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Abstract 

Thermodynamics is a science concerning the state of a system, whether it is stable, metastable or 

unstable, when interacting with the surroundings.  In this overview, fundamentals of 

thermodynamics are briefly reviewed through the integration of first and second laws of 

thermodynamics for open and nonequilibrium systems to demonstrate that the reversible 

equilibrium and irreversible nonequilibrium thermodynamics can be integrated to enhance the 

power and utilities of thermodynamics.  The recent progresses in computational thermodynamics, 

the remaining challenges, and potential impacts in broad scientific fields are discussed.  It is 

shown that computational thermodynamics enables the modeling of thermodynamics of a state as 

a function of both external and internal variables and enables quantitative calculations of a broad 

range of properties of a multicomponent system in terms of first and second derivatives of 

energy, including not only equilibrium states when there are no driving forces for any internal 

processes and but also non-equilibrium states with driving forces for internal processes.  

Consequently, external constraints such as fixed strain and internal degree of freedoms such as 

ordering and defects can be described in a coherent framework and applied to materials design.  

Furthermore, two important but largely overlooked aspects in thermodynamics will be discussed, 

i.e. the rigorous application of statistical thermodynamics with the probability of configurations 

and their contributions to system properties, and the applications of second derivatives of energy 

with respect to either two extensive variables or two potentials or a mixture of them in terms of 

understanding and predicting emergent behaviors, critical phenomena, kinetic coefficients, and 

mechanical properties. 
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1. Introduction 

Thermodynamics is a science concerning the state of a system, whether it is stable, metastable or 

unstable, when interacting with its surroundings.  The interactions can involve exchanges of any 

combinations of heat, work, and mass between the system and the surroundings, defined by the 

boundary conditions.  The typical work includes contributions from the external mechanic, 

electric and magnetic fields.  The first law of thermodynamics describes those interactions, 

stating that the net change of energy of the surroundings must be balanced by the opposite 

change of the internal energy of the system.  While the second law of thermodynamics governs 

the evolution of the state inside the system under given interactions between the system and the 

surroundings.  The second law of thermodynamics declares that any internal processes, when 

occurred spontaneously, i.e. irreversibly as commonly named, must result in a positive entropy 

production.  The combination of the first and second laws of thermodynamics was first derived 

by Gibbs,1 and he called it the fundamental thermodynamic equation, 2 which inspired Maxwell 

to construct a model of its surface.1  The combined law of thermodynamics represents the 

integration of the external and internal variables of a system and self-evidently includes both 

equilibrium and nonequilibrium states of a system,3 though Gibbs focused on applications of the 

combined law to equilibrium states in his work. 1,2  

 

Through a series of seminal publications, Gibbs 1 developed the foundation for the equilibrium 

of heterogeneous substances through geometrical representation of thermodynamic properties 

including tie-lines, tie-triangles, definition of chemical potentials, and criteria of equilibrium and 

stability.  The introduction of functions that are now called enthalpy, Helmholtz energy, and 

Gibbs energy has enabled the theoretical and experimental applications of thermodynamics with 
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various boundary conditions between systems and surroundings.  Since Gibbs focused on 

equilibrium, the nonequilibrium aspect of thermodynamics was developed into a separate branch, 

i.e. irreversible thermodynamics that concerns with transport processes and with the rates of 

chemical reactions.4–8 

 

In this overview, the fundamentals of thermodynamics are reviewed, and computational 

methodologies are discussed in terms of models and input data and tools for modeling.  The 

applications of computational thermodynamics are presented for calculations of phase equilibria 

and phase diagrams, modeling of internal degree of freedoms in terms of defects, predictions of 

physical properties in terms of derivatives of energy, kinetic coefficients in terms of energy 

landscape, and design of materials. 

 

2. Fundamentals of thermodynamics 

2.1. Combined first and second law of thermodynamics 

The first law of thermodynamics for an open system, whether in an equilibrium or 

nonequilibrium state, can be written as follows 9 

�� = �� + �� + � �����  Eq.  1 

where �� is the change of the internal energy of the system, �� and ��� are the heat and the 

amount of component 	 added (positive) or removed from the system (negative), respectively, 

and �� is the amount of any types of work that the system receives from (positive values) or 

release to (negative values) the surroundings, and �� is the partial internal energy of component 	 
in the surroundings when ��� > 0 or in the system when ��� < 0.  For a system in equilibrium 

with its surroundings, the �� is the same in both the surroundings and system.  The advantage to 
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start the first law for an open system is that the chemical potential of a component is naturally 

introduced as shown below.9  �� can be represented by the internal energy of the system as 

follows 

�� = � ��������� ,�"� ,#$%&
 

Eq.  2 

 

The second law of thermodynamics is introduced by defining the entropy change of an open 

system, �', as follows 9,10 

�' = ��� + � '���� + ��(' 
Eq.  3 

where � is the temperature, '� the partial molar entropy of component i in the surroundings 

(��� > 0) or in the system (��� < 0), and ��(' the entropy production due to spontaneous 

internal processes (IP) in the system.  The first two terms on the right-hand side of Eq.  3 

concern the interactions between the surroundings and the system, while the third term represents 

what happens inside the system.  Consequently, the right-hand side of Eq.  3 contains both the 

external and internal contributions.  The second law of thermodynamics dictates that any 

spontaneous IPs must result in positive entropy production, i.e. ��(' > 0. 

 

Combining Eq.  1 and Eq.  3 gives the combined law of thermodynamics.  As in most books on 

thermodynamics, the work due to the hydrostatic pressure, −��,, is considered, and the 

combined law of thermodynamics is written as follows 

�� = ��' − ��, + � -���� − ���(' = � ./�0/ − ���(' Eq.  4 

where � and , are pressure and volume, respectively, and µ� is the chemical potential of 

component 	 in the surroundings (��� > 0) or in the system (��� < 0), defined as follows 



8 

 

µ� = �� − �'�  Eq.  5 

The differential form of µ�  will be discussed later when ��(' is defined. 

 

In the last part of Eq.  4, ./ denotes the potentials, i.e., �, −� and µ� , and 0/ denotes the molar 

quantities or extensive quantities, i.e., ', , and ��.3,9  ./ and 0/ form a conjugate pair of 

variables.  It should be emphasized that both �, and ��� in Eq.  4 refer to the changes that the 

surroundings imposes on the system, while �' further contains the contributions from IPs inside 

the system as shown by Eq.  3.  The works due to elastic/plastic/magnetic/electric fields can be 

added when needed, and they will be briefly discussed later in this section.11–15 

 

It is worth noting that Gibbs 1 derived the combined law for a closed system at equilibrium (see 

Eqs. 11 and 12 on page 63 in ref. 1), i.e. 

�� = ��' − ��, Eq.  6 

and then introduced the chemical potential by considering the exchange of mass between the 

system and the surroundings.  This approach is commonly used in the literature, e.g. Eqs. 1.49 

and 3.1 in the book by Hillert3 though the amount of matter was introduced in Eq. 1.7, but not 

individual components.  From the above derivations, it can be seen that it is important to start the 

first law for an open system, Eq.  1, and introduce the entropy change of the system with all 

contributions, Eq.  3, so that the chemical potential is defined naturally by Eq.  5.9,10  Hopefully, 

this procedure can help to enhance the clarity and significance on the definition of chemical 

potential and that the entropy includes the production by internal processes when the system is 

not at equilibrium.  The latter is important when thermodynamics is applied to nonequilibrium 

states as shown in the latter part of this paper. 
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When a system is at equilibrium, the second law stipulates that there are no IPs that can produce 

entropy, i.e., ���(' = 0. Eq.  4 thus reduces to 

�� = ��' − ��, + � -���� = � ./�0/  Eq.  7 

with 0/ as the independent variables of the internal energy, called nature variables of internal 

energy as they are defined naturally by the combined law, i.e. �(0/), and all the potentials are 

also the function of 0/, i.e., .�(0/).  This is the equation in the work by Gibbs 1 and in most 

textbooks on thermodynamics.  It needs to be emphasized again that Eq.  7 is for systems at 

equilibrium only, and the internal variables depend on the external variables.   

 

2.2. Non-equilibrium systems and internal variables 

For a system not at equilibrium, there are possible spontaneous IPs that can result in entropy 

production in the system.  For the sake of simplicity, let us consider one IP in the system at the 

moment, and discussions with more IPs can be found in the literature.3,9  For one IP, an internal 

variable, ξ, is introduced to define the internal state, and the entropy production due to the 

change of the internal variable in terms of the Taylor expansion to the third order is written as 

follows 9 

���(' = ��ξ − 12 �3(�ξ)3 + 16 �5(�ξ)5 
Eq.  8 

where � is the driving force for the IP, �ξ the change of the internal variable that represents the 

IP’s progress, and �3 and �5 are related to the stability and criticality of the IP.10  It is evident 

that there are two possibilities for equilibrium, i.e. � ≤ 0 which will make �ξ = 0 at the same 

time, or � > 0 and �ξ = 0. The former is called full equilibrium or simply equilibrium, and the 
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latter is referred as constrained equilibrium or frozen in equilibrium in which some IPs with � >
0 are prohibited to take place.3  � = 0 denotes a smooth equilibrium of which the driving force, 

and ξ  can be evaluated by the first derivative as shown below.3 

 

The combined law of thermodynamics, Eq.  4, can be re-written as follows: 

�� = � ./�0/ − ��ξ + 12 �3(�ξ)3 − 16 �5(�ξ)5 
Eq.  9 

The internal energy and all properties are a function of both 0/ and ξ, i.e. �(0/, ξ), .�(0/ , ξ), 

and �7(0/ , ξ), with ξ as an independent variable for nonequilibrium states.  An equilibrium state 

is reached by solving the value of internal variable ξ so that 

� = ����ξ �89 = 0 
Eq.  10 

At equilibrium with � = 0, ξ is thus no longer an independent variable and becomes a variable 

dependent on 0/.  Consequently, the internal energy, �(0/), reaches its extreme with all 0/ 

kept constant, i.e. no exchange of 0/ between the system and the surroundings, and all the 

potentials, ./, are homogeneous in the system.3,9   

 

The stability of an equilibrium state is determined by the sign of �3 written as 

�3 = :�3��ξ3 ;
89 = : �3��(0<)3;89 = :�.<

�0<;89  
Eq.  11 

when the transfer of 0< between two places in the system is considered.  The equilibrium state is 

stable when �3 > 0 and unstable when �3 < 0. At �3 = 0, the system is at the limit of stability.  

Furthermore, when � = �3 = �5 = 0, the system reaches a critical point between the 

homogenous and inhomogeneous states.  It is to be noted that we have not differentiated the 
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stable vs metastable equilibrium states so far because they are determined by relative values of � 

at various states with their signs of �3 being positive. 

 

The potentials, ./, are defined by the first derivatives of internal energy to 0/ with all other 

extensive variables and ξ kept constant.  Particularly the chemical potential is defined as3,9   

-� = � ������=,>,#$%&,ξ 
Eq.  12 

Both Eq.  2 and Eq.  12 are the partial derivative of internal enery with respec to component 	, 
but with different variables kept constant.  Eq.  2 represented an adiabatic system, while Eq.  12 

is for a system with constant entropy defined by Eq.  3, both with no work exchage and close to 

all components except the component 	 with the surroundings.  From Eq.  3, one can see that 

since '� > 0, �� is not zero and has the opposite sign of ��� for an equilibrium system with 

��(' = 0.  Therefore, the system represented by Eq.  12 must exchange heat with the 

surroundings, and the amount of heat exchanged can be calculated from Eq.  3 as follows with 

�' = 0,   

�� = �'����  Eq.  13 

It is evident that the system represented by Eq.  12 under constant entropy is different from the 

adiabatic system represented by Eq.  2, resulting in Eq.  2 and Eq.  12 differing by �'� . 
 

It should be emphasized that for nonequilbrium states with � > 0 for some IPs, ξ is an 

independent variable, and ' includes the contribution from internal entropy production.  Since 

entropy and volume can not be controled easily in experiments, several new energy functions are 

defined through Lagrange transformation, such as enthaly, Helhomtz energy, and Gibbs 
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energy.1,3  The form of the combined law of thermodynamics in terms of the most widely used 

Gibbs energy, ? = � − �' + �,, is written as  

�? = −'�� + ,�� + � -���� − ��ξ + 12 �3(�ξ)3 − 16 �5(�ξ)5 
Eq.  14 

The nature variables of Gibbs energy are �, �, ��, and ξ, i.e., ?(�, �, ��, ξ), and the chemical 

potential of a component is defined as 

-� = � �?����@,A,#$%&,ξ 
Eq.  15 

The differences in the expressions for chemical potential in Eq.  12 and Eq.  15 originate from 

how the system interacts with the surroundings, i.e. an isentropic, isovolumetric system vs an 

isothermal, isobaric system, both open to component 	 only.  At equilibrium with � = 0, the 

Gibbs energy is minimized for an isothermal, isobaric, and closed system, resulting in the 

homogeneou chemical potential for each component in the system. The previous discussions on 

instability and criticality in terms of �, �3, and �5 apply the same here.  The Gibbs energy is 

widely used because its natural variables, �, �, and ��, are the variables usually controlled in 

experiments. 

 

Eq.  15 becomes more complicated when the Gibbs energy is normalized to per mole of atoms, 

i.e. ?B = ?/ ∑ �E, where ?B is a function of mole fractions defined as F� = ��/ ∑ �E. While all 

��:s are independent, but F�:s are not due to ∑ F� = 1.  Consequently, Eq.  15 becomes 3 

-� = ?B + ��?B�F� �@,A,G$%&,ξ − � FE ��?B�FE �@,A,G$%H,ξ 
Eq.  16 
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It is important to note that the derivatives in Eq.  16 is taken under the condition that all F�:s are 

treated as independent variables.  Alternatively, one can use FI = 1 − ∑ F�J��3  to remove the 

mole fraction of component 1 from Eq.  16 so the rest mole fractions are independent variables.3 

 

2.3. Equilibrium systems and secondary derivatives of free energy 

Based on the above discussion, it is evident that the reason that thermodynamics is commonly 

considered for applications to equilibrium systems only is that the internal variable, ξ, becomes a 

dependent variable for an equilibrium state.  The value of ξ is obtained by the minimization of 

Gibbs energy of the system, thus removed from Eq.  14, which results in the Gibbs energy as a 

function of �, �, and ��.  This is the following combined law of thermodynamics in almost all 

textbooks on thermodynamics, applicable to systems at equilibrium only 

�? = −'�� + ,�� + � -���� Eq.  17 

 

In addition to molar Gibbs energy and mole fraction, ?B and F�, one can also introduce molar 

entropy, 'B, molar volume, ,B, and their partial quantities, '� and ,� by Eq.  16.3  In the rest of 

the paper, the molar quantities and extensive variables are sometime used interchangeably.  The 

key to make use the complete thermodynamics, covering both equilibrium and nonequilibrium 

states of a system, is to include internal variables as independent variables of the Gibbs energy so 

�, �3, and �5 can be evaluated to study stability, instability, and criticality of the system.  It is 

worth noting that, in complex nonequilibrium systems, there can be multiple IPs and many 

interactions between IPs,10 resulting in the formation of dissipative structures,16 which will not 

be discussed in details in the present paper, but briefly mentioned in Sections 5.3 and 5.6. 
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The combined law of thermodynamics with elastic, electric, and magnetic fields can be written 

as follows for an equilibrium system9 

�� = ��' − , � K�7�LEM − , � N7��7 − , � ℋ7�P7 + � -���� = � ./�0/ Eq.  18 

where 	, Q, R, S = 1,2,3, , is the volume, K�7 and TEM are the components of stress and strain, N� 
and �� are the components of electric field and electric displacement, ℋ� and P� are the 

components of magnetic field and magnetic induction.  It is to be reminded that by convention 

./ represents �, −K�7, −N7, and −ℋ7.  The negative sign is that the decrease of the system 

volume increases the internal energy of the system as the system receives energy from the 

surroundings, the same as in the case of pressure shown in Eq.  4.  It is noted that the positive 

sign is also used in the literature depending on the definition of strain, magnetic induction and 

electric displacement.13  The first partial derivatives of internal energy with respect to its natural 

variables give its conjugate variables.  The second partial derivatives with respect to the same 

natural variable result in a set of physical properties which must be positive for a stable system 

based on the stability condition represented by Eq.  11.  The second partial derivatives with 

respect to a different natural variable denote many other physical properties, though their sign is 

not pre-determined by the combined law of thermodynamics, but some constraints can be 

derived, which will be discussed in a separate paper. 

 

In typical experiments, most potentials are controlled except chemical potentials, which is the 

reason that Gibbs energy with temperature and pressure as natural variables is widely used.  
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Consequently, one may define a new free energy and its combined law of thermodynamics from 

Eq.  18 as follows 

U = � − �' + , � K�7LEM + , � N7�7 + , � ℋ7P7 Eq.  19 

�U = −'�� + , � LEM�K�7 + , � �7�N7 + , � P7�ℋ7 + � -���� Eq.  20 

 

Table 1 lists various physical properties derived from the derivatives of the conjugate variables 

(first column) with respect to the natural variables (first row) of U.  These properties are related 

to the second derivatives of U with respect to its natural variables from ref. 9  The last column 

and last row are newly added in the present paper and will be discussed in next paragraph.  The 

table is symmetric due to the Maxwell relations with the negative sign for all entropy derivatives 

in the present sign convention of Eq.  18 and Eq.  20.  The diagonal quantities, including those in 

tensors that can be further expanded with more quantities such as those shown in Eq.  54, are 

well known physical quantities and all positive for a stable system and approach zero at the limit 

of stability as shown by Eq.  11. The off-diagonal terms, including those in tensors, are first 

derivatives of two non-conjugate variables, i.e. the second derivatives of U with respect to two 

different natural variables, and give another set of physical properties.  These properties 

represented by the off-diagonal terms are not prescribed to be positive from the combined law of 

thermodynamics and thus can become negative under certain conditions such as thermal 

expansion discussed in Section 5.3.9,17   

 

It is interesting to see that the piezocaloric effect is the same as thermal expansion and can be 

negative too.18,19  Under hydrostatic pressure, it is V− W=WAX and does not have a dedicated name 
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in the literature.  It is related to heat transport under pressure and equals to thermal expansion.  It 

is assigned the term “compress heat” in the present paper because increasing pressure reduces 

the entropy of a system with positive thermal expansion, thus releasing heat to the surroundings.  

It is interesting to note that the entropy increases with the increase of pressure for a system with 

negative thermal expansion as discussed in Section 5.3.1, connecting the volume that is easier to 

measure experimentally with the entropy that is easier to predict based on statistical mechanics.   

 

The quantities in the last row and last column with their tentative names assigned in italic are 

worth further discussions.  They are the second derivatives of free energy with respect to one 

extensive variable and one potential, while other quantities in the Table are with respect to two 

potentials, and it is hard to find any discussion of them in the literature.  These quantities are 

related to the transport properties and discussed in Section 5.5.  It shows that the chemical 

potential to temperature derivative is related to the partial entropy.  This inspired us to consider 

the Seebeck coefficient, which represents the potency of electron migration under temperature 

gradient and equals to partial entropy of electrons (see the details discussed in Section 5.5.2).  By 

the same token, one can define other transport properties in terms of the derivative of chemical 

potential of a species, including electrons, as follows  

�-��./ = �3U(./, ��)�./��� = �0/
��� = 0#&/  

Eq.  21 

where 0#&/  denotes the partial molar quantity of 0 /.  It is worth noting that Eq.  21 provides a 

significant and important approach for predicting transport properties as briefly discussed in 

Section 5.5.3 and can be generalized as follows 

�.<
�./ = �3Y(./, 0<)�./�0< = �0/

�0<  
Eq.  22 
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where the free energy, Y(./, 0<), has ./ and 0< as its natural variables with other natural 

variables being either potentials or molar quantities depending on experimental conditions. 

 

Table 1. Physical quantities related to the first directives of conjugate variables (first 

column) to natural variables (first row) of Z, symmetric due to the Maxwell relations with 

the negative sign for all entropy derivatives 9,17  

 T, temperature [\], stress ^\, electric field _\, magnetic field `\, moles 

S, entropy a@, heat capacity bEM, piezocaloric 

effect 

cE, electrocaloric 

effect 

dE, magnetocaloric 

effect 

W=W#H = '#H , partial 

entropy 

efg, strain b�7, thermal 

expansion 

h�7EM, elastic 

compliance 

i�7E, converse 

piezoelectricity 

j�7E, piezomagnetic 

moduli 

WklmW#H, partial strain 

nf, electric 

displacement 

c�, pyroelectric 

coefficients 

i�EM, piezoelectric 

moduli 

R�E, permittivity ��E, 

magnetoelectric 

coefficient 

Wo&W#H, partial electric 

displacement 

pf, magnetic 

induction 

d�, pyromagnetic 

coefficient 

j�EM, 
piezomagnetic 

moduli 

��E, 

magnetoelectric 

coefficient 

-�E, permeability Wq&W#H, partial 

magnetic induction 

r\, chemical 

potential 

Ws&W@ , thermal 

transport 

Ws&WtHu, stress 

transport 

Ws&WvH, electric 

migration 

Ws&WwH, magnetic 

migration 

Ws&W#H, thermodynamic 

factor 

 

2.4. Phases and configurations 

2.4.1. Definition of phases, Gibbs-Duhem equation, and Gibbs phase rule 

The discipline of materials science and engineering primarily concerns microstructures in 

materials which are composed of individual phases, defects in individual phases, and interfaces 

between phases and grains, which can all be considered as internal variables.  The internal 
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variables of a phase include the lattice structures in terms of lattice configuration and atomic 

configurations in terms of lattice site occupancies by atoms which further includes the spin 

structures in terms of magnetic and polar configurations and the atomic short- and long-range 

ordering, and defects such as vacancy, dislocations, twins, and stacking faults.  Each set of 

internal variables defines a specific configuration, and the statistical combinations of all 

configurations define what are usually referred to as a phase.   

 

Considering a homogeneous system at equilibrium, i.e., a classical definition of a phase when all 

internal variables are dependent variables, the integration of Eq.  7 in combination with the 

definition of Gibbs energy gives 

? = � − �' + �, = � -��� Eq.  23 

In a space composed of �, ', ,, and ��, a phase can be defined by a hyper surface with all the 

independent variables being extensive variables.  The partial or directional derivatives of � to ',
,, and �� give the potentials of �, −�, and -� , respectively, resulting in that all phases at 

equilibrium with each other have the same partial derivatives, i.e. the directional slopes of the 

hyper surface.  While in a space composed of ?, �, −�, and ��, the partial derivatives of ? are a 

mixture of extensive variables and potentials, i.e. ', ,, and -�, resulting in that the equal Gibbs 

energy for phases at equilibrium with respect to the potential axes of � and −� , while the same 

partial derivatives of Gibbs energy with respect to the axes of extensive variable, ��, which does 

make the equilibrium construction more complicated.20 
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What happens if all the extensive variables are replaced by their conjugate potentials in the 

combined law of thermodynamics? By differentiating Eq.  23, i.e. 

�? = �(-���� + ���-�) Eq.  24 

It is worth mentioning that the differential of chemical potential, �-�, is because -�  is a function 

of all the natural variables of ? even though -� is not independent variables of ?.  Combining Eq.  

17 and Eq.  24, one obtains the Gibbs-Duhem equation at equilibrium as follows 

−'�� − ,�(−�) − � ���-� = 0 Eq.  25 

This equation implies that the changes of all potentials in a phase at equilibrium are not 

independent.  Consequently, a phase can be defined by a hyper surface in the space composed of 

potentials only, �, −�, and -�, and Eq.  25 depicts that the hyper surface is concave with all 

partial derivatives of the hyper surface being negative, i.e. 

:�.<
�./;xy = − 0/

0< < 0 
Eq.  26 

 

It should be emphasized that Eq.  26 is different from Eq.  21 and Eq.  22, as they represent 

different characteristic functions with different natural variables, U1 and U2, as follows  

�UI(0/, .< , .J) = ./�0/ − 0<�.< − � 0J�.J Eq.  27 

�U3(./ , .< , .J) = �zUI(0/ , .< , .J) − 0/./{ = −0/�./ − 0<�.< − � 0J�.J = 0 Eq.  28 

where U1 V0i, .�, .|X is for Eq.  21 with 0i = ��, and U2 V.i, .�, .|X = |}~h�i~� for Eq.  26.  

Furthermore, Eq.  21 and Eq.  22 can be used for non-equilibrium systems with ξ being 

independent variables and �ξ = 0, while Eq.  26 is for systems at equilibrium only with ξ being 

dependent variables and � = 0. 
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A two-phase equilibrium is reached when two hyper surfaces in the space composed of only 

potentials intercept each other so each potential has the same value in both phases, resulting in a 

hyper line, and so on.  This exercise results in the Gibbs phase rule as follows 

� = | + 2 − c Eq.  29 

where � is the number of potentials that can be changed independently without changing the 

number of phases in equilibrium, denoted by c, in a system with | independent components.  

The number “2” denote � and � and will change if more potentials are added such as electric and 

magnetic fields. 

 

2.4.2. Introduction of configurations and configurational entropy 

The definition of phase in the above discussion becomes somewhat ambiguous when the system 

is near a critical point which is a zero-dimension point in the space composed of potentials (see 

discussions in Section 2.2).  A critical point separates a macroscopically homogenous single 

phase on one side and a macroscopically inhomogeneous mixture of multiple phases on the other 

side.  When the system shifts infinitesimally away from the critical point to either side of the 

critical point, one can imagine that all phases must be very similar to each other and are formed 

from the same set of configurations or building blocks but with slightly different amount of each 

configuration.21,22  The entropy due to the mixture of those configurations in the phase based on 

statistical mechanics by Gibbs23 can be written as follows 10,23 

'J��� = −Rq � cES~cEB
E�I

 
Eq.  30 

cE = �E
� = �E

∑ �7 
Eq.  31 
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where Rq is the Boltzmann constant, cE and �E are the probability and partition function of 

configuration R, respectively, and � is the partition function of the phase, i.e. the summation of 

the partition function of all configurations.  Both equations can be written in the integration form 

when the distribution is continuous.  The superscript for configurations is used here to 

differentiate the subscript for components.  We called this approach “partition function” 

approach in our previous publications.10,24–27  The total entropy of the phase is thus 

' = � cE'E + 'J��� = � cE('E − RqS~cE) Eq.  32 

where 'E is the entropy of configuration R, which is composed of sub-configurations such as 

thermal electrons and phonons computed in the similar fashion as Eq.  30.28,29  From the energy 

point of view, one of the unique configurations must have the lowest energy though potentially 

with multiplicity or degeneracy based on certain criterion such symmetry or energy, designated 

as the ground configuration, �, with a partition function of ��, and Eq.  31 can thus be re-written 

as 

c� = 11 + ∑ �7/��7��  
Eq.  33 

cE = �E/��
1 + ∑ �7/��7�� = �E c�

�� 
Eq.  34 

 

In the classic view of a phase with all cE/c� = �E/�� ≈ 0, the phase is practically composed of 

the ground configuration only with c� ≈ 1, and 'J��� = 0.  The other extreme is that all 

configurations have the same probability, i.e. all degenerated, and are in equilibrium with each 

other, i.e. �E/�� = 1/Ω, with Ω being the number of the degenerated configuration, and the 

probability of each configuration is the inverse of Ω, which results in the following well known 

form of configurational entropy 
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cE = 1
Ω

 
Eq.  35 

'J��� = RqS~Ω Eq.  36 

 

The most common example is an ideal solution used in all textbooks.  In an ideal solution, each 

atomic configuration is assumed to have the same energy and symmetry and thus the same 

probability, resulting in the following ideal configurational entropy in per mole of atoms 

'J��� = −� � F�S~F�  Eq.  37 

where F� = ��/ ∑ �E is the mole fraction of independent component 	, and � the gas constant. 

 

3. Thermodynamic modeling 

To make use of thermodynamics efficiently for multicomponent systems, the analytical 

mathematical models of Gibbs energy as a function of its natural variables, i.e. ?(�, �, �� , ξ), are 

needed.  The most commonly used modeling approach in thermodynamics is the CALPHAD 

method, which stands for CALculation of PHAse Diagram pioneered by Kaufman. 30,31  In the 

CALPHAD method,32,33 the Gibbs energy of each phase, typically defined by its lattice structure 

and/or atomic long-range ordering, is modeled in the space of its natural variables, �, −�, ��, 
and ξ.  The usual internal variables are the spin configuration and atomic short- and/or long-

range ordering.  The commonly used mathematical model for solid solution phases in the 

CALPHAD community is based on the compound energy formalism (CEF) built on the 

sublattices of a lattice structure in terms of its Wyckoff positions.34,35 

 

3.1. Phases with one sublattice and third law of thermodynamics 
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For solution phases with one type of Wyckoff position, the molar Gibbs energy of phase α, ?B� , 

is written as 

?B� = � F�� ?�� � + �� � F��S~F�� + ?B� �G  Eq.  38 

?�� � = ��� � − � '�� �  Eq.  39 

where ?�� � , ��� � , and '�� �  are the Gibbs energy, enthalpy, and entropy of pure component 	 in 

the structure of phase α, respectively, and ?B� �G  the non-ideal, excess Gibbs energy of mixing.  

The commonly used reference state for each component is the enthalpy of the component in its 

stable structure at room temperature and one atmospheric pressure and the entropy at 0K as 

follows: 

��=v� � (298 �, 1i�d) = 0 Eq.  40 

which is called the stable element reference (SER) state.  The reference state of entropy is given 

by the third law of thermodynamics, i.e. the entropy of the element equals to zero at 0K 

'�  � (0�, 1i�d) = 0 Eq.  41 

 

Several models for ?B� �G  are available in the literature 32,33 with one commonly used being the 

Muggianu extension36 of the Redlich-Kister formalism37 (MRK) due to its symmetrical 

characteristics when applied to multicomponent systems as follows 

?B� �G = � F��F7� � ��,7� E �F�� − F7��E
E��7 + � F��F7�FM���,7,M�

��7�M  Eq.  42 

where ��,7� E  is the R�� order of binary interaction parameters between components 	 and Q, which 

can be temperature dependent, and ��,7,M�  the ternary interaction parameter among components 	, Q, 

and S, which can be both temperature and composition dependent.  For solution phases with 

strong short-range ordering, the quasichemical model38 describes the entropy of mixing more 
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accurately by considering the differences in various bonding energies, while the associate 

model39 assumes the explicit formation of various complex species.  Both the bond probability 

and the amounts of associates in the above models are all part of internal variables, ξ. 

 

One significant issue in Eq.  38 is when the pure component 	 is not stable in the structure of 

phase α, and ?�� �  is thus not known or difficult to obtain from experiments.  Kaufman40 

examined this and introduced the concept of “lattice stability” to represent the energy difference 

between the stable and non-stable structures of pure component 	 and estimated their values 

through various extrapolation schemes.41  For example,  the Gibbs energy of W in the fcc 

structure is written as 

?"�JJ � = ?"<JJ � + ∆ ?"�JJ�<JJ �  Eq.  43 

where ∆ ?"�JJ�<JJ �  is termed as “lattice stability”.  The concept of the lattice stability formed the 

foundation of the CALPHAD modeling.31  Theoretical predictions of lattice stability have been 

pursued along the way with significant progresses made in recent years,41–47 and further 

improvements may be made using the concept of configurations discussed above for the 

instability of non-ground structures of pure elements.44 

 

3.2. Phases with more than one sublattices 

For solid phases with multiple sets of Wyckoff positions or interstitial sites, each set can be 

treated as one sublattice in the CEF modeling approach, such as (��, ��)5� with one sublattice 

for �� and �� and another sublattice for �.  The internal variables are defined by the mole 

fractions in each sublattice, called site fraction, i.e., ��� for the mole fraction of component 	 in 
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sublattice � with ∑ ���� = 1.  The mole fraction of component 	 in the phase is computed as 

follows 

F� = � i����� / � i�
�  Eq.  44 

where i� is the number of sites of the sublattice �.  The corresponding ideal entropy of mixing in 

per mole of formula (mf) with ∑ i��  mole of components, i.e. Eq.  37, becomes 

'B�J��� = −� � i� � ���S~(���)��  Eq.  45 

 

The Gibbs energy of such a phase is written as follows 

?B�� = � �� �	�� ?�B� � ��d + �� � i� � �	�S~�	�	� + ?B�� �G  
Eq. 46 

?B�  �G = � � �M�M,��� � � ����7���,7:M�
7��7� + � � �M�M,��� � � � ����7��E� ��,7,E:M�

E7�E��7�

+ � � �M�M,��(�,�) � � � ����7��B� �����,7:B,�:M�,�
E7�E��7�  

Eq. 47 

where ?�B� �  is the Gibbs energy of an endmember (em) with only one component in each 

sublattice such as ��5� and ��5� in (��, ��)5�, playing the same role as the pure element in Eq.  

38; ��,7:M�  represents the binary interaction between components i and j in sublattice t with other 

sublattices containing only one component each, denoted by S; ��,7,E:M�  the ternary interaction 

among components i, j and k in sublattice t with other sublattices containing only one component 

each, denoted by S; and ��,7:B,�:M�,�  the reciprocal interaction among components i and j in 

sublattice t and components m and n in sublattice u with other sublattices containing only one 

component each, denoted by S, which is used to describe short-ranging ordering among 

components i, j, m, and n between the two sublattices, noting that m and n can be the same 

components as i and j for an ordering-disordering transition.48  The sublattice model has also 
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been used to model ionic phases including both ionic liquid and solid phases with the additional 

constraints on charge neutrality.49–53 

 

3.3. Phases with magnetic polarization 

The CALPHAD model of the magnetic Gibbs energy was based on the work by Inden54,55 and 

revised by Hillert and Jarl56 for ferromagnetic materials as a function of temperature with the 

second-order magnetic transition temperature and magnetic moments as a function of 

composition.  This model was extended by Hertzman and Sundman57 to the systems with 

ferromagnetism (FM) on one side and antiferromagnetism (AFM) on the other side such as the 

Fe-Cr system, which was further revised by Chen and Sundman58 and Xiong et al.59  The latest 

revision of the magnetic model is shown in the following equations 

?BB/� = ���( )S~(1 + ¡) Eq. 48 

where ¡ is the magnetic moment of the phase,   = �/�J with �J being the critical temperature, i.e. 

Curie temperature for FM to paramagnetic (PM) transition and Neel temperature for AFM to PM 

transition, and �( ) a function describing the discontinuity of heat capacity above and below �a as 

follows for phases with one sublattice model 

�J = � F	 �  a,� + �|  �F  
Eq.  49 

1 + ¡ = �(¡	 + 1)F	  Eq.  50 

¡� = F� ¡ 0 	 + � F7 ¡ 0 	Q + ¡�  �G  Eq.  51 

 

Eq. 52 
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Eq. 53 

where �  a,� and ¡  � are the critical temperature and magnetic moment of pure 	, �a  �G  and ¡�  �G  

represent the non-ideal interaction which can be modeled using the MKS formalism by Eq.  42, 

¡  �7 is the magnetic moment of 	 in pure Q, c is the fraction of the total disordering enthalpy 

absorbed above the critical temperature, given as 0.28 for fcc and hcp metals and 0.40 for bcc 

metals, respectively.  In the model by Hillert and Jarl56, the MKS model was directly applied to 

¡, which resulted in some challenges in modeling of systems where two elements have different 

magnetic ordering such as FM for Fe and AFM for Cr in the Fe-Cr system.57,58  Xiong et al.59 

further proposed Eq.  50 and two separate equations for AFM and FM in the form of Eq.  49, and 

at the same time pointed out the limitation of the revised model when a system experiences a 

transition between AFM and FM states as a function of temperature.60,61  Therefore, more works 

are needed in further improving the magnetic model in the CALPHAD approach. 

 

As expected, theoretic prediction of Gibbs energy of a magnetic phase as a function of 

temperature has progressed, including the quantum Heisenberg model within many-body theory 

using the mean-field and random-phase approximation,62–64 our recent approach based on 

statistical mixture of distinct magnetic spin configurations with the entropy shown by Eq.  32, 25–

27,65,66 and the cluster expansions and Monte Carlo simulations in terms of both atomic 

disordering and magnetic spin disordering have also demonstrated its potential applicability to 

binary and ternary systems.67–69  The theoretic predictions serve as input data for CALPHAD 

modeling presented above.70 
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3.4. Phases with electric polarization 

Phases with electric polarization are dominated by ferrielectric materials with PbTiO3 being one 

prototype which is a cubic perovskite structure at high temperatures and transitions to a 

tetragonal perovskite structure with ferroelectricity at 760 K through a second order phase 

transition.71–74  Their thermodynamic modeling is largely based on the work by Cross and co-

workers led by Haun 75–77 in terms of phenomenological Landau-Ginsburg-Devonshire 

formalism 78 with the internal variables including ferroelectric and antiferroelectric polarizations 

and oxygen octahedral tilt angel plus strain in a sixth-order polynomial.79  The unpolarized and 

unstrained crystal, which is the stable structure at high temperature, is used as the reference state, 

and the crystal symmetry is often taken into account to remove some terms, e.g. with odd terms 

for a phase being centrosymmetrical.76  The Landau coefficients of common ferroelectric phases 

were compiled by Chen.80  One of the drawback using the unpolarized and unstrained crystal 

stable at high temperatures is that this crystal is unstable at zero K, and its properties cannot be 

predicted theoretically due to the instability as discussed in Section 5.3. 

 

Since the strain is considered as the independent variable, Helmholtz energy is modeled instead 

of Gibbs energy with the following equation80 

 

Eq.  54 

where ��:s are the electric polarizations in various directions, b�7, ¡	QR, ¢	QRS, δijklm, and ωijklmn are 

the phenomenological Landau coefficients, and |	QRS, i	QR, and j	QRS are the elastic, piezoelectric, 

and electrostrictive constant tensors (see Table 1 except j	QRS involving the third derivative of the 
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free energy as shown below), respectively.  The Landau coefficients can be modeled as a 

function of compositions81 and in principle also as a function of temperature and are related to 

the derivatives of the free energy.  For example, from Eq.  54, it seems that the following relation 

exists among the coefficients13 

j�7EM = − �bEM�K�7 = − �5U�K�7�NE�NM  
Eq.  55 

 

In comparison with the modeling of magnetic polarization in Section 3.3, it is evident to see that 

coefficients and the tensors need to be modeled as a function of temperatures and compositions 

as it was done for elastic tensors.82  Their modeling remains future opportunities for the 

CALPHAD community to develop such modeling approaches.  Furthermore, since the energy 

differences between various configurations are relatively small, the author anticipates that the 

modeling of configurations can play significant roles for ferroelectric materials.74  Theoretical 

prediction based on the ferroelectric effective Hamiltonian can also provide finite-temperature 

thermodynamic properties through Monte Carlo simulations.83–87 

 

3.5. Polymer solutions 

A polymer molecule consists of the same repeating units of one or more monomers such as a 

DNA (Deoxyribonucleic acid), which can be an atom or a small molecule.  The number of 

repeating units can be as large as 104–105 with variable molecular mass.  Gibbs energy functions 

of polymers with a single molecular mass can be treated similarly as in previous sections.  The 

mixtures of different polymer molecules are often called polymer blends or polymer solutions 

when one of them has only one or a few repeating units, which will all be called polymer 
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solutions here.  There are three typical architectures of polymerization: a linear chain, a branched 

chain, and a cross-linked polymer.  Nearly all polymers are mixtures of molecules with a 

different degree of polymerization, i.e. repeating units, with a molecular mass distribution, 

complicating the modeling of their thermodynamic properties because of the dependence of 

properties on molecular mass. 

 

The ideal entropy of mixing in a polymer solution is quite different from that of atomically 

random solutions because the monomers in a polymer molecule are connected to each other and 

cannot move freely.  One common approach to calculate the ideal entropy of a polymer solution 

is to evoke a lattice model and assume that one monomer occupies a lattice site with a fixed 

volume.  The number of translational states of a single molecule is equal to the number of lattice 

sites available.  The ideal mixing entropy of a solution in per mole of lattice sites can be written 

as9 

'B = −� � φ�d� S~φ��  
Eq.  56 

where d� and φ�  are the number of lattice sites per molecule 	 and the volume fraction of 

molecule 	 in the solution, respectively. 

 

Gibbs energy of a multicomponent random polymer solution can be written as 

?B = � φ�d� ?�B  + �� £� φ�d� S~φ� + � φ�φ7χ�7¤ 
Eq.  57 
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where ?�B   is the Gibbs energy of molecular 	 per mole of lattice site, and χ�7  the unitless 

interaction parameter between molecule 	 and Q.  Eq.  57 is similar to the Flory–Huggins solution 

equations.88,89 

 

More thermodynamic modeling approaches for liquid-liquid and liquid-vapor equilibria 

nonelectrolyte including polymer solutions were developed almost in parallel with the 

CALPHAD method, with the UNIversal QUAsiChemical (UNIQUAC) model 90 being one of the 

major models.  The UNIQUAC model generalizes the Guggenheim’s quasi-chemical analysis 

through introduction of the local area fraction as the primary concentration variable and can 

reduce to several well-known equations with well-defined simplifying assumptions, including 

the Wilson 91 and Non-Random Two-Liquid (NRTL) 92 models.  In the UNIQUAC model, the 

effects of molecular size and shape are introduced through structural parameters obtained from 

pure-component data and the use of Staverman’s combinatorial entropy 93, which extends the 

Flory-Huggins model discussed above to include molecules containing rings and crosslinks.   

 

Different from the CALPHAD method, the UNIQUAC approach models the expression of the 

molar excess Gibbs energy with the activity coefficient analytically derived from the partial 

derivative of total excess Gibbs energy with respect to the component, which is prone to errors.  

Recently, Li et al. 94 re-cast the UNIQUAC model in the CALPHAD framework and 

implemented it in OpenCalphad,95 aiming for better equilibrium calculations than existing 

computational implementations of the UNIQUAC model in the literature and the exchange of 

ideas and experiences between the CALPHAD and UNIQUAC communities.95,96  The 
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UNIQUAC model is represented in the CALPHAD nomenclature with combinatorial, ?B JB< , 

and residual, ?B ¥�� , contributions as follows 

?B = � F� ( ?�  + ��S~F�) + ?B JB< + ?B ¥��  Eq.  58 

?B JB< = �� � F� S~ Φ�F� + §2 � F� j�S~ ¨�Φ� 
Eq.  59 

?B ¥�� = −�� � F� j�S~©�  Eq.  60 

Φ� = ��F�∑ �7 F7  Eq.  61 

¨� = j�F�∑ j7 F7 Eq.  62 

©� = � 7̈ 7�  Eq.  63 

 7� = �Fc V− ª7�� X Eq.  64 

where j�  and F� are a surface-area and a volume parameter of constituent 	, respectively, z is the 

average number of nearest neighbors of a constituent, always assumed to be 10, and ª7� ≠ ª�7 

are the model parameters. 

 

Calculations of thermodynamic properties and phase diagrams for binary, ternary, and 

quaternary systems among water, 2,2,4-trimethylpentane, acetonitrile, aniline, benzene, 

methylcyclopentane, n-heptane, n-hexane, and n-octane.  Furthermore, the evaluation of model 

parameters of the acetonitrile-benzene-n-heptane ternary system is demonstrated and compared 

with the modeling and experimental results in the literature.  It was found that the parameters in 

the acetonitrile-benzene and the benzene-n-heptane binary systems are substantially different 

from those in the literature, with the new modeling showing similar agreement on activity 

coefficients, but better agreement on excess enthalpies when compared with experimental data.  
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It is anticipated that the new modeling capability will enhance the modeling of multicomponent 

polymer solutions. 

 

3.6. Phases with defects 

Defects play significant roles in determining the properties of materials.  Defects in a phase 

include vacancy, dislocation, twin, and stacking fault, and defects between phases include grain 

boundary and phase interfaces.  For materials with small sizes, surface can be important and may 

be considered as a defect due to the structure and property differences from those of the bulk.  It 

is important to realize that the defects alter both lattice and atomic configurations through lattice 

distortions and elemental redistributions such as segregations.  As defects can form a range of 

configurations, the “partition function” approach discussed in Section 2.4.2 can be used to 

calculate their probability of various metastable configurations in the phase. 

 

The formation of defects usually requires additional energy as a penalty, but at the same time 

increases the entropy of the phase by introducing disorder to stabilize the defects.  The 

competition between formation energy, entropy, and segregation can sometimes result in 

thermodynamically stable configurations of defects in a phase or even become a separate phase 

by itself such as the long period structure order (LPSO) in Mg alloys (see further discussion in 

Section 3.6.3).  This competition can be described by three contributions: the amounts of defects, 

�~o, segregation to the defects, �~�, and configurational entropy due to the defects with the 

combined law under constant � and �� as follows 

�? = � cJ��� «?o�~o + �(-�o − -�¬)�~�­J��� − 'oJ����� Eq.  65 



34 

 

where the summation with conf is for various defect configurations with probability of c|}~®, ?o 

is the Gibbs energy of formation per defect, -�o and -�¬ are the chemical potentials of component 

	 at the defect and in the interior away from the defects, all for one configuration, and 'oJ��� the 

configurational entropy by Eq.  30 for various defect configurations, respectively.  When -�o ≠
-�¬, the component 	 will segregate or de-segregate to the defect to reduce the energy of the 

system.  Eq.  65 was first formulated for the thermodynamics of nanograins for a given defect 

configuration, i.e. grain structure without 'oJ���, which illustrates that nanograins can be 

thermodynamically stable when the two internal processes are coupled to give �? = 0.97  It is 

plausible that the same approach can be applied to stabilized other defects through segregations 

due to the strong binding energy between elements and defects such as oxygen and vacancy.98,99  

Some common defects are discussed in following sections. 

 

3.6.1. Vacancy 

Modeling of vacancy is not only important to thermodynamics, but also essential to kinetics of 

vacancy-mediated diffusion.100  In the CALPHAD modeling, the vacancy is treated as a non-

conserved component in the compound energy formalism as shown in Eq.  38 and Eq. 46, in 

which the Gibbs energy of vacancy, ?>/  � , needs to be defined first before the interaction 

parameters with other components are evaluated.  It is evident that the amount of vacancy is not 

controlled from the surroundings, but internally determined by the system, thus an internal 

variable, ξ.  Furthermore, vacancies can group to form divacancy and trivacancy clusters, 

resulting in more internal variables.  Therefore, the amounts of vacancy and vacancy clusters are 

internal variables of the system, ~o in Eq.  65. 
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Various values were suggested in the literature for ?>/  � . The most intuitive one is zero 101–104, 

since the vacancy-endmember is “nothing”.  Other choices include ��S~10 105 and 30� J/mol. 

33,106,107  A more recent work 108 analyzed previous results and found that the behavior of the 

model is very sensitive to the value of ?¯/  �  through numerical simulations.  When ?>/  �  is zero 

or negative, there is no equilibrium state at the vacancy-lean side.  When ?>/  �  is positive but 

below a critical value, there are multiple equilibrium states.  When ?>/  �  exceeds this critical 

value, there is one unique solution associated with the equilibrium vacancy concentration.  Based 

on these observations, it was concluded that ?>/  �  should be larger than a critical value, (S~2 −
1/2)��, to ensure a unique equilibrium state.  Moreover, it was often mentioned that ?>/  �  is 

just a formal parameter without any physical meaning.  Another work 107 also noticed the 

problems caused by a zero or negative ?>/  � .  In practice this problem is solved with part of the 

Gibbs energy of formation of vacancies in a unary system coupled with the interaction 

parameter.109 

 

We presented a physical model to enable a unified thermodynamic treatment of the vacancy-

bearing solid and the gas, i.e. the vapor of the solid, for CALPHAD modeling.110  The model 

parameters are related to quantities that can be calculated by first-principles or measured 

experimentally.  Since the formation of vacancy has significant impact on volume, the pressure 

effect must be considered in the Gibbs energy model by defining ?>/  �  as 

?>/  � = ?>/,A�   � + �,>/ Eq.  66 

where � is the pressure, ,>/ the molar volume of the vacancy, and ?>/,A�   �  the Gibbs energy of 

vacancy at P=0 and ?>/,A�   � = 0.  Here the pressure effect is ignored for the solid element 
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without vacancies, since its volume changes little.  The pressure effect is considered for the 

vacancy-endmember, making its molar Gibbs energy non-zero.  The reason is that although a 

vacancy has nothing inside, it occupies certain amount of volume, subject to energy penalties 

from pressure.   

 

For a one-component system with vacancy, the sublattice model is (A, Va), and the Gibbs energy 

in one mole of component A is written as  

?B = ?�° = ?° + 1 − �°�° �,>/ + ��S~�° + �� 1 − �°�° S~(1 − �°) + (1 − �°)� 
Eq.  67 

where �° is the site fraction of component A, equal to �° = 1 − �>/ with �>/ being the site 

fraction of vacancy, ?° the Gibbs energy of component A without vacancy, and � the MRK 

interaction parameter between A and vacancy.  Either �° or �>/ can be considered as the internal 

variable, ξ.  The equilibrium states are found by solving the following equation at a constant 

temperature  

�?B��° = − �,>/�°3 − ���°3 S~(1 − �°) − � + (1 − �°) ����° = 0 
Eq.  68 

 

It is shown that there are two solutions from the above equation: one is the solid, and the other is 

the ideal gas.110  It is evident that when these two solutions give the same ?B in terms of one 

mole of component A, the solid phase with vacancy and the gas phase, both with one mole of 

atoms, are in equilibrium with each other, i.e. 

?B�/� = ?B��M�� Eq.  69 
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Solving Eq.  68 and Eq.  69, one obtains the values of the two unknows, �°�/� and �°��M�� , 

depending on the values of ,>/ and � along with its derivative.  The pressure thus obtained 

represents the vapor pressure of the solid in terms of the ideal gas law as follows 

�¯/(�¥ = �°�/���/,>/ Eq.  70 

�¯/(�¥  and �°��M�� are two well defined physical quantities that can be measured experimentally, 

but not �°�/�.  Eq.  70 shows that �°�/� is a function of ,>/ for given �¯/(�¥ and �.  It is also 

evident that ,>/ and � jointly determine the value of �°��M�� as shown by Eq.  68 and discussed in 

109.   

 

As in the spirit of CALPHAD modeling, to make the thermodynamic models of different 

elements consistent, a universal value for ,>/ is needed, and the interaction parameters can then 

be evaluated.  We suggested to use ,>/ = 10�±d5/d}S for mono-vacancy, since the molar 

volumes of most elements are around this value.110  Furthermore, the vacancy model denoted by 

Eq.  67 and Eq.  68 not only presents a physics-based approach, but also treats the solid and its 

vapor in one formula and demonstrates that vacancy is an equilibrium feature of the system.  It is 

worth mentioning that the sum of partial pressures of all components equals to the system’s total 

pressure when there are no other gaseous species in the system, which will be further discussed 

with applications involving the gas phase in Section 5.4.5. 

 

In addition to mono-vacancy, vacancy clusters can also be treated similarly.  Furthermore, in 

systems with more than one component, the interactions between vacancy and different 

components are important, resulting in the formation of vacancy/component clusters and 

redistribution of components in the phase similar to short-range ordering mentioned above.  



38 

 

When all these clusters exist, their energetics result in different probabilities for them to exist in 

the phase, and the “partition function” approach discussed in Section 2.4.2 can thus be used with 

the internal configurations represented by various clusters so their respective statistical 

probabilities can be evaluated.  Both vacancies and vacancy clusters can be the equilibrium 

features of a phase with the driving force, i.e. Eq.  10, for their changes being zero. 

 

3.6.2. Dislocation 

While the energetics of vacancy and clusters of vacancies and vacancy/components are modeled 

using the CALPHAD approach, the energetics of dislocations have not been modeled in the same 

framework in the literature due to the complexity of dislocations in a phase.  The central question 

is to define the internal variables to describe the configurations involving dislocations and 

develop models to represent the Gibbs energies of configurations, while the configurational 

entropy among various configurations and total entropy can be evaluated in terms of Eq.  30 and 

Eq.  32 discussed before.  

 

While thermodynamics of dislocations has always been part of discussion on dislocations,111–113 

it was Langer, Bouchbinder, and Lookman (LBL) who emphasized the importance to explicitly 

take the internal variables into consideration of thermodynamics of dislocations.114  One key 

internal variable is the population of dislocations by a single, averaged, area density ρ, which can 

be replaced by a set of densities for different types of dislocations and different orientations.  In 

LBL thermodynamic model, the internal degrees of freedom of a solid-like material can be 

separated into two weakly interacting subsystems: (1) configurational subsystem defined by the 

mechanically stable positions of the constituent atoms and (2) kinetic-vibrational subsystem 
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defined by the momenta and the displacements of the atoms at small distances away from their 

stable positions, each with its own “effective temperature”, defined as 

² = ��a�'a  
Eq.  71 

where �a is the energy of any configuration of dislocations with the entropy, 'a , defined by the 

number of such configurations in any energy intervals.  The rate at which inelastic external work 

is being done by the stress is introduced in their thermodynamic analysis in terms of plastic strain 

rate, plus a new equation for the dependence of the dislocation density on external strain.  

Consequently, an equation for the hardening rate was derived with dislocation density as the 

internal variable and a set of physical parameters including the magnitude of the Burgers vector, 

lattice parameter, formation energy of dislocation, and elastic constants. 

 

The concept of “effective temperature” in various forms similar to Eq.  71 has been used in the 

literature extensively, particularly in the field of astronomy.115,116  As shown by Bouchbinder and 

Langer117, its essence is to separate various entropy contributions to the energy of the system, 

and it thus should not affect the fundamentals of thermodynamics discussed in this paper.  It can 

be seen from the work by Langer, Bouchbinder, and Lookman,114 the only internal variable is the 

dislocation density with the external variables being the strain and strain rate.  In a one-

component system, one can thus formulate the energetics of a system as follows 

?°o = ?°  � + ∆�°o − �∆'°o Eq.  72 

where ∆�°o and ∆'°o are the enthalpy and entropy of formation of dislocation as a function of �, 

−�, �� and ©M where ©M is the dislocation density for the type S dislocation.   
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In the spirit of the CALPHAD approach (see Eq.  42), one may be tempted to write the general 

form for a one-component system as follows 

∆?°o = ∆�°o − �∆'°o = � ©M�MoM + � ©M©B�M,Bo
M,B  Eq.  73 

where �Mo = ∆�Mo − �∆'Mo is the model parameter related to the enthalpy and entropy of 

formation of type S dislocation which includes the elastic energy associated with its formation, 

and �M,Bo  denotes the interaction parameter between the same or different types of dislocations in 

terms of both elastic deformation and dislocation multi-junctions.118,119  Higher order interaction 

parameters can be added.  Both �Mo and �M,Bo  can be the functions of temperature, strain, and strain 

rate and can be modeled in the framework discussed by Langer, Bouchbinder, and Lookman,114 

with inputs from first-principles calculations and experiments.120  Their dependences on 

dislocation density can be modeled in terms of the MRK formalism shown in Eq.  42 with the 

compositions replaced by dislocation densities.  At the same time, the pressure needs to be 

replaced by stresses as the natural variables of Gibbs energy.   

 

In multicomponent systems, there are additional internal variables to describe the redistribution 

of components between dislocations and the matrix because the interaction parameters are 

composition dependent, see Eq.  65.  This redistribution can result in the formation of clusters 

around dislocations that reduces the energy of the system, such as the Cottrell atmosphere.111,121–

123  These interactions and the formation of clusters can also be modeled using the MRK 

formalism discussed in Section 3.1 though diffusion of component at low temperatures could be 

too slow to reach equilibrium except for interstitial elements.  The different configurations of 

dislocations and clusters with different energetics and thus their statistical probability of 
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existence in the phase can be treated by the “partition function” approach discussed in Section 

2.4.2 with 'oJ��� in Eq.  65. 

 

3.6.3. Twin boundary and stacking fault 

The CALPHAD modeling of twin boundaries and stacking faults are not available in the 

literature.  The internal variable of a twin boundary or a stacking fault can be the area of the twin 

boundary or stacking fault in a given volume of the phase.  The Gibbs energy can have the 

similar form as Eq.  73 for pure components and the MRK formalism discussed in Section 3.1 

for interactions between elements and defects in multicomponent materials.  

 

Even though twin boundaries and stacking faults are both planar defects in a phase, they are 

significant different as a twin boundary only changes the crystal orientation, while a stacking 

fault changes the crystal structure, usually between fcc and hcp crystal structures.  As a matter of 

fact, the alternating configurations can result in the formation of new LPSO structures, 124–128 

which may thus be called “defect phases” in contrast to “defected phases” or “defects in phases” 

because the periodic arrangements of stacking faults result in different long-range lattice 

structures.  The divisions among “defects in phases”, “defected phases”, or “defect phases”, can 

be fuzzy when the defect configurations change their stability from unstable to metastable or 

even stable due to the interactions among themselves and multicomponents.  A defect phase with 

long-range ordering can be modeled as a regular phase as shown in Sections 3.1 and 3.4 such as 

the LPSO phases in Mg alloys.128,129 

 

3.6.4. Grain boundary, surface, and phase interface 
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As an interface between two grains of the same phase, the contribution of grain boundary to the 

energy of the system is usually represented by the first term in Eq.  65, i.e. 

�? = ¢ �³ Eq.  74 

where ¢  is the grain boundary energy as a function of its five degrees of freedom, and ³ the 

grain boundary area.  It is evident from this equation that the decrease of grain boundary area 

reduces the free energy of a polycrystal material until it becomes single crystal without grain 

boundary.   

 

Even though the segregation of components to grain boundary has been known for a long time, 

¢  in Eq.  74 is usually assumed to be a constant and independent of segregation.  It was until 

relatively recent that the reduction of grain boundary energy is considered, partially related to the 

development of nanograined materials where the composition in the grain boundary is closely 

related to the overall composition, resulting in the grain boundary energy as a function of grain 

boundary composition.97,130–133  There are thus two independent internal variables, ξ: the grain 

size represented by the grain boundary area and the grain boundary composition.  Applying Eq.  

65 to grain boundary with the first two terms, one obtains the following combined law of 

thermodynamics 97 

�? = ¢��³ + ��-��< − -�¬��~�  Eq.  75 

where ¢� is the grain boundary energy which is a function of grain boundary composition, -��< 

and -�¬ are the chemical potentials of component 	 in the grain boundary and in the grain interior, 

respectively, and �~� denotes the amount of component 	 migrated from grain interior to grain 

boundary.   
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The grain boundary energy, ¢, can be defined as follows97 

¢ = �?�³ = ¢� + ��-��< − -�¬� �~��³  
Eq.  76 

where 
W�&W°  represents the grain boundary solute excess.  When the grain boundary and the grain 

interior have the same composition, i.e. a fresh grain boundary, there is no migration of 

components, i.e. �~� = 0 and ¢ = ¢� = ¢ , which can be considered as a constrained 

equilibrium in terms of redistribution of components, but -��< ≠ -�¬ due to their different 

structures, resulting in a driving force for segregation and the reduction of grain boundary energy.  

When the equilibrium is reached in terms of 
W´W�& = 0 for a given over-all composition and a given 

grain size by adjusting the grain boundary composition, i.e. -��< = -�¬, and the grain boundary 

energy reaches a minimum value, i.e. ¢ = ¢� < ¢ .  When this minimum grain boundary energy 

becomes zero by adjusting the grain size, i.e. ¢ = ¢� = 0, the polycrystal structure becomes 

thermodynamically more stable than a single crystal structure. 

 

The thermodynamic modeling of a polycrystal has be carried out in terms of Eq.  76 for the grain 

boundary energy in binary systems of 44 solvents and 52 solutes97 or through summation of 

Gibbs energies of grain boundary and grain interior plus the transitional region between them for 

various binary alloys.134  It should be noted that thickness of grain boundary can change with 

respect to composition and temperature and thus needs to be considered as an internal variable in 

addition to grain size and grain composition in thermodynamic modeling of grain boundaries at 

high temperatures. 135 
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A surface may be considered as an interface between the condensed phase and its vapor using the 

formalism discussed in Section 3.6.1, while a phase interface is between two condensed phases.  

In principle, thermodynamic modeling of surface and phase interfaces can be carried out 

similarly as described for grain boundary though the segregation to phase interfaces is more 

difficult to define as two phases usually have difference compositions.136 

 

3.7. Tools for thermodynamic modeling 

As can be seen in Eq.  38, Eq.  42, Eq. 46, and Eq. 47, the evaluation of model parameters is 

carried out in a hierarchical structure sequentially from those of pure elements, their lattice 

stability, binary interaction parameters to ternary and multicomponent interaction parameters.  

Through the CALPHAD annual conferences, the nonprofit foundation CALPHAD, Inc., and the 

CALPHAD journal started in 1973, 1975, and 1977, respectively, this hierarchical procedure 

resulted in several versions of thermodynamic parameters of pure elements and their lattice 

stability values with the latest one published in 1991 by the Scientific Group Thermodata Europe 

(SGTE),137 which significantly enhanced the international collaborations, along with continued 

development.138,139  The available computational tools are reported in two special issues of the 

CALPHAD journal,140,141 with multicomponent thermodynamic databases of technological 

important materials available commercially.142–144  Even though the operational procedures of 

commercial computational tools are available, the algorithms for Gibbs energy minimization and 

the database structures in commercial tools and the associated databases are usually proprietary, 

which significantly hinder the development of new algorithms and new models.  Consequently, 
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there are recent developments of open source codes, such as OpenCalphad,95,96 PyCalphad,145,146 

and Thermochimica.147 

 

It is evident from the hierarchical procedure that modification of a constitutive subsystem has a 

snowball effect on the description of a multicomponent system in that it affects every Gibbs 

energy function of every phase in systems that contain that subsystem, e.g., a change in the 

binary A-B system affects the description of all phases in ternary systems A-B-C, A-B-D, etc., 

making remodeling of all of these ternaries necessary which is very challenging with the existing 

computational tools.148  To address this challenge, the ESPEI software149 was developed for high 

throughput CALPHAD modeling. It is built on DFT data and can efficiently re-evaluate the 

thermodynamic parameters of higher order systems when a sub-system is being updated, and the 

latest version of ESPEI 150–152 uses PyCalphad 145,146 as the computation engine. 

 

PyCalphad is a free and open-source Python library for designing thermodynamic models, 

calculating phase diagrams and investigating phase equilibria using the CALPHAD method.  It is 

capable of reading thermodynamic databases and solving the multicomponent, multi-phase 

Gibbs energy minimization problem.  A unique feature of PyCalphad is that the thermodynamic 

models of individual phases are internally decoupled from the equilibrium solver and the models 

themselves are represented symbolically.  Consequently, the databases can be programmatically 

manipulated and overridden at run-time without modifying any internal solver or calculation 

code.  The general architecture of PyCalphad software package is shown in Figure 1.  The 

Database object is the fundamental representation of CALPHAD data in PyCalphad and supports 

reading and writing a large subset of the SGTE thermodynamic database file format (TDB).  The 
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Model is an abstract representation of the molar Gibbs energy function of a phase, built around 

the computer algebra library SymPy.153,154  The calculate() function is the core property 

calculation routine of pycalphad and performs calculations for the case when all independent 

external and internal variables, i.e., temperature, pressure, sublattice site fractions, are specified, 

i.e. any nonequilibrium states.  Custom models can be specified via the model keyword argument 

to override the default model for all phases or a specific phase’s model.  The equilibrium() 

function is responsible for equilibrium property calculations, and its return value is a multi-

dimensional labeled array, including the equilibrium values of the molar Gibbs energy and 

chemical potentials.  Furthermore, it was shown that the combination of random sampling with 

uniform grid points significantly increases performance in effective sampling to capture key 

details about the energy surfaces of multicomponent, multisublattice phases.155   

 

The complexity of PyCalphad necessities the implementation of strategies to avoid the regression, 

or accidental breakage.  The popular Git source code control (SCC) system 156 is used to manage 

the source of PyCalphad, allowing its complete history of changes to be recorded for all released 

and unreleased versions and concurrent work on, e.g., new major features and bug fixes to 

existing versions through different versions of the software to be stored in separate “branches”.  

PyCalphad has a suite of continuous integration (CI) tests designed to verify that a revision to the 

code does not cause unintended behavior, which are run automatically every time a new revision 

is pushed to the Git repository on GitHub.  When a bug is reported and fixed a minimal test case 

is added to the suite whenever possible to prevent the problem from appearing again in future 

releases.  The rigor and current and future impacts of PyCalphad enabled its winning of the 

runner-up (2nd place) in NASA Software of the Year competition in 2019.157  It should be 
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mentioned that the global minimization of Gibbs energy in multicomponent system with 

complex sublattice models remains a challenging balance between efficiency and robustness of 

algorithms, which are subject to continuous improvements.155,158  

 

Figure 1. General architecture of the PyCalphad software package.146 

 

ESPEI implements two steps of model parameter evaluation: generation and Markov Chain 

Monte Carlo (MCMC) optimization.150–152  The parameter generation step uses experimental and 

first-principles data describing the derivatives of the Gibbs energy to parameterize the Gibbs 

energy of each individual phase, resulting in a complete thermodynamic database based solely on 

those derivatives, commonly called thermochemical data, along with the reference states 

described by Eq.  40 and Eq.  41.  Experimental thermochemical data for virtually all real alloy 

systems are too sparse to fully describe the Gibbs energies of the phases and are often unable to 

access the energetics of metastable configurations defined within the CEF, requiring that 

available experimental data is augmented with thermochemical data from estimates, empirical 

models,159 machine learning models, 160,161 or first-principles calculations,70 all of which only 

give approximate energies.  For each fitting step, the residual sum of squares between the 

evaluated parameters and the data are used to score and compare the models within the corrected 

Akaike information criterion (AICc).162  The model with the lowest score is the optimal 

combination of model fitness and complexity.  The AICc is a modified version of the AIC that 

avoids overparameterization when the data is sparse, which is often the case for thermochemical 

data. 
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The phase equilibrium data require the Gibbs energies of all phases to be refined, so parameters 

must be optimized iteratively to be self-consistent by the modeler.  Currently, ESPEI uses 

MCMC to perform a Bayesian optimization of all model parameters simultaneously.  Since the 

parameters for each phase are often correlated to each other because increasing the value one 

parameter and decreasing another can give the same Gibbs energy for any given set of conditions, 

ESPEI uses an ensemble sampler, as introduced by Goodman and Weare 163.  Ensemble samplers 

use an ensemble of Markov chains to form the proposal distribution for the parameters. This 

allows the proposals to be invariant under affine transformations, solving the problems of scaling 

proposal length and differing parameter magnitudes in multidimensional parameter space 

simultaneously. Proposed parameters are accepted or rejected based on the Metropolis criteria.  

ESPEI uses an ensemble sampler algorithm implemented in the emcee package 164 with 

parallelizable ensemble samplers.  It provides emcee with an initial ensemble of chains as 

Gaussian distributions centered on the parameters generated by single phase fitting and defines a 

probability function that calculates point posterior log-probabilities from the prior and likelihood.  

Prior distributions for the parameters are the main way that modelers input domain knowledge 

into ESPEI’s MCMC optimization.   

 

Three main types of data are considered by the likelihood function defined in ESPEI: single 

phase thermochemical data of the temperature derivatives of the Gibbs energy, activity data 

(converted into chemical potential) related to the composition derivatives of the Gibbs energy, 

and multi-phase equilibria data.  For all data types, the error is assumed to follow a normal 

distribution with default values for the standard deviations of each type of data provided in 

ESPEI.  Users can modify the values by adding a weight for each type of data or for each 
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individual dataset.  The errors for thermochemical data are straightforward, but less so for multi-

phase equilibria data.  The method implemented in ESPEI is similar to the rough search method 

implemented in the PanOptimizer software 165 with the residual being the driving force between 

the target equilibrium and current hyperplanes, obtained by equilibrium calculations at each 

measured tie-line vertex with all phases active and with only the desired phase active, 

respectively. 

 

In addition to evaluation of model parameters, another important feature of PyCalphad and 

ESPEI is the uncertainty quantification in terms of models, model parameters, and model 

predictions.166  Parameter uncertainty concerns the distribution of each parameter and is 

evaluated within the MCMC optimization step of ESPEI by quantifying the distribution of the 

parameter values that make up each converged Markov chain.  The parameter uncertainty 

enabled the development of a suite of tools to represent uncertainty in forms that surpass 

previous limitations, including the distribution of phase diagrams and their features, as well as 

the dependence of phase stability and the distributions of phase fraction, composition, activity 

and Gibbs energy irrespective of the number of components.166  Examples are shown in Figure 2 

for the model parameters of the liquid phase151 and the uncertainty intervals of the fcc-Laves–

liquid eutectics166 in the Cu-Mg system. 

 

Figure 2. (a) Corner plot of the parameters in the Cu-Mg liquid phase with the diagonal 

images for the histogram of each parameter in the Markov chain and the off-diagonal 

images for the covariance between two parameters; 151 (b) FCC - Laves – liquid eutectics in 
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Cu-Mg plotted for all 750 sampled parameter sets with 68% and 95% uncertainty intervals. 

166 

 

4. Input data for thermodynamic modeling 

Input data for thermodynamic modeling can broadly be divided into two categories: 

thermochemical data and phase equilibrium data as mentioned above, with the former being the 

first and second derivatives of Gibbs energy and the latter being the amounts and compositions 

of phases in equilibrium with each other.70  The data are primarily from three sources: 

experimental measurements,167,168 theoretical estimations and predictions,70,159 and predictions 

from machine learning,161,169 with their timespans from weeks to months, days to weeks, and 

seconds to hours, respectively.  The theoretical estimations are not discussed in the present paper. 

 

4.1. Experimental measurements 

In the book led by the author,9 experimental methods for phase equilibrium and thermochemical 

measurements are discussed and can be grouped into two categories: compositions and energy, 

including equilibrated materials, diffusion couples/multiples, vapor pressure, and 

electric/magnetic/high pressure techniques for phase equilibrium data, and solution/heat capacity 

calorimetry, combustion, direct reaction, and electromotive force techniques for thermochemical 

data.  In general, the uncertainties in measurements of heat are larger than those in compositions.  

One key promise of experimental measurements is that the material reaches a state of 

equilibrium when the data are collected, i.e. with respect to small fluctuations of all ξ, the 

material returns back to its equilibrium state with well-defined values of ξ.  Furthermore, one 

needs to keep in mind that every experimental observation combines the contributions from all 
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configurations as articulated in Section2.4.2, while theoretical prediction often considers the 

contributions individually. 

 

4.2. First-principles calculations 

It is noted that the limitation of theoretical prediction is at the same time its strength as it can 

investigate the contributions of individual configuration to the system and provide insights and 

be complimentary to experimental observations.  Particularly, the development of first-principles 

calculations based on the density functional theory (DFT)170,171 and a range of efficient computer 

programs172 have revolutionized the theoretical predictions in terms of both accuracy and 

efficiency in the last few decades.173–175  The fundamental theorem is that there exists a universal 

functional of the electron density that minimizes the energy of the ground state of a system, and 

this electron density can then be used to calculated all properties of the ground state.  It is thus 

self-evident that the DFT-based calculations are for individual configurations as discussed in 

Section 2.4.2.  Through constraints on volume and perturbations of atomic positions, the 

Helmholtz energy of a configuration can be obtained as follows 29,176,177 

 

�(,, �) = NJ(,) + �̄ �<(,, �) + ��M(,, �) Eq. 77 
 

where NJ is the static total energy at 0 K calculated directly by first-principles,178 and �̄ �< and 

��M are the lattice vibrational free energy and the thermal electronic contribution, respectively, 

related to contributions at finite temperatures. ��M is evaluated from the electronic densities of 

state at different volumes.29  �̄ �< can be obtained from first-principles phonon calculations for 

accurate results29,176,177 or the Debye model for simplicity,177 using a modified scaling factor.179  
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The results from DFT-based calculations can also be used to develop interatomic potentials or 

molecular force fields for molecular dynamic (MD) simulations of the physical movements of 

atoms, molecules and defects,180 or evaluate the coefficients for effective cluster interaction in 

the cluster expansion approach which are then used as a Hamiltonian for Monte Carlo 

simulations (CE-MC). 181,182 

 

In addition to the crystal structure corresponding to the ground state, DFT-based calculations 

have also been extensively performed for non-ground state atomic configurations with several 

online open databases.183–185  However, the free energy of unstable structures cannot be directly 

calculated due to the their imaginary vibrational modes.42  It was shown that for an element with 

the fcc structure as its ground state, it is unstable in the bcc structure at zero Kelvin, and vice 

versa.44  Progresses have been made in terms of ab initio molecular dynamics (AIMD) 

simulations 186,187 and using the limit of stability,46,47 and these approaches provide useful data in 

the desired smooth extrapolation behavior between stable, metastable, and unstable regions in the 

CALPHAD method.  However, if one would like to predict the transition between the unstable 

and stable structures with the change of external fields, i.e. the critical point and associate 

anomalies, one may need to use the “partition function” approach discussed in Section 2.4.2 and 

in ref. 10 by considering the statistical competition among various configurations.  The author 

anticipates that this approach is applicable to properties of any phases under conditions that the 

probabilities of metastable configurations become statistically significant.  By the same token, 

DFT-based calculations can be used to predict properties of phases with those defects discussed 

in Section 3.6 as demonstrated in the literature.120,127,128,188–192  For non-stoichiometric phases, in 
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addition to the MD and EC-MC simulations mentioned above, one can use the coherent potential 

approximation (CPA) 193 and special quasirandom structures (SQS).194–197  

 

The accuracy of DFT-based calculations is often evaluated by comparing the calculated 

energetics with experimental measurements.  Kirklin et al. compared the formation energies in 

the Open Quantum Materials Database (OQMD) database with 1670 experimental formation 

energies of compounds with an apparent mean absolute error (MAE) being 0.096 eV/atom 

(∼9.3kJ/mol).198  They also pointed out that the MAE between different experimental 

measurements from multiple sources is about 0.082 eV/atom (∼7.9kJ/mol).  Hautier et al. 

compared the reaction energies of 135 reactions of the formation of ternary oxides from 

chemically similar binary oxides and modeled the errors by a normal distribution with a mean 

close to zero and a standard deviation of 24 meV/atom (∼2.3kJ/mol).199  The experimental 

tabulated data at 298K were extrapolated to zero K in order to compare with the computed data.  

In both cases, generalized gradient approximation (GGA) with a Hubbard U parameter were used 

for some transition metal elements (GGA+U). 

 

4.3. Machine learning 

DFT-based calculations significantly reduce the time in obtaining thermochemical data in 

comparison with experimental measurements, but still take considerable amount of computer 

resources and time for each calculation.  Furthermore, the number of calculations needed for a 

phase increases exponentially with the numbers of sublattices and components.  It is thus 

desirable to find more efficient procedures to generate input data for thermodynamic modeling.  
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The current trend points to machine learning as an exciting tool available to materials 

science.161,169,200 

 

There are three key components in machine learning: databases, descriptors, and algorithms.  In 

an effort to predict formation energies of compounds, Ward et al. 161 utilized  the OQMD 

database of 435000 formation energies 184,201, with over 30000 entries from the Inorganic Crystal 

Structure Database (ICSD) and the remainder derived by replacing elements in known crystal 

structures with different elements, i.e. various atomic configurations.  They created total 271 

attributes/descriptors based on the Voronoi tessellation and composition of structures.  The 

random forests algorithm was used due to its superior performance and robustness against 

overfitting.  Through systematic test of training set size, a 72 meV/atom (~ 7kJ/mol) MAE in 

cross validation was achieved, a significant improvement in comparison with existing 

approaches.  The training and running times are in the order of 3000 and 0.1 seconds, 

respectively. 

 

Bartel et al. 169 used the SISSO (sure independence screening and sparsifying operator) approach 

to a massive (~1010) space of mathematical expressions and identify a simple descriptor to 

predict Gibbs energy for stoichiometric inorganic compounds.  They used experimental data for 

262 solid compounds to identify the descriptor and tested on a randomly chosen excluded set of 

47 compounds and 131 compounds with first-principles computed Gibbs energy.  The following 

descriptor was obtained 

? − ∆�� ¹ �,i�}dº = (−2.48 ∗ 10�½ ∗ S~(,) − 8.84 ∗ 10�¾d,�I)� + 0.181 ∗ S~(�) − 0.882  Eq. 78 
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where ∆�� is the formation energy of the compound at 298K, , the calculated atomic volume 

(Å3/atom), and d the reduced atomic mass (amu).  This descriptor was selected by SISSO from a 

space of ~3×1010 candidate three-dimensional descriptors, where the dimensionality is defined as 

the number of fit coefficients (excluding the intercept).  262 compounds with 2991 data points 

was randomly selected from 309 inorganic crystalline solid compounds as the training set, and 

the remaining 47 compounds with 558 data points were for cross validation.  The resulted MAE 

was ~50 meV/atom (~5 kJ/mol) for temperatures ranging from 300–1800 K.  The selected three 

quantities, �, ,, and d, are among the key factors affecting the magnitude of vibrational entropy, 

i.e. the right-hand side of Eq. 78.202  This descriptor was further applied to 29,525 compounds in 

ICSD, enabling the prediction of thousands of temperature-dependent phase diagrams of 

inorganic compounds. 

 

In a recent work, we tested a range of deep neural network (DNN) architectures using the same 

database and descriptors by Ward et al. 161.  During the DNN design process, around 50 networks 

belonging to 19 architectures were created and tested with cross-validation on a randomly 

selected test set comprising 5% of the OQMD database (21,800 test entries).  The best network 

achieved a MAE of ∼28 meV/atom (∼3kJ/mol).203,204  Furthermore, the improved prediction 

speed enabled the screening of the whole databases and identification of entries that do not fit the 

discovered patterns.  This, in turn, combined with more in-depth analysis, allows us to pinpoint 

entries that are likely to contain poor quality data, as well as those at risk of having a systematic 

error in the DFT-based calculations.  Such DNN models can also be trained for specific 

benchmarks such as memory constrained applications, improved performance on non-OQMD 

datasets, and enhanced transfer learning capability.203,204 



56 

 

 

5. Applications 

In the spirits of Integrated Computational Materials Engineering (ICME) 205 and Materials 

Genome Initiative (MGI),206 computational materials science and engineering plays a central role 

in the advancement of industrial manufacturing.  Manufacturing is a combination of many 

processes in which external variables are adjusted to induce internal processes, transform 

materials from one state to another state, and ultimately produce a product that possesses one or 

multiple functionalities.207  Such one transformation can be schematically shown in terms of 

energy profile as a function of one internal variable in Figure 3.  More complex energy landscape 

such as fractal free energy landscapes with simple basins, metabasins and fractal basins in 

structural glasses 208 can in principle be considered as being composed of many such individual 

energy profiles shown in Figure 3 at various time and spatial scales.  The applications of 

computational thermodynamics can be schematically articulated by this diagram in terms of 

derivatives of energy in following aspects:  

1. For a given set of internal variables, ξ7, the first and second derivatives with respect to its 

extensive natural variables give a range of physical properties of the system as shown in 

Table 1, including new sets of kinetic coefficients;9,10 

2. For a given set of natural variables, the first and second derivatives with respect to ξ7 

determine  

2.1. whether the system is at equilibrium with the first derivative being zero,  
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2.2. whether the equilibrium is stable with the second derivative being positive, or unstable 

with the second derivative being negative, or at the limit of stability with the second 

derivative being zero,  

2.3. which stable equilibrium is the ground state with the lowest energy,  

2.4. the driving force for the transformation from the metastable to stable states along with 

the transformation barrier denoted by the maximum energy difference between the 

unstable and metastable states, 

2.5. For stable, nonequilibrium systems with second derivative being positive, the first 

derivative with respect to ξ7  gives the driving force for the transformation towards a 

local equilibrium state; 

2.6. For unstable systems with second derivative being negative, self-assembly, dissipative 

structures form,16 including the spinodal decompositions in bulk and grain 

boudaries.209,210 

3. The usage of third derivative is currently limited to the critical point where all first, second, 

and third derivatives are zero.  At a critical point, all internal variables, ξ7 , become dependent 

variables because the system is at equilibrium with first derivative being zero.  The second 

and third derivatives being zero add two constraints, resulting in a zero-dimension point in 

the space defined by two independent potentials.  When a third independent potential is 

introduced, the zero-dimension critical points in three two-dimensional spaces of two 

independent potentials extends into the three-dimensional space as lines which merger 

together to form a zero-dimension critical point in the three-dimensional space.  These lines 

denote the instability limit of the system with three independent potentials, and the zero-
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dimensional critical point represents an invariant critical point (ICP) which can be extended 

to multidimensional spaces of potentials.211  It may be noted that these instability lines were 

termed as line of critical end points (LCEP) in the literature.212 

4. From Eq.  11, it can be seen that when the limit of stability is approached from the stable 

region, �3 changes from positive to zero, resulting in the following mathematical singularity 

at the limit of stability 

:�0<
�.< ;89 = +∞ 

Eq.  79 

This indicates that all extensive variables diverge at the limit of stability, including the 

critical point and LCEP.  It is evident that in the vicinity of the critical point, the system will 

start to change from normal behavior towards the divergency, demonstrating emergent 

behaviors such as the colossal positive, zero, or negative thermal expansion,10,22,27 and giant 

electromechanical response in ferroelectric relaxors.212,213  The property of thermal expansion 

is represented in the temperature-pressure space, while the electromechanical response is in 

the temperature-electric field space, resulting in the divergence of physical properties. 9,17  

 

Figure 3. Schematic diagram of energy landscape as a function of one internal variable 

 

The above list of applications can be broadly categorized into the groups of stability, 

metastability, and instability for emergent behaviors in terms of materials discovery, design, 

processing, and performance that are discussed in the following sections.10 

 

5.1. Stability 
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Knowing the space of stable phases as a function of independent variables is the key for 

materials design and manufacturing.207,212,214,215  This space is traditionally represented by phase 

diagrams, but usually limited to diagrams with two independent variables.  With computational 

thermodynamics, multi-dimensional spaces can be explored numerically more efficiently.  There 

are three types of phase diagrams: potential, mixed, and molar phase diagrams with the axes of 

the phase diagrams being all potentials, mixture of potentials and molar quantities, and all molar 

quantities, respectively.  Each type of phase diagrams has its own characteristics.  The Gibbs 

phase rule can only be directly applied to potential phase diagrams and may be modified for 

mixed and molar phases diagrams.3  In mixed and molar phase diagrams, the concepts of tie-

lines that connect the phases in equilibrium and lever rule based on balance of molar quantities 

are introduced to define the phase compositions and calculate phase fractions.   

 

For visualization purposes, multidimensional phase diagrams are sectioned along one or more 

axes.  When sectioned along potentials, the number of independent potentials, thus the number of 

independent variables, is reduced by the number of sectioned potentials, and the Gibbs phase rule, 

tie-lines, and lever rule can apply based on the types of phase diagrams.  However, when 

sectioned along molar quantities, tie-lines are usually not on the resulted phase diagrams, and the 

lever rule can thus no longer be used.  If a mixed phase diagram is sectioned exactly along the 

tie-line, it is equivalent to section along a potential because the potential remains constant along 

the tie-line, and the resulted phase diagrams are called pseudo- or quasi-binary and ternary phase 

diagrams. 

 

5.1.1. One-component systems and phase boundary rule 
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Four phase diagrams for one-component pure Fe system are shown in Figure 4, and one can 

easily plot any one of them using the computational tools after calculations.95,96,142–146  In the � −
� potential phase diagram, the Gibbs phase rule dictates the two-dimensional areas, one-

dimensional lines, and zero-dimension points for single-, two-, and three-phase regions, 

respectively.  The � − ,B, 'B − � and 'B − ,B phase diagrams are less common in the 

literature, and the tie-lines are plotted in them which can be used to calculate the phase fractions 

along them using the lever rule for the balances of molar entropy and molar volume.  The Gibbs 

phase rule cannot be used to analyze the dimensionality of phase regions anymore.  As it can be 

seen, the dimensionality of phase regions in the molar phase diagram is the same of that of the 

phase diagram, which is true for systems with more than two independent potentials, and there is 

the MPL phase boundary rule as follows 3 

�À + �� = � − � Eq.  80 

where �À and �� are the numbers of phases that appear and disappear, respectively, as a phase 

boundary of dimensionality � is crossed, and � is the number of axes in the molar diagram.  The 

MPL phase boundary rule can also be applied to mixed phase diagrams when the dimension of 

two neighboring phase regions equals to that of the phase diagram.  

 

Figure 4. Four types of phase diagrams of pure Fe: (a) Á − Â; (b) Á − ÃÄ; (c) ÅÄ − Â; (d) 

ÅÄ − ÃÄ with the green lines being tie-lines. 

 

In thin films, the volume is replaced by two in-plane strains with two in-plane stresses as 

conjugate potentials, resulting in one more independent variable.  Strains can be introduced into 

thin films through differences in lattice parameters, thermal expansion behavior between the film 
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and the underlying substrate, or defects formed during film deposition.215  Furthermore, strain 

energy in thin films is a function of film thickness, which can be considered as another external 

variable, and the spatial arrangements of polarization configurations which are internal variables 

and reduce the total strain energy.   

 

For example, the stability of individual polarization configurations of PbTiO3 on a cubic 

substrate is shown in Figure 5a with the paraelectric, i, i|, ii, | and � phases considered.  Their 

polarization configurations along the [100], [010], and [001] directions are �I = �3 = �5 = 0; 

�I ≠ 0 and �3 = �5 = 0; �I ≠ 0, �3 = 0 and �5 ≠ 0; �I = �3 ≠ 0 and �5 = 0; �I = �3 = 0 and 

�5 ≠ 0; and �I = �3 ≠ 0 and �5 ≠ 0, respectively.216  The film thickness was over 50nm, much 

larger than the ferroelectric correlation length.  With the stoichiometry of PbTiO3 fixed, the 

system behaviors as a one-component system with the misfit strain as an external variable.  Since 

the external constrain is that all configurations must have the same misfit strain, the misfit strain 

represents a potential of the system in place of stress in the Gibbs phase rule equation.  As shown 

in Figure 5a, the transition between | and � is second-order down to near zero K, indicating that 

the strain and stress in both configurations at the transition strain are the same.  While the 

transition between ii and � is first order at low temperatures and reaches a critical point at high 

temperature, i.e. becoming second-order and merging with the second order transition between | 

and �. The second-order transition revert back to first-order transition at higher temperatures 

between paraelectric and | phases and between paraelectric and ii phases, respectively.  

However, this change does not represent a critical point because the first- and second-order 

transitions involve different phases, rather than the same phases as in the ii and �/| case where 

all of them merger into one phase. 
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On the other hand, Li et al. 217 used the phase-field method to simulate the three-dimensional 

arrangements of three possible polarizations orientation variants with the tetragonal axes along 

the [100], [010], and [001] directions of the cubic paraelectric phase, denoted by iI, i3, and | 

domains, and obtained the phase diagram shown in Figure 5b.  The iI/i3 and |/iI/i3 domain 

configurations are in analogy to the ii and � phases above though not identical, but the stability 

regions of phases are rather different in Figure 5a and b.  Particularly, Figure 5a is asymmetrical 

with respect to strain, while Figure 5b is symmetrical with the strain energy and domain wall 

energy taken into account. 

 

Figure 5. Temperature-strain phase diagrams of (001)p-oriented PbTiO3: (a) with each 

polarization configuration considered separately and the second- and first-order phase 

transitions shown by thin and thick lines, respectively.;216 (b) with the strain interactions 

and interface energy between configurations (domain wall) considered.217  

 

One interesting observation is the four-phase equilibrium point of iI/i3, |/iI/i3, |, and 

paraelectric phases in Figure 5b using the phase-field method, which was also shown for BaTiO3 

with individual configurations.216,218  This is probably related to the mixture of configurations 

discussed in Section 2.4.2 since the second-order transitions are not determined by free energy 

comparison of different configurations or phases as in the first-order transition of a one 

component system, and rather they are determined by the entropy of mixing of various 

configurations denoted by Eq.  30.  This entropy of mixing should be significant because the 

energy differences between various configurations are in the range of a few meV/atom.218  This 
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is further supported by the conclusions that the transitions between | and � and ii and � 

configurations are smooth even at zero K and second order at high temperatures as shown in 

Figure 5a 216,218 and the AIMD simulations discussed in Section 5.3.2. 

 

Since the paraelectric cubic phase is unstable at zero Kelvin, its properties cannot be predicted 

from DFT-based first-principles calculations due to imaginary phonon modes.219,220  One way to 

address this issue is to compute the phonon frequencies of a high temperature structure using the 

force constants calculated for related low-temperature stable structures.  This approach was 

successfully applied to SrTiO3,221 and PbTiO3,222 which is in line with the “partition function” 

framework discussed in Section 2.4.2 and worth of further investigations as it provides an 

approach to predict the properties of high temperature phases which are unstable at low 

temperatures. We are actively working on the prediction of ferroelectric to paraelectric transition 

using the partition function approach discussed in Section 2.4.2. 

 

5.1.2. Binary and ternary systems 

Phase diagrams for binary systems are usually presented under fixed total pressure and are 

geometrically identical to those of one-component systems.  For example, the � − -a¥  and � −
Fa¥ Fe-Cr binary phase diagrams are shown in Figure 6.  

 

Figure 6. (a) Á − rÆÇ and (b) Á − ÈÆÇ phase diagrams of the Fe-Cr binary system under 

ambient pressure. 
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The phase diagrams of ternary systems are the same as those of one-component and binary 

systems when sectioned along two potentials.  The common molar phase diagram of ternary 

systems is the isothermal section under fixed � and � with two compositions plotted in Gibbs 

triangle so that all three elements are treated symmetrically.  When sectioned along the 

composition of one component, one usually plots a phase diagram between temperature and the 

composition of another component, i.e. an isopleth.  As mentioned before, sectioning along the 

tie-line results in the reduction of one independent potential, and the isopleth thus behaves like a 

binary system called pseudo- or quasi-binary systems that are commonly used for ternary oxide 

systems. 

 

5.1.3. Multicomponent systems 

The isopleth is the primary phase diagram for multicomponent systems sectioned through a 

mixture of potentials and molar quantities.  Figure 7 shows the isobaric � − ªa phase diagram 

for the Fe-1.5Cr-0.4Mn-3.5Ni-0.3Si-C (in weight percent) system calculated using the TCFE6 

thermodynamic database.142  The numbers denote the zero-phase fraction (ZPF) boundaries, 

depicting that the phase is stable on one-side of the boundary only.  The similar isopleth can be 

plotted with respect to other elements.  The single fcc phase region is at the upper left corner of 

the phase region and critically important for homogenization treatment of materials.  

 

Figure 7. Isopleth of the Fe-1.5Cr-0.4Mn-3.5Ni-0.3Si-C (in weight percent) system 

 

The phase fractions for a given alloy can be plotted with respect to temperature to understand the 

evolution of phases under equilibrium conditions with an example showing in Figure 8 for the 
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Fe-25Cr-7Ni-4Mo-0.27N-0.3Si-0.3Mn (in weight percent) duplex stainless steel using the 

TCFE6 database. 142 

 

Figure 8. Phase fractions of the Fe-25Cr-7Ni-4Mo-0.27N-0.3Si-0.3Mn (in weight percent) 

duplex stainless steel as a function of temperature 

 

5.2. Metastability 

A metastable system is with � < 0 and �3 > 0 in Eq.  8 for a smaller enough �ξ, but its energy 

is higher than those of more stable states with lower energies.  Practically majority systems 

around us are metastable including most pure elements on the chemical periodic table and their 

alloys because they could be oxidized under ambient conditions to become more stable.  Our 

metal-based civilization is in terms of the extraordinary kinetic stabilities of the reactive metals 

in oxidizing environments, attributed to the existence of a thin reaction product film on the metal 

surface that isolates the metal from the corrosive environment.223 

 

In addition to this passivity, another main contributor is the high kinetic barrier (see Figure 3) so 

that the probability for the system to overcome the barrier is negligible, such as both diamond 

and cementite (Fe3C) with respect to graphite in its pure form and in the Fe-C binary system.  

Metastable states can be obtained by removing the more stable phases from the equilibrium 

calculations of the system.  The stability of cementite is particularly interesting.  The Gibbs 

energy of formation of Fe3C from pure Fe and graphite is negative, e.g. equal to −1620J/mole of 

formula of Fe3C at 1169K.  So Fe3C should be stable based on the following reaction  
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3�� + � = ��5� Eq.  81 

 

However, Fe and C can form an interstitial solution to lower its Gibbs energy with respect to 

pure Fe and C, resulting in the Gibbs energy of ��5� above the tie-line between the Fe-C 

solution and graphite so that ��5� becomes metastable as shown in the Gibbs energy diagram in 

Figure 9. 

 

Figure 9. Gibbs energy diagram of Fe-C binary system at 1169K and 1atm.3  

 

The stability of a metastable state is usually discussed in terms of the transformation barrier 

represented by the maximum energy difference between the metastable and unstable equilibrium 

states as shown in Figure 3, with contributions from the interfacial energy and strain energy 

between the two states.  However, the system reaches the limit of stability, i.e. the inflection 

points where �3 = 0 marked by the two red filled circle between the metastable and top of the 

unstable equilibrium states, before it reaches the top of the unstable equilibrium state marked by 

the middle red filled circle.  In the metastable region, the evolution of a system is usually 

considered to be deterministic based on physical laws though microscopically the system does 

not have to cross over the barrier, i.e. reaching the top of the unstable states first unless it is 

constrained along one given trajectory only such as diffusion.  If the system in the unstable 

region has more than one possible trajectories, its evolution is in principle no longer 

deterministic and thus becomes stochastic.  It is noted that van de Walle et al. 46,47 used the limit 

of stability to represented the lattice stability used in the CALPHAD modeling approach, while 

the SGTE lattice stability used in the CALPHAD community 137 was obtained by extrapolations 



67 

 

from the stable region to the unstable region, and the results from these two approaches seem 

agree with each other and will be further discussed in Section 5.3.3.  

 

5.3. Instability 

Modeling instability is challenging due to the divergency of the inverse of the 2nd derivative as 

shown by Eq.  79, i.e. mathematical singularity for the derivative of each extensive variable with 

respect to its conjugate potential.  As discussed in the beginning of Section 5, there are two types 

of instability: the limit of stability with only the 2nd derivative being zero and the zero-dimension 

ICP with all derivatives being zero.  The limit of instability can be seen in Figure 3 by the two 

red dots separating the stable and unstable regions, i.e. inflection points, where the system is not 

at equilibrium because its 1st derivative is not zero.  While the ICP is when all the 

stable/metastable/unstable equilibria merge together into one point, so do the two inflection 

points, where the system is also at equilibrium because its 1st derivative vanishes. 

 

5.3.1. Theory of critical point and its applications to �� and ��5�� in relation to Clausius-Clapeyron 

equation 

Let us consider the critical point in the � − � potential phase diagram for one component 

systems using �� and ��5�� as two examples as shown in Figure 10.  Both have the fcc lattice 

structure, and their critical points are related to the change of magnetic spin configurations.  The 

ground states of �� and ��5�� at zero K are non-magnetic (NM) and ferromagnetic (FM), and 

above the critical point they become ferromagnetic and paramagnetic (PM), respectively.  As 

discussed earlier, if an external magnetic field is added, one can imagine that this critical point 

will become a line in the � − � − ℋ space until it ends at an ICP. 
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It is interesting to see that the signs of the two-phase equilibrium lines are opposite to each other 

in the two potential phase diagrams, positive for Ce and negative for ��5��.  Based on the 

Clausius-Clapeyron equation, the slope of a two-phase equilibrium line is related to the 

differences of their molar volume, ∆,B, and molar entropy, ∆'B, as follows 

���� = ∆,B∆'B 
Eq.  82 

So that the high temperature FM �� has a larger volume than the low temperature NM ��, while 

the high temperature PM ��5�� has a smaller volume than the low temperature FM ��5��. 

 

Figure 10. Á − Â potential phase diagrams for (a) ÆÉ,25 and (b) ÊÉËÂÌ 224 

 

From the stability criteria shown by Eq.  11, the conjugate variables in a stable system change in 

the same direction of increase or decrease, i.e. � vs ', and −� and ,, so the sign of Eq.  82 

depends on the change of ,B vs � and 'B vs −�.  It is thus evident that at the regions slightly 

away from the critical point, ,B of Ce and ��5�� would increase and decrease with the increase 

of temperature, respectively, indicating that the negative thermal expansion in the homogeneous 

��5�� phase originates from the negative slope of the two-phase equilibrium line.  Consequently, 

the divergence of extensive variables with respect to their non-conjugate potentials, i.e., ,B vs � 

and 'B vs −�, is +∞ for Ce and −∞ for ��5�� at the critical point, i.e., the non-conjugate 

variables in a stable system can change in different directions for different systems as discussed 

in Section 2.1 in relation to Table 1.   
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The sign of Eq.  82 was used to search for elements and compounds with potential negative 

thermal expansion through temperature-pressure phase diagrams.224  It was found that all 

systems with experimentally observed negative thermal expansion exhibit negative slopes of 

two-phase equilibrium, i.e. Eq.  82, while there are many systems with negative slopes, but no 

negative thermal expansion was reported.  It is noted that none of systems examined contain 

critical points in their equilibrium temperature-pressure phase diagrams.  This can be understood 

by considering the two-phase equilibrium line extends into its metastable region at higher 

temperature, and ultimately becomes unstable at its metastable critical point, resulting in either 

positive or negative divergence of extensive variables with respect to their non-conjugate 

potentials.22  As will be discussed shortly below, whether the anomaly is observed in the stable 

single-phase region depends on how close the system is to the critical point when the potential 

diagram is converted to a mixed potential-molar phase diagram for Ce and ��5��. 

 

As discussed in the literature and in the text above, an ICP is usually presented as the instability 

of a homogenous system.  However, it can be equally viewed as the merger of different phases, 

of which each is homogenous, into a macroscopically homogeneous system when the ICP is 

approached from the side of a heterogeneous system.  This prompted us to develop a theory that 

the homogeneous system is a superposition of many possible stable and metastable 

configurations based on statistical mechanics that results in Eq.  32, which is briefly discussed 

below.   

 

In statistical mechanics for a system with a number of possible configurations, the partition 

function of the system equals to the sum of partition function of possible configurations, i.e. 
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� = � �E  Eq.  83 

The assumption is that all configurations are independent with each other, so that their 

probabilities can be represented by Eq.  31.  However, this assumption is not valid when the 

probability of a metastable configuration in a stable matrix is considered as shown by Eq.  34 and 

Eq.  33.  This is because when a metastable configuration appears statistically in the matrix of a 

stable configuration, an interface between the metastable and stable configurations is created, 

which generates elastic deformation due to their volume differences.  The resulted interfacial 

energy and strain energy can not and should not be accounted for by the statistical mechanics, i.e. 

Eq.  83.  These challenges can be approximately resolved by designing important configurations 

that contain those interfaces and using Helmholtz energy in the statistical mechanics instead of 

total energy commonly used in the literature.10,25–27   

 

The Helmholtz energy of the system is thus obtained as follows 

� = −Rq�S~� = � cE�E − � cE�E − Rq�S~� = � cE�E + Rq� � cES~�E − Rq�S~�
= � cE�E + Rq� � cES~cE 

Eq.  84 

cE = ��ÍH/EÎ@
��Í/EÎ@ = ���ÍH�Í�/EÎ@ 

Eq.  85 

where �E is the Helmholtz energy of configuration R that can be computed from Eq. 77 in terms 

of DFT-based first-principles calculations.  It is important to mentioned that Eq. 77 can only be 

used for stable and metastable configurations and cannot be applied to unstable states because 

the vibrational entropy of unstable configurations cannot be calculated due to their imaginary 

vibrational frequencies.   
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For ��, three magnetic configurations were considered, i.e. NM, antiferromagnetic (AFM), and 

FM configurations25  While for ��5��, a supercell with 12 atoms was considered, resulting in 

2Ï = 512 magnetic spin flipping configurations (SFC), in which 37 SFCs are unique in terms of 

symmetry.26  Their energies as a function of volume at zero K, i.e. NJ(,) in Eq. 77, are plotted in 

Figure 11, showing the equilibrium between NM and AFM configurations/phases for Ce at 

negative pressure (common tangent with positive slope), and the equilibrium between FM and 

SFC configurations/phases at positive pressure (common tangent with negative slope).  The 

increase of cE for metastable configurations has the potential to result in the increase (for ��) or 

decrease (for ��5��) of the system volume with the increase of temperature.  The net change of 

volume for ��5�� depends on the relative magnitudes of the decrease of volume due to the 

increase of cE for metastable configurations with smaller volumes and the increase of volume of 

individual configurations due to their individual positive thermal expansions.  This is 

demonstrated by the plot of the Helmholtz energy differences, (�E − �)/Rq� (see Eq.  85), for 

37 SFCs of ��5�� in Figure 12. 

 

Figure 11. ^Ñ(Ã) in Eq. 77 for (a) ÆÉ 25 and (b) ÊÉËÂÌ 26 

 

Figure 12. �Ê\ − Ê�/\pÁ as a function of temperature plotted for 37 SFCs of ÊÉËÂÌ.224 

 

By replacing � in Figure 10 with its conjugate variable, , or ,B, one obtains the mixed potential-

molar quantity phase diagram shown in Figure 13 along with several isobaric volume curves.27  

The anomaly, i.e. the dramatic increase or decrease of volume on each isobaric curves with the 
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increase of temperature in the single phase region, is marked by the pink open diamonds, and the 

critical point is denoted by the green open circle.  Below the critical point, the homogeneous 

system with a mixture of various magnetic configurations is no longer stable and decomposes 

into a two-phase mixture in the area of miscibility gap with both phases being mixtures of 

various magnetic configurations, but with different proportions.  

 

Figure 13. Á − (Ã/Ã`) phase diagrams for (a) ÆÉ, and (b) ÊÉËÂÌ, with Ã` being the 

equilibrium volume at atmospheric pressure and room temperature. 27 

 

The thermal populations of three configurations for ��, two major SFCs, and all SFC for ��5�� 

are plotted in Figure 14. For ��, the population of the AFM Configuration at high temperatures 

is way higher than those of both FM and NM configurations, and the overall magnetic spin 

configuration is FM.  For ��5��, even though the FM configuration has the lowest Helmholtz 

energy at all temperatures considered, its population is lower than 20% at high temperatures. 

 

Figure 14. (a) Thermal populations of the nonmagnetic (red dot–dashed), 

antiferromagnetic (green dashed), and ferromagnetic (blue solid) as a function of 

temperature in ÆÉ at the critical pressure of 2.05 GPa;25 (b) Thermal populations of the 

FMC (black solid line) and that of the sum over all SFCs (black dot-dashed line) with the 

two major contributions to the PM phase from SFC55 and SFC41, plotted using red 

dashed and long dashed lines, respectively, for ÊÉËÂÌ at 1atm, respectively.26 
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The phase diagrams in Figure 13 resemble the miscibility gap commonly seen in binary 

temperature-composition phase diagrams.  Miscibility gap has been routinely modeled in 

CALPHAD databases, such as the fcc-based three-phase miscibility gap in multicomponent 

steels.225  However, it was pointed out that CALPHAD modeling does not really address the 

instability because the divergency of molar quantities is not considered, and it is not clear how 

the singularity can be efficiently addressed by a closed mathematical form, and thus more work 

is needed.10 

 

It is natural to think that if there is a technique with higher time and spatial resolutions 

comparable to the residence times and dimensions of metastable configurations, one would see 

many different configurations rather than a homogeneous system away from the critical point in 

the areas marked by the pink open diamonds in Figure 13, which can be far away from the 

critical point itself as shown.  Even though there are no reports in the literature for �� and ��5��, 

there are reports for other materials such as water,226,227 ferroelectrics, 228–232 and 

thermoelectrics.233  The ferroelectric ���	
5 is particularly interesting as introduced in Section 

5.1.1 and discussed below.  Of course, it should be noted that the microscopic mechanisms in 

different materials are different when their critical points are approached due to their intrinsic 

electronic structures and atomic interactions, demonstrating the importance to find the key 

configurations for each individual system.  But the general statistical approach based on 

fundamental thermodynamics discussed here should be applicable to all systems.  

 

5.3.2. Configurations in ���	
5 



74 

 

Under ambient pressure, X-ray measurements indicate a structure transition of ���	
5 from 

ferroelectric tetragonal (FE) to paraelectric cubic (PE) at 763K,234 and the cubic structure is 

unstable at zero K.219,235  The volume of the tetragonal FE phase decreases with the increase of 

temperature and increases in the cubic PE phase.234  However, when both Pb and Ti edges were 

measured in XAFS (x-ray-absorption fine structure) analysis with the time and spatial resolutions 

being ∼10-16 sec (0.1fs) and 1st to 4th nearest neighbor shells, it was found that the displacements 

of the atoms within the unit cell vary little with temperature below the transition and decrease 

only slightly above the transition temperature.228–230  In the PE phase, the Pb and Ti distortions 

are about 50% and 70% of the corresponding low temperature values, respectively.  The 

presence of this distortion is readily apparent in the high-temperature data as the first ‘‘edge 

peak’’ above the Fermi energy does not disappear or become small as in centrosymmetric 

structures.   

 

The local tetragonality is plotted Figure 15 in terms of lattice parameters of ���	
5 unit cell 

with the data from the x-ray diffractions234 and AIMD simulations superimposed.74  The AIMD 

simulations were performed with the lattice parameters of the supercell fixed to the values from 

the x-ray diffractions, i.e. tetragonal and cubic below and above the transition temperature, 

respectively.234  In contrast to conventional molecular dynamics analyses where results are 

averaged over time, the atomic configurations in the AIMD simulations were categorized as a 

function of time in terms of the individual Ti-O bond lengths in the nearest-neighboring shell.   
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Figure 15. Temperature dependence of the lattice parameters Ó, Ñ of ÂÔÁfÕË unit cell with 

data in the open symbols from the XAFS measurements, 228–230 the closed symbols from the 

x-ray diffraction,234 and the crossed symbols from AIMD simulations74 

 

The AIMD simulations indicate that the cubic configuration exists at temperatures about 300 K 

even though the time-averaged overall atomic configuration is tetragonal.  The quantitative 

results depict that as the temperature increases, the population of the cubic configuration 

increases and that of the tetragonal configuration decreases, and both become constant above the 

transition temperature as shown in Figure 16 with the majority of tetragonal configurations 

polarized.  By following individual Ti atoms, it was observed that the tetragonal configurations 

with different polarization directions switch between each other with the cubic configuration as 

the intermediate state (see Figure 17).17  It is thus concluded that the negative thermal expansion 

in the tetragonal phase region is due to the increased population of the transitory cubic 

configuration that has smaller volume and higher entropy than the tetragonal matrix, originated 

from the more frequent switching of the polarization directions and the longer total residence 

time at the cubic configurations at high temperatures. 

 

When a group of tetragonal configurations change their polarization directions, the domain walls 

are created with neighboring tetragonal configurations with the original polarization directions.  

There are two types of domain walls in ���	
5, i.e. 90° and 180°.236  Considering the 

multiplicities of these two domain walls, we are able to predict the FE-PE transition of ���	
5 

in excellent agreement with experimental data.  The details will be reported in a separate paper. 
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Figure 16. Fractions of the cubic (closed circles) and tetragonal (closed squares) 

configurations as a function of temperature, obtained from the AIMD simulations.74 

Among the tetragonal configurations, the fractions of the polarized and unpolarized ones in 

the <001> direction are shown in the open squares and open diamonds, respectively 

 

Figure 17: Instantaneous lattice parameters of PbTiO3 measured in all three directions as a 

function of AIMD simulation steps, (a) 623K, and (b) 753K. 17 

 

5.3.3. Limit of instability with �3 = 0, � ≠ 0 and �5 ≠ 0 

It is commonly accepted that the system needs to overcome the full barrier in order to transform 

from a metastable state to a more stable state as shown by Figure 3.  This is true when there is 

only one pathway between the metastable and stable states.  One example is atomic diffusion 

during which the moving atom must cross over the top of the barrier to reach the next vacancy 

site, and the inflection point with �3 = 0 only indicates that the increasing rate of resistance 

decreases moving forward.  However, when there are more than one states that the system can 

attend after it crosses the limit of stability, the system can transform into those states 

spontaneously without barrier because the system is unstable.  The spinodal decomposition in 

binary and multicomponent materials is such an example, in which an unstable homogeneous 

solution spontaneously separate into two or more states with different compositions and lower 

total energy without barrier, and the spatial arrangements of those states can be drastically 

different with small stochastic perturbations,209,210 resulting in structures similar to those 

dissipative structures.5,16  Therefore, the limit of stability alone cannot determine whether the 

system undergoes spontaneous transformations. 
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Recently, van de Walle et al. connected the energetics at the limit of stability, i.e.  �3 = 0, � ≠ 0  

and �5 ≠ 0, with the SGTE lattice stability obtained through extrapolations in the CALPHAD 

approach.47  Their approach is based on three complementary points of view: (1) a topological 

partitioning of phase space in terms of curvature criterion of potential energy hypersurface; (2) 

stabilizing the system by constraining the minimum number degrees of freedom by neglecting 

the few unstable modes at the thermodynamic limit; and (3) smooth extrapolation of free 

energies from local minima through inflection points to cross the instability.  The Ir–Re–W alloy 

system was selected as a benchmark because it combines elements that each favors a different 

lattice: Ir in fcc, Re in hcp and W in bcc.  Furthermore, the difference of lattice stability for fcc 

W between CALPHAD modeling and the DFT-based first-principles calculations is about 

30kJ/mole-atom, among the largest.44   

 

Figure 18 plots the formation energies of bcc/hcp/fcc ideal solutions in the three binary systems 

in the Ir–Re–W ternary system from three methods: the inflection method and two DFT-base 

calculations with or without constraints on symmetry.47  The energies at the inflection point are 

calculated by finding a path of steepest descent that connects the unrelaxed unstable 

configuration to the fully relaxed stable configuration in one of two ways: (i) the generalized 

nudged elastic band method with cell shape variations237 or (ii) the ‘damped’ dynamics with the 

atoms repeatedly displaced in the direction of the force upon on them by a fixed distance.  It can 

be seen that in stable regions, all three methods agree, but the inflection-detection method 

provides the smoothest extrapolation behavior into the unstable regions and agree with the values 

in the CALPHAD community (labeled as SGTE).137  The DFT-based calculations with 
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symmetry-constrained relaxations, i.e. no change of space group during relaxations, give much 

higher formation energy, while the calculations for unstable structures without symmetry 

constrain resulted in full relaxation towards nearby stable phases. 

 

Figure 18. Formation energies of ideal solid solutions in all binary subsystems of the Ir–Re–

W alloy system, obtained via various methods. 47 

 

The work by van de Walle et al.47 implies that the energy at the limit of stability represents the 

“apparent” energy of an unstable structure when extrapolated from various stable regions.  This 

approach seems reasonable because after the system crosses the limit of stability, there is no need 

for the system to increase its energy anymore because the system can spontaneously assembly 

itself into a dissipative structure 16 with spatially distributed higher and lower energy regions 

with the summed energy lower than that of the original homogeneous system.  Consequently, the 

higher energy region can venture further into the more unstable territory and can continuously 

dissipate itself in the same fashion until the high energy region crosses over the barrier and may 

even develop oscillating patterns,16 in the same fashion as the spinodal decomposition discussed 

above 209,210,238 with the formation of self-assembly of complex structures.239–241   

 

One can imagine that repetitive impacts from the surroundings to a system can bring the system 

across its limits of stability cyclically in a multidimensional space and result in more and more 

complex internal structures in the system.  As pointed out by Prigogine, many systems can 

spontaneously organize themselves if they are forced away from thermodynamic equilibrium 

into unstable regions.5,16  This is in analogy to the hypothesis by Oparin242 that energy from the 
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Sun, electrical activity like lightning (or possibly impact shocks or ultraviolet light), and Earth's 

internal heat triggered chemical reactions to produce small organic molecules which were further 

organized into the complex organic molecules (such as proteins, carbohydrates and nucleic acids) 

as the basis of life.  The key is that the external inputs bring the system across its limit of 

stability.  Various concepts were elaborated in many recent publications,243–245 demonstrating its  

extremely complex and controversial characteristics. Hopefully, the thermodynamics of limit of 

stability can help to enhance our understanding of the formation of dissipative structures and 

life.10 

 

5.4. Materials design 

The detailed understanding of stability, metastability, and instability of a system enables the 

design of materials for specific applications.  As Olson articulated, the conceptual design of 

multilevel-structured materials is possible with a systems approach that integrates processing, 

structure, property, and performance relations through a hierarchy of computational models to 

define subsystem design parameters that are integrated through CALPHAD-based computational 

thermodynamics.214,246 

 

5.4.1. Phase stability in alloys 

The best example of materials design in terms of phase stability is probably the materials system 

chart for a high-performance alloy steel schematically shown in Figure 19 with three subsystems: 

strength, toughness, and embrittlement resistance.214  The strength of the steel comes from the 

metastable lath martensite as the matrix of the steel and the nano-scale precipitates.  The stable 

bcc phase is prevented to form due to sluggish diffusion with respect to fast cooling.  The 
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martensitic transition temperature (Ö�) is modeled as a function of composition when the Gibbs 

energies of the high temperature fcc phase (austenite) and the martensite with the same 

compositions equal to each other.  The accurate calculations of Ö� temperatures require an 

improved thermodynamic model of the martensitic phase.  For further strengthening, the driving 

forces for the formations of undesirable carbides and topologically close pack (TCP) phases need 

to be made negative or minimized, while the driving forces for the MC and M2C carbides must 

be enhanced through the optimal combinations of compositions and processing parameters to 

increase their nucleation rates.  The sizes of the precipitates are to be maintained at nanometer 

scale through the coherent interfaces between the precipitates and matrix with the lowest 

interfacial energy to minimize the driving force for coarsening. 

 

Figure 19. Materials system chart for high-performance alloy steel.214 

 

The toughness is regulated by the lath thickness of martensite, austenite grain size that affects the 

packet size and lath thickness of martensite, and the amount of retained austenite that is softer 

than martensite and transforms to martensite under deformation with an increase of volume and 

at the same time absorb energy, that deflect the crack propagation and improv the toughness.  

The stability of grain refiner agents must be carefully controlled so they would not dissolve 

during the high temperature processing and be effective in reducing the grain size of austenite 

through nucleant particles.  The stability of the retained austenite is determined by the alloy 

concentrations and the enrichment of carbon during the martensite formation. 
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The embrittlement resistance centers on the control of grain boundary segregation/desegregation 

to enhance the grain boundary cohesion and avoid the intergranular cracking.  The 

thermodynamic description of intergranular embrittlement is related to the segregation energy 

difference to the free surface versus a grain boundary.  Correlated with experimental 

embrittlement sensitivity data with the segregation energy difference from DFT-based first-

principles calculations, it is possible to predict the embrittlement potency of a segregating solute 

with or without prior segregation of other solutes.  Furthermore, the charge-transfer plots from 

the DFT-based calculations reveal that embrittling P and S with positive segregation energy 

differences undergo a nonhybridized electrostatic interaction with Fe and promote the formation 

a free surface, whereas the cohesion-enhancing B and C exhibit anisotropic hybridized bonding 

across the grain boundary.  The DFT-based calculations also demonstrate that the embrittling 

effect of Mn is related to the strengthened in-plane bonding and thus the weakened out-plane 

bonding. 

 

Another example is shown for the design of corrosion-resistant landing gear steel allowing a 

drop-in replacement for current non-stainless landing-gear steels, eliminating the need for 

cadmium plating with the strategy similar to that shown in Figure 19,246 which was also listed as 

an ICME success example in a recent publication by National Research Council.247  Another 

ICME success example in the same publication 247 is on the development of Ni-based superalloy 

GTD262 at GE to replace tantalum (Ta), a critical refractory element subjected to high risks of 

supply and price disruptions, in superalloy GTD222.  Through integrating CALPHAD-based 

computational thermodynamic predictions of phase equilibria with GE’s internal materials 

property models and databases, four alloys with niobium (Nb) replacing Ta and with 
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modifications to the concentrations of other elements to optimize and balance key properties and 

producibility.  The best of the four alloys doubled creep-resistance performance with other 

properties remained comparable to those of the Ta-bearing GTD222 and successfully passed the 

industrial-scale production trial and qualifications without any technical hurdles.248  The new 

alloy was introduced into GE power generation gas turbines in about 4 years from concept to 

industrial production at less than 20 percent of the typical alloy development cost.  High-

confidence CALPHAD-based thermodynamic predictions not only eliminated several of the 

experimental iterations that are usually needed to obtain the right alloy compositions, but also 

eliminated the long-term thermal exposure experiments that are generally required to test the 

propensity to form detrimental phases. 

 

5.4.2. High entropy materials 

In last two decades or so, a new group of materials, called high entropy alloys (HEA) or more 

generally high entropy materials (HEM), with equal atomic ratios of multicomponent elements 

has been extensively investigated.249–253  The key argument is that the atomic mixing entropy, 

denoted by Eq.  37, is maximized for a given number of components in a solution phase when all 

components have the same mole fraction, i.e. central regions of multicomponent phase diagrams, 

thus lowering the Gibbs energy of the phase and increasing its stability.  The development of 

HEMs includes single solution phases with one sublattice and compounds with more than one 

sublattices254–257 for both structural and functional applications.258 

 

Senkov et al. 259,260 used the then available CALPHAD databases developed by CompuTherm143 

to analyze thousands of 3-, 4-, 5-, and 6-component alloys at equiatomic compositions of the 
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alloying elements with the validity and reliability of the calculated phase diagrams estimated 

through the comparison with experimental binary and ternary systems.  Based on a number of 

criteria they selected 27 elements from the chemical periodic table, i.e. Ag, Al, Co, Cr, Cu, Dy, 

Fe, Gd, Hf, Lu, Mg, Mn, Mo, Nb, Ni, Re, Rh, Ru, Sc, Si, Ta, Ti, Tm, V, W, Y, and Zr, with 2925, 

17,550, 80,730, and 296,010 alloys in 3-, 4-, 5-, and 6-component systems, respectively.  It was 

found that though most binary systems were modeled comprehensively, many CALPHAD 

modeling of ternary systems was lacking because databases were usually developed for alloys 

with one major element and relatively low contents of alloying elements.  Nevertheless, their 

CALPHAD-based thermodynamic calculations predicted that the majority of the equiatomic 

alloys contain both solid solution, i.e. bcc/hcp/hcp with bcc being the most common one 

followed by hcp and fcc, and various intermetallic phases at the melting temperature and 600°C.  

Total 453 different phases were identified.  The fraction of the solid-solution alloys decreases 

significantly with the increase in the number of alloying elements, e.g. from 46% to 10% in 3- 

and 6-component alloys at the melting temperature as shown in Figure 20, and from 30 to 4% at 

600°C (not shown here), respectively.  The elements that more often appear in solid solution 

phases at melting temperatures are Al, Cr, Hf, Mg, Mn, Mo, Nb, Re, Rh, Ru, Ta, Ti, V and W.  

The elements that appear less frequently in solid solution alloys are Fe, Ni, Sc, Y and Zr with Si 

completely absent.  Further down selection was made by alloy density, Young's modulus, and 

cost.   

 

Figure 20. Distributions of the N-component equiatomic alloys by the number of phases at 

the melting temperature with SS for solid solution and IM for intermetallic compounds. 

259,260 
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The more recent HEA CALPHAD database261 developed by ThermoCalc included the enthalpy 

of mixing data for bcc, fcc and hcp solutions from the DFT-based calculations using the SQS 

approach.194–197  Since the single solid solution phase regions depend on the Gibbs energies of 

both the solid solutions and intermetallic compounds, it is important to also improve the 

modeling of intermetallic compounds in the central regions of multicomponent phase diagrams.  

Due to the lack of experimental data, the large composition space in HEAs, and the complex 

structures of intermetallic phases, efficient theoretical predictions such as high-throughput DFT-

based calculations and ML approaches are highly critical.  As an example, we recently studied 

the σ phase in the Cr-Fe-Ni ternary system with the unit cell containing 30 atoms on 5 Wycoff 

positions.262  The Gibbs energies of the 3¾ = 243 end-members were calculated using the high-

throughput DFT-based first-principles calculations, and the data is publicly accessible online at 

Citrine Informatics.263  The site occupancies in various sublattices with ideal mixing in each 

sublattice are plotted in Figure 21 for the three binary systems in the Cr-Fe-Ni ternary system at 

925K.  The σ phase is stable in the Cr-Fe binary system, and the agreement between the 

predicted and experimental site occupancies are reasonable and can be improved by introducing 

vibrational entropy and interaction parameters in sublattices as shown in Eq. 47.  The systematic 

inclusion of thermochemical data from DFT-based calculations can significantly speed up the 

development of multicomponent databases for HEMs with enhanced accuracy.264,265 

 

Figure 21. Predicted equilibrium site occupancies at 925K for the Cr-Fe, Cr-Ni and Fe-Ni 

262,263 in comparison with experimental data.266,267 
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For the entropy-stabilized oxide investigated by Rost et al.,255, (Ö�, �	, �}, �×, �~)
 with 

equiatomic cation elements, i.e. 0.2 each, transforms from the two-phase mixture of rocksalt and 

tenorite to the single-phase rocksalt solution at temperatures above 875°C.  Rocksalt Ö�
, �	
 

and �}
 oxides are stable, while tenorite �×
 and wurtzite �~
 oxides are stable.  As the 

configurational entropy over Rq at equiatomic fractions is 1.609, the maximum theoretically 

expected configurational entropy difference at the transition temperature 875°C between the 

single species and the random five-species solid solution results in an energy of ∼15 kJ/mole-

atom, which is 5 kJ/mole-atom larger than the enthalpy of transition calculated from tenorite 

�×
 and wurtzite �~
 to the rocksalt structure.  Rost et al.255 attributed this 5kJ/mole-atom 

difference to the enthalpy of mixing at the equiatomic composition.  When the mole fraction of 

one cation changes to 0.10 or 0.30 with equiatomic fractions for other four cation elements, the 

decomposition temperature increases to 960°C on both sides for Ö�
, 985°C and 1010°C for 

NiO, 1000°C and 1050°C for ZnO, 1025°C on both sides for CoO, and 1025°C and 1050°C for 

CuO, respectively, as shown in Figure 22.  The ideal configurational entropy over Rq is the same 

for all cation elements at 0.10 or 0.30 mole fraction of one cation element, i.e. 1.573 and 1.581, 

respectively, resulting in the increase of the decomposition temperature by about 20 to 27°C with 

respect to the 0.2 equiatomic composition.  The differences of decomposition temperature of 

65°C for 0.1 mole fraction of one cation element and 155°C for 0.3 mole fraction from Ö�
 to 

�×
, respectively, are due to the enthalpy effect, which can be estimated to be about 850 and 

2040 J/mole-atom, respectively.  Further DFT-based first-principles calculations can be used to 

validate the above estimations. 
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Figure 22. Partial phase diagrams showing the transition temperature to single phase as a 

function of composition (solvus) in the vicinity of the equimolar composition where 

maximum configurational entropy is expected. Error bars account for uncertainty between 

temperature intervals. Each phase diagram varies systematically the concentration of one 

element. 255 

 

In an investigation of high-entropy high-hardness metal carbides, Sarker et al. 256 proposed a 

entropy-forming-ability (EFA) descriptor based on the energy distribution spectrum of 

randomized calculations as follows  

1N�³ = Ø∑ �E(�E − �B�G)�E�I(∑ �E�E�I ) − 1 = Ø∑ �E(�E − z∑ �E�E�E�I {/ ∑ �E�E�I )���I (∑ �E�E�I ) − 1  
Eq.  86 

where �E and �E are the enthalpy at zero K and the degeneracy of the configuration R, 

respectively.  The middle portion of Eq.  86 denotes the standard deviation of enthalpy of all ~ 

configurations with �B�G being the simple average of enthalpy of all configurations.  They 

hypothesized that the larger the EFA value, i.e. the smaller the standard deviation of the energy 

distribution spectrum above the ground state, the higher the configurational disorder capable of 

accessing equally-sampled states near the ground state and stabilizing high-entropy 

homogeneous phases.  This is in accordance with the configurational entropy represented by Eq.  

30 or Eq.  32. 

 

A total of 56 five-metal compositions were generated using the eight refractory metals of interest 

(Hf, Nb, Mo, Ta, Ti, V, W, and Zr), resulting in a total of 2744 configurations with 10-atom 

supercells.  Nine candidates were chosen for experimental synthesis and investigation with three 
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candidates of the highest values of EFA, two candidates with the lowest values of EFA, and four 

chosen at random with intermediate EFA values.  It was a great success that the six five-metal 

carbides with the high EFA values are all single-phase materials after spark plasma sintering at 

2200°C.  It is noted that Eq.  86 is within the same framework as Eq.  84 and Eq.  85 by 

considering enthalpy only with the smaller difference representing the higher probability of 

metastable configurations and thus higher entropy among configurations as denoted by Eq.  30 or 

Eq.  32 if the entropy of individual configurations including vibrational and thermal electronic 

contributions (see Eq. 77) is considered. 

 

5.4.3. Energy materials 

The energy materials can be broadly defined as materials that convert energy between 

thermal/mechanical/electrical/magnetic/chemical energies as shown in Table 1 such as 

chemical/electrical in batteries and fuel cells, solar/chemical in photosynthesis, solar/electrical in 

photovoltaics, mechanical/electrical in ferroelectrics, electrical/magnetic/mechanical in motors, 

chemical/thermal/mechanical in engines, and so on.  The conversion between chemical and 

electrical energy in battery fits to the current discussion the most as it involves the change of 

composition and energy storage in addition to energy conversion, and particularly the 

rechargeable Li-ion batteries (LIB) have revolutionized the industry in terms of energy 

conversion and energy storage. 

 

In LIBs, the Li ions migrate through a lithium-containing electrolyte and interclade into cathodes 

(positive electrodes made of metal oxides such as �	�}
3 and �	���
½) during charging and 

into anodes (negative electrodes such as the commonly used graphite) during discharge, 
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respectively.  The chemical potential difference of Li between the cathode and anode gives the 

voltage through the Nernst equation as follows 

−Ù-Ú� = −��S~ iÚ�À
iÚ�� = §®T 

Eq.  87 

where § = 1 represents the moles of electrons in the cell reaction, f the Faraday constant equal to 

96,485 J/V/mole-electron, ε the potential difference, often referred as electromotive force (emf) 

in the literature and being -3.0 Volts for the �	À/�	 electrode, and iÚ�À  and iÚ��  are the Li activities 

in cathode and anode, respectively.  The negative sign is because the system does work to the 

surroundings when the chemical potential, thus the Gibbs energy of the system, decreases. 

 

For �	�}
3 batteries, the graphite anode and cathode reactions can be written in simple forms as 

follows 

�	I�G�Û = (1 − F)�	À + (1 − F)�� + 6� Eq.  88 

(1 − F)�	À + (1 − F)�� + �	G�}
3 = �	�}
3 Eq.  89 

with the net reaction and electric potential being 

�	I�G�Û + �	G�}
3 = �	�}
3 + 6� Eq.  90 

T = − 1(1 − F)® Ü6 ?a  + ?Ú�a�ÝÞ  − ?Ú�ßàáaâ − ?Ú�áa�ÝÞã
= − 1® ä�-Ú�Ú�áa�ÝÞ − -Ú�Ú�ßàáa� − 11 − F �-Ú�a�ÝÞÚ�áa�ÝÞ − ?Ú�a�ÝÞ  �å 

Eq.  91 

 

The electric potential is a function of F.  The value in the first parenthesis in Eq.  91 denotes the 

chemical potential difference of Li between two electrodes, and the value in the second 

parenthesis represents the chemical potential difference of �	�}
3 between the states in the 
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solution phase of �	G�}
3 and by itself.  Gibbs energies of �	I�G�Û and �	G�}
3 need to be 

obtained as a function F in order to calculate the electric potential of the battery. 

 

The phase diagram for �	G�}
3 with F from 0 to 1 was predicted by first-principles calculations 

as shown in Figure 23.268  The partition function and free energy in terms of Eq.  83 to Eq.  85 

were utilized by omitting the electronic and vibrational degrees of freedom, i.e. Fvib and Fel in Eq. 

77 for �E, and considering only the contributions to the free energy of the configurational 

degrees of freedom associated with �	 and vacancy distributions within different �}
3hosts, i.e. 

the last term in Eq.  84 or Eq.  30 multiplied by −�.  The energies of various configurations were 

calculated by the CE method with three host structures: O1 with an ABAB oxygen stacking, O3 

with an ABC oxygen stacking, and H1-3 with an ABABCACABCBCAB mixed O1/O3 stacking.  

The finite temperature thermodynamic properties were obtained by MC simulations.181,182  The 

three host structures O3, O1, and H1-3 are very similar to each other in that the O-Co-O slabs 

consist of edge-sharing CoO6 octahedra and can be derived from the other by a simple gliding of 

the O-Co-O slabs with respect to each other adjacent to an empty Li plane.  The charge density 

plots showed that although the Li ions are ionized, the electron transfer from Li to the host is 

very local through a significant increase in the electron density at the oxygen sites immediately 

surroundings the Li ions. 268   

 

Figure 23. Calculated æfÈÆçÕè phase diagram with È plotted on the x-axis and the insets 

showing the in-plane Li ordering predicted to be stable at È = é/è and 1/3, respectively.268 
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It can be seen in Figure 23 that the O3 host is stable for Li concentrations above F = 0.3. For Li 

concentrations above F = 0.6, the Li ions and vacancies remain disordered within the O3 host at 

all temperatures.  The order-disorder transition temperature of the O3 phase is about 160°C, 

which is 100 °C higher than the experimentally measured value.  The authors attributed this 

overprediction as typical of most first-principles phase diagram calculations within the local-

density approximation, and it may also be related to the omission of Fvib and Fel since both would 

stabilize the disordered configurations,224 plus the configurational entropy from various 

configurations with relatively small energy differences denoted by Eq.  30 or Eq.  32.  At F =
0.3, a new ordered structure was predicted though not observed experimentally.  At even lower 

Li concentrations centered around F = 0.15, the H1-3 configuration was found to be stable in 

qualitative agreement with experimental observation.   

 

The computed voltage of �	G�}
3 as a function of F is plotted in Figure 24 with various 

functionals used in the DFT-based calculations,269 showing that the hybrid HSE06 with the 

mixing parameter of 0.17 gives the best agreement with experimental data.270  In two-phase 

regions, the calculated voltage remains constant because the chemical potential of Li does not 

change though the experimentally measured voltages are not constant as the full equilibrium may 

not have reached with the finite charging and discharging rates. 

 

Figure 24. Computed voltage profiles of æfÈÆçÕè with various functionals with the 

experimental data superimposed.269 
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For �	���
½ batteries with metallic lithium as the anode, the half-cell and net cell reactions are 

as follows 

(1 − F)�	 = (1 − F)�	À + F�� Eq.  92 

(1 − F)�	À + (1 − F)�� + �	G���
½ = �	���
½ Eq.  93 

(1 − F)�	 + �	G���
½ = �	���
½ Eq.  94 

 

Its electric potential is also a function of F, i.e. 

T = − 1(1 − F)® Ü ?Ú�Í�AÝê  − (1 − F)  ?Ú� − ?Ú�áÍ�AÝêã
= − 1® ä�-Ú�Ú�áÍ�AÝê −   -Ú�� − 11 − F �-Ú�Í�AÝêÚ�áÍ�AÝê − ?Ú�Í�AÝê  �å 

Eq.  95 

 

The value in the first parenthesis in Eq.  95 denotes the chemical potential difference of Li 

between two electrodes, and the value in the second parenthesis represents the chemical potential 

difference of �	���
½ between the states in the solution phase of �	G���
½ and by itself.  

Consequently, Gibbs energy of �	G���
½ needs to be obtained as a function F in order to 

calculate the electric potential of the battery.  Through the CE-MC method mentioned above,271 

the predicted phase diagram is shown in Figure 25.  In the CE, the dependences of the energy on 

the arrangements of Li+/V and Fe2+/Fe3+, i.e., both ionic and electronic degrees of freedom are 

considered with the generalized gradient approximation + U (GGA+U) calculations for 245 

�	G���
½ configurations and ferromagnetic high-spin Fe ions. 

 

Figure 25. æfÈÊÉÂÕë phase diagram. (a) Experimental phase boundary data;272,273 (b) 

calculated with both Li and electron degrees of freedom, and (c) with explicit Li only. 271 
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The calculated phase diagram shows a miscibility gap between ���
½and �	���
½ at low 

temperatures and an unusual eutectoid transition to the solid solution phase around 400K about 

20–70 K off from experimental estimations.272,273  It was also shown that without the 

consideration of electronic degrees of freedom, i.e. Fe2+/Fe3+ ordering, the calculated phase 

diagram (Figure 25c) shows one typical two-phase miscibility gap only, qualitatively different 

from experimental observations.  The CALPHAD modeling of the �	G���
½ phase diagram is 

shown in Figure 26 with various models.274  The calculated voltage shown in Figure 27 is in 

good agreement with the experiments.275  It is noted that three-phase miscibility gap has been 

observed in multicomponent systems such as in high strength low alloying steels,225 but it is rare 

in binary or pseudo-binary systems as shown here for the �	G���
½ system due to the internal 

degree of freedom in terms of the short-range ordering between Fe2+ and Fe3+ as demonstrated. 

 

Figure 26. Phase diagrams of ÊÉÂÕëand æfÊÉÂÕë with various CALPHAD models.274 

 

Figure 27. Calculated open‐circuit voltage (OCV) curves obtained by: (a) delithiating 

æfÊÉÂÕë via equilibrium phase transformation at various temperatures (298, 448, and 

563 K) where the two voltage plateaus at 563 K are marked; and (b) delithiating æfÊÉÂÕë 

and lithiating ÊÉÂÕë via spinodal decomposition and delithiating/lithiating via solid 

solution route at 298 K. 274 

 

Figure 28. Open-circuit voltage curves of LiFePO4 particles: open and solid circles denote 

the measured values during the discharging and charging process, respectively.275 
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It may be noted that when the electrolyte in an electrochemical system is an aqueous solution, 

the electric potentials for cathode reduction reactions are usually plotted with respect to c� =
−log z�À{, where z�À{ is the concentration of �À in the solution, in a Pourbaix diagram after its 

inventor to depict the stability relationships of ionic species and solid phases at constant 

temperature, pressure, and a constant concentration of one metallic element.  With the 

CALPHAD thermodynamic models available, Pourbaix diagrams for complex materials can be 

calculated with one example shown in Figure 29 for a multicomponent amorphous alloy.276 

 

Figure 29. Calculated Pourbaix diagram at 90°C in a solution containing 1000 g of H2O, 

0.68 mol of NaCl (4 wt%) and one gram of alloy (Fe-2.5 at.% Mo-19 at.% Cr-4 at.% C-16-

at.% B and 1.7 at.% W)276 

 

5.4.4. Thermodynamically stable nanograins 

Nanocrystalline alloys possess simultaneously superior strength and ductility in comparison with 

coarse grained alloys.  However, they are usually not stable due to the large amount of grain 

boundary that provides huge driving force for rapid growth of their grains even at low 

temperatures, preventing their engineering applications.  Segregation of alloying elements to 

grain boundaries and other interfaces has been studied for a long time, including the work by 

Gibbs.1  It seems that Weissmüller started to discuss the reduction of the grain boundary energy 

by grain boundary segregation and articulated the concept for the stabilization of nanocrystalline 

solids against grain-growth by grain boundary segregation and the possibility of zero grain 

boundary energy in systems with large heat of segregation.130,131  Through MD simulations of 
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bicrystals and a nanocrystalline network in fcc copper with oversized hypothetic dopants, Millett 

et al. 277 demonstrated theoretically that the grain boundary energy can be reduced to zero with 

systematically increasing dopant coverage and atomic radius mismatch in bicrystals and 

determined the critical dopant concentration required to eliminate grain growth in bulk and thin 

film structures. 

 

Trelewicz and Schuh 278 developed a Gibbs energy function of a binary nanograin system by 

considering the intergranular bonds within the intergranular region and transitional bonds 

between the atoms in the intergranular and bulk regions with intergranular region assigned as a 

shell of finite thickness as shown in the following equation 

 

Eq.  96 

The key model parameters are the grain boundary energies of the pure solvent and solute (¢° and 

¢q), the regular solution interaction parameters in the grain and intergranular regions included in 

∆?B�G<  and ∆?B�G�� , the coordination number (§), and the solvent atomic volume (Ω) along with 

approximations related to the bond distribution between the grain and intergranular regions (ñ).  

For a given grain size which determines the fraction of intergranular region (®��), the equilibrium 

composition in the intergranular region is obtained by letting the derivative of the Gibbs energy 

with respect to the composition (0< for grain or 0�� for intergranular regions) equal to zero, and 

the corresponding grain boundary energy is calculated by the derivative of the Gibbs energy with 

respect to the fraction of the intergranular region.  When both derivatives equal to zero, a 
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thermodynamic stable grain configuration is obtained.  Systematic parametric investigations 

were carried out for a range of model parameters, and qualitatively agreements with the 

experimental observations for the Ni-W and Ni-P systems were observed. 278 

 

Chookajorn et al. 132 used the model to predict the nanostructure stability map for tungsten based 

binary alloys, and the results at 1100°C are shown in Figure 30 with the enthalpy of segregation 

plotted with respect to the enthalpy of mixing in the bulk.  The enthalpy of segregation is related 

to the differences of the regular solution interaction parameters in the grain and intergranular 

regions and the atomic volume and grain boundary energies of pure elements.  The experimental 

validations were carried out using the pure W and the binary W-20at.%Ti alloy with the alloys 

processed by high-energy ball milling and about the same grain size of 20nm.  The powders were 

then equilibrated at 1100°C in an argon atmosphere for one week.  The unalloyed nanocrystalline 

W exhibits the normal grain growth to about 600nm, while the W–20at.% Ti alloy keeps its 

nanostructure with its nominally average grain size unchanged.  This model has been 

successfully applied to a range of binary and ternary alloys.279–282  Similar approach has also 

been developed by Saber et al.283 

 

Figure 30. Nanostructure stability map for tungsten based binary alloys at 1100°C. 132 

 

Darling et al. 97 considered the two independent internal processes in terms of Eq.  65 for 

nanograins and derived the grain boundary energy similar to Eq.  76  The equations were tested 

for the Fe-Zr system and compared with available experimental data as shown in Figure 31a with 

the normalized grain boundary energy versus mole fraction of Zr in the grain boundary for an 
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alloy of Fò¥ = 0.03 at � = 550℃ for several grain sizes.  In Figure 31b the stabilized grain size 

is plotted as a function of temperature for different Zr molar fractions with the experimental 

XRD data for an Fò¥ = 0.04 alloy superimposed, showing good agreement between predictions 

and experiments.  Systematic calculations were then performed for binary systems of 44 solvents 

and 52 solutes, and as an example, the stability map for W binary alloys is plotted in Figure 32 

with the elastic enthalpy versus the enthalpy of mixing for both the stabilizing (red dots) and 

non-stabilizing (black dots) solutes.  This model has been extended to ternary systems with the 

normalized grain boundary energy contours plotted for an Fe-Ni-Zr alloys shown in Figure 33. 

 

Figure 31. (a) Normalized grain boundary energy versus mole fraction of Zr in the grain 

boundary for an alloy with ÈôÇ = õ. õË at Á = ööõ℃, showing the stabilized grain size of 

23.1 nm; (b) Stabilized grain size as a function of temperature for different Zr molar 

fractions with the experimental XRD data for an ÈôÇ = õ. õë alloy superimposed, showing 

quantitative agreement between predictions and experiments. 97 

 

Figure 32. Nanocrystalline W stability map for both the stabilizing (red dots) and non-

stabilizing (black dots) solutes 97 

 

Figure 33. Contour plot of iso-grain boundary energy in the bcc Fe-Ni-Zr ternary system. 

 

5.4.5. Strain engineering and molecular beam epitaxial (MBE): TOMBE diagram 

The strain engineering and epitaxial growth are often used interchangeably in the literature.  The 

central theme is to manipulate the lattice structure and lattice parameter of thin films through the 
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constraints from the substrate.215  Even though it is often termed as metastable phase equilibria 

for thin films, it is not strictly accurate because the system is internally at a stable equilibrium.  

The epitaxial constraint that restricts the lattice structure of the thin film, i.e. the coherent 

interface between the substrate and the thin film, is an external condition placed on the thin film 

as the substrate is usually not included as part of the system.  When the bulk stable phase has the 

similar lattice structure of the substrate, it is likely that the thin film of this phase will form.  

When the bulk stable phase cannot have a coherent interface with the substrate, the competition 

arises between the interfacial energy and strain energy, and the interfacial energy usually 

dominates due to the very large surface to volume ratio of atoms for thin films.  It should be 

emphasized that due to the strain/stress inhomogeneity in the thin film, the energetics of the 

system has to be investigated through integration and thus depends on spatial arrangements of 

domains and phases as illustrated in Figure 5 and the related discussions.216,217  Nevertheless, 

computational thermodynamics can give valuable guidance on processing design as shown in 

some examples below. 

 

For the then newly discovered superconductor Ö�P3,284 the stable region of the gas and Ö�P3 

two phases can be calculated through the CALPHAD modeling of the Mg-B system,285 as shown 

in Figure 34 for a section through F÷�/Fq ≥ 1/2.286  It was shown that the phase relations do 

not change with higher ratios due to the phases being stoichiometric and the gas phase of nearly 

pure Mg.  It is important to realize that the total pressure in the thermodynamic calculations 

equals to the vapor pressure of Mg due to the near zero vapor pressure of B at the temperature 

range of interest, representing the activity of Mg.  The system pressure is thus not an independent 

variable anymore in the thermodynamic calculations when the gas phase is involved.  
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The high pressure of Mg needed to form Ö�P3 is impractical for many vacuum deposition 

techniques and prompted the development of the hybrid physical–chemical vapor deposition 

(HPCVD) technique,287 with diborane (B2H6) as the boron precursor gas and heated bulk Mg in 

the deposition chamber as the Mg source.  The (0001)-oriented Ö�P3 films form as in-plane 

epitaxy on (0001) sapphire and (0001) 4H-SiC substrates which have six-fold symmetry 

characteristic.  The dominant in-plane epitaxial relationship is that the hexagonal Ö�P3 lattice is 

rotated by 30° to match the hexagonal lattice of sapphire, but is directly on top of the hexagonal 

lattice of SiC owing to the close lattice match. 

 

Figure 34. Mg-B pressure-temperature phase diagram with Èùú/Èp ≥ é/è. 286   

 

In many other cases, the lattice structure of the substrate stabilizes the phases that are metastable 

in unstrained conditions as reflected in our previous publications including P	��
5,288 

P	Ö~
5,289 �×��3
½,290 ���	
5,291 Pi'~
5,292 Pi��3³h3,293 '��×
5 and �i�×
5,294 and 

b − '~'.295  Particularly worth further discussion is the case for '��×
5 and �i�×
5 with a 

combined pressure-temperature potential phase diagram based on the thermodynamics of MBE 

(TOMBE) growth shown in Figure 35, sectioned along a given Ru partial pressure evaluated 

from its flux.294  It can be seen that this diagram is a combined pressure-temperature potential 

phase diagram with top and bottom parts based on the thermodynamics of MBE growth 

conditions, thus termed as a TOMBE diagram.  The solid lines in the bottom half of Figure 35 

are the typical Ellingham diagram applied to the Sr-Ru-O and Ca-Ru-O ternary systems, 

respectively.  They depict the windows under which different members of the '��ÀI�×�
5�ÀI 



99 

 

and �i�ÀI�×�
5�ÀI Ruddlesden-Popper (RP) series are thermodynamically stable.  There are 

three solid phases in equilibrium on each line, and the Gibbs phase rule for a three-component 

system from Eq.  29 is as follows.   

� = | + 2 − c − ~� = 5 − 4 = 1 Eq.  97 

where ~� is the number of fixed potentials, the pressure in the present cas.  This results in one 

independent potential, i.e. lines in the bottom half of the phase diagrams in Figure 35.  Along 

those lines, the partial pressures of all species in the system are a function of temperature 

including the partial pressure of oxygen plotted on the vertical axis of the diagram.  It should be 

noted that the gas phase is not explicitly presented in the calculations, but represented by the sum 

of partial pressures of all species in the gas phase. 

 

Figure 35. TOMBE diagrams illustrating the adsorption-controlled growth window for (a) 

ÅÇûÀéüýûÕËûÀé and (b) ÆÓûÀéüýûÕËûÀé phases.294 

 

When the oxygen partial pressure is higher enough to vaporize all Ru in the form of �×
G with 

�×
3 and �×
5 as the primary species, the equilibrium between various �×
G correlates the 

partial pressures of Ru and 
3, and the Gibbs phase rule thus becomes  

� = 3 + 2 − c − 2 = 3 − c = 3 − 2 = 1 Eq.  98 

A line in a potential phase diagram, i.e. � = 1, thus represents a two-phase equilibrium, as shown 

by the dashed lines in the top half of Figure 35. The light green shaded regions in the figure are 

the adsorption-controlled growth windows for '��×
5 and �i�×
5, respectively. 
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The boundary separating the top and bottom halves in Figure 35, i.e. the thin dashed near-

horizontal brown line, is the equilibrium between the solid and gas phases in the O-Ru binary 

system.  With given incoming flux of Ru, i.e. 1.95×10I5 i�}dh/|d3/h and 3.2×10I5 i�}dh/
|d3/h for Figure 35(a) and (b), respectively, the oxygen partial pressure becomes a dependent 

variable as a function of temperature with the Gibbs phase rule written as 

� = 2 + 2 − c − 1 = 3 − c = 3 − 2 = 1 Eq.  99 

Furthermore, the cyan lines show the equivalent oxidation potential for ozone partial pressures 

ranging from 10�II − 10�¾ Torr, illustrating the benefit of having ozone as an oxidant while 

maintaining the long mean free path with low total pressure necessary for MBE. 

 

Another important factor for oxide MBE is the source materials.  MBE traditionally utilizes 

elemental molecular beams as shown above.  However, this is challenging when various 

elements have different vapor pressure and potency for oxidation.  Alternatively, one might be 

tempted to just evaporate the desired oxide directly.  In general, such an approach does not work 

due to two factors: different vapor pressures of elements in the oxide and incongruent 

evaporation of the oxide, resulting in changing partial pressures of the species from the source 

over time and making it very difficult for the controlled deposition of thin films.  Recently, we 

conducted a comprehensive thermodynamic analysis of the volatility of 128 binary oxides to 

evaluate their suitability as source materials for oxide MBE.296 16 solid or liquid oxides were 

identified that evaporate nearly congruently from stable oxide sources to gas species and 24 

oxides could provide molecular beams with dominant oxygen-containing gas species.  It was also 

discovered that the two-phase mixtures of a wide range of elements and their oxides can provide 

stable sources of dominant oxygen-containing gas species with very high flux, which can be 
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further oxidized to form desired oxides with high growth rates, easy control of dopants, and low 

defects in comparison with the existing, state-of-the-art techniques.  It is termed as suboxide 

MBE or S-MBE because the dominant oxygen-containing gas species, called suboxides, needs to 

be further oxidized to form the desired oxides. 296 

 

5.4.6. Additive manufacturing and functionally graded materials 

Additive Manufacturing (AM), also known as three-dimensional printing or layer manufacturing, 

is a freeform fabrication process by which an object is built up, layer by layer, via selective 

deposition of material.297  The AM process is unique compared with other manufacturing 

technologies because a component can be built without the removal of material.  Polymer AM 

has been well established over the last decades, and AM of metallic alloys is more recent due to 

higher melting temperatures needed and lower viscosity of molten metal.  Debroy et al. recently 

presented a critical assessment of process, structure and properties of metallic components by 

AM,298 and Reichardt et al. reviewed the advances in metal-based functionally graded materials 

(FMG) by AM in which the compositions are varied spatially to tailor the location specific 

properties.299  One of the important features of the AM process is the fast and repeated heating 

and cooling in the consolidated layers, including partial remelting, when new layers are 

continuously added.   

 

Keller et al. 300 combined thermal modeling by finite element analysis to simulate the thermal 

profile of the laser melt pool. They used the Scheil-Gulliver solidification model and DICTRA 

and TC-Prisma simulation tools 142 to predict microsegregation between dendrite arms during 

solidification of the melt pool, and the phase-field simulations to calculate the primary 
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cellular/dendritic arm spacings, using Ni-Nb as a binary analogue to Inconel 625.  The 

CALPHAD thermodynamic and atomic mobility databases were used in the simulations 

involving atomic diffusion.100  In the Scheil-Gulliver solidification model,301,302 the diffusion in 

the liquid phase is assumed to be infinite, thus a perfect atomic mixing, while the diffusion in 

solid phases is assumed to be zero. It represents a scenario of solidification when the cooling rate 

is fast enough to prevent the diffusion in sloid phases and slow enough for rapid diffusion in the 

liquid phase due to the large difference in their diffusion rates.  It is self-evident that the other 

scenario is to assume that the diffusion is also infinite in the solid phases, i.e. the equilibrium 

calculations.  The reality is then between these two scenarios such as the one-dimensional 

simulations using DICTRA303 or two- and three-dimensional simulations using phase-field304 or 

other methods such as the Kampmann-Wagner numerical (KWN) method 305,306 implemented in 

ThermoCalc307 and Pandat308. 

 

A Scheil-Gulliver solidification simulation starts when the temperature reaches the liquidus of an 

alloy.  An equilibrium calculation is then performed at a lower temperature, usually one or 

several degrees lower than the liquidus, to obtain the compositions and fractions of liquid and 

solid phases.  The composition of the liquid phase is subsequently used as the over-all 

composition for the equilibrium calculation at the next lower temperature.  This process 

continues until the amount of liquid becomes practically zero or the composition reaches a 

multicomponent invariant eutectic point.  The simulation results in Inconel 625 showed 

significant microsegregation for all elements.  The temperature profile from the FEM analysis by 

Keller et al. 300 was validated by the surface temperatures from the in situ thermographic 

measurements.  The alloy was re-melted during the second scan temperature peak, and the 
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DICTRA simulation using the simulated temperature file was thus carried out for the second and 

third laser scans and show very minor homogenization of the segregated profiles.  The fcc phase 

fraction as a function of temperature from the DICTRA simulation is very close to those from the 

Scheil-Gulliver model. 

 

For the parameters chosen for the phase-field simulations in the Ni-4%Nb binary alloy, cellular 

domains were observed with much less microsegregation than that predicted by a Scheil-Gulliver 

analysis and DICTRA simulations of the same binary alloy, and the simulated primary cellular 

arm spacings is in agreement with experimentally measured spacings in observed 

microstructures.  Since the precipitates of other solid phases were not considered, the driving 

forces for precipitates were calculated using the fcc phase composition when 1% liquid remains.  

It was found that the MC carbide is with the largest driving force to form, in qualitative 

agreement with the carbides of 50-200nm near cell/dendrite boundaries observed after the stress-

relief treatment. 300 

 

The FGMs by AM add another layer of complexity with the spatial change of compositions.309  

We have studied a series of FGMs in recent years, including Ti-6Al-4V (Ti64) to V (Ti64/V),309 

stainless steel (SS) 304L to Invar (SS304L/Invar),309 SS304L to Inconel 625 (SS304L/IN625),310 

Ti64 to Invar (Ti64/Invar),311 Ti64 to SS304L (Ti64/SS304l),312 V to Invar (V/Invar),313 and 

SS420 to V to Ti64 (SS420/V/Ti64), Ti64 to V to SS304 L (Ti64/V/SS304L), and SS420 to V 

(SS420/V)314 through experimental and computational investigations.  The formation of 

detrimental phases in most FGMs calls for more sophisticated design of the composition paths 

between the ending alloys.  One approach is through equilibrium calculations in one temperature 
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below which solid phase transformations are kinetically precluded through simple calculations 

310–314 or a temperature range to circumscribe the phase regions of the undesirable phases through 

systematical explorations of composition and temperature spaces.315,316   

 

Scheil-Gulliver analysis can be performed along the composition path of a FGM.317–319  To 

facilitate the Scheil-Gulliver analysis of FGMs of multicomponent alloys, a simulation tool 

based on PyCalphad145,146, called “scheil” and distributed on the Python Package Index (PyPI) 320, 

was developed.318,321  It provides simulation results in a user-friendly data structure that can be 

post processed and combined into higher level analysis.  The scheil code enables high-

throughput simulations in multicomponent composition space and can thus be used as a design 

tool for screening predictions of solidification products and viable FGM compositional paths.318  

Simulation results for both Scheil-Gulliver and equilibrium solidification are stored in a 

SolidificationResult data structure that provides access to the phase fractions and phase 

compositions of all the phases in the system throughout the simulation.   

 

To ensure global minimization during the simulation, additional candidate grid points are 

adaptively added to the point grid for starting point generation and global minimization.155  They 

correspond to the site fractions of the equilibrium phases found at a particular temperature.  

Since the site fractions of the stable phases at �� are likely close to those at ��ÀI both the 

performance and accuracy of the energy minimization in PyCalphad are improved by starting 

near the global minimum solution.  One of the key features of the scheil code is the ability to 

distinguish and treat separately ordered and disordered configurations of phases that are modeled 

using a partitioned order-disorder model.322,323  It allows the solidified phase fractions of the 
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ordered and disordered configurations to accumulate separately, even if they both form at the 

same temperature step.  The scheil code can perform multiple simulations by looping over a 

series of compositions.  The composition pathways may correspond to a linear or non-linear 

gradient path, or a grid in multicomponent composition space as part of a more complex data-

driven path planning simulation. 

 

As an example, the scheil simulations were performed for a commercial pure Ti to Invar 

(CPTi/Invar) and Ti64/Invar311 FGMs using experimentally measured composition paths and a 

temperature step size of 10˚C until the fraction of material solidified reached 0.9999.318  It was 

tested that the results are insensitive to the temperature step size in the range of 1-10 ˚C.  All the 

results in this publication were created using scheil version 0.1.2 321 and PyCalphad version 

0.8.1146 with a Jupyter notebook containing all of the code. 324  The liquidus project of the Fe-Ni-

Ti system is shown in Figure 36, which is used to approximate the Ti64/Invar FGM with the 

measured compositions normalized to the ternary system.  The compositions are marked by layer 

number and colored in red (closed circles) for the Ti64/Invar and blue (open circles) for 

CPTi/Invar FGMs, respectively.  It is interesting to note that the region with the Laves phase as 

the primary crystalline product is divided into three regions separated by dashed lines which 

correspond to the three eutectic points where the Scheil-Gulliver simulations end.  The regions 

and corresponding eutectics are labeled E1, E2, and E3, respectively. 

 

Figure 36. Liquidus projection of the Fe-Ni-Ti system based on the CALPHAD modeling 325 

with other information in the text. 318 
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The Scheil-Gulliver and equilibrium solidification calculations are presented in Figure 37 for the 

linear gradient between Ti and Invar, respectively. Both figures have deconvoluted the 

disordered bcc phase from the ordered B2 phase, which were modeled as the same phase in the 

thermodynamic database.325  In addition to the difference in phase fractions between the Scheil-

Gulliver and equilibrium solidification calculations, the Ni3Ti phase is only predicted by the 

Scheil-Gulliver solidification calculations, which were observed in several Ti64/Invar layers.318  

This demonstrates the usefulness of the Scheil-Gulliver model in predicting the solidification 

phases during the AM process and design the FGMs to control the formation of phases along the 

composition pathways. 

 

Figure 37. Phase fractions of the as-solidified phases predicted along the linear gradient 

path from Ti to Invar using the Scheil-Gulliver model (a) and the equilibrium solidification 

(b). 318 

 

5.5. Extension to kinetics and mechanics 

In addition to applications discussed above, computational thermodynamics can be used to 

predict other properties as shown in Table 1, such as elastic properties82,326–328 and thermal 

expansion27,329–331, with many more to be explored.  In this section, two applications to kinetic 

properties are discussed, i.e. the diffusion and Seebeck coefficients in relation to the transition 

states between two stable states and the second derivatives in Table 1, respectively, followed by 

brief discussions on general off-diagonal transport coefficients and calculations of mechanical 

properties. 
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5.5.1. Diffusion coefficient 

Diffusion coefficients are usually calculated through molecular dynamic simulations.332,333  The 

main challenge to predict diffusion coefficients directly from DFT-based calculations is because 

the vibrational properties at the unstable transition state cannot be defined due to imaginary 

vibrational frequencies.  Fortunately, this issue was already addressed in the absolute rate theory 

of reaction by Eyring334,335 and in the transition state theory (TST) by Vineyard,336 both giving 

the successful jumping rate of diffusion as follows 

Γ = Rq�
� �∆=�&/@��∆w�&/EÎ@ 

Eq.  100 

where � is Planck’s constant, and ∆�B� and ∆'B� are the migration enthalpy and entropy, 

respectively, denoting the differences between the transition and ground/equilibrium states.  The 

free translational degree of freedom in the transition state is moved to the 
EÎ@�  so the enthalpy and 

entropy at the transition state are evaluated with the imaginary vibrational frequency removed.  

Consequently, the diffusion coefficients for vacancy-mediate self-diffusion in Al 337 and the 

interstitial diffusion of interstitial hydrogen (H), deuterium (D), and tritium (T) in Ni 338 were 

successfully predicted completely from the DFT-based first-principles calculations as shown in 

Figure 38 along with the Gibbs energy of formation of vacancy in Al.  The intermediate states 

between the ground and transition states, i.e. various ξ in Eq.  8, are obtained by the nudged 

elastic band method.339  The same approaches were subsequently applied to self-diffusion 

coefficients in bcc and in hcp with diffusion in the basal plan and perpendicular to the basal plan, 

respectively.340 
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Figure 38. Predicted vacancy concentration (a) and self-diffusion coefficient (b) in fcc Al 337 

and interstitial diffusion coefficients of interstitial hydrogen (H), deuterium (D), and 

tritium (T) in Ni (c) 338 

 

For dilute solute diffusion, the jump of the solute atom into a neighboring vacant site is 

complicated by the neighboring jumps.  In the presence of a solute the jump frequencies of 

solvent atoms around the solute are different compared with that in the pure element system.  

Each of these distinct atomic jumps contributes to solute diffusion.  Le Claire and Lidiard 341 

established the five jump frequency model for diffusion in dilute fcc alloys with dilute vacancy 

concentration.  All of them can be predicted in terms of Eq.  100 by the DFT-based first-

principles calculations as shown above based on the absolute rate theory of reaction 334,335 and 

TST.336  The solute diffusion correlation factor is related to the probability of the impurity atom 

making a reverse jump back to its previous position and can be calculated from various jump 

frequencies.342  The predictions were made for solute diffusion coefficients in fcc Al,342–344 fcc-

Ni,98,345,346 bcc-Fe,99,347,348 bcc Mo,340 and the high-throughput dilute diffusivity database.349 

 

The prediction of dilute solute diffusion coefficients in hcp proved to be more challenging with 

less satisfactory agreements with experimental data in calculations using the local density 

approximation (LDA) in the DFT-based calculations.340,350,351  In a more recent work,352 the 

improved generalized gradient approximation (GGA) of PBEsol 353 exchange-correlation 

functionals were used, resulted in better vacancy formation energies and vibrational properties 

and thus more accurate quantitative predictions of diffusion coefficients, including the self-

diffusion coefficient shown in Figure 39 and the dilute diffusion coefficients of 47 substitutional 
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solutes in hcp Mg.352  It was also found that correlation effects are not negligible for solutes Ca, 

Na, Se, Sr, Te, and Y, in which the direct solute migration barriers are significantly smaller than 

the solvent migration barriers.  This indicates that the larger solute atoms can move faster while 

the smaller ones move slower, with the exception of Se.  However, it should be kept in mind that 

the diffusion coefficients depend on both the vacancy formation and migration free energies. 

 

Figure 39. Predicted self-diffusion coefficients in Mg from LDA,350 GGA,350 and PBEsol352 

compared with experimental data (see references in 352). 

 

Diffusion in phases with short- and long-range ordering is much more complicated because the 

migration barriers of individual jumps are affected by the local atomic environments that can 

result in strong correlations between successive jumps and ultimately diffusion coefficients.  Van 

der Ven et al. 354–356 used the cluster expansion to describe both the equilibrium and transition 

states by considering all relevant jumps with their barriers and jump frequencies (Eq.  100) 

obtained from DFT-based first-principles calculations.  Since migration barriers depend on the 

direction of the jump in a concentrated alloy, a kinetically resolved activation (KRA) is defined 

by the energy difference between the transition state and the average of two equilibrium states 

before and after the jump to separate the direction dependence of the migration barrier from the 

environmental dependence.  Once cluster expansions for the equilibrium states of the jump and 

the KRA barrier for each of the jump types are parametrized using first-principles training data, 

the migration barrier for any local environments can be calculated efficiently.  Atomic 

trajectories through stochastic atom-vacancy exchanges can then be sampled with kinetic Monte 

Carlo simulations as shown for the Ni-rich Ni-Al alloys in Figure 40 including disordered fcc 
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and ordered L12 phases.356  The calculated tracer coefficients are an order of magnitude smaller 

in comparison with experimental data with possible sources of errors from neglected vibrational 

contributions in the determination of the equilibrium vacancy concentration and the thermal 

expansion, and both of them become more important at high temperatures and tend to reduce 

migration barriers and increase the diffusion coefficients. 

 

Figure 40. Tracer diffusion coefficients of Al and Ni at 1300K as a function of 

concentration in disordered fcc and ordered L12 phases.356 

 

5.5.2. Seebeck coefficient 

Thermoelectric effects, measured by Seebeck coefficients, refer to phenomena in which a 

temperature gradient across a thermoelectric material induces an electrical potential gradient, and 

vice versa, enabling the direct conversion between thermal and electric energies.357–359  

According to classical mechanics, the net force felt by a charge carrier (j) equals to the negative 

gradient of its potential, −�µ�.  This force can be expressed as an effective electric field, 

−�µ�/��, where �� represents the j’s charge.  Hence, the electrical current, ��, can be written 

as 

�� = − 1��
σ ∙ �µ�  

Eq.  101 

where σ is the electrical conductivity.  It is important to realize that the number of charge carrier 

is an additional natural variable to be added to the combined law of thermodynamics.  In the case 

of Gibbs energy in terms of Eq.  14, the potential of the charge carrier is a function of all the 

natural variables, i.e. µ���, �, ��, ~��, where ~� is the number of moles of charge carrier. 
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In formulating thermoelectric effects, the current is usually expressed as follows359 

�� = σ ∙ (−�,� − '� ∙ ��) Eq.  102 

where �,� is the local electric field induced by the charge carrier gradient, �~�, S� the Seebeck 

coefficient, and �� the temperature gradient.  In the literature, S� has been determined from the 

kinetic Boltzmann transport theory.360–362  As we demonstrated recently, S� is a thermodynamic 

quantity shown in Table 1, and by Eq.  21 363,364 as derived below. 

 

Comparing Eq.  101 and Eq.  102, one obtains363,364 

�µ� = j�,� + j'� ∙ �� Eq.  103 

�,� = 1j �µ��~� �~�  
Eq.  104 

'� = 1j �µ��� = − 1j �'�~� = − 1j '�  
Eq.  105 

The last part of Eq.  105 is taken from Table 1, or Eq.  21 with '� being the partial entropy of 

charge carrier.  µ� is related to the electronic density of states (e-DOS) which can be calculated 

from Mermin’s finite temperature density functional theory 365,366 as demonstrated in previous 

work 363 and is also used to calculate the thermal electronic contribution to free energy, ��M, in Eq. 

77.  The reference state of µ� is conventionally set to the Fermi energy at 0K.  Since electrons 

are explicitly treated in the current implementation 367,368 of first-principles calculations, µ� 

obeys the Fermi-Dirac distribution as follows 

® = 1
exp �T − µ�Rq� � + 1 

Eq.  106 
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where T  is the band energy using the Fermi energy as the reference.  In such a way, µ�  is 

determined by the conservation equation  

�~(T, ,)®�T = �� 
Eq.  107 

where ~(T, ,)  is e-DOS, and ��  the number of electrons included in the DFT-based first-

principles calculations. 

 

The e-DOS of PbTe calculated using WIEN2k package 369 is shown in Figure 41 in the full range 

at zero K and near the Fermi energy for p- and n-doping at zero K and 610K, respectively.363  

PbTe is an intrinsic semiconductor as indicated by its 0K e-DOS shown in Figure 41a with the 

conduction band unoccupied and separated by an energy gap from the completely filled valence 

band.  When the e-DOS curve has a negative slope at the 0 K Fermi energy with respect to the 

band energy as in the present case of p-type PbTe, the chemical potential of electrons increases 

with increasing temperature as shown in Figure 41b. On the other hand, when the e-DOS curve 

has a positive slope with increasing energy at the 0 K Fermi energy with respect to the band 

energy as in the case of n-type PbTe in Figure 41a, the chemical potential of electrons will 

decrease with increasing temperature as shown in Figure 41c. 

 

Figure 41. Calculated results for PbTe, a) e-DOS (black curve); b) e-DOS near the Fermi 

energy for p-doping; c) e-DOS near the Fermi energy for n-doping; with the areas shaded 

by gray (partially overlapped by the blue semitransparent shaded areas) for the electron 

occupation at 0 K and the blue semitransparent shaded areas for the electron occupation at 

a finite temperature 610 K described by the Fermi distribution. 363   
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The calculated Seebeck coefficients are compared with experimental data in Figure 42 for p-type 

and n-type PbTe with various doping levels, showing remarkable agreement with experimental 

measurements.363  The comparison was also made for p-type SnSe with both experimental data 

and data calculated from the Boltzmann transport theory as shown in Figure 43, demonstrating 

much better agreement from the present thermodynamic approach.  The comparison between the 

thermodynamic and Boltzmann transport theory approaches were also compared for p- and n-

type PbTe, showing better agreement from the present thermodynamic approach with respect to 

the experimental data. 363  The calculations were made for the mobile charge carrier 

concentrations for p-type SnSe with reasonable agreement with experiments.363  Further 

comparison were made for La3Te4, La2.75Te4, and La2.67Te4 showing excellent agreement with 

experiments.364 

 

Figure 42. Calculated Seebeck coefficients for PbTe for various p- and n-type doping levels 

(lines) 363 in comparison with the experimental data for p-type PbTe by Heremans and 

coauthors 370,371 and n-type PbTe by LaLonde et al. 372 (symbols with same colors and 

sequences as the lines). 

 

Figure 43. Calculated Seebeck coefficients for p-type SnSe363 compared with results from 

experiments373–376 and kinetic Boltzmann transport theory using the BoltzTrap package.362  

 

5.5.3. General discussion on off-diagonal transport coefficients  
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One can further generalize Eq.  101 based on the conjugate variables in the combined law of 

thermodynamics Eq.  18 as follows 

�89 = −�89�./ Eq.  108 

where �89 is the flux of extensive variable 0/ with a unit of 0/ per area per second, �89  the 

kinetic coefficients of 0/ with a unit of 0//./ per length per second, and �./ the gradient of 

./ with a unite of ./ per length.  The entropy production rate per volume due to the transport of 

0/ is usually defined by the product of its flux and the gradient, i.e. 

� ��('8 9�� = �89�./ = −�89(�./)3 
Eq.  109 

 

The potential ./ is a function of 0/ and other extensive variables 0< and potentials .J, i.e. 

./(0/, 0<, .J), with the combined law and characteristic function generalized from Eq.  27 as 

follows 

�U(0/, 0< , .J) = � V� − � 0J.JX = ./�0/ + .<�0< − � 0J�.J Eq.  110 

 

It should be noted that the Gibbs-Duhem equation among potentials, Eq.  25, is applicable to 

equilibrium systems only and cannot be applied to nonequilibrium systems.  In nonequilibrium 

systems, all potentials can be independently controlled.  �./ can thus be expanded in terms of 

independent variables as follows 

�./ = �./
�0/ �0/ + � �./

�0< �0< + � �./
�.J �.J 

Eq.  111 

where the two summations are for independent extensive variables and independent potentials, 

respectively.  The partial derivative 
Wx9
W89 denotes the diagonal terms in Table 1 and is always 

positive for a stable system depicted by Eq.  11.  The partial derivative 
Wx9
W8
 denotes the off-
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diagonal terms in Table 1 and can be either positive or negative such as the thermal expansion 

discussed above for �� and ��5��.  The partial derivative 
Wx9
Wxy denotes the last row in Table 1 

with ./ = -� as one example and general quantities by Eq.  21, which is used in the calculation 

of Seebeck coefficient above in terms of 
Wµ�W@  and can be written as follows based on Eq.  110 

�./
�.J = �3U�.J�0/ = �3U�0/�.J = − �0J

�0/  
Eq.  112 

 

Combining Eq.  108 and Eq.  111, one gets 

�89 = −�89 ¹�./
�0/ �0/ + � �./

�0< �0< + � �./
�.J �.Jº 

Eq.  113 

 

Applying Eq.  113 to a thermoelectric system, one obtains both electric and thermal fluxes as 

follows 

�� = −σ�µ� = −σ(�µ��~� �~� + �µ��� ��) 
Eq.  114 

�� = −���� = −��( ���µ� �µ� + ���' �') 
Eq.  115 

where �� is the thermal conductivity.  The first parts of Eq.  114 and Eq.  115 fulfil the Onsager 

reciprocal relationships as a diagonal matrix.  While the second parts have both the gradients of 

potentials and molar quantities as the driving forces, and the discussion whether the matrix fulfils 

the Onsager reciprocal relationships is out of the scope of the present paper and worth of further 

investigation. 

 

5.5.4. Mechanical properties 
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Mechanical properties can be denoted by the energy of a system as a function of the state of the 

system as demonstrated by the ideal pure shear strength of aluminum and copper with the energy 

as a function of shear deformation.377  By the same token, the elastic coefficients can be 

calculated by the elastic energy as a function of deformation strain.70,296–29  However, the plastic 

deformation is more difficult to deal with due to the long-range elastic fields around dislocations, 

which is actually also an issure related to the calculation of elastic coefficients in the DFT-based 

first-principles calculations.  This issue was discussed in the calculations of energetics of charged 

defects in terms of different relaxation schemes of supercells.378 

 

Nevertheless, the DFT-based first-principles calculations can provide valuable insights on 

deformation mechanisms and mechanical behaviors.  In our recent work, it was demonstrated 

that better understanding of dislocation characteristics in Ni3Al can be achieved by the predicted 

stacking fault energy and ideal shear strength.379  The results include direct evidence for the 

splitting of a 1/2z1�10{ dislocation into two Shockley partials on the {111} plane, which is 

further supported by the equivalence of the complex stacking fault (CSF) energy and the 

antiphase boundary (APB) energy.  The estimated Peierls stresses at 0 K using ideal shear 

strength and elastic properties for edge (e) and screw (s) dislocations with elastic factors for 

isotropic (iso) and anisotropic (aniso) crystals are compared with experimental critical resolved 

shear stress (CRSS) values at room temperature for Ni3Al and Ni as shown in Figure 44, with 

quantitative agreement observed. 
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Figure 44. Calculated Peierls stresses at 0 K for edge (e) and screw (s) dislocations for 

isotropic (iso) and anisotropic (aniso) crystals in comparison with experimental CRSS 

values at room temperature for Ni3Al and Ni.379 

 

In another work, a multiscale approach combines first-principles calculations and crystal 

plasticity finite element method (CPFEM) to predict the strain hardening behavior of pure Ni 

single crystal.380  The first-principles calculations include the ideal shear strength and elastic 

properties to predict the Peierls stress for pure edge and pure screw dislocations for a CPFEM 

framework in the same fashion as in the above case.379  It is commonly accepted that the plastic 

deformation of pure Ni initially involves edge dislocations, and eventually also the interactions 

of edge dislocations that result in junctions with complex screw dislocation characteristics. 118,119  

The strain hardening thus includes contributions from both edge and screw dislocations.  It was 

found that CPFEM predictions based solely on edge dislocations agreed well with experiments at 

small strains (< 0.06), while the predictions adopting the proposed edge-screw model fully 

capture experimental data at large deformations, as shown in Figure 45 for various orientations 

of Ni single crystals.  It is anticipated that more mechanical properties can be predicted in terms 

of the energetics of a system as a function of internal variables such as grain size, twin boundary, 

and stacking faults. 

 

Figure 45. Strain hardening behavior of pure Ni single crystal:380 left a) Peierls stresses 

(symbols), �Ñ�,É�
, on slip system � that combine contributions from both edge and screw 

dislocations as a function of shear strain on slip system � with the corresponding CPFEM 

fits (lines); (middle b) CPFEM simulated engineering stress-strain curves (lines) with 
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experimental data by Yao et al. (symbols) 381; (right a, b) CPFEM simulated engineering 

stress-strain curves (lines) with experimental data by Haasen (symbols).382 

 

5.6. Information 

At a first glance, information may seem far away from the contents discussed so far.  However, if 

one looks at how information is stored today, it becomes evident that thermodynamics and 

information are closely related through entropy and the configurations of the system.  As a 

matter of fact, the discussion of information started with the mathematical solution to 

communication and message transmission problems by Shannon 383,384 who defined the 

information entropy as a macrostate (a source) with the number of possible microstates 

(ensembles of possible messages) that could be sent by that source.  Thus, information in the 

communication begins with a set of messages, each with a probability, and the average 

information content per message is defined in analogy to Eq.  30.  Szilard 385,386 demonstrated 

that a “biological phenomenon” of a nonliving device generates the same quantity of entropy 

required by thermodynamics, a critical link in the integration of physical and cognitive concepts 

that later became the foundation of information theory and a key idea in complex systems.  Their 

works were followed by Brillouin, Landauer, Bennett and others both theoretically and 

experimentally.387–394 

 

Therefore, considering that information is stored in physical materials, it is written and extracted 

in the same scale of the configurational features of the physical materials, such as books with 

words, telegraphs with coded pulses, the magnetic storages with magnetic spin configurations, a 

range of digital storages with two distinct states arranged in space, future quantum systems based 
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on quantum states of quantum materials, and of cause deoxyribonucleic acid (DNA, a long 

polymer) with a huge array of chemical pairs in various genes.  On the other hand, in the scale of 

a society, Huntington 395 argued that the increased distribution of age groups between the ages of 

15 and 30 in a society increases its instability with increased unemployment ratio. While for the 

scale of Earth’s critical zone defined as the heterogeneous, near surface environment, Quijano 

and Lin 396 made a comprehensive review on the extensive applications of thermodynamic and 

information entropy in different fields related to the Critical Zone, such as hydrology, ecology, 

pedology, and geomorphology. 

 

In collaboration with Lin who co-authored the above publication,396  we considered the 

information generation or loss as part of an internal process with the entropy production as 

follows,10 similar to Eq.  3  

��(' = ��(�� − � '������ + � '7���7� − ��(� Eq.  116 

where '�� and '7� are the entropies of incoming component (nutrient) 	 (����) and outgoing 

component (waste) Q ���7��, respectively, and the internal process re-organizes the 

configurations to produce certain amount of information ���(�� and generate or absorb the 

amount of heat (��(�).  Various thought experiments of spontaneous IP, i.e. ��(' > 0, were 

discussed in ref. 10 in terms of relative magnitudes of quantities in Eq.  116. 

 

Eq.  116 can be re-organized for the information change for an irreversible internal process 

(��(' >0) as follows 

��(� < ��(�� − � '������ + � '7���7� 
Eq.  117 
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which gives the bound of information that can be produced (positive ��(�) or lost (negative ��(�) 
by an internal process.  It is shown that the information generation (loss) can be increased 

(decreases) with higher heat production, lower entropy of nutrient inputs, and higher entropy of 

waste outputs.  It should be pointed out that even though the entropy change due to internal 

processes is only part of total entropy change of the system, the information change of the 

system is fully dictated by the internal processes in the system which are regulated by the heat 

and exchanges of nutrients and wastes between the system and its surroundings, as shown by Eq.  

3 and Eq.  116. 

 

The total information change of a system would be the sum of information changes by individual 

internal processes.  Following the discussions by Shannon 383,384 and Brillouin388,397–400, we can 

re-write Eq.  32 as follows  

' = −�E + � cE'EB
E�I

 
Eq.  118 

�E = −'J��� = Rq � cES~cEB
E�I

 
Eq.  119 

where �E denote the information at the scale R.  The sub-scale information makes its contribution 

to the probability cE as shown by �E in Eq.  34 or Eq.  85.  As all spontaneous internal processes 

produce entropy, one may tend to think that the information of the universe has been decreasing 

from the beginning of time if the beginning of time and the boundary of the universe could be 

defined such as by the Big Bang.  However, certain sub-systems may experience an increase of 

their information as discussed in the thought experiments,10 when the sub-systems are brought 

across their limits of stability through the interactions with their surroundings, resulting in self-
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organized structures in local subsystems.  This is what discussed by Kondepudi and Prigogine,16 

who concluded that instability in a system enables the generation of dissipative structures, thus 

more distinct configurations and more information, as also demonstrated in three examples in 

Section 5.3. Therefore, the fundamentals of thermodynamics and information discussed in the 

present paper may provide a framework for investigations of complex systems such as quantum 

systems,401–403 nano devices,404 and ecosystems,396,405 along with new sciences and specfic 

characteristics of individual systems to be discovered.  

 

6. Summary and conclusion 

In this overview, the fundamentals of thermodynamics are reviewed in terms of the first law of 

thermodynamics for open systems and the second law of thermodynamics for internal processes.  

By doing so, the chemical potentials are defined naturally.  It is shown that the combined law of 

thermodynamics is applicable to stable, metastable, and unstable states of a system.  The first and 

second derivatives of internal energy, Gibbs energy, and other characteristic functions with 

respect to their natural variables are defined, and their importance is articulated.  The first 

derivatives with respect to extensive variables give the conjugate potentials which are 

homogenous for an equilibrium system, and first derivatives with respect to potentials give the 

conjugate extensive variable.  The second derivatives with respect to the same natural extensive 

variable determine the stability of an equilibrium system, i.e. positive for a stable system, zero 

for the limit of stability, and negative for an unstable system.  While the second derivatives with 

respect to two different natural variables give various physical and kinetic properties.  The third 

derivatives should be explored further.  For a nonequilibrium system, the difference of a 
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potential between two states acts as the driving force for the transport of the corresponding 

conjugate molar quantity. 

 

The computational thermodynamics is presented in terms of the commonly used modeling 

approach, i.e. the CALPHAD method which covers various states in the system though more 

works are needed for unstable states.  With the available CALPHAD thermodynamic databases, 

some successful examples of materials design in terms of chemistry, processing, and properties 

are presented.  It is evident that much more modeling is needed for more properties, particularly 

physical and mechanical properties and kinetic coefficients.   

 

It is pointed out that the critical point can be considered as a mixture of competing configurations 

with the metastable configurations having higher entropies than the stable one.  The property 

anomalies associated with a critical point can be predicted by statistical mixture of individual 

configurations.  The entropies of individual configurations play an essential role in determining 

their statistical probabilities and thus the configurational entropy among individual 

configurations, and ultimately the emergent behaviors and the information of systems.  It is 

shown that further discussions of information and Onsager reciprocal relationships are warranted. 
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Figure 1. General architecture of the PyCalphad software package.146 
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Figure 2. (a) Corner plot of the parameters in the Cu-Mg liquid phase with the diagonal 

images for the histogram of each parameter in the Markov chain and the off-diagonal 

images for the covariance between two parameters; 151 (b) FCC - Laves – liquid eutectics in 

Cu-Mg plotted for all 750 sampled parameter sets with 68% and 95% uncertainty intervals. 

166  



168 

 

 
 

 

Figure 3. Schematic diagram of energy landscape as a function of one internal variable 
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Figure 4. Four types of phase diagrams of pure Fe: (a) �−Â; (b) � − ��;  (�) �� − �;  (�) 

� Ä−� Ä with the green lines being tie-lines. 
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Figure 5. Temperature-strain phase diagrams of (001)p-oriented PbTiO3: (a) with each 

polarization configuration considered separately and the second- and first-order phase 

transitions shown by thin and thick lines, respectively.;216 (b) with the strain interactions 

and interface energy between configurations (domain wall) considered.217  
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Figure 6. (a) T − μ ! and (b) T − x ! phase diagrams of the Fe-Cr binary system under ambient 

pressure. 
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Figure 7. Isopleth of the Fe-1.5Cr-0.4Mn-3.5Ni-0.3Si-C (in weight percent) system 

FCC 



174 

 

 

Figure 8. Phase fractions of the Fe-25Cr-7Ni-4Mo-0.27N-0.3Si-0.3Mn (in weight percent) 

duplex stainless steel as a function of temperature 

 

 

Figure 9. Gibbs energy diagram of Fe-C binary system at 1169K and 1atm.3 
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Figure 10. T − P potential phase diagrams for (a) Ce,25 and (b) Fe5Pt 224 
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Figure 11. E&(V) in Eq. 77 for (a) Ce 25 and (b) Fe5Pt 26 
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Figure 12. �F( − F�/k*T as a function of temperature plotted for 37 SFCs of Fe5Pt.224 
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Figure 13. T − (V/V+) phase diagrams for (a) Ce, and (b) Fe5Pt, with V+ being the equilibrium 

volume at atmospheric pressure and room temperature. 27  
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Figure 14. (a) Thermal populations of the nonmagnetic (red dot–dashed), antiferromagnetic 
(green dashed), and ferromagnetic (blue solid) as a function of temperature in Ce at the critical 
pressure of 2.05 GPa;25 (b) Thermal populations of the FMC (black solid line) and that of the 
sum over all SFCs (black dot-dashed line) with the two major contributions to the PM phase 
from SFC55 and SFC41, plotted using red dashed and long dashed lines, respectively, for Fe5Pt 
at 1atm, respectively.26  
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Figure 15. Temperature dependence of the lattice parameters a, c of PbTiO5 unit cell with data in 

the open symbols from the XAFS measurements, 228–230 the closed symbols from the x-ray 

diffraction,234 and the crossed symbols from AIMD simulations74 
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Figure 16. Fractions of the cubic (closed circles) and tetragonal (closed squares) configurations 

as a function of temperature, obtained from the AIMD simulations.74 Among the 

tetragonal configurations, the fractions of the polarized and unpolarized ones in the <001> 

direction are shown in the open squares and open diamonds, respectively 
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Figure 17: Instantaneous lattice parameters of PbTiO3 measured in all three directions as a 

function of AIMD simulation steps, (a) 623K, and (b) 753K. 17 
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Figure 18. Formation energies of ideal solid solutions in all binary subsystems of the Ir–Re–W 

alloy system, obtained via various methods. 47 
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Figure 19. Materials system chart for high-performance alloy steel.214 



185 

 

 

 

Figure 20. Distributions of the N-component equiatomic alloys by the number of phases at 

the melting temperature with SS for solid solution and IM for intermetallic compounds. 

259,260 
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Figure 21. Predicted equilibrium site 

occupancies at 925K for the Cr-Fe, Cr-Ni 

and Fe-Ni 262,263 in comparison with 

experimental data.266,267 
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Figure 22. Partial phase diagrams showing the transition temperature to single phase as a 

function of composition (solvus) in the vicinity of the equimolar composition where 

maximum configurational entropy is expected. Error bars account for uncertainty between 
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temperature intervals. Each phase diagram varies systematically the concentration of one 

element. 255 

 

 

 

Figure 23. Calculated 123456è phase diagram with 3 plotted on the x-axis and the insets 

showing the in-plane Li ordering predicted to be stable at 3 = é/è and 1/3, respectively.268 
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Figure 24. Computed voltage profiles of Li8CoO3 with various functionals with the experimental 

data superimposed.269 
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Figure 25. Li8FePO½ phase diagram. (a) Experimental phase boundary data;272,273 (b) calculated 

with both Li and electron degrees of freedom, and (c) with explicit Li only. 271 
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Figure 26. Phase diagrams of FePO½and LiFePO½ with various CALPHAD models.274 
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Figure 27. Calculated open‐circuit voltage (OCV) curves obtained by: (a) delithiating LiFePO½ 

via equilibrium phase transformation at various temperatures (298, 448, and 563 K) where 

the two voltage plateaus at 563 K are marked; and (b) delithiating LiFePO½ and lithiating 

FePO½ via spinodal decomposition and delithiating/lithiating via solid solution route at 

298 K. 274 
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Figure 28. Open-circuit voltage curves of LiFePO4 particles: open and solid circles denote the 

measured values during the discharging and charging process, respectively.275 
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Figure 29. Calculated Pourbaix diagram at 90°C in a solution containing 1000 g of H2O, 0.68 

mol of NaCl (4 wt%) and one gram of alloy (Fe-2.5 at.% Mo-19 at.% Cr-4 at.% C-16-at.% 

B and 1.7 at.% W)276 
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Figure 30. Nanostructure stability map for tungsten based binary alloys at 1100°C. 132 
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Figure 31. (a) Normalized grain 

boundary energy versus mole fraction 

of Zr in the grain boundary for an 

alloy with x9! = 0.03 at T = 550℃, 

showing the stabilized grain size of 

23.1 nm; (b) Stabilized grain size as a 

function of temperature for different 

Zr molar fractions with the 

experimental XRD data for an x9! = 0.04 alloy 

superimposed, showing quantitative agreement 

between predictions and experiments. 97 
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Figure 32. Nanocrystalline W stability map for both the stabilizing (red dots) and non-stabilizing 

(black dots) solutes 97 
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Figure 33. Contour plot of iso-grain boundary energy in the bcc Fe-Ni-Zr 
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Figure 34. Mg-B pressure-temperature phase diagram with x:;/x* ≥ 1/2. 286 
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Figure 35. TOMBE diagrams illustrating the adsorption-controlled growth window for (a) 

Sr=ÀIRu=O5=ÀI and (b) Ca=ÀIRu=O5=ÀI phases.294 
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Figure 36. Liquidus projection of the Fe-Ni-Ti system based on the CALPHAD modeling 325 

with other information in the text. 318 
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Figure 37. Phase fractions of the as-solidified phases predicted along the linear gradient path 

from Ti to Invar using the Scheil-Gulliver model (a) and the equilibrium solidification (b). 

318 
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Figure 38. Predicted vacancy concentration (a) and self-diffusion coefficient (b) in fcc Al 337 and 

interstitial diffusion coefficients of interstitial hydrogen (H), deuterium (D), and tritium (T) 

in Ni (c) 338 
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Figure 39. Predicted self-diffusion coefficients in Mg from LDA,350 GGA,350 and PBEsol352 

compared with experimental data (see references in 352). 
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Figure 40. Tracer diffusion coefficients of Al and Ni at 1300K as a function of concentration in 

disordered fcc and ordered L12 phases.356 
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Figure 41. Calculated results for PbTe, a) e-DOS (black curve); b) e-DOS near the Fermi energy 

for p-doping; c) e-DOS near the Fermi energy for n-doping; with the areas shaded by gray 

(partially overlapped by the blue semitransparent shaded areas) for the electron occupation 

at 0 K and the blue semitransparent shaded areas for the electron occupation at a finite 

temperature 610 K described by the Fermi distribution. 363 
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Figure 42. Calculated Seebeck coefficients for PbTe for various p- and n-type doping levels 

(lines) 363 in comparison with the experimental data for p-type PbTe by Heremans and 

coauthors 370,371 and n-type PbTe by LaLonde et al. 372 (symbols with same colors and 

sequences as the lines). 
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Figure 43. Calculated Seebeck coefficients for p-type SnSe363 compared with results from 

experiments373–376 and kinetic Boltzmann transport theory using the BoltzTrap package.362 
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Figure 44. Calculated Peierls stresses at 0 K for edge (e) and screw (s) dislocations for isotropic 

(iso) and anisotropic (aniso) crystals in comparison with experimental CRSS values at 

room temperature for Ni3Al and Ni.379 
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Figure 45. Strain hardening behavior of pure Ni single crystal:380 left a) Peierls stresses 

(symbols), τ&A,BC, on slip system α that combine contributions from both edge and screw 

dislocations as a function of shear strain on slip system β with the corresponding CPFEM 

fits (lines); (middle b) CPFEM simulated engineering stress-strain curves (lines) with 

experimental data by Yao et al. (symbols) 381; (right a, b) CPFEM simulated engineering 

stress-strain curves (lines) with experimental data by Haasen (symbols).382 

 

 




