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Abstract—Space systems provide many critical functions to the 
military, federal agencies, and infrastructure networks. Nation-
state adversaries have shown the ability to disrupt critical 
infrastructure through cyber-attacks targeting systems of 
networked, embedded computers. Moving target defenses (MTDs) 
have been proposed as a means for defending various networks 
and systems against potential cyber-attacks. MTDs differ from 
many cyber resilience technologies in that they do not necessarily 
require detection of an attack to mitigate the threat. We devised a 
MTD algorithm and tested its application to a real-time network. 
We demonstrated MTD usage with a real-time protocol given 
constraints not typically found in best-effort networks. Second, we 
quantified the cyber resilience benefit of MTD given an 
exfiltration attack by and adversary. For our experiment, we 
employed MTD which resulted in a reduction of adversarial 
knowledge by 97%. Even when the adversary can detect when the 
address changes, there is still a reduction in adversarial knowledge 
when compared to static addressing schemes. Furthermore, we 
analyzed the core performance of the algorithm and characterized 
its unpredictability using nine different statistical metrics.  The 
characterization highlighted the algorithm has good 
unpredictability characteristics with some opportunity for 
improvement to produce more randomness.

Keywords—cyber resilience, moving target defense, intelligent 
system scrambling, real-time network security, cybersecurity, MIL-
STD-1553, machine learning

I. INTRODUCTION

Space systems provide many critical functions to the 
military, federal agencies, and infrastructure  networks. Nation-
state adversaries have shown the ability to disrupt critical 
infrastructure through cyber-attacks targeting systems of 
networked, embedded computers. This knowledge raises 
concern that space systems could face similar threats, and 
increasing the resilience of space systems to cyber-attacks is a 
growing area of research. Many proposed cyber resilience 
technologies require detection of threats before mitigative 
actions can be taken. Because reliable detection of cyber threats 
is still a significant challenge to terrestrial systems, reliance on 
threat detection for cyber resilience can be a risky strategy.

Moving target defenses (MTDs) have been proposed as a 
means for defending various networks and systems against 
potential cyber-attacks. MTDs differ from many cyber resilience 
technologies in that they do not necessarily require detection of 
an attack to mitigate the threat. However, little empirical 
evidence exists to prove that MTDs do improve cyber resilience. 
Furthermore, MTDs increase operational complexity. For real-

time systems, this complexity could potentially result in 
unacceptable delays, decreased reliability, and other negative 
impacts. 

This paper describes research and development of a MTD 
algorithm that can be used to defend real-time space systems 
against potential cyber-attacks. This paper specifically seeks to 
address the two following research questions:

1) Does the use of the MTD algorithm introduce 
unacceptable, negative impact on the operations of a selected, 
space platform?

2) Does the use of the MTD algorithm provide measurable 
benefits to the cyber resilience of a selected, space platform? 

Because of the widespread use of MIL-STD-1553 buses in 
avionics and space systems [1], we selected a MIL-STD-1553 
bus system as our exemplar space platform for conducting our 
research. 

The rest of this paper is as follows: Section II provides 
background on MTD, the MIL-STD-1553 protocol, and related 
work.  Section III describes the algorithm design, and how we 
have integrated the algorithm into the MIL-STD-1553 protocol. 
Section IV provides a unpredictability characterization of the 
MTD algorithm that assesses how adjustments to MTD 
algorithm features can affect the ability of an adversary to 
potentially defeat the MTD. Section V describes reliability and 
cyber resilience experiment designs, and Section VI contains 
results from the experiments. Section VII provides our 
conclusions and future work.

II. BACKGROUND

A. Moving Target Defense
MTDs create dynamic, seemingly uncertain environments 

which seek to confuse the attacker and attempt to defeat cyber 
threats [2]. Attackers attempting to perform network discovery, 
exfiltrate data, and other malicious activities will observe that 
key system attributes change in a seemingly chaotic and random 
manner. In truth, these changes are choreographed among the 
system components in a manner such that they know when and 
how the changes will occur. 

For example, a webserver may change its IP address every 
day to a different, randomly selected address to thwart an 
attacker’s attempt to hack the webserver. Another option is to 
randomize the port that the webserver listens on to respond to 
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requests. Other more complex variations exist as well. To our 
knowledge, MTD has mainly been applied in traditional 
information technology (IT) environments [3]-[5], and Chavez 
et. al’s research is one of the few efforts applying MTDs to 
industrial control systems [6]. Furthermore, most previous 
studies into MTD effectiveness have been qualitative and 
survey-based while some attempt to quantify the benefits[7]- 
[9].

Space systems typically have components and on-vehicle 
networks that are not IP-based. They utilize real-time protocols 
which must adhere to determinism, predictability, reliability, 
and real-time deadlines. Furthermore, some protocols do not 
have cybersecurity protection mechanisms (e.g., authentication, 
encryption). MTD provides an opportunity to add cyber 
resilience in the absence of typical cybersecurity controls. 
However, the potential impacts of MTD on space systems’ 
operations and resilience have not been previously quantified. 

B. MIL-STD-1553
MIL-STD-1553 is a military standard for transmitting data 

on a reliable data bus [10]. Typical implementations use a dual-
redundant bus in failover mode to improve reliability. This bus 
is typically found in military systems (e.g., weapon systems, 
aircraft, helicopters) as well in space systems (e.g., space 
satellites). Though the protocol was invented in the 1970s, it has 
remained a staple as a command and control network for a 
variety of systems due to its reliability.

The bus gains much of its reliability by using a dual-
redundant bus and a master-slave communication scheme.  The 
protocol specifies a bus A and a bus B where bus B is idle unless 
bus A detects no traffic. Since only one device uses the bus at a 
time (i.e., time-division multiplexing), collisions are avoided on 
the bus—assuming each device on the bus adheres to the 
protocol.

The MIL-STD-1553 uses three types of devices: a bus 
controller (BC), up to 31 remote terminals (RTs), and a bus 
monitor (BM).  The BC controls all communication on the bus. 
The BC sends commands on the bus which instruct the specific 
RT. The RT may consume or send data based on the command. 
All other RTs remain silent on the bus until they are instructed 
by the BC. The BM records all commands and data that are sent 
on the bus. The BM never sends any data; it is a read-only device 
and serves the same purpose as a flight recorder on an airplane.

The MIL-STD-1553 protocol has 3 types of data within the 
protocol: command word (CW), data word (DW), and status 
word (SW). Each word type is 16 bits (2 bytes) in length. The 
command word is only sent by the BC and commands each RT. 
Both the BC and RT send data words based on the CW sent by 
the BC. Status words are sent only by RTs and inform the BC of 
correct reception of the CW and DWs (if present). Furthermore, 
each bit on the bus consumes one microsecond, and the bus 
operates at 1 MHz Each word consists of a 3 microsecond sync, 
16 bits (16 microseconds), and one parity bit (1 microsecond).

The MIL-STD-1553 has two types of messages: non-
broadcast (i.e., unicast) and broadcast. As the names imply, non-
broadcast messages result in communication between 2 devices 
while broadcast messages result in communication between a 
sending device and all receiving devices on the network. These 

messages are organized into frames. A frame is an organized 
collection of messages. A network has 2 or 3 types of frames. A 
minor frame represents the highest frequency in the network and 
represents the base unit of scheduling. A major consists of one 
or more minor frames (e.g. 10 minor frames). Some networks 
utilize a higher frame structure called super frames, which 
consists of one or more major frames. For example, a minor 
frame may repeat at a frequency of 50 Hz. Collecting 8 minor 
frames into a major frame produces a frequency of 6.25 Hz for 
the major frame. Collecting 4 major frames into a super frame 
produces a frequency of 1.56 Hz for the super frame.

The MIL-STD-1553 protocol does not include 
authentication or encryption features. The lack of these 
protections has raised concerns about risks that systems using 
this protocol are vulnerable to cyber-attacks.

C. Related Work
Attempts have been made to improve the security of MIL-

STD-1553 using a sequence-based anomaly detection 
methodology. In particular, Stan et al. used 3 different machine 
learning models to detect unauthorized data transmissions and 
spoofing attacks [11]. The authors also characterize the bus by 
learning what messages are sent and the frequency of such 
messages. As mentioned before, this paper focuses on anomaly 
detection. 

Recent work has examined MTD and other real-time 
protocols. The controller area network bus or CAN bus has a 
similar network topology as MIL-STD-1553. The CAN ID 
Shuffling Technique (CIST) utilizes encryption and hashing to 
produce a sequence-dependent shuffling of CAN IDs on a per-
message basis [12]. For each message, up to two keyed-based 
message authentication codes (i.e., HMACs) and one encryption 
is needed. The technique requires a variety of different crypto-
variables: group keys, one-time keys, seeds, encryption keys, 
etc. With all the aforementioned keys and algorithms, the 
authors devised a scheme where the CAN ID can change per 
message (typically CAN IDs don’t change). 

Brown et al. suggested a model which uses a seed value and 
dynamic state called dynamic address validation array of 
DAVA [13]. In their scheme, each engine control unit or ECU 
invalidates its CAN ID when needed, and the other devices use 
an algorithm to synchronize the new CAN ID for the respective 
node. As with CIST the CAN IDs change but without all the 
state and algorithm complexity.

III. MTD ALGORITHM AND INTEGRATION

Use of the MTD algorithm within a real-time protocol 
requires that certain constraints must be addressed. These key 
constraints are as follows:

 Keep underlying protocol - These protocols have been 
designed for determinism, predictability, reliability, and 
real-time operation. By using the existing protocol as is, 
we seek to avoid introducing effects which detract from 
the real-time properties of these protocols.

 Dynamic address generation - Each node in the 
network should employ the same MTD algorithm, 
produce the same address state, and index disjoint 
addresses as compared to all other nodes in the network. 



Fig. 1. State generation architecture 

 Synchronization – All devices on the network must be 
synced up as the addresses change over time. Each 
device must understand how and when addresses change. 
Extended loss of synchronization could have 
catastrophic consequences for real-time protocols.

 Authenticity - The devices on the network should be 
able to decipher authentic MTD commands from non-
authentic MTD commands. Using analog attributes, 
message authentication codes, message integrity checks, 
etc., with the MTD command provides an avenue to 
ensure only valid MTD commands are followed.

Our algorithm assumes only one address will be used at a 
time. However, nothing precludes nodes from utilizing multiple 
dynamic addresses concurrently or splitting up a message and 
sending the message parts to different addresses.

A. MTD Algorithm
At a high level, our MTD algorithm consists of 3 

architectural components: 1) a shared key and an ephemeral 
token (i.e., cryptographic nonce), 2) state generation, and 3) the 
manner of selecting an address from the state (i.e., indexing). 

We assume that the shared key is generated and shared 
offline (i.e., not sent on the bus) between the participating nodes 
while the ephemeral token can be sent on the bus. Our algorithm 
uses a pseudo-random number generator (PRNG) to assist with 
state generation. In general, PRNGs utilize a variety of 
underlying algorithms to generate numbers such as: 1) a naïve 
generator using modular arithmetic (e.g., linear-feedback shift 
register), 2) a keyed-hash message authentication code 
(HMAC)-based generator, or 3) a stream/block cipher-based 
generator. Lastly, the manner of selecting an address (i.e., 
indexing) can vary. For example, the new address can be 
selected with a fixed index or the index can move within the 
state. Below we will describe the architecture’s components.

1) Keys
Two keys are needed for the MTD algorithm: shared and 

ephemeral. The shared key is only shared between nodes on the 
network participating in MTD. The ephemeral key (i.e., nonce) 
is shared between all participating nodes but not necessarily kept 
private from others (i.e., non-participating nodes or adversaries). 
Both keys are 128-bit in length, and the algorithm can employ 
the use of larger keys.

2) State Generation

Each participating node uses the state to select the new 
address. The state generation occurs over a set of rounds as 
shown in Fig. 1. Each round has 3 parts: 

 Random byte generation

 Column (i.e., array) generation

 Permutation

a) Random Byte Generation
Our algorithm uses a PRNG to assist with state generation. 

The PRNG attempts to generate a non-repeating sequence of 
bytes (i.e., 8 bits) as shown in Fig. 2. Typically, the PRNG 
begins its sequence by utilizing a seed value. Different seed 
values produce different non-repeating sequences. In general, 
PRNGs utilize a variety of underlying algorithms to generate 
numbers.  For our algorithm, we used a keyed-hash message 
authentication code (HMAC) based generator.

For MIL-STD-1553 usage, the PRNG uses the shared key 
and ephemeral key to produce 64 bytes. Given that each byte has 
a range between 0 – 255, there is a chance that some of the bytes 
will be duplicates. As more bytes are produced, the chance of a 
duplicate byte increases.

b) Conditioner
The conditioner constructs addresses from those bytes 

specific to the protocol being used. Using the 64 bytes from the 
random byte generation stage, the conditioner:

 Creates an array of 31 random bytes from the 1st 31 bytes 
of the 64 generated bytes (33 remaining bytes)

 Reduces each byte to a value between 0 and 30

 Removes duplicate bytes and inserts missing address 
values

 Removes addresses not available for usage on the 
network (reduces array size)

 Shuffles the array to add more randomness

Fig. 2. Byte generation

At the end of these set of steps, the state consists of a single 
array which is a random ordering of addresses from 0 to 30. 
Given that there are 31 possible addresses for each cell in the 
column, there are 31! possible unique columns as shown in Fig. 
3.
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c) Permutation
The last step of state generation produces a new ephemeral 

key using these steps:

 Take the last 32 bytes (from the original 64) and split 
them into two 16-byte halves

 XOR those halves resulting in a 16-byte value

 Using the 32nd byte (the remaining byte from the original 
64 bytes) perform left and right circular rotations on 
alternating set of 4 bytes (4 rotations on the 16-byte 
value).

This process continues until the required number of arrays 
(i.e., columns or state arrays) has been produced (maximum of 
65536 columns for our work) as shown in Fig. 4

Fig. 3. Column conditioning

3) Indexing
Once we have the MTD state generated, we need a way to 

select the new address from the state. We use two values to pick 
the new address: a 16-bit index value and address value. The 
index value selects the column (i.e., array) and the address value 
selects the offset into the column. We have 4 different 
combinations of selecting the new address which we label as 
static, current, and linear-static, linear-current.

a) Static

Fig. 4. Permutation

This offsetting mechanism uses the same value for the 
address value. Typically, this value is set to the non-MTD 
address of the node (i.e., device) on the network. For example, 
consider the case illustrated in Fig. 5. Assume that an index 
value of 0, and a node has a starting address of 5. That node is 
assigned the address located at offset 5 (zero-based offset value). 
For this state, the node is assigned a value of 20. If the index 
value changes to 1, 2, or 3, then the assigned address changes to 
19, 1, or 30 respectively.  The offset value stays at 5 (the starting 
address) regardless of the index value (i.e., the selected column). 

b) Current
This offsetting mechanism uses the current address of the 

node for the address value. For example, consider the case 
illustrated in Fig. 5 and assume a starting address of 3. The first 
selection of the new address with use an offset value of 3 (zero-
based offset value). The new address has a value of 4. If the 
index value changes to 1, use an offset value of 4 to find the next 
address to be 5. If the index value then changes to 3, the offset 
value changes to 5, and the new address will be 30. Therefore, 
for each index, the same address is not likely to be returned.

c) Linear
This mechanism uses the index value and breaks it up into 

sub-values. The first ten bits are used as the index (i.e., limits the 
number of columns to 1024). The remaining six bits are used to 
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Fig. 5. State matrix

construct the offset based on the linear combination of these 
values. We use the equation:

 a   b + c mod 31 = d       

where a is a 3-bit unsigned number, b is a 3-bit unsigned number, 
c is the current (or initial) address, and d is the offset value. The 
linear combination produces an offset value which is used to 
select the new address. A breakdown of the 4 combinations are 
listed in TABLE I. 

TABLE I. OFFSET SELECTION TABLE

Index InterpretationOffset Selection Mechanism 
16-bit unsigned 

integer
Linear combination

Initial address Static Linear-static

A
dd

re
ss

 
U

se
d

Current address Current Linear-current

B. MIL-STD-1553 Integration
In order to use the algorithm with the MIL-STD-1553 

protocol, our mechanism must integrate with the existing 
protocol. Our design uses 4 MTD commands based on the 
existing MIL-STD-1553 command structure. The four 
commands are:

 MTD Start – this command sends a 128-bit nonce, the 
size of the state to generate, offsetting mechanism, and 
any addresses which are not permitted for use in the state 
matrix.

 MTD Verify – this command sends a 256-bit keyed-hash 
message authentication code (HMAC) to the requestor. 
This enables the host node (e.g., BC) to verify all 
participating nodes have the same state without leaking 
information.

 MTD Update – this command sends an index (i.e., 
indirect) value which participating nodes use to select 
their new address. In our experiments, the index value 
selects the state column.

 MTD Stop – this command instructs all participating 
nodes to stop listening to MTD Update commands. The 
nodes can either revert to their initial address or stay at 
their current address. The host node would indicate this 
choice in the MTD Start command.

The four MTD commands and their respective number of 
command words and data words are listed in TABLE II. To 
minimize the impact on the existing frame structure, we 
attempted to limit the additional words needed to implement our 
scheme. Based on our scheme, we determined the MTD Update 
command consumes a majority of the cost of adding MTD to an 
existing frame structure. For the MTD Update command, we 
require one command word and one data word which translates 
into 40 microseconds.

TABLE II. MTD COMMANDS

Command CWs DWs Broadcast Time sent
MTD 
Start

1 9 - 16 Yes 1

MTD 
Verify

1 16 No Number of 
MTD 
nodes

MTD 
Update

1 1 Yes Every n 
frames

MTD 
Stop1

1 1 Yes 1

As stated before, these commands could be spoofed. For our 
design, we suggest using a 256-bit HMAC (16 DWs) when 
sending any MTD commands. This would increase the amount 
of time the MTD Update command consumes on the bus. A 
variety of schemes exist to construct an appropriate message 
authentication code (MAC) and are outside of the scope of this 
paper. To keep devices in sync, a MTD Update command could 
be sent at the end of minor, major, and/or super frames.

IV. UNPREDICTABILITY OF THE ADDRESS ASSIGNMENTS

The MTD algorithm is designed to generate sequences of 
address updates for each node over time that are complex, avoid 
repeating patterns, and are difficult for an attacker to predict.  
The MTD algorithm contains several parameters that can be 
adjusted to affect the unpredictability of the address sequence. 
In this section, we analyze how different system parameter 
settings affect the inherent unpredictability of the MTD-
generated sequences. We draw on concepts from information 
theory to perform this analysis without having to make explicit 
assumptions about an attacker’s capabilities. 

A. System Parameters for Evaluation
We examined two system parameters, the offset method and 

the number of state matrix columns.  The specific values tested 
for this experiment are shown in TABLE III. In addition, we 

1 Technically, the MTD Stop command does not require any 
data words. However, MIL-STD-1553 doesn’t support non-

mode code broadcast with zero data words.
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examined the effect of updating the state matrix on address 
unpredictability, as detailed in the next section.

TABLE III. SYSTEM PARAMETERS ANALYZED FOR THE 
UNPREDICTABILITY STUDY

System Parameter Values
Offset Method Static, Current, Linear-S, 

Linear-C

State Matrix Columns 128, 256, 512

State Matrix Updates No Updates, 1 Update

B. Experimental Setup
The input data for this experiment is a sequence of addresses 

generated by the MTD algorithm. This sequence can essentially 
be treated as a time series, where each timestep corresponds to 
an address update. For simplicity, we limit our analysis to 
address assignment for a single node, and leave it as a future 
effort to ensure that the address assignments are independent 
across nodes.  

In total we generated 3,720 address sequences, and each 
sequence consists of 4,096 address updates.  The following 
process was used to generate the address sequences:

1. Create 10 state matrices using 10 PRNG seeds.
2. For each state matrix, generate 31 address sequences for 

each of the 12 unique combinations of offset and number 
of state matrix columns. 

3. To simulate the effect of state matrix updates, create 5 pairs 
of state matrices at random from the set of 10.

a) For each pair, extract the first half (2,048 address 
updates) for all sequences generated using the two state 
matrices.

b) Concatenate the two half sequences from each state 
matrix for each parameter combination.  This will 
simulate the effect of switching state matrices halfway 
through the sequence while retaining the same system 
parameters. 

Given this data set of address sequences, we used the 
following process to evaluate unpredictability:

1. Calculate a set of nine unpredictability metrics (detailed in 
Section C), and average each metric over the 31 address 
sequences per state matrix and unique parameter setting.

2. Compute the Overall Predictability Metric per state matrix 
and parameter setting by averaging across all metric 
values.

3. For each system parameter under analysis, for example the 
choice of offset method, average across all address 
sequences that use the same parameter value.

C. Unpredictability Metrics
We use the following set of nine metrics to quantify 

unpredictability of the MTD-generated address sequences. The 
metrics quantify entropy, complexity, and turbulence using 
different criteria. We use the term “unpredictability” to represent 
the difficulty of predicting the sequencing as measured by the 

group of these nine metrics. Third party python packages were 
used to implement the permutation, spectral, sample, and SVD 
entropy, as well as the Lempel-Ziv complexity [14].

 Shannon’s Entropy: Measures the uniformity of address 
assignments for node x using an empirical estimate of 
frequency.

 Lempel-Ziv Complexity: Measures complexity based on 
the compressibility of the time series [15].  

 Sample Entropy: Determines the regularity and patterns 
in the data and how that varies over increasing window 
sizes [16].

 Permutation Entropy: Measures how subsets of the time 
series relate to each other based on the ordinal rankings 
of values within each subset [17]. 

 Spectral Entropy: Measures the distribution of 
frequencies in the data by computing the entropy of the 
power spectral density of the data.

 SVD Entropy: Computes the entropy of the singular 
values of a matrix built from subsets of the time series.

The remaining 3 metrics were generated using a transition 
matrix.  This matrix is an N x N matrix where N is the number 
of addresses. The entry in the ith row and jth column represents 
the empirical probability that a node assigned to address i will 
subsequently be assigned to node j. 

 Transition Entropy: Averages the Shannon’s entropy of 
each row of the transition matrix.

 Transition Uniformity: Averages the distance between 
each row distribution and a uniform distribution [18].

 Transition Turbulence: Measure the weighted edge 
density of the transition matrix, with the weights 
determined by the effective degree of each node [18].

All of the metrics were normalized to the range [0,1], where 
1 indicates higher unpredictability. Given that each metric 
evaluates unpredictability based on a different set of criteria, we 
also compute an Overall Unpredictability score by averaging 
across the nine metric values. Due to differences in sensitivity, 
interpretation, and values between the nine metrics, this score 
should not be treated as an absolute measure of unpredictability. 
Instead, the score can be used to evaluate the effect of system 
parameters on unpredictability, by examining trends in whether 
the score increases or decreases as the system parameters are 
varied. 



D. Unpredictability Study Results
The Overall Unpredictability Scores for each system 

parameter setting are shown in TABLE IV. In addition, we plot 
the averaged metric scores for each system parameter setting in 
Fig. 6.

TABLE IV. OVERALL UNPREDICTABILITY SCORE FOR SYSTEM 
PARAMETERS

Number of 
State Matrix Columns

Overall Unpredictability Score

512 0.8497   ± 0.0306

256 0.8456 ± 0.0395

128 0.8399 ± 0.0443
Offset Method Overall Unpredictability Score

Linear-C 0.8797 ± 0.0006

Linear-S 0.8795 ± 0.0008

Current 0.8183 ± 0.0067

Static 0.8002 ± 0.0155
State Matrix Updates Overall Unpredictability Score
1 State Matrix Update 0.8482 ± 0.0349

No Updates 0.8451 ± 0.0389

All scores exceed 0.8. Given a maximum possible score of 
1.0, these scores provide confidence in the MTD algorithm. Use 
of the linear methods results in higher unpredictability scores 
than those resulting from the current and static approaches. The 
number of columns and use of state matrix updates does not 
appear to have a significant effect on the Unpredictability 
Scores. 

 Linear methods, in particular Linear-C, produces sequences 
that have higher unpredictability than the other offset methods.  
Updating the state matrix at least once as well as increasing the 
number of state matrix columns does also slightly improve 
unpredictability.  

As shown in Fig. 6, the set of unpredictability metrics are 
either unaffected or similarly affected by the parameter values. 
In particular the metrics based on the transition matrix, the 
Transition Turbulence and the Transition Uniformity, are the 
most sensitive to changes in the system parameters. 

This experiment allows us to demonstrate quantitatively that 
the Linear-C or Linear-S offset methods are preferable and 
provide a set of tools to evaluate future parameter changes. 

V. RELIABILITY AND RESILIENCE EXPERIMENTS

We considered two experiments to evaluate the MTD 
algorithm. We use the first experiment to assesses whether “the 
use of the MTD algorithm introduces unacceptable, negative 
impact on the operations” on MIL-STD-1553 hardware. We use 
the second experiment to assess whether “use of the MTD 
algorithm provides measurable benefits to the cyber resilience” 
of an application running on the MIL-STD-1553 network

Fig. 6.  Comparison of unpredictabilty metrics, averaged over all address 

sequences, when varying the offset method (left) and number of state matrix 
columns (right). The offset methods are arranged from lowest to highest overall 
unpredictability scores per TABLE IV.  

A. Fibonacci Experiment
For the first experiment, we consider a hardware setup that 

is designed to calculate Fibonacci numbers2. Starting with the 
first two Fibonacci numbers (0 and 1), two nodes (i.e., BC and 
RT) calculate up to the 24th Fibonacci number (46,368). We 
chose this number as it is the largest 16-bit unsigned value which 
fits into a single DW. After reaching this value (termed a 
generation), the process resets with the first two Fibonacci 
numbers. 

One node serves as the host, and the other node serves as the 
participant node. The host node sends two Fibonacci numbers 
(e.g., 8, 13), and the participant node sends the result back. The 
host uses the result and sends the next two Fibonacci numbers 
(e.g., 13, 21). The sequence continues until the host receives the 
24th Fibonacci number. 

1) Hardware
The experimental hardware setup consists of a single 

ENET2-1553 device from AltaData Technologies3. The device 
has 2 dual-redundant (i.e., two buses) channels. We used one 
channel for the BC and RT and another for the BM as shown in 
Fig. 7. We connected the two channels to the same bus using a 
bus coupler (also from AltaData) on bus A. Bus B was not used 
for our experimentation.

2 Calculation of Fibonacci numbers is selected merely as an 
illustrative example and to avoid discussion of real but 

potentially sensitive processes.
3 https://www.altadt.com/product/enet2-1553/



Fig. 7. Fibonacci experimentation setup

2) Software
We used the AltaAPI dynamic link library (dll) with our C++ 

codebase. The application programming interface (API) allowed 
the computer to read and write to the bus as needed. We used a 
multi-threaded approach to mimic different devices on the bus. 
In other words, each node (host, participant) ran in a separate 
thread. The entire Fibonacci calculation occurs via 
communication between these devices over the MIL-STD-1553 
bus. Each node (i.e., host, participant) uses the dll to read and 
write to the bus. Effectively, the host node serves as a BC and 
the participant node serves as a RT. We use the tool AltaView 
(a graphical user interface (GUI) tool) to capture all traffic on 
the bus by serving as a BM.

3) Performance Evaluation
We evaluated the code size, size of the state matrix, and time 

required to generate a state matrix to evaluate the feasibility of 
implementing MTD in a real-time environment. We further 
evaluated the reliability of the algorithm (i.e., calculation of the 
correct Fibonacci sequence), and additional messages created 
and sent when MTD is used. The last quantity is used to 
determine if the inclusion of MTD could cause traffic congestion 
and unacceptable delays (i.e., overhead). 

B. Cyber Resilience Experiment
For the second experiment, we consider a scenario in which 

an attacker is performing reconnaissance on the MIL-STD-1553 
network and is attempting to exfiltrate data. We assume a similar 
network and the Fibonacci process as described in the previous 
experiment. We further assume an attacker is on the bus 
listening to all traffic to and from a specific address that the 
attacker believes corresponds to a “high-value”, target node. 

Without MTD the adversary can listen and capture all traffic 
to and from the target node. With MTD, the adversary is 
expected to capture less information since the adversary is not 
expected to know how the address changes. We quantify how 
much less information the adversary captures when using MTD.

1) Adversarial Model
In our experiment, we assume the adversary has direct access 

to the bus and can read/monitor all data on the bus. The 
adversary does not know the secret key shared offline. The 
adversary does not know the address of the target node, so it 
guesses as to the starting address.

We assume two different types of adversaries. The “static” 
adversary continues to listen at the same address for the entirety 
of the experiment. The “learning” adversary can detect when an 
MTD update occurs and then requires a certain number of 
frames to identify the target node’s new address.

2) Hardware
We utilize the same hardware as the previous experiment, 

but we add another ENET2-1553. In this arrangement, we have 
4 channels of MIL-STD-1553. We utilize two channels. One 
channel has a host node (BC), participant node (RT), and 
listening node (BM). The second channel has what we call the 
exfiltration node (exfil BM) as shown in Fig. 8. 

3) Software
The software uses the same AltaAPI dll to connect with the 

ENET2-1553 devices. For this experiment, we do not use the 
AltaView tool as we programmatically capture data for both the 
regular BM and exfil BM.

4) Cyber Resilience Metrics
We measure the number of messages from the BC to the 

target node that the exfiltration listening BM contains at the end 
of the experiment. This quantity is measured with and without 
the MTD algorithm running. We quantify the cyber resilience 
benefit of the MTD by comparing the quantities resulting when 
MTD is used and not used. 

Fig. 8. Adversarial cyber resilience experiment setup

5) Experimental Design
To capture the stochastic variability, we use the following 

experimental design. For the static adversary,

1) The target node starts at address 1.
2) Set the MTD update frequency to once per frame.
3) Randomly select an address (0-31) for the exfiltration 

BM to listen to. Each address is assigned equal 
probability of being chosen (1/31).
a) Perform 1000 generations of the Fibonacci 

calculation.
b) Compare the number of messages found on the 

exfiltration BM to the number of actual messages 
to the target node found on listening BM.

4) Repeat steps 3, 3a, and 3b 24 more times, for a total of 
25 trials.

5) Repeat steps 2) to 4) but change the update frequency 
to once per N frames where N = 6, 11, 16,…, 96.

For the learning adversary, we use the following process:
1) The target node starts at address 1.
2) Set the MTD update frequency to once per frame.

a) Perform 1000 generations of the Fibonacci 
calculation.

Laptop running 
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ENET2-1553 as 
Host node (BC)

Participant node (RT)
Listening node (BM)
on channel 1 Bus A

ENET2-1553 as 
exfil listening node (BM)
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Ethernet Switch
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AltaView

ENET2-1553 as 
Host node (BC)

Participant node (RT)
on channel 1 Bus A

AltaView GUI as BM
on channel 2 Bus A

Ethernet Switch



b) Assume the adversary requires L=2 frames to learn 
the target nodes new address.

c) Calculate the ratio of total messages sent to the 
target vs. the number of messages that the 
adversary missed because it took L frames to learn 
the new address.

3) Repeat steps 2b and 2c for L = 4,8, 16, 32, 64, 128
4) Repeat all steps 2-3 but change the update frequency to 

once per N frames where N = 6, 11, 16,…, 96.

VI. ANALYSIS AND RESULTS

A. MTD Algorithm Performance
The first experiment allowed us to determine various 

attributes about the codebase of the MTD algorithm. The second 
algorithm gave us the ability to quantify the benefit of using 
MTD. 

1) Code Size
We compiled the MTD algorithm in C++ to a dll in debug 

mode. The unoptimized code size is 1.6 MB. Many general-
purpose computing systems will have plenty of space to hold the 
dll. For smaller processing systems (i.e., microcontrollers), the 
code size may be a concern. Another aspect of code size is the 
size of the state matrix. The size depends on the number of 
columns generated. While the array is only 31 numbers, we 
calculated it based on 32 bytes for a single column due to the 
fact most memory would be allocated using a multiple of 2. For 
our work, we limited the number of columns to 65,536. At this 
size the state matrix occupies 2 MB as show in TABLE V.  

TABLE V. SIZE OF STATE MATRIX

Number of Columns Approximate Size (KB)

1 0.03125

4 0.125

16 0.5

64 2

256 8

1024 32

4096 128

16384 512

65536 2048

2) State Generation
In addition to the size of the code and state matrix, the 

performance needed to generate the state is another 
consideration. We benchmarked state generation using a modern 
desktop computer4 desktop computer to determine the speed of 
the algorithm. We determined that the maximum amount of time 
needed for state generation is slightly under 19 seconds as 
shown in Fig. 9. Both measuring directly and computing directly 

4 Intel Core i7-6700 CPU @ 3.40 GHz

(18594 ms / 65536 rounds) showed the speed to generate a 
column requires at least 283 microseconds as shown in Fig. 10. 
Slower processors will require more time, so this suggests that 
the state matrix should be generated before usage.

Fig. 9. Time to generate the state matrix

Fig. 10. Time to generate a column of the state matrix

3) Reliability
The two nodes correctly calculated the 24th Fibonacci 

number in every experiment that we conducted. Even when 
resetting the numbers back to 0 and 1 (i.e., start a new 
generation), the nodes calculated the correct number (0xB520 or 
46,368). This accuracy gives us confidence in the reliability of 
the MTD algorithm. As mentioned before MTD does come with 
a cost. The MTD commands do consume time on the bus that 
would otherwise be idle. For this simple experiment, a frame 
consisted of 2 messages:

 Message #1: Fibonacci numbers sent from host to 
participant node

 Message #2: Next Fibonacci number in the sequence sent 
from the participant node to the host node

When we add the MTD update command, we add one 
message to the two-message frame. This incurs an overhead of 
50%. If we send an MTD update every 2 frames (4 messages), 
we have an overhead of 25%. Therefore, the system designer has 
the option to send an MTD update every X frames as shown in 
TABLE VI. We use the following formulate to calculate 
overhead:

(# of messages with MTD) – (# of messages without MTD) 
# of messages without MTD

We multiply the result by 100 to get the percent overhead. 
As the reader can see, the impact of overhead to the system can 
be reduced or increase based on the frequency of sending the 
MTD update command.



TABLE VI. MTD FRAME OVERHEAD

MTD Frequency

 (# of frames between Update 
commands)

Framing Overhead (%)

1 50.0

2 25.0

3 16.7

5 10.0

10 5.0

20 2.5

50 1.0

100 0.5

B. Cyber Resilience Evaluation
Fig. 11 displays the results for the static adversary. Across 

all frequencies, the average fraction of messages exfiltrated is 
about 0.032, which is approximately 1/31, the pink horizontal 
line in Fig. 11. This result matches the theoretical expectation. 
If the adversary randomly selects an address to listen to and stays 
at that address, the target node will be at that address for 
approximately 1/31 of the messages. 

This result is somewhat counterintuitive because one would 
expect more frequent MTD updates to increase resilience. 
However, because we assume the static defender listens at the 
same address for the entire time, we cannot observe the impact 
the frequency of MTD updates has on a learning attacker.

Fig. 11. Static Adversary Results: update frequency = once per 1, 6, …, 96 
frames.

Fig. 12 displays the results for the learning adversary, and 
the different adversary learning rates are shown with different 
colors. In this figure, we can see the cyber resilience benefits of 
updating more frequently. When the update frequency is faster 
than the learning frequency, no messages are exfiltrated. When 
the update frequency is slower than the learning rate, we observe 

that a smaller difference between update frequency and learning 
rates results in fewer exfiltrated messages. 

For example, when the MTD update occurs every 10 frames 
and the adversary has a learning rate of 8 (i.e., 8 frames pass 
before the adversary learns the new address), the adversary 
exfiltrates 2 out of 10 messages on average. If the adversary can 
double its learning rate to 4 (i.e., 4 frames pass before the 
adversary learns the new address), the adversary can exfiltrate 6 
out of 10 messages on average.  (Note that for several MTD 
update frequency- learning rate combinations, no messages are 
exfiltrated. In these instances, the yellow dot (corresponding to 
learning rate of 128 frames) may be on top of the other colored 
dots.)

Fig. 12. Learning Adversary Results: MTD update frequency = once per 1, 26, 
51, 76, 101frames. Adversary learning rates denoted with different colors. L= 
implies that X frames must be sent for the adevsray to learn the new address.

From these results, we conclude that MTD can significantly 
(~97%) reduce the amount of messages exfiltrated by the static 
adversary. Against a learning adversary, more frequent MTD 
updates are more effective at decreasing exfiltration. If the 
update occurs more frequently than the adversary’s learning 
rate, exfiltration may be prevented entirely.

VII. CONCLUSIONS AND FUTURE WORK

The MTD algorithm worked well for MIL-STD-1553 and its 
bus-based topology. Other protocols such as CAN bus should 
work behave similarly as they are bus-based protocols as well. 
Non-bus protocols such as Spacewire (switched-based 
topology) would provide a different set of challenges to integrate 
the algorithm [19]. Synchronization in switched-based 
topologies may require a reliable transport at a higher protocol 
level.

While our focus has been on real-time protocols, the MTD 
algorithm has no assumption of the environment. It could be 
applied to non-real-time systems. For example, one could 
interpret the various columns as keys. A system could use the 
index value to synchronize which keys all participating nodes 
use at a given moment in time.

Our experimentation requires a host node. For MIL-STD-
1553, the BC is a natural host node. For CAN bus, all nodes can 



send at the same time and arbitration is built into the protocol. 
How is a host node selected for these protocols? Is a host node 
needed? Furthermore, peer-to-peer networks may need to 
operate without a host node. These concerns remain an open area 
of research.  

Last, we focused mainly on the usage of the algorithm. There 
are other research topics we could pursue to improve the 
performance of the algorithm as well as its entropy. For 
example, how many columns are required to encounter every 
address once? Maybe there is not a need for 65,536 columns. Is 
there an optimal number of columns? Does this optimal value 
change if we use a different offset mechanism? In general, there 
are more research questions we can pursue specific to 
optimizing the algorithm and its design.
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