. °7 considered the two independent internal processes in terms of Eq. 65 for
nanograins and derived the grain boundary energy similar to Eq. 76 The equations were tested
for the Fe-Zr system and compared with available experimental data as shown in Figure 31a with

the normalized grain boundary energy versus mole fraction of Zr in the grain boundary for an
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alloy of xz, = 0.03 at T = 550°C for several grain sizes. In Figure 31b the stabilized grain size
is plotted as a function of temperature for different Zr molar fractions with the experimental
XRD data for an xz, = 0.04 alloy superimposed, showing good agreement between predictions
and experiments. Systematic calculations were then performed for binary systems of 44 solvents
and 52 solutes, and as an example, the stability map for W binary alloys is plotted in Figure 32
with the elastic enthalpy versus the enthalpy of mixing for both the stabilizing (red dots) and
non-stabilizing (black dots) solutes. This model has been extended to ternary systems with the

normalized grain boundary energy contours plotted for an Fe-Ni-Zr alloys shown in Figure 33.

Figure 31. (a) Normalized grain boundary energy versus mole fraction of Zr in the grain
boundary for an alloy with xz,. = 0.03 at T = 550°C, showing the stabilized grain size of
23.1 nm; (b) Stabilized grain size as a function of temperature for different Zr molar
fractions with the experimental XRD data for an x;,. = 0. 04 alloy superimposed, showing

quantitative agreement between predictions and experiments. °’

Figure 32. Nanocrystalline W stability map for both the stabilizing (red dots) and non-

stabilizing (black dots) solutes *7

Figure 33. Contour plot of iso-grain boundary energy in the bce Fe-Ni-Zr ternary system.

5.4.5.  Strain engineering and molecular beam epitaxial (MBE): TOMBE diagram
The strain engineering and epitaxial growth are often used interchangeably in the literature. The

central theme is to manipulate the lattice structure and lattice parameter of thin films through the
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constraints from the substrate.?’> Even though it is often termed as metastable phase equilibria
for thin films, it is not strictly accurate because the system is internally at a stable equilibrium.
The epitaxial constraint that restricts the lattice structure of the thin film, i.e. the coherent
interface between the substrate and the thin film, is an external condition placed on the thin film
as the substrate is usually not included as part of the system. When the bulk stable phase has the
similar lattice structure of the substrate, it is likely that the thin film of this phase will form.
When the bulk stable phase cannot have a coherent interface with the substrate, the competition
arises between the interfacial energy and strain energy, and the interfacial energy usually
dominates due to the very large surface to volume ratio of atoms for thin films. It should be
emphasized that due to the strain/stress inhomogeneity in the thin film, the energetics of the
system has to be investigated through integration and thus depends on spatial arrangements of
domains and phases as illustrated in Figure 5 and the related discussions.?'®?!7 Nevertheless,
computational thermodynamics can give valuable guidance on processing design as shown in

some examples below.

For the then newly discovered superconductor M gB,,?* the stable region of the gas and Mg B,
two phases can be calculated through the CALPHAD modeling of the Mg-B system,?> as shown
in Figure 34 for a section through x4 /xp = 1/2.2% It was shown that the phase relations do
not change with higher ratios due to the phases being stoichiometric and the gas phase of nearly
pure Mg. It is important to realize that the total pressure in the thermodynamic calculations
equals to the vapor pressure of Mg due to the near zero vapor pressure of B at the temperature
range of interest, representing the activity of Mg. The system pressure is thus not an independent

variable anymore in the thermodynamic calculations when the gas phase is involved.
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The high pressure of Mg needed to form M gB, is impractical for many vacuum deposition
techniques and prompted the development of the hybrid physical-chemical vapor deposition
(HPCVD) technique,?®’” with diborane (B2H6) as the boron precursor gas and heated bulk Mg in
the deposition chamber as the Mg source. The (0001)-oriented M gB, films form as in-plane
epitaxy on (0001) sapphire and (0001) 4H-SiC substrates which have six-fold symmetry
characteristic. The dominant in-plane epitaxial relationship is that the hexagonal M gB, lattice is
rotated by 30° to match the hexagonal lattice of sapphire, but is directly on top of the hexagonal

lattice of SiC owing to the close lattice match.

Figure 34. Mg-B pressure-temperature phase diagram with xy,/xp > 1/2. 2%

In many other cases, the lattice structure of the substrate stabilizes the phases that are metastable
in unstrained conditions as reflected in our previous publications including BiFe05,?%
BiMn03,”¥ LuFe,0,,>° PbTi05,>' BaSn0,*> BaFe,As,,*>> SrRu0; and CaRu05,”** and

a — SnS.?> Particularly worth further discussion is the case for STRu0O5 and CaRu0; with a
combined pressure-temperature potential phase diagram based on the thermodynamics of MBE
(TOMBE) growth shown in Figure 35, sectioned along a given Ru partial pressure evaluated
from its flux.?** It can be seen that this diagram is a combined pressure-temperature potential
phase diagram with top and bottom parts based on the thermodynamics of MBE growth
conditions, thus termed as a TOMBE diagram. The solid lines in the bottom half of Figure 35
are the typical Ellingham diagram applied to the Sr-Ru-O and Ca-Ru-O ternary systems,

respectively. They depict the windows under which different members of the S7;, 41 Ru;, 03141
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and Ca,, ;1 Ru,, 03,41 Ruddlesden-Popper (RP) series are thermodynamically stable. There are
three solid phases in equilibrium on each line, and the Gibbs phase rule for a three-component
system from Eq. 29 is as follows.

v=c+2-p-n=5-4=1 Eq. 97
where ng is the number of fixed potentials, the pressure in the present cas. This results in one
independent potential, i.e. lines in the bottom half of the phase diagrams in Figure 35. Along
those lines, the partial pressures of all species in the system are a function of temperature
including the partial pressure of oxygen plotted on the vertical axis of the diagram. It should be
noted that the gas phase is not explicitly presented in the calculations, but represented by the sum

of partial pressures of all species in the gas phase.

Figure 35. TOMBE diagrams illustrating the adsorption-controlled growth window for (a)

STp+1RU, 05,4 and (b) Ca,,,1Ru, 03,1 phases.?®*

When the oxygen partial pressure is higher enough to vaporize all Ru in the form of Ru0, with
Ru0, and Ru0j; as the primary species, the equilibrium between various Ru0, correlates the

partial pressures of Ru and 0,, and the Gibbs phase rule thus becomes
v=3+4+2-p-2=3-p=3-2=1 Eq. 98

A line in a potential phase diagram, i.e. v = 1, thus represents a two-phase equilibrium, as shown

by the dashed lines in the top half of Figure 35. The light green shaded regions in the figure are

the adsorption-controlled growth windows for STRu0O3 and CaRuO3, respectively.
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The boundary separating the top and bottom halves in Figure 35, i.e. the thin dashed near-
horizontal brown line, is the equilibrium between the solid and gas phases in the O-Ru binary
system. With given incoming flux of Ru, i.e. 1.95x1013 atoms/cm? /s and 3.2x103 atoms/
cm? /s for Figure 35(a) and (b), respectively, the oxygen partial pressure becomes a dependent

variable as a function of temperature with the Gibbs phase rule written as
v=2+2-p—-1=3-p=3-2=1 Eq. 99

Furthermore, the cyan lines show the equivalent oxidation potential for ozone partial pressures

ranging from 1071 — 1075 Torr, illustrating the benefit of having ozone as an oxidant while

maintaining the long mean free path with low total pressure necessary for MBE.

Another important factor for oxide MBE is the source materials. MBE traditionally utilizes
elemental molecular beams as shown above. However, this is challenging when various
elements have different vapor pressure and potency for oxidation. Alternatively, one might be
tempted to just evaporate the desired oxide directly. In general, such an approach does not work
due to two factors: different vapor pressures of elements in the oxide and incongruent
evaporation of the oxide, resulting in changing partial pressures of the species from the source
over time and making it very difficult for the controlled deposition of thin films. Recently, we
conducted a comprehensive thermodynamic analysis of the volatility of 128 binary oxides to
evaluate their suitability as source materials for oxide MBE.?*® 16 solid or liquid oxides were
identified that evaporate nearly congruently from stable oxide sources to gas species and 24
oxides could provide molecular beams with dominant oxygen-containing gas species. It was also
discovered that the two-phase mixtures of a wide range of elements and their oxides can provide

stable sources of dominant oxygen-containing gas species with very high flux, which can be
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further oxidized to form desired oxides with high growth rates, easy control of dopants, and low
defects in comparison with the existing, state-of-the-art techniques. It is termed as suboxide
MBE or S-MBE because the dominant oxygen-containing gas species, called suboxides, needs to

be further oxidized to form the desired oxides. 2%

5.4.6. Additive manufacturing and functionally graded materials

Additive Manufacturing (AM), also known as three-dimensional printing or layer manufacturing,
is a freeform fabrication process by which an object is built up, layer by layer, via selective
deposition of material.?*’ The AM process is unique compared with other manufacturing
technologies because a component can be built without the removal of material. Polymer AM
has been well established over the last decades, and AM of metallic alloys is more recent due to
higher melting temperatures needed and lower viscosity of molten metal. Debroy et al. recently
presented a critical assessment of process, structure and properties of metallic components by
AM,?*® and Reichardt et al. reviewed the advances in metal-based functionally graded materials
(FMG) by AM in which the compositions are varied spatially to tailor the location specific
properties.?”® One of the important features of the AM process is the fast and repeated heating
and cooling in the consolidated layers, including partial remelting, when new layers are

continuously added.

Keller et al. 3% combined thermal modeling by finite element analysis to simulate the thermal
profile of the laser melt pool. They used the Scheil-Gulliver solidification model and DICTRA
and TC-Prisma simulation tools '*? to predict microsegregation between dendrite arms during

solidification of the melt pool, and the phase-field simulations to calculate the primary
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cellular/dendritic arm spacings, using Ni-Nb as a binary analogue to Inconel 625. The
CALPHAD thermodynamic and atomic mobility databases were used in the simulations
involving atomic diffusion.!® In the Scheil-Gulliver solidification model,**!-3%2 the diffusion in
the liquid phase is assumed to be infinite, thus a perfect atomic mixing, while the diffusion in
solid phases is assumed to be zero. It represents a scenario of solidification when the cooling rate
is fast enough to prevent the diffusion in sloid phases and slow enough for rapid diffusion in the
liquid phase due to the large difference in their diffusion rates. It is self-evident that the other
scenario is to assume that the diffusion is also infinite in the solid phases, i.e. the equilibrium
calculations. The reality is then between these two scenarios such as the one-dimensional
simulations using DICTRA3% or two- and three-dimensional simulations using phase-field3** or
other methods such as the Kampmann-Wagner numerical (KWN) method 3%33% implemented in

ThermoCalc*” and Pandat3%8.

A Scheil-Gulliver solidification simulation starts when the temperature reaches the liquidus of an
alloy. An equilibrium calculation is then performed at a lower temperature, usually one or
several degrees lower than the liquidus, to obtain the compositions and fractions of liquid and
solid phases. The composition of the liquid phase is subsequently used as the over-all
composition for the equilibrium calculation at the next lower temperature. This process
continues until the amount of liquid becomes practically zero or the composition reaches a
multicomponent invariant eutectic point. The simulation results in Inconel 625 showed
significant microsegregation for all elements. The temperature profile from the FEM analysis by
Keller et al. 3% was validated by the surface temperatures from the in situ thermographic

measurements. The alloy was re-melted during the second scan temperature peak, and the
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DICTRA simulation using the simulated temperature file was thus carried out for the second and
third laser scans and show very minor homogenization of the segregated profiles. The fcc phase
fraction as a function of temperature from the DICTRA simulation is very close to those from the

Scheil-Gulliver model.

For the parameters chosen for the phase-field simulations in the Ni-4%Nb binary alloy, cellular
domains were observed with much less microsegregation than that predicted by a Scheil-Gulliver
analysis and DICTRA simulations of the same binary alloy, and the simulated primary cellular
arm spacings 1s in agreement with experimentally measured spacings in observed
microstructures. Since the precipitates of other solid phases were not considered, the driving
forces for precipitates were calculated using the fcc phase composition when 1% liquid remains.
It was found that the MC carbide is with the largest driving force to form, in qualitative
agreement with the carbides of 50-200nm near cell/dendrite boundaries observed after the stress-

relief treatment. 390

The FGMs by AM add another layer of complexity with the spatial change of compositions.?*
We have studied a series of FGMs in recent years, including Ti-6Al1-4V (Ti64) to V (Ti64/V),3%
stainless steel (SS) 304L to Invar (SS304L/Invar),3*° SS304L to Inconel 625 (SS304L/IN625),310
Ti64 to Invar (Ti64/Invar),>!! Ti64 to SS304L (Ti64/SS3041),>!2 V to Invar (V/Invar),3!3 and
SS420 to V to Ti64 (SS420/V/Ti64), Ti64 to V to SS304 L (Ti64/V/SS304L), and SS420 to V
(SS420/V)* through experimental and computational investigations. The formation of
detrimental phases in most FGMs calls for more sophisticated design of the composition paths

between the ending alloys. One approach is through equilibrium calculations in one temperature
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below which solid phase transformations are kinetically precluded through simple calculations

310314 or a temperature range to circumscribe the phase regions of the undesirable phases through

systematical explorations of composition and temperature spaces.’!>-316

Scheil-Gulliver analysis can be performed along the composition path of a FGM.3!1"31° To
facilitate the Scheil-Gulliver analysis of FGMs of multicomponent alloys, a simulation tool

based on PyCalphad!'#>1%®, called “scheil” and distributed on the Python Package Index (PyPT) 3%,
was developed.3!832! Tt provides simulation results in a user-friendly data structure that can be
post processed and combined into higher level analysis. The scheil code enables high-
throughput simulations in multicomponent composition space and can thus be used as a design
tool for screening predictions of solidification products and viable FGM compositional paths.3!8
Simulation results for both Scheil-Gulliver and equilibrium solidification are stored in a

SolidificationResult data structure that provides access to the phase fractions and phase

compositions of all the phases in the system throughout the simulation.

To ensure global minimization during the simulation, additional candidate grid points are
adaptively added to the point grid for starting point generation and global minimization.'>> They
correspond to the site fractions of the equilibrium phases found at a particular temperature.

Since the site fractions of the stable phases at T; are likely close to those at T;,; both the
performance and accuracy of the energy minimization in PyCalphad are improved by starting
near the global minimum solution. One of the key features of the scheil code is the ability to
distinguish and treat separately ordered and disordered configurations of phases that are modeled

1,322,323

using a partitioned order-disorder mode It allows the solidified phase fractions of the
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ordered and disordered configurations to accumulate separately, even if they both form at the
same temperature step. The scheil code can perform multiple simulations by looping over a
series of compositions. The composition pathways may correspond to a linear or non-linear
gradient path, or a grid in multicomponent composition space as part of a more complex data-

driven path planning simulation.

As an example, the scheil simulations were performed for a commercial pure Ti to Invar
(CPTi/Invar) and Ti64/Invar3!! FGMs using experimentally measured composition paths and a

9.318 Tt was

temperature step size of 10°C until the fraction of material solidified reached 0.999
tested that the results are insensitive to the temperature step size in the range of 1-10 °C. All the
results in this publication were created using scheil version 0.1.2 32! and PyCalphad version

0.8.1'%6 with a Jupyter notebook containing all of the code. 3%

The liquidus project of the Fe-Ni-
Ti system is shown in Figure 36, which is used to approximate the Ti64/Invar FGM with the
measured compositions normalized to the ternary system. The compositions are marked by layer
number and colored in red (closed circles) for the Ti64/Invar and blue (open circles) for
CPTi/Invar FGMs, respectively. It is interesting to note that the region with the Laves phase as
the primary crystalline product is divided into three regions separated by dashed lines which

correspond to the three eutectic points where the Scheil-Gulliver simulations end. The regions

and corresponding eutectics are labeled E1, E2, and E3, respectively.

Figure 36. Liquidus projection of the Fe-Ni-Ti system based on the CALPHAD modeling 333

with other information in the text. 318
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The Scheil-Gulliver and equilibrium solidification calculations are presented in Figure 37 for the
linear gradient between Ti and Invar, respectively. Both figures have deconvoluted the
disordered bcc phase from the ordered B2 phase, which were modeled as the same phase in the
thermodynamic database.*” In addition to the difference in phase fractions between the Scheil-
Gulliver and equilibrium solidification calculations, the Ni3Ti phase is only predicted by the
Scheil-Gulliver solidification calculations, which were observed in several Ti64/Invar layers.>!
This demonstrates the usefulness of the Scheil-Gulliver model in predicting the solidification
phases during the AM process and design the FGMs to control the formation of phases along the

composition pathways.

Figure 37. Phase fractions of the as-solidified phases predicted along the linear gradient
path from Ti to Invar using the Scheil-Gulliver model (a) and the equilibrium solidification

(b). 318

5.5. Extension to kinetics and mechanics
In addition to applications discussed above, computational thermodynamics can be used to

82.326-328 and thermal

predict other properties as shown in Table 1, such as elastic properties
expansion?’-327331 with many more to be explored. In this section, two applications to kinetic
properties are discussed, i.e. the diffusion and Seebeck coefficients in relation to the transition
states between two stable states and the second derivatives in Table 1, respectively, followed by

brief discussions on general off-diagonal transport coefficients and calculations of mechanical

properties.
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5.5.1. Diffusion coefficient

Diffusion coefficients are usually calculated through molecular dynamic simulations.?3%333 The
main challenge to predict diffusion coefficients directly from DFT-based calculations is because
the vibrational properties at the unstable transition state cannot be defined due to imaginary
vibrational frequencies. Fortunately, this issue was already addressed in the absolute rate theory

334,335

of reaction by Eyring and in the transition state theory (TST) by Vineyard,**¢ both giving

the successful jumping rate of diffusion as follows

[ = 5B /T g ~BHmifksT Eq. 100

where h is Planck’s constant, and AH,,; and AS,,; are the migration enthalpy and entropy,

respectively, denoting the differences between the transition and ground/equilibrium states. The
. . . . kpT
free translational degree of freedom in the transition state is moved to the % so the enthalpy and

entropy at the transition state are evaluated with the imaginary vibrational frequency removed.
Consequently, the diffusion coefficients for vacancy-mediate self-diffusion in Al 337 and the

interstitial diffusion of interstitial hydrogen (H), deuterium (D), and tritium (T) in Ni 338

were
successfully predicted completely from the DFT-based first-principles calculations as shown in
Figure 38 along with the Gibbs energy of formation of vacancy in Al. The intermediate states
between the ground and transition states, i.e. various &in Eq. 8, are obtained by the nudged
elastic band method.?** The same approaches were subsequently applied to self-diffusion
coefficients in bee and in hep with diffusion in the basal plan and perpendicular to the basal plan,

respectively.34

107



Figure 38. Predicted vacancy concentration (a) and self-diffusion coefficient (b) in fcc Al 337
and interstitial diffusion coefficients of interstitial hydrogen (H), deuterium (D), and

tritium (T) in Ni (c) 338

For dilute solute diffusion, the jump of the solute atom into a neighboring vacant site is
complicated by the neighboring jumps. In the presence of a solute the jump frequencies of
solvent atoms around the solute are different compared with that in the pure element system.
Each of these distinct atomic jumps contributes to solute diffusion. Le Claire and Lidiard 3!
established the five jump frequency model for diffusion in dilute fcc alloys with dilute vacancy
concentration. All of them can be predicted in terms of Eq. 100 by the DFT-based first-
principles calculations as shown above based on the absolute rate theory of reaction 3333 and
TST.33¢ The solute diffusion correlation factor is related to the probability of the impurity atom
making a reverse jump back to its previous position and can be calculated from various jump

frequencies.>*? The predictions were made for solute diffusion coefficients in fcc Al3*-3% fcc-

Ni,%8:343:346 hec-Fe, 29347348 bee Mo, 340 and the high-throughput dilute diffusivity database.’*

The prediction of dilute solute diffusion coefficients in hcp proved to be more challenging with
less satisfactory agreements with experimental data in calculations using the local density
approximation (LDA) in the DFT-based calculations.?**33%351 Tn a more recent work,>>? the
improved generalized gradient approximation (GGA) of PBEsol >3 exchange-correlation
functionals were used, resulted in better vacancy formation energies and vibrational properties
and thus more accurate quantitative predictions of diffusion coefficients, including the self-

diffusion coefficient shown in Figure 39 and the dilute diffusion coefficients of 47 substitutional
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solutes in hcp Mg.?>? It was also found that correlation effects are not negligible for solutes Ca,
Na, Se, Sr, Te, and Y, in which the direct solute migration barriers are significantly smaller than
the solvent migration barriers. This indicates that the larger solute atoms can move faster while
the smaller ones move slower, with the exception of Se. However, it should be kept in mind that

the diffusion coefficients depend on both the vacancy formation and migration free energies.

Figure 39. Predicted self-diffusion coefficients in Mg from LDA 3> GGA,*" and PBEsol33?

compared with experimental data (see references in 332),

Diffusion in phases with short- and long-range ordering is much more complicated because the
migration barriers of individual jumps are affected by the local atomic environments that can
result in strong correlations between successive jumps and ultimately diffusion coefficients. Van
der Ven et al. 333% used the cluster expansion to describe both the equilibrium and transition
states by considering all relevant jumps with their barriers and jump frequencies (Eq. 100)
obtained from DFT-based first-principles calculations. Since migration barriers depend on the
direction of the jump in a concentrated alloy, a kinetically resolved activation (KRA) is defined
by the energy difference between the transition state and the average of two equilibrium states
before and after the jump to separate the direction dependence of the migration barrier from the
environmental dependence. Once cluster expansions for the equilibrium states of the jump and
the KRA barrier for each of the jump types are parametrized using first-principles training data,
the migration barrier for any local environments can be calculated efficiently. Atomic
trajectories through stochastic atom-vacancy exchanges can then be sampled with kinetic Monte

Carlo simulations as shown for the Ni-rich Ni-Al alloys in Figure 40 including disordered fcc
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and ordered L1, phases.?® The calculated tracer coefficients are an order of magnitude smaller
in comparison with experimental data with possible sources of errors from neglected vibrational
contributions in the determination of the equilibrium vacancy concentration and the thermal
expansion, and both of them become more important at high temperatures and tend to reduce

migration barriers and increase the diffusion coefficients.

Figure 40. Tracer diffusion coefficients of Al and Ni at 1300K as a function of

concentration in disordered fcc and ordered L1, phases.3%¢

5.5.2.  Seebeck coefficient

Thermoelectric effects, measured by Seebeck coefficients, refer to phenomena in which a
temperature gradient across a thermoelectric material induces an electrical potential gradient, and
vice versa, enabling the direct conversion between thermal and electric energies.?37-3%
According to classical mechanics, the net force felt by a charge carrier (q) equals to the negative

gradient of its potential, —V,uq. This force can be expressed as an effective electric field,
—V,uq /Qq» Where Q, represents the q’s charge. Hence, the electrical current, /4, can be written

as

1 Eq. 101
]q:——o--V'uq q
Qq

where 0 is the electrical conductivity. It is important to realize that the number of charge carrier
is an additional natural variable to be added to the combined law of thermodynamics. In the case
of Gibbs energy in terms of Eq. 14, the potential of the charge carrier is a function of all the

natural variables, i.e. H, (T, P, N;, nq), where n, is the number of moles of charge carrier.

110



In formulating thermoelectric effects, the current is usually expressed as follows>

Jg =0 (=VV, =S, VT) Eq. 102
where VI is the local electric field induced by the charge carrier gradient, Vng, S, the Seebeck
coefficient, and VT the temperature gradient. In the literature, S, has been determined from the
kinetic Boltzmann transport theory.>%°3% As we demonstrated recently, S, is a thermodynamic

quantity shown in Table 1, and by Eq. 21 363364 a5 derived below.

Comparing Eq. 101 and Eq. 102, one obtains363-364

Vi, =qVV, +qS, VT Egq. 103
10u Eq. 104
vV, =-=—1Vn,
qon,
R 1 Eq. 105

The last part of Eq. 105 is taken from Table 1, or Eq. 21 with S, being the partial entropy of
charge carrier. H, is related to the electronic density of states (e-DOS) which can be calculated

from Mermin’s finite temperature density functional theory 3636 as demonstrated in previous
work 363 and is also used to calculate the thermal electronic contribution to free energy, F,;, in Eq.
77. The reference state of H, is conventionally set to the Fermi energy at OK. Since electrons

367,368

are explicitly treated in the current implementation of first-principles calculations, H,

obeys the Fermi-Dirac distribution as follows

1 Eq. 106
€= H,

f:exp[ ;T ]+1
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where ¢ is the band energy using the Fermi energy as the reference. In such a way, H, is

determined by the conservation equation

fn(s, V)fde = N, Eq. 107

where n(eg,V) is e-DOS, and N, the number of electrons included in the DFT-based first-

principles calculations.

The e-DOS of PbTe calculated using WIEN2k package *¢° is shown in Figure 41 in the full range
at zero K and near the Fermi energy for p- and n-doping at zero K and 610K, respectively.??
PbTe is an intrinsic semiconductor as indicated by its OK e-DOS shown in Figure 41a with the
conduction band unoccupied and separated by an energy gap from the completely filled valence
band. When the e-DOS curve has a negative slope at the 0 K Fermi energy with respect to the
band energy as in the present case of p-type PbTe, the chemical potential of electrons increases
with increasing temperature as shown in Figure 41b. On the other hand, when the e-DOS curve
has a positive slope with increasing energy at the 0 K Fermi energy with respect to the band

energy as in the case of n-type PbTe in Figure 41a, the chemical potential of electrons will

decrease with increasing temperature as shown in Figure 41c.

Figure 41. Calculated results for PbTe, a) e-DOS (black curve); b) e-DOS near the Fermi
energy for p-doping; c) e-DOS near the Fermi energy for n-doping; with the areas shaded
by gray (partially overlapped by the blue semitransparent shaded areas) for the electron
occupation at 0 K and the blue semitransparent shaded areas for the electron occupation at

a finite temperature 610 K described by the Fermi distribution. 363
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The calculated Seebeck coefficients are compared with experimental data in Figure 42 for p-type
and n-type PbTe with various doping levels, showing remarkable agreement with experimental

measurements.3%3

The comparison was also made for p-type SnSe with both experimental data
and data calculated from the Boltzmann transport theory as shown in Figure 43, demonstrating
much better agreement from the present thermodynamic approach. The comparison between the
thermodynamic and Boltzmann transport theory approaches were also compared for p- and n-
type PbTe, showing better agreement from the present thermodynamic approach with respect to

the experimental data. %3

The calculations were made for the mobile charge carrier
concentrations for p-type SnSe with reasonable agreement with experiments.?* Further
comparison were made for La3Tes, La75Tes, and Laz s7Tes showing excellent agreement with

experiments.3%4

Figure 42. Calculated Seebeck coefficients for PbTe for various p- and n-type doping levels
(lines) 363 in comparison with the experimental data for p-type PbTe by Heremans and
coauthors 372! and n-type PbTe by LaLonde et al. > (symbols with same colors and
sequences as the lines).

363

Figure 43. Calculated Seebeck coefficients for p-type SnSe’*’ compared with results from

373-376 362

experiments and Kkinetic Boltzmann transport theory using the BoltzTrap package.

5.5.3.  General discussion on off-diagonal transport coefficients
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One can further generalize Eq. 101 based on the conjugate variables in the combined law of
thermodynamics Eq. 18 as follows

Jya = —LyaVY Eq. 108
where [ ya is the flux of extensive variable X with a unit of X per area per second, Lya the
kinetic coefficients of X¢ with a unit of X¢/Y? per length per second, and VY“ the gradient of
Y@ with a unite of Y% per length. The entropy production rate per volume due to the transport of

X% is usually defined by the product of its flux and the gradient, i.e.

dipSya
dt

Eq. 109

T = JxaVY% = —Lya(VY%)?

The potential Y is a function of X% and other extensive variables X? and potentials Y*, i.e.
Ye(X% Xb,Y¢), with the combined law and characteristic function generalized from Eq. 27 as

follows

do (X% X", ¥9) = d (U = ) XY°) = YedxX® + yPdx" - ) Xdy* Eq. 110

It should be noted that the Gibbs-Duhem equation among potentials, Eq. 23, is applicable to
equilibrium systems only and cannot be applied to nonequilibrium systems. In nonequilibrium
systems, all potentials can be independently controlled. VY ¢ can thus be expanded in terms of

independent variables as follows

a

oy G G Eq. 111
Vyazaxavxa+zaxbvxb+zayc pye 1

where the two summations are for independent extensive variables and independent potentials,

aye
aoxa

respectively. The partial derivative denotes the diagonal terms in Table 1 and is always

positive for a stable system depicted by Eq. 11. The partial derivative % denotes the off-
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diagonal terms in Table 1 and can be either positive or negative such as the thermal expansion
discussed above for Ce and FezPt. The partial derivative % denotes the last row in Table 1
with Y® = y; as one example and general quantities by Eq. 21, which is used in the calculation

a
of Seebeck coefficient above in terms of % and can be written as follows based on Eq. 110

are 0% 9% ox¢ Eq. 112

Yc  aYcaxe  axeayc  axe

Combining Eq. 108 and Eq. 111, one gets

_ (BY“ 7X 4 Z aye - Z aye \7Y5> Eq. 113
Jxa =Ly (Gxa axb aye

Applying Eq. 113 to a thermoelectric system, one obtains both electric and thermal fluxes as

follows
. Oy Oy Eq. 114
Jg =~ /lq——O'(E ng+ V)
aT aT Eq. 115
Jo = —LoVT = —LQ(aqu +=27S)

where L is the thermal conductivity. The first parts of Eq. 114 and Eq. 115 fulfil the Onsager

reciprocal relationships as a diagonal matrix. While the second parts have both the gradients of
potentials and molar quantities as the driving forces, and the discussion whether the matrix fulfils
the Onsager reciprocal relationships is out of the scope of the present paper and worth of further

investigation.

5.5.4. Mechanical properties

115



Mechanical properties can be denoted by the energy of a system as a function of the state of the
system as demonstrated by the ideal pure shear strength of aluminum and copper with the energy
as a function of shear deformation.?”” By the same token, the elastic coefficients can be
calculated by the elastic energy as a function of deformation strain.”®2°-2° However, the plastic
deformation is more difficult to deal with due to the long-range elastic fields around dislocations,
which is actually also an issure related to the calculation of elastic coefficients in the DFT-based
first-principles calculations. This issue was discussed in the calculations of energetics of charged

defects in terms of different relaxation schemes of supercells.?”8

Nevertheless, the DFT-based first-principles calculations can provide valuable insights on
deformation mechanisms and mechanical behaviors. In our recent work, it was demonstrated
that better understanding of dislocation characteristics in Ni3Al can be achieved by the predicted
stacking fault energy and ideal shear strength.>’® The results include direct evidence for the
splitting of a 1/2[110] dislocation into two Shockley partials on the {111} plane, which is
further supported by the equivalence of the complex stacking fault (CSF) energy and the
antiphase boundary (APB) energy. The estimated Peierls stresses at 0 K using ideal shear
strength and elastic properties for edge (e) and screw (s) dislocations with elastic factors for
isotropic (iso) and anisotropic (aniso) crystals are compared with experimental critical resolved
shear stress (CRSS) values at room temperature for NizAl and Ni as shown in Figure 44, with

quantitative agreement observed.
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Figure 44. Calculated Peierls stresses at 0 K for edge (e) and screw (s) dislocations for
isotropic (iso) and anisotropic (aniso) crystals in comparison with experimental CRSS

values at room temperature for NizAl and Ni.’”?

In another work, a multiscale approach combines first-principles calculations and crystal
plasticity finite element method (CPFEM) to predict the strain hardening behavior of pure Ni
single crystal.8 The first-principles calculations include the ideal shear strength and elastic
properties to predict the Peierls stress for pure edge and pure screw dislocations for a CPFEM
framework in the same fashion as in the above case.?” It is commonly accepted that the plastic
deformation of pure Ni initially involves edge dislocations, and eventually also the interactions
of edge dislocations that result in junctions with complex screw dislocation characteristics. 18119
The strain hardening thus includes contributions from both edge and screw dislocations. It was
found that CPFEM predictions based solely on edge dislocations agreed well with experiments at
small strains (< 0.06), while the predictions adopting the proposed edge-screw model fully
capture experimental data at large deformations, as shown in Figure 45 for various orientations
of Ni single crystals. It is anticipated that more mechanical properties can be predicted in terms
of the energetics of a system as a function of internal variables such as grain size, twin boundary,

and stacking faults.

Figure 45. Strain hardening behavior of pure Ni single crystal:3° left a) Peierls stresses
(symbols), 2%, on slip system a that combine contributions from both edge and screw
dislocations as a function of shear strain on slip system f with the corresponding CPFEM

fits (lines); (middle b) CPFEM simulated engineering stress-strain curves (lines) with
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experimental data by Yao et al. (symbols) 8!; (right a, b) CPFEM simulated engineering

stress-strain curves (lines) with experimental data by Haasen (symbols).33

5.6. Information

At a first glance, information may seem far away from the contents discussed so far. However, if
one looks at how information is stored today, it becomes evident that thermodynamics and
information are closely related through entropy and the configurations of the system. As a
matter of fact, the discussion of information started with the mathematical solution to
communication and message transmission problems by Shannon 33338 who defined the
information entropy as a macrostate (a source) with the number of possible microstates
(ensembles of possible messages) that could be sent by that source. Thus, information in the
communication begins with a set of messages, each with a probability, and the average
information content per message is defined in analogy to Eq. 30. Szilard 38338 demonstrated
that a “biological phenomenon” of a nonliving device generates the same quantity of entropy
required by thermodynamics, a critical link in the integration of physical and cognitive concepts
that later became the foundation of information theory and a key idea in complex systems. Their
works were followed by Brillouin, Landauer, Bennett and others both theoretically and

experimentally.387-3%

Therefore, considering that information is stored in physical materials, it is written and extracted
in the same scale of the configurational features of the physical materials, such as books with
words, telegraphs with coded pulses, the magnetic storages with magnetic spin configurations, a

range of digital storages with two distinct states arranged in space, future quantum systems based
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on quantum states of quantum materials, and of cause deoxyribonucleic acid (DNA, a long
polymer) with a huge array of chemical pairs in various genes. On the other hand, in the scale of
a society, Huntington %3 argued that the increased distribution of age groups between the ages of
15 and 30 in a society increases its instability with increased unemployment ratio. While for the
scale of Earth’s critical zone defined as the heterogeneous, near surface environment, Quijano
and Lin *°® made a comprehensive review on the extensive applications of thermodynamic and
information entropy in different fields related to the Critical Zone, such as hydrology, ecology,
pedology, and geomorphology.

6 we considered the

In collaboration with Lin who co-authored the above publication,*
information generation or loss as part of an internal process with the entropy production as

follows,'? similar to Eq. 3

d: Eq. 116
dipS = ‘;Q = D SIANE + ) SYANY — dy ] a

where S7* and S;" are the entropies of incoming component (nutrient) i (dN{*) and outgoing
component (waste) j (deW), respectively, and the internal process re-organizes the
configurations to produce certain amount of information (dipl ) and generate or absorb the
amount of heat (d;,@). Various thought experiments of spontaneous IP, i.e. d;,S > 0, were

discussed in ref. '° in terms of relative magnitudes of quantities in Eq. 116.

Eq. 116 can be re-organized for the information change for an irreversible internal process
(dipS >0) as follows

diQ Eq. 117
dipl < 25— )" STANE + ) 5PNy
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which gives the bound of information that can be produced (positive d;,[) or lost (negative d;, 1)
by an internal process. It is shown that the information generation (loss) can be increased
(decreases) with higher heat production, lower entropy of nutrient inputs, and higher entropy of
waste outputs. It should be pointed out that even though the entropy change due to internal
processes is only part of total entropy change of the system, the information change of the
system is fully dictated by the internal processes in the system which are regulated by the heat
and exchanges of nutrients and wastes between the system and its surroundings, as shown by Eq.

3 and Eq. 116.

The total information change of a system would be the sum of information changes by individual

internal processes. Following the discussions by Shannon #8338+ and Brillouin®%37-% we can
re-write Eq. 32 as follows
n Eq. 118
S=-I"+ Z ps*
k=1
Eq. 119

m
Ik — _Scanf — kB Z pklnpk
k=1

where I¥ denote the information at the scale k. The sub-scale information makes its contribution
to the probability p* as shown by F* in Eq. 34 or Eq. 85. As all spontaneous internal processes
produce entropy, one may tend to think that the information of the universe has been decreasing
from the beginning of time if the beginning of time and the boundary of the universe could be
defined such as by the Big Bang. However, certain sub-systems may experience an increase of
their information as discussed in the thought experiments,'® when the sub-systems are brought

across their limits of stability through the interactions with their surroundings, resulting in self-
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organized structures in local subsystems. This is what discussed by Kondepudi and Prigogine,'®
who concluded that instability in a system enables the generation of dissipative structures, thus
more distinct configurations and more information, as also demonstrated in three examples in
Section 5.3. Therefore, the fundamentals of thermodynamics and information discussed in the

present paper may provide a framework for investigations of complex systems such as quantum

401403 396,405

systems, nano devices,*** and ecosystems, along with new sciences and specfic

characteristics of individual systems to be discovered.

6. Summary and conclusion

In this overview, the fundamentals of thermodynamics are reviewed in terms of the first law of
thermodynamics for open systems and the second law of thermodynamics for internal processes.
By doing so, the chemical potentials are defined naturally. It is shown that the combined law of
thermodynamics is applicable to stable, metastable, and unstable states of a system. The first and
second derivatives of internal energy, Gibbs energy, and other characteristic functions with
respect to their natural variables are defined, and their importance is articulated. The first
derivatives with respect to extensive variables give the conjugate potentials which are
homogenous for an equilibrium system, and first derivatives with respect to potentials give the
conjugate extensive variable. The second derivatives with respect to the same natural extensive
variable determine the stability of an equilibrium system, i.e. positive for a stable system, zero
for the limit of stability, and negative for an unstable system. While the second derivatives with
respect to two different natural variables give various physical and kinetic properties. The third

derivatives should be explored further. For a nonequilibrium system, the difference of a
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potential between two states acts as the driving force for the transport of the corresponding

conjugate molar quantity.

The computational thermodynamics is presented in terms of the commonly used modeling
approach, i.e. the CALPHAD method which covers various states in the system though more
works are needed for unstable states. With the available CALPHAD thermodynamic databases,
some successful examples of materials design in terms of chemistry, processing, and properties
are presented. It is evident that much more modeling is needed for more properties, particularly

physical and mechanical properties and kinetic coefficients.

It is pointed out that the critical point can be considered as a mixture of competing configurations
with the metastable configurations having higher entropies than the stable one. The property
anomalies associated with a critical point can be predicted by statistical mixture of individual
configurations. The entropies of individual configurations play an essential role in determining
their statistical probabilities and thus the configurational entropy among individual
configurations, and ultimately the emergent behaviors and the information of systems. It is

shown that further discussions of information and Onsager reciprocal relationships are warranted.
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Figure 14. (a) Thermal populations of the nonmagnetic (red dot—dashed), antiferromagnetic
(green dashed), and ferromagnetic (blue solid) as a function of temperature in Ce at the critical
pressure of 2.05 GPa;? (b) Thermal populations of the FMC (black solid line) and that of the
sum over all SFCs (black dot-dashed line) with the two major contributions to the PM phase
from SFC55 and SFC41, plotted using red dashed and long dashed lines, respectively, for Fe;Pt
at latm, respectively.?®
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Figure 22. Partial phase diagrams showing the transition temperature to single phase as a
function of composition (solvus) in the vicinity of the equimolar composition where

maximum configurational entropy is expected. Error bars account for uncertainty between
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temperature intervals. Each phase diagram varies systematically the concentration of one

element. 25°
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Figure 23. Calculated Li,CoO, phase diagram with x plotted on the x-axis and the insets

showing the in-plane Li ordering predicted to be stable at x = 1/2 and 1/3, respectively.?*8
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Figure 27. Calculated open-circuit voltage (OCV) curves obtained by: (a) delithiating LiFePO,
via equilibrium phase transformation at various temperatures (298, 448, and 563 K) where
the two voltage plateaus at 563 K are marked; and (b) delithiating LiFePO, and lithiating
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Figure 38. Predicted vacancy concentration (a) and self-diffusion coefficient (b) in fcc Al 337 and
interstitial diffusion coefficients of interstitial hydrogen (H), deuterium (D), and tritium (T)
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Figure 42. Calculated Seebeck coefficients for PbTe for various p- and n-type doping levels

(lines) 363 in comparison with the experimental data for p-type PbTe by Heremans and

coauthors 37%37! and n-type PbTe by Lalonde et al. 37> (symbols with same colors and

sequences as the lines).

208



Seebeck coefficient (WV/K)

700 T
600
500
400
300
200

100

Zhao,p=4el7
polycrystal,p=4el7
nano,p=7.95¢el15
This work,p=3el7
This work,p=4el7
Zhao,p=4¢el9

600 800 1000

This work,p=2e19 ———~-
This work,p=3e19 ———~-
This work,p=4e¢19 ———~—
BoltzTrap,p=2¢19 --------
BoltzTrap,p=3e19 --------
BoltzTrap,p=4e19
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Figure 45. Strain hardening behavior of pure Ni single crystal:3® left a) Peierls stresses
(symbols), Te"®, on slip system a that combine contributions from both edge and screw
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experimental data by Yao et al. (symbols) 8!; (right a, b) CPFEM simulated engineering

stress-strain curves (lines) with experimental data by Haasen (symbols).?8?

211





