SAND2021-2273C

Next-Generation Relay Voting Scheme Design
Leveraging Consensus Algorithms

Nicholas Jacobs*!, Adam Summers', Shamina Hossain-McKenzie!, Daniel Calzada!,
Hanyue Li2, Zeyu Mao?, Chris Goes!, Katherine Davis2, Komal Shetye2
ISandia National Laboratories
2Texas A&M University
*njacobs @sandia.gov

Abstract—Traditional protective relay voting schemes utilize
simple logic to achieve confidence in relay trip actions. However,
the smart grid is rapidly evolving and there are new needs for a
next-generation relay voting scheme. Specifically, the ability to
include inter-relay relationships and out-of-band data is needed;
in this work, we explore the use of consensus algorithms and
how they can be utilized to achieve consensus on both values
and trip decisions. A proposed design is explored with a simple
case study with two different scenarios, including simulation in
PowerWorld Simulator, to demonstrate the consensus algorithm
benefits; future directions are provided for comprehensive de-
velopment.

Keywords—cyber-physical system, protective relays, con-
sensus algorithms, voting schemes

I. INTRODUCTION

Protection schemes for the electric grid are designed
to maximize system reliability, which involves upholding
dependability and security. These protection schemes are
comprised of protective relays, breakers, sophisticated fault
detection, identification, and location algorithms, etc [1].
Their function is to mitigate disturbances such as faults
and prevent cascading impact within the grid with quick
isolation and mitigation. Depending on the type of system and
its inertial characteristics, communication-assisted protections
schemes are also being designed to deal with fast dynamics
that require additional speed. Nonetheless, protection schemes
play a critical role in maintaining grid reliability.

With protection scheme’s integral role in grid reliability,
it is important that when relays take action (e.g., open-
ing/closing breakers), they do not misoperate. Voting schemes
compare trip decisions from different relays, for the same
measurements, and apply logic (e.g., two-out-of-three) for the
final trip decision. In this manner, confidence in the trip action
can be achieved and redundancy is obtained with the usage
of multiple relays. The relays can be connected in series or
parallel, depending on the logic used for the final tripping
decision [2].

This type of relay implementation is most commonly seen
in transmission systems, where redundancy is paramount. The
placement, redundancy, and addition of advanced features
(e.g., communications) can vary depending on deployment

Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia LLC,
a wholly owned subsidiary of Honeywell International Inc. for the U.S.
Department of Energy’s National Nuclear Security Administration under con-
tract DE-NA0003525; this work is funded by Sandia National Laboratories
LDRD project #222444. This paper describes objective technical results
and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of
Energy or the United States Government.

within transmission systems versus distribution systems ver-
sus microgrids. In this paper, we focus on transmission system
protective relay for use within an adaptive, online real-time
special protection scheme (SPS), discussed next.

This work is a part of a laboratory directed research and
development (LDRD) project titled “Harmonized Automatic
Relay Mitigation of Nefarious Intentional Events (HAR-
MONIE) Special Protection Scheme.” The HARMONIE-SPS
project is developing an adaptive and reactive SPS that learns
system conditions, mitigates cyber-physical consequences,
and preserves grid operations during both predictable and
unpredictable events. A novel aspect of the HARMONIE-
SPS is its usage of digital relay cyber-physical measurements
(e.g., power system measurements and device configura-
tion/settings)and deployment of proactive relay response.

However, with this increased reliance on relays, high con-
fidence in the relay actions and measurements is necessary.
In this paper, we aim to review traditional protective relay
voting schemes and how the novel needs of the smart grid,
including the need to mitigate nefarious, intentional events,
necessitates next-generation voting schemes. Specifically, we
explore the use of consensus algorithms and how they can be
utilized to create a next-generation relay voting scheme.

II. NEXT-GENERATION VOTING SCHEME NEEDS
A. Traditional Voting Schemes

Voting schemes are used to achieve balance between
security and dependability; they provide confidence in the
resulting relay action, ensuring that there is redundancy in
available relays and that the correct action is taken [1]. A
typical voting scheme utilizes two-out-of-three trip logic and
can involve two or more protection schemes protecting certain
lines. Additionally, one-out-of-two and two-out-of-two logic
can also be employed. In a paper by Altuve et al., the different
logic implementations are discussed; two-out-of-three and
two-out-of-two trip logic is focused on ensuring security
while one-out-of-two trip logic focuses on dependability [2].

B. Novel Needs of the Smart Grid

As mentioned previously, the grid is becoming increasingly
cyber-physical with the addition of new communication-
enabled technologies, third-party software, internet connectiv-
ity, and remote interfaces. These advancements have greatly
improved the operation of the grid, but have also broadened
the attack landscape. Furthermore, extreme weather events
and electromagnetic pulses (EMPs) are unpredictable events
of concern. With these threats, it is important to adopt a

defense-in-depth approach for protecting the grid but also to
improve the overall resilience of the interconnected system.

Disturbances in the smart grid can range from equipment
failures and extreme weather events to more advanced events
such as EMPs and cyber attacks. Cyber attacks are a growing
concern due to the “smart” technologies being implemented
and increased reliance on automated functions [3]-[6]. Fur-
thermore, the unpredictable nature of these events, whether
extreme weather or malicious cyber attacks, render planning
and playbook response near impossible due to changing event
trajectories.

Therefore, protective relays play a more essential role than
ever by protecting the electric grid not only from standard
power system faults but also preventing cascading failures
stemming from unpredictable disturbances such as cyber
attacks and EMPs. When the physical power system begins
seeing signs of stress such as sustained limit violations, the
protective relays can coordinate to isolate the impact and
prevent further cascading physical impact. The importance
of this safety system is also recognized by adversaries. In
fact, in 2017, the Triton malware framework specifically
targeted the Schneider Electric Triconex safety controller,
which often serves as a critical defense mechanism against
physical incidents. Although Triton was successfully detected
by security researchers during network reconnaissance activ-
ity, the malware is difficult to detect on previously infected
systems, as it employs the proprietary TriStation protocol and
has the capability to overwrite data and return the controller
to a running state to mask an attack [7].

It is critical to defend the operation of grid protective
relays and to prevent relay compromise. The misoperation of
relays must be prevented, whether due to measurement errors
or relay compromise, to ensure the grid safety system can
operate when needed and prevent cascading system impact.

C. Consensus Algorithms

Consensus algorithms are a class of problems in which a
distributed set of agents need to reach agreement. This can
fall into several forms, including problems like social deci-
sion making such as leader elections or opinion agreement,
distributed averaging problems, or other related problems.
As an example, PageRank can be considered to be a large-
scale consensus problem for ordering the importance of nodes
in a large directed graph (in this case, by using hyperlink
connections to rank pages in the world wide web) [8].
Another prominent example are distributed ledgers, such as
blockchain, which are a bit different but still seek to achieve
consensus among distributed and possibly untrusted parties
[9]. More information about distributed consensus algorithms
can be found in [10], [11].

Consensus algorithms also have some interesting and use-
ful properties for fault tolerance and security. For instance,
moving an algorithm to a distributed version can often give
benefits since a centralized algorithm results in a common
point of failure. By taking that computing task and distribut-
ing it to multiple computing devices, the failure of one node
might affect the result but will not necessarily cause the
algorithm to fail completely. The security implications are
similar, where we can look at the probability of cyber attacks
successfully causing security failures.

However, moving to a distributed algorithm such as a
consensus algorithm does introduce potential issues as well.

One of these issues is based on the Byzantine General’s
problem, which describes a situation where a set of parties
must agree on a strategy even though one or more of the
parties are corrupt or unreliable. This can be related to
distributed algorithms as Byzantine faults, which are arbitrary
(malicious or inadvertent) failures of individual nodes in the
network, and can be found discussed in a variety of settings,
such as in [12]. One benefit of designing Byzantine Fault
Tolerant (BFT) algorithms is that it makes it much easier
to identify and isolate nodes that are misbehaving. Further-
more, when considering cybersecurity related scenarios and
potential failures, we cannot assume that a node will fail
in a specific way since a insecure relay could be made
to either not respond (for instance, Denial-of-Service) or it
could be modified to take incorrect actions. In this paper,
we will introduce the basic formulation for a BFT inspired
relay voting scheme but will not delve too deeply into the
details of different variations of BFT algorithms and the
implementation of them, such as cryptographic considerations
for authentication. Further details and discussion beyond what
we cover here on these considerations can be found in [13],
[14].

III. APPLICATION OF CONSENSUS ALGORITHMS TO
RELAY VOTING SCHEMES

There are a few ways that consensus algorithms could
be utilized to augment existing techniques for secure and
resilient power system protection using relays in the electric
grid. Specifically, they can be utilized to detect when a relay
is compromised or unintentional settings are applied; the
remaining set of relays could help flag these issues and/or
update to correct settings. Furthermore, consensus algorithms
could be used to learn boundary protection zones between
relays to minimize system interruptions. During an extreme
interruption, consensus algorithms could be used to correctly
island the system so each island is self-supporting.

A. Preliminaries

To analyze consensus algorithms for application in relay
voting schemes, a few things are needed. First, to setup the
problem we need to define the structure for how agents or
nodes can communicate and how to relate the distributed
equations calculated by each agent with the global behavior
of the entire system.

1) Algebraic Graph Theory: A graph G has a set of
vertices V' and a set of edges E = (v;,v;),Vv;,v; € V.
A path p;; over graph G is a set of edges connecting vertex
i to vertex j. G is strongly connected if Jp;; from any node
in G to any other node in G. If G has its edges replaced with
undirected edges, and there exists a path through all vertices
in G, then G is weakly connected.

To analyze graphs in a more algebraic setting, we can
define some related matrices for the graph G and study
properties of these matrices. One matrix of interest here is
the adjacency matrix A, which has a non-zero element a;; if
there exists and edge between v; and v;, and is O if there
is no such edge. These matrix properties have interesting
connections to the behavior for convergence and consensus.
For the distributed averaging system (1), if A is irreducible,
then we will achieve consensus but it will not be the average
of the initial states x(0). If A is primitive, we will achieve
consensus to the average of x(0). This can be shown be

examining the eigenvalues and eigenvectors of A, and further
discussion on this topic can be found in [10].

IV. PROPOSED NEXT-GENERATION RELAY VOTING
SCHEME DESIGN

We now propose a new application of consensus algo-
rithms to next-generation relay voting scheme designs for
communication enabled relays. Here, we intend to rigorously
analyze how distributed relays can split some calculations
and check results across groups of relays for voting, while
also address how each relay can adequately satisfy system
protection requirements. We will start by considering simple
averaging schemes for relays to agree on measurement values
and system state, and then incorporate this into a proposed
relay voting scheme that we apply here with under frequency
load shedding for demonstration.

A. Consensus on Values

One way consensus can play a role in relay voting schemes
is for relays to use consensus algorithms to reach agreement
on the values and settings that are used for any required
computations for the relay protection schemes. That is, reach
consensus on variables such as settings, thresholds, and on
measured variables. In this way, the relays can check values
and average out differences or discrepancies. Note that this
can be run as part of the BFT relay voting scheme proposed in
the last section, as relays in a voting group will need to agree
on the values for the measurements used in the replicated
operations for the protection scheme.

If we take the distributed averaging system

z(k+1) = Az(k) (L

where z;,7 € 1,...,n is the value of some parameter or
measurement that we want to reach consensus one at relay 4,
and n is the number of relays in the graph. x; here could be
voltage/current/power measurements or some other parameter
setting. If we apply this equation repeatedly, we will see that

gpx@+1yaﬁam)

From which we can see that convergence and consensus
rely on the structure of A and the final result will depend
on both the weights of A and the initial values of each
node. Consider a simple two-bus system with two generation
sources, two loads, and six relays (two generator relays,
two line relays, and two load relays). We will consider
several variations for the distributed consensus, one where
the connections are: R1-R5, R2-R6, R3-R4, R1-R2-R3, and
R4-R5-R6, which can be seen in Figure 2, and in the variation
we will only connect relays connected to each bus, namely:
R1-R2-R3 and R4-R5-R6, as shown in Figure 3.

Averaged consensus can be achieved using weighting
schemes such as Metropolis-Hastings, such as is done in [15].

The weighted adjacency matrix for this sample system with
Metropolis-Hastings weights is

1/4 1/4 1/4 0 1/4 0

/4 1/4 1/4 1/4 0 0

/4 1/4 12 0 0 0
A=) 1?4) 14 1/4 14 O

14 0 0 1/4 1/4 1/4

0 0 0 1/4 1/4 1/2

limg 00 2;(k 4+ 1) = 0.16721(0) + 0.16722(0) + 0.16723(0)
+0.167:24(0) + 0.1675(0) + 0.16726(0)
“4)

which is true because of (2). In other words, every relay
will converge to the same value and achieve consensus, and
that consensus will be the average of x(0). Note that this
weighting scheme incorporates information about the relative
degrees of nodes to ensure that all get weighted equally.

See [10] for details and related background on when such
an algorithm will achieve consensus, which is very much
connected to properties of the graph and of the transition
matrix A.

To fit this process into a relay voting scheme, one consid-
eration is that any distributed averaging we perform will take
multiple samples to converge, which will result in delays due
to the communication overhead. Therefore, the convergence
rate for the consensus algorithm will tell us how quickly
new events affect the averaged values. See [16] for further
discussion on these matters.

Furthermore, when considering the averaging of measure-
ment signals, we can modify the process by incorporating
new measurements into a rolling average for each term, as
shown in (5).

z;(k) = pqgi(k) + (1 — p)x (k) ©))

where ¢; is a local measurement of a physical value in
the power system, such as current or voltage. With some
p € (0,1) we can weight the importance of previous values
and new measurements, similar to how a weighted moving
average works. In this instance all previous is stored in the
last value of x;. Note that if p = 0, then only the initial
values 2(0) will matter and we will reduce to our previous
problem in (1), and conversely if p = 1 then only the latest
measurements are used.

Before continuing, it is important to consider that in a
power system there will be variations in system variables such
as frequency and voltage due to the topology of the power
system and because relays are located in different locations
in the system. This will affect the choice for which relays
go into the same voting group, as we will want relays that

Bus 1 Gen. 2
R5
R1 R2 R4
Gen. 1 - »

Load 1 Bus 2

Fig. 1: Simple two-bus system with two generation sources,
two loads, and six relays.

W

Fig. 2: Relay Connections with all six relays connected.

are close enough that they can all easily observe the local
behavior in the circuit.

To demonstrate this, the simple 2-bus system shown in
Figure 1 is used. In a scenario where generator 2 fails at 1.05
seconds, the voltages and averaged values using our scheme
with p = 0.05 in the system are as shown in Figure 4. Note
how all z; are close to the average voltage of the entire
system, and the variation between each z; is due to the
discrepancy between the latest voltage measurements between
the 2 buses.

To further touch on this discussion, a second variation of
this simple exemplar system can be seen in Fig. 3, with the
adjacency matrix (6). In this system, we have broken the
relays into 2 separate groups instead of only 1 group.

1/3 1/3 1/3 0 0 0
1/3 1/3 1/3 0 0 0
1/3 1/3 1/3 0 0 0

A=170" 0 0 1/3 1/3 1/3 ©)
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3

Here, we can note that we will not achieve global consensus
among all relays but will instead have 2 connected subgraphs
and all the nodes that are part of each subgraph will achieve
consensus. In other words, we can analyze relays {1, 2,3} and
{4,5,6} separately and see that {x1, 2, x3} will converge to
the same value and {z4, x5, ¢} Will converge to a value, but
these two groups will not agree with each other in general.
This is good, as we want to be able to specify groups of relays
that need to be able to reach consensus among themselves but
only consist of a subset of relays in the graph.

Furthermore, we can disconnect some of these edges and
still achieve this result. For instance, if node 3 is disconnected
due to being unresponsive the adjacency matrix Ay would be
modified to become A/2 as shown in (7).

1/3 1/3 0 0 0 0

/3 1/3 0 0 0 0

1o 0 0 0o o0 o0
A=109 0 0 13 1/3 1/3 @

0 0 0 1/3 1/3 1/3

0 0 0 1/3 1/3 1/3

To ensure that the value x; does not die out and converge
to 0, we need to add the requirement that for any node that
any missed value is just dropped and ignored. This fits in
well into the BFT relay voting scheme we will propose in
the following section as any node that fails to update values
for the averaging calculation will be ignored and flagged, but
cannot impede the calculations of the other relays in the group
from completing.

All this ties into the relay voting scheme proposed in
Section IV-B, as it is important for the relays to be able
to check that their values match. Additionally, a failure of

R5
R41|I|Il‘lllr%

Fig. 3: Relay Connections with two disconnected subgroups
of relays, one for each bus in two-bus system.

0 5 10 15 20 25 30 35 40

Time (seconds)

Fig. 4: Voltage measurements from Powerworld simulation
of simple 2-bus system after generator 2 fails at 1.05
seconds

a relay to respond to the distributed averaging calculations or
a continued discrepancy in results will help to show when a
relay has either failed or is misbehaving. We will next go into
how relays can vote on the correct steps to take to protect
the system.

B. Consensus Algorithms Applied to Relay Voting

Consensus algorithms give us a way to characterize the re-
lationships between relays, and to study the properties of any
proposed voting procedure. By applying consensus algorithms
we can more closely look at the security and resilience of the
resulting system as we can examine the additional overhead
that comes from additional required communications and how
the algorithm reacts to nodes that have arbitrary failures.

One approach to developing a relay voting scheme is
for each agent to reach a decision and vote on the desired
protection action. This type of formulation ties in well with
state machine replication approaches found in distributed
computation and consensus, as seen in algorithms such as
the the BFT algorithm. Here, we will apply ideas from BFT
to develop a voting scheme for the relays to both achieve
consensus and allow for the discovery of nodes that have are
misbehaving without losing the ability for the relay voting
group overall to protect the system and limit any potential
damage from misbehaving relays. For this, we will draw
from the Practical BFT algorithm (PBFT), developed in [13],
and the Robust BFT (RBFT) algorithm as developed in [14].
While the PBFT variant provides the general structure for
this scheme, the RBFT algorithm is a variant that includes
duplicates of “primary” nodes to ensure that malicious “lead-
ers” in the voting group cannot impede performance, which
means that the ordering of requests is not limited to a single
node. This is the approach we will take in our work, and we
will also add in that in our relay voting scheme there is no
client, but rather the relays themselves will create requests
per local conditions and protection scheme requirements.

Since the BFT algorithm is a form of state machine replica-
tion, we can use it to create redundant copies of the execution

steps for each individual relay. In practice, this means that the
calculation for load shedding, or other protection actions, is
duplicated between all the relays in a voting group. When
a round of voting is initiated, each relay will compute the
desired action to take according to the replicated operation,
and will broadcast its result to the other relays in the group.
The relay that needs to act will wait for enough replies from
the other relays to ensure the consensus action is taken. This
entire process can be seen in Algorithm 1.

Algorithm 1 Relay voting with BFT

1) Relay ¢ detects under frequency conditions

2) Relay 7 initiates request

3) Request for voting multicast to all other relays

4) All relays compute protection scheme calculations, de-
termine load to shed

5) Each relay multicasts result to all other relays in group

6) Each relay waits for f + 1 replies, saves result.

7) Relay j that needs to shed load acts accordingly

In the implementation of this algorithm, there are several
important considerations. First of all, when any relay in the
group sees an event, such as under frequency conditions, the
relay makes a request to all other relays in the voting group.

Each relay will wait until it gets f + 1 replies, where f is
the max number of allowable node failures in order to get the
correct result from a voting round. This is directly related to
the number of nodes n in the voting group. For example, if
there are 3 nodes that are voting, f will be 1 and this will
be very similar to two-out-of-three voting. This ensures that
the entire group of relays can reach the correct consensus.
Note that if more than f nodes fail, then this scheme will not
reach the correct result and the value for f is an important
consideration in the implementation of these schemes.

In the case of arbitrary node failures, we need to account
for instances for an individual relay does not respond to a
request in a voting round, a relay does not create a new
request when it should, and when a relay lies about its local
measurements, conditions, or appropriate protection actions.
We also need to consider the amount of communications
overhead required and minimize this as much as possible.
Discussion on this topic can be found in the background
material in [13], [14] and we will address further in future
work.

By using the setup from RBFT in [14] where we in-
corporate multiple primary nodes, we can ensure that the
calculation of requests is not impeded when a relay does not
respond to requests or send updates on its own values x;(k)
in a timely manner. In dealing with relays that do not initiate
requests when they should, we allow for any relay in the
group to start a request. In protection schemes such as Under
Frequency Load Shedding (UFLS), other relays besides the
misbehaving relay will also see the under frequency condi-
tions in the system and so the request will still get generated.
If an individual relay lies about its measurements, it can be
detected by the other relays by checking for large deviations
between the consensus values for those measurements and
the reported value, ||x; — ;|| > € Vj # i for some ¢ > 0.
This is one place where the distributed averaging process
we described in the last section comes in. The threshold
for allowed deviations € > 0 needs to be designed to

allow for normal variations due to relay location within the
power system, as seen in the small normal variations seen
in Figure 4. Note that x; and x; are the averaged values at
nodes j and ¢ respectively, and relay ¢ is just checking if the
values being reported by the other relays is agreeing with its
own result.

Another potential issue that arises is a relay that is sup-
posed to take protective action and does not. In this case,
the other relays in the group will see the under frequency
conditions persist and any expected improvement will not
match the actual response. The other relays will see that the
measurements in the system do not match what should be
occuring if the protective action was taken and so in this
case they can flag the relay that is not cooperating. At this
point, a new round of voting could be initiated on secondary
actions to take assuming that the relay that is not cooperating
has failed. In this case, we repeat calculations to find a new
set of actions to take that will minimize system impact.

When the relay voting group removes a misbehaving node,
it will be ignored in future voting rounds until manually
checked and re-verified. An alert may be initiated at this
point for maintenance, including various steps like replacing
failed equipment, reflashing firmware, and other maintenance
activities. Each relay in the voting group will create this alert
and send it to the system operator, who will wait for f + 1
alerts before proceeding, in order to eliminate spurious alerts
from individual relays that may be incorrect.

C. Simple Case Study: Under Frequency Load Shedding

Here we dive deeper into the simple 2-bus system shown
in Figure 1 and in Figure 5. The dynamic model is simulated
in PowerWorld Simulator and analyzed using the transient
stability tool. Here we will use UFLS so that if system
frequency drops below the operational set point during major
disturbance such as loss of generation, the system arrests de-
clining frequency and assists recovery of frequency following
under frequency events, such as described by FERC in [17].

Consider a contingency where Generator 2 drops off at
1.05 seconds and Generator 1 must keep supplying power
to both Load 1 and Load 2 (Critical). Without a UFLS
scheme, Generator 1 is isochronous and manages to stabilize
the system frequency, however the frequency does drop to
59.86Hz. With a simple UFLS scheme, when the frequency is
below 59.95Hz Load 1 is dropped, dramatically reducing the
amount of frequency drop that is observed to only 59.986Hz.
Note that while the overall impact in both these cases is rather
limited, we are using this small system mainly to keep the
analysis simple and illustrative for the relay voting.

The purpose of UFLS is to protect the Bulk FElectric
System (BES) against a major loss of generation. In the
Western Electricity Coordinating Council (WECC), UFLS
must drop sufficient load to keep the system frequency within
the continuous operation range of the generation units (59.5
Hz and 60.5 Hz) [18]. Using a consensus algorithm ensures
that the correct non-critical loads are removed first, and then
critical loads can be removed in stepwise until the system
frequency is stabilized. In this scenario, relay 3 in Figure 1
will need to disconnect load 1 to perform the UFLS scheme.
If relay 3 does not respond and disconnect the load after the
group of relays agrees on this action, the frequency in the
system will follow the no load shedding curve in Figure 6.
This is easily distinguishable by all relays checking their

Two Bus Power System

Transmission Line

16.00 kv

15.88 kV
5 MW

Generator 2

16.008MW

Generator 1 Load 2 (Critical)

Fig. 5: Two-bus system modeled in PowerWorld Simulator.

60.04 T T T T T T T

Loadshedding
NolLoadShedding | 7

60.02

G0

59.98 1

)

oy (

& 69.94 =

59.82 1

Freque

599 b

59.88 B

59.86 1

0 5 10 15 20 25 30 35 40
Time (sec))

59.84

Fig. 6: Impact on frequency with and without load shedding
in two-bus system modeled in PowerWorld Simulator.

value for frequency measurements x; and seeing that it is not
following the desired improvement in the system response.
relay 3 would then be flagged by the other relays in this
system and the system operator alerted by the other relays
that it has failed.

In this 2 bus system there are no redundant connections so
a disconnection by a nefarious relay would either remove a
load, generator, or separate the 2 buses entirely. In practice,
that is a failure that other relays cannot remedy if they are
not also located at the same connection point, but they can
quickly detect it has occurred and if able decide on actions
to take to mitigate the damage to the system overall. Further
discussion on that is left for future work where we will extend
this procedure to larger systems.

V. CONCLUSIONS

Consensus algorithms can be utilized to develop next-
generation relay voting schemes, providing ways to incor-
porate inter-relay relationships and out-of-band data to better
protect the power system as a whole. Distributed calculation
of system values, such as with distributed averaging, can be
utilized to provide information that relays can check each
others values and ensure that overall an entire group of relays
is reaching agreement on the state of the power system.
Furthermore, by incorporating knowledge about byzantine
faults in distributed computing, we can develop new voting

scheme algorithms for relays to use to agree on protective
actions to take following various protection schemes, such
as under frequency load shedding. By adding in this type
of design into the system, relays are able to check and
verify each others actions, and alert when other relays in
the voting scheme fail to operate correctly. This allows for
faster detection of mitigation of failures and potential security
issues. In this paper, we have demonstrated this type of design
on a simple 2-bus system that is meant to be illustrative and in
follow on work are extending this to more realistic and larger
systems, and will extend to other protection schemes besides
load shedding and further examine how relay compromises
are dealt with and mitigated.

REFERENCES

[1] “IEEE Guide for Protective Relay Applications to Transmission Lines,”
IEEE Std C37.113-2015 (Revision of IEEE Std C37.113-1999), pp. 1-
141, 2016.

[2] H. J. Altuve, K. Zimmerman, and D. Tziouvaras, “Maximizing line
protection reliability, speed, and sensitivity,” in 2016 69th Annual
Conference for Protective Relay Engineers (CPRE), 2016, pp. 1-28.

[3] C.Lai, N. Jacobs, S. Hossain-McKenzie, P. Cordeiro, O. Onunkwo, and
J. Johnson, “Cyber Security Primer for DER Vendors, Aggregators,
and Grid Operators,” Sandia National Laboratories, Sandia Report
SAND2017-13113, Dec. 2017.

[4] A. Chavez, C. Lai, N. Jacobs, S. Hossain-McKenzie, C. B. Jones,
J. Johnson, and A. Summers, “Hybrid Intrusion Detection System
Design for Distributed Energy Resource Systems,” in 2019 [EEE
CyberPELS (CyberPELS), 2019, pp. 1-6.

[51 S. Zonouz, K. M. Rogers, R. Berthier, R. B. Bobba, W. H. Sanders,
and T. J. Overbye, “SCPSE: Security-Oriented Cyber-Physical State
Estimation for Power Grid Critical Infrastructures,” IEEE Transactions
on Smart Grid, vol. 3, no. 4, pp. 1790-1799, 2012.

[6] Texas A&M University, “Deep Cyber Physical Situtational Awareness
for Energy Systems: A Secure Foundation for Next-Generation Energy
Management,” 2020. [Online]. Available: https://cypres.engr.tamu.edu/

[71 M. K. D. S. N. B. C. G. Blake Johnson, Dan Caban,
“Attackers Deploy New ICS Attack Framework TRITON and Cause
Operational Disruption to Critical Infrastructure,” FIREEYE, 2017.
[Online]. Available: https://www.fireeye.com/blog/threat-research/
2017/12/attackers-deploy-new-ics-attack-framework- triton.html

[8] H. Ishii and R. Tempo, The PageRank Problem, Multi-Agent Consensus
and Web Aggregation A Systems and Control Viewpoint, 2013, _eprint:
1312.1904.

[9] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A Survey of Distributed
Consensus Protocols for Blockchain Networks,” IEEE Communications
Surveys Tutorials, vol. 22, no. 2, pp. 1432-1465, 2020.

[10] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and Coop-
eration in Networked Multi-Agent Systems,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 215-233, 2007.

[11] A. Olshevsky and J. N. Tsitsiklis, “Convergence Speed
in Distributed Consensus and Averaging,” SIAM Journal on
Control and Optimization, vol. 48, mno. 1, 33-55,

pp-
2009, _eprint: https://doi.org/10.1137/060678324. [Online]. Available:
https://doi.org/10.1137/060678324

[12] N. Gupta, S. Liu, and N. H. Vaidya, Byzantine Fault-Tolerant Dis-
tributed Machine Learning Using Stochastic Gradient Descent (SGD)
and Norm-Based Comparative Gradient Elimination (CGE), 2020,
_eprint: 2008.04699.

[13] M. Castro and B. Loskov, “Practical Byzantine Fault Tolerance,” in
Proceedings of the Third Symposiumon Operating Systems Design and
Implementation, New Orleans, USA, Feb. 1999.

[14] P. Aublin, S. B. Mokhtar, and V. Quma, “RBFT: Redundant Byzantine
Fault Tolerance,” in 2013 IEEE 33rd International Conference on
Distributed Computing Systems, 2013, pp. 297-306.

[15] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus
with least-mean-square deviation,” Journal of Parallel and Distributed
Computing, vol. 67, no. 1, pp. 33 — 46, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731506001808

[16] D. Spanos, R. Olfati-Saber, and R. Murray, “Dynamic Consensus for
Mobile Networks,” 2005.

[17] “Automatic Underfrequency Load Shedding and Load Shedding
Plans Reliability Standards,” FERC, Tech. Rep., Oct. 2011. [Online].
Available: https://www.ferc.gov/sites/default/files/2020-05/E-3_25.pdf

[18] “Underfrequency Load Shedding Program Assessment Report,”
Western Electricity Coordinating Council, Tech. Rep., Feb.
2018. [Online]. Available: https://www.wecc.org/Reliability/ WECC%
20UFLS%20Assessment%20Report%?20-%202018_Approved.pdf

