This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2021-1623C

Moving Target Defense for Space Systems

Chris Jenkins, Eric Vugrin, Indu Manickam,
Nicholas Troutman, Jacob Hazelbaker, Sarah
Krakowiak
Sandia National Laboratories
Albuquerque, USA
{ cdjenk, edvugrin, imanick, ntroutm, jshazel,
skrakow } @sandia.gov

Abstract—Space systems provide many critical functions to the
military, federal agencies, and infrastructure networks. Nation-
state adversaries have shown the ability to disrupt critical
infrastructure through cyber-attacks targeting systems of
networked, embedded computers. Moving target defenses (MTDs)
have been proposed as a means for defending various networks
and systems against potential cyber-attacks. MTDs differ from
many cyber resilience technologies in that they do not necessarily
require detection of an attack to mitigate the threat. We devised a
MTD algorithm and tested its application to a real-time network.
We demonstrated MTD usage with a real-time protocol given
constraints not typically found in best-effort networks. Second, we
quantified the cyber resilience benefit of MTD given an
exfiltration attack by and adversary. For our experiment, we
employed MTD which resulted in a reduction of adversarial
knowledge by 97%. Even when the adversary can detect when the
address changes, there is still a reduction in adversarial knowledge
when compared to static addressing schemes. Furthermore, we
analyzed the core performance of the algorithm and characterized
its unpredictability using nine different statistical metrics. The
characterization highlighted the algorithm has good
unpredictability characteristics with some opportunity for
improvement to produce more randomness.

Keywords—cyber resilience, moving target defense, intelligent
system scrambling, real-time network security, cybersecurity, MIL-
STD-1553, machine learning

[. INTRODUCTION

Space systems provide many critical functions to the
military, federal agencies, and infrastructure networks. Nation-
state adversaries have shown the ability to disrupt critical
infrastructure through cyber-attacks targeting systems of
networked, embedded computers. This knowledge raises
concern that space systems could face similar threats, and
increasing the resilience of space systems to cyber-attacks is a
growing area of research. Many proposed cyber resilience
technologies require detection of threats before mitigative
actions can be taken. Because reliable detection of cyber threats
is still a significant challenge to terrestrial systems, reliance on
threat detection for cyber resilience can be a risky strategy.

Moving target defenses (MTDs) have been proposed as a
means for defending various networks and systems against
potential cyber-attacks. MTDs differ from many cyber resilience
technologies in that they do not necessarily require detection of
an attack to mitigate the threat. However, little empirical
evidence exists to prove that MTDs do improve cyber resilience.
Furthermore, MTDs increase operational complexity. For real-

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Josh Maxwell
Qualtrics
Albuquerque, NM
jmaxwell@qualtrics.com

Richard Brown
Tennessee Technological University
Cookeville, Tennessee
Brown, Richard rgbrown42@tntech.edu

time systems, this complexity could potentially result in
unacceptable delays, decreased reliability, and other negative
impacts.

This paper describes research and development of a MTD
algorithm that can be used to defend real-time space systems
against potential cyber-attacks. This paper specifically seeks to
address the two following research questions:

1) Does the use of the MTD algorithm introduce
unacceptable, negative impact on the operations of a selected,
space platform?

2) Does the use of the MTD algorithm provide measurable
benefits to the cyber resilience of a selected, space platform?

Because of the widespread use of MIL-STD-1553 buses in
avionics and space systems [1], we selected a MIL-STD-1553
bus system as our exemplar space platform for conducting our
research.

The rest of this paper is as follows: Section II provides
background on MTD, the MIL-STD-1553 protocol, and related
work. Section III describes the algorithm design, and how we
have integrated the algorithm into the MIL-STD-1553 protocol.
Section IV provides a unpredictability characterization of the
MTD algorithm that assesses how adjustments to MTD
algorithm features can affect the ability of an adversary to
potentially defeat the MTD. Section V describes reliability and
cyber resilience experiment designs, and Section VI contains
results from the experiments. Section VII provides our
conclusions and future work.

II. BACKGROUND

A. Moving Target Defense

MTDs create dynamic, seemingly uncertain environments
which seek to confuse the attacker and attempt to defeat cyber
threats [2]. Attackers attempting to perform network discovery,
exfiltrate data, and other malicious activities will observe that
key system attributes change in a seemingly chaotic and random
manner. In truth, these changes are choreographed among the
system components in a manner such that they know when and
how the changes will occur.

For example, a webserver may change its IP address every
day to a different, randomly selected address to thwart an
attacker’s attempt to hack the webserver. Another option is to
randomize the port that the webserver listens on to respond to

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

requests. Other more complex variations exist as well. To our
knowledge, MTD has mainly been applied in traditional
information technology (IT) environments [3]-[5], and Chavez
et. al’s research is one of the few efforts applying MTDs to
industrial control systems [6]. Furthermore, most previous
studies into MTD effectiveness have been qualitative and
survey-based while some attempt to quantify the benefits[7]-

[9].

Space systems typically have components and on-vehicle
networks that are not IP-based. They utilize real-time protocols
which must adhere to determinism, predictability, reliability,
and real-time deadlines. Furthermore, some protocols do not
have cybersecurity protection mechanisms (e.g., authentication,
encryption). MTD provides an opportunity to add cyber
resilience in the absence of typical cybersecurity controls.
However, the potential impacts of MTD on space systems’
operations and resilience have not been previously quantified.

B. MIL-STD-1553

MIL-STD-1553 is a military standard for transmitting data
on a reliable data bus [10]. Typical implementations use a dual-
redundant bus in failover mode to improve reliability. This bus
is typically found in military systems (e.g., weapon systems,
aircraft, helicopters) as well in space systems (e.g., space
satellites). Though the protocol was invented in the 1970s, it has
remained a staple as a command and control network for a
variety of systems due to its reliability.

The bus gains much of its reliability by using a dual-
redundant bus and a master-slave communication scheme. The
protocol specifies a bus A and a bus B where bus B is idle unless
bus A detects no traffic. Since only one device uses the bus at a
time (i.e., time-division multiplexing), collisions are avoided on
the bus—assuming each device on the bus adheres to the
protocol.

The MIL-STD-1553 uses three types of devices: a bus
controller (BC), up to 31 remote terminals (RTs), and a bus
monitor (BM). The BC controls all communication on the bus.
The BC sends commands on the bus which instruct the specific
RT. The RT may consume or send data based on the command.
All other RTs remain silent on the bus until they are instructed
by the BC. The BM records all commands and data that are sent
on the bus. The BM never sends any data; it is a read-only device
and serves the same purpose as a flight recorder on an airplane.

The MIL-STD-1553 protocol has 3 types of data within the
protocol: command word (CW), data word (DW), and status
word (SW). Each word type is 16 bits (2 bytes) in length. The
command word is only sent by the BC and commands each RT.
Both the BC and RT send data words based on the CW sent by
the BC. Status words are sent only by RTs and inform the BC of
correct reception of the CW and DWs (if present). Furthermore,
each bit on the bus consumes one microsecond, and the bus
operates at | MHz Each word consists of a 3 microsecond sync,
16 bits (16 microseconds), and one parity bit (1 microsecond).

The MIL-STD-1553 has two types of messages: non-
broadcast (i.e., unicast) and broadcast. As the names imply, non-
broadcast messages result in communication between 2 devices
while broadcast messages result in communication between a
sending device and all receiving devices on the network. These

messages are organized into frames. A frame is an organized
collection of messages. A network has 2 or 3 types of frames. A
minor frame represents the highest frequency in the network and
represents the base unit of scheduling. A major consists of one
or more minor frames (e.g. 10 minor frames). Some networks
utilize a higher frame structure called super frames, which
consists of one or more major frames. For example, a minor
frame may repeat at a frequency of 50 Hz. Collecting 8 minor
frames into a major frame produces a frequency of 6.25 Hz for
the major frame. Collecting 4 major frames into a super frame
produces a frequency of 1.56 Hz for the super frame.

The MIL-STD-1553 protocol does not include
authentication or encryption features. The lack of these
protections has raised concerns about risks that systems using
this protocol are vulnerable to cyber-attacks.

C. Related Work

Attempts have been made to improve the security of MIL-
STD-1553 wusing a sequence-based anomaly detection
methodology. In particular, Stan et al. used 3 different machine
learning models to detect unauthorized data transmissions and
spoofing attacks [11]. The authors also characterize the bus by
learning what messages are sent and the frequency of such
messages. As mentioned before, this paper focuses on anomaly
detection.

Recent work has examined MTD and other real-time
protocols. The controller area network bus or CAN bus has a
similar network topology as MIL-STD-1553. The CAN ID
Shuffling Technique (CIST) utilizes encryption and hashing to
produce a sequence-dependent shuffling of CAN IDs on a per-
message basis [12]. For each message, up to two keyed-based
message authentication codes (i.e., HMACs) and one encryption
is needed. The technique requires a variety of different crypto-
variables: group keys, one-time keys, seeds, encryption keys,
etc. With all the aforementioned keys and algorithms, the
authors devised a scheme where the CAN ID can change per
message (typically CAN IDs don’t change).

Brown et al. suggested a model which uses a seed value and
dynamic state called dynamic address validation array of
DAVA [13]. In their scheme, each engine control unit or ECU
invalidates its CAN ID when needed, and the other devices use
an algorithm to synchronize the new CAN ID for the respective
node. As with CIST the CAN IDs change but without all the
state and algorithm complexity.

III. MTD ALGORITHM AND INTEGRATION

Use of the MTD algorithm within a real-time protocol
requires that certain constraints must be addressed. These key
constraints are as follows:

¢ Keep underlying protocol - These protocols have been
designed for determinism, predictability, reliability, and
real-time operation. By using the existing protocol as is,
we seek to avoid introducing effects which detract from
the real-time properties of these protocols.

e Dynamic address generation - Each node in the
network should employ the same MTD algorithm,
produce the same address state, and index disjoint
addresses as compared to all other nodes in the network.

Shared Nonce

E

State Generation

Randomized Array [l
n! possible orderings
for array of size n

[d3Ta6[. [f2[d9]

=

G

New nonce is used

again to produce

more randomized
arrays

811931748206 .|

Fig. 1. State generation architecture

¢ Synchronization — All devices on the network must be
synced up as the addresses change over time. Each
device must understand how and when addresses change.
Extended loss of synchronization could have
catastrophic consequences for real-time protocols.

o Authenticity - The devices on the network should be
able to decipher authentic MTD commands from non-
authentic MTD commands. Using analog attributes,
message authentication codes, message integrity checks,
etc., with the MTD command provides an avenue to
ensure only valid MTD commands are followed.

Our algorithm assumes only one address will be used at a
time. However, nothing precludes nodes from utilizing multiple
dynamic addresses concurrently or splitting up a message and
sending the message parts to different addresses.

A. MTD Algorithm

At a high level, our MTD algorithm consists of 3
architectural components: 1) a shared key and an ephemeral
token (i.e., cryptographic nonce), 2) state generation, and 3) the
manner of selecting an address from the state (i.e., indexing).

We assume that the shared key is generated and shared
offline (i.e., not sent on the bus) between the participating nodes
while the ephemeral token can be sent on the bus. Our algorithm
uses a pseudo-random number generator (PRNG) to assist with
state generation. In general, PRNGs utilize a variety of
underlying algorithms to generate numbers such as: 1) a naive
generator using modular arithmetic (e.g., linear-feedback shift
register), 2) a keyed-hash message authentication code
(HMAC)-based generator, or 3) a stream/block cipher-based
generator. Lastly, the manner of selecting an address (i.e.,
indexing) can vary. For example, the new address can be
selected with a fixed index or the index can move within the
state. Below we will describe the architecture’s components.

1) Keys

Two keys are needed for the MTD algorithm: shared and
ephemeral. The shared key is only shared between nodes on the
network participating in MTD. The ephemeral key (i.e., nonce)
is shared between all participating nodes but not necessarily kept
private from others (i.e., non-participating nodes or adversaries).
Both keys are 128-bit in length, and the algorithm can employ
the use of larger keys.

2) State Generation

Each participating node uses the state to select the new
address. The state generation occurs over a set of rounds as
shown in Fig. 1. Each round has 3 parts:

e Random byte generation
e Column (i.e., array) generation

e Permutation

a) Random Byte Generation

Our algorithm uses a PRNG to assist with state generation.
The PRNG attempts to generate a non-repeating sequence of
bytes (i.e., 8 bits) as shown in Fig. 2. Typically, the PRNG
begins its sequence by utilizing a seed value. Different seed
values produce different non-repeating sequences. In general,
PRNGs utilize a variety of underlying algorithms to generate
numbers. For our algorithm, we used a keyed-hash message
authentication code (HMAC) based generator.

For MIL-STD-1553 usage, the PRNG uses the shared key
and ephemeral key to produce 64 bytes. Given that each byte has
arange between 0 — 255, there is a chance that some of the bytes
will be duplicates. As more bytes are produced, the chance of a
duplicate byte increases.

b) Conditioner

The conditioner constructs addresses from those bytes
specific to the protocol being used. Using the 64 bytes from the
random byte generation stage, the conditioner:

e Creates an array of 31 random bytes from the 15t 31 bytes
of the 64 generated bytes (33 remaining bytes)

e Reduces each byte to a value between 0 and 30

e Removes duplicate bytes and inserts missing address
values

e Removes addresses not available for usage on the
network (reduces array size)

e Shuffles the array to add more randomness

Shared
key

]]

|

b613679a0814d9ec772195d778c35fc5f1697c493715653¢c6¢712144292¢5ad

Nonce

Fig. 2. Byte generation

At the end of these set of steps, the state consists of a single
array which is a random ordering of addresses from 0 to 30.
Given that there are 31 possible addresses for each cell in the
column, there are 31! possible unique columns as shown in Fig.
3.

¢) Permutation

The last step of state generation produces a new ephemeral
key using these steps:

e Take the last 32 bytes (from the original 64) and split
them into two 16-byte halves

e XOR those halves resulting in a 16-byte value

e Using the 32" byte (the remaining byte from the original
64 bytes) perform left and right circular rotations on
alternating set of 4 bytes (4 rotations on the 16-byte
value).

This process continues until the required number of arrays
(i.e., columns or state arrays) has been produced (maximum of
65536 columns for our work) as shown in Fig. 4

b613679a0814d9ec772f95d778¢35fc5f1697¢493715653¢6¢712144292¢S5ad

Ensure each byte is less
than some max value

Remove addresses not
available for MTD
ﬂ

Shuffle array to add

more randomness to
ordering

Randomized Array
n! possible orderings
for array of size n

[81973[4[8J20[6 .]

Fig. 3. Column conditioning

3) Indexing

Once we have the MTD state generated, we need a way to
select the new address from the state. We use two values to pick
the new address: a 16-bit index value and address value. The
index value selects the column (i.e., array) and the address value
selects the offset into the column. We have 4 different
combinations of selecting the new address which we label as
static, current, and linear-static, linear-current.

a) Static

b613679a0814d9ec77295d778¢35fc5£f1697¢493715653¢6¢712144292¢5ad

‘ Cut into halves ‘

[ec[77] .. Jfi]69] [ad]ec] ..]c5ad]

<

Exclusive-OR

[41]9b[.. [34[ca]

Integer Circular Rotate

Left, right, left, right

New
[d3]a6[.. [f2]d9]

Nonce

Fig. 4. Permutation

This offsetting mechanism uses the same value for the
address value. Typically, this value is set to the non-MTD
address of the node (i.e., device) on the network. For example,
consider the case illustrated in Fig. 5. Assume that an index
value of 0, and a node has a starting address of 5. That node is
assigned the address located at offset 5 (zero-based offset value).
For this state, the node is assigned a value of 20. If the index
value changes to 1, 2, or 3, then the assigned address changes to
19, 1, or 30 respectively. The offset value stays at 5 (the starting
address) regardless of the index value (i.e., the selected column).

b) Current

This offsetting mechanism uses the current address of the
node for the address value. For example, consider the case
illustrated in Fig. 5 and assume a starting address of 3. The first
selection of the new address with use an offset value of 3 (zero-
based offset value). The new address has a value of 4. If the
index value changes to 1, use an offset value of 4 to find the next
address to be 5. If the index value then changes to 3, the offset
value changes to 5, and the new address will be 30. Therefore,
for each index, the same address is not likely to be returned.

¢) Linear
This mechanism uses the index value and breaks it up into
sub-values. The first ten bits are used as the index (i.e., limits the
number of columns to 1024). The remaining six bits are used to

z
o

CIsTwltlsiselc[T]7

Randomized Array
n! possible orderings
for array of size n

Select subset of
arrays/columns

(default = 1)
Different addressing
modes result in
different byte offsets
based on index.

Combine into a new
address

1

New address

Fig. 5. State matrix

construct the offset based on the linear combination of these
values. We use the equation:

4a+b+cmod3l =d),

where a is a 3-bit unsigned number, b is a 3-bit unsigned number,
c is the current (or initial) address, and d is the offset value. The
linear combination produces an offset value which is used to
select the new address. A breakdown of the 4 combinations are
listed in TABLE 1.

TABLE L. OFFSET SELECTION TABLE
Offset Selection Mechanism Index Interpretation
16-bit unsigned Linear combination
integer
% Initial address | Static Linear-static
- D
< @ -
2P Current address | Current Linear-current

B. MIL-STD-1553 Integration

In order to use the algorithm with the MIL-STD-1553
protocol, our mechanism must integrate with the existing
protocol. Our design uses 4 MTD commands based on the
existing MIL-STD-1553 command structure. The four
commands are:

e MTD Start — this command sends a 128-bit nonce, the
size of the state to generate, offsetting mechanism, and
any addresses which are not permitted for use in the state
matrix.

e MTD Verify — this command sends a 256-bit keyed-hash
message authentication code (HMAC) to the requestor.
This enables the host node (e.g., BC) to verify all
participating nodes have the same state without leaking
information.

e MTD Update — this command sends an index (i.e.,
indirect) value which participating nodes use to select
their new address. In our experiments, the index value
selects the state column.

e MTD Stop — this command instructs all participating
nodes to stop listening to MTD Update commands. The
nodes can either revert to their initial address or stay at
their current address. The host node would indicate this
choice in the MTD Start command.

The four MTD commands and their respective number of
command words and data words are listed in TABLE II. To
minimize the impact on the existing frame structure, we
attempted to limit the additional words needed to implement our
scheme. Based on our scheme, we determined the MTD Update
command consumes a majority of the cost of adding MTD to an
existing frame structure. For the MTD Update command, we
require one command word and one data word which translates
into 40 microseconds.

TABLE II. MTD COMMANDS

Command CWs DWs Broadcast Time sent

MTD 1 9-16 Yes 1

Start

MTD 1 16 No Number of

Verify MTD
nodes

MTD 1 1 Yes Every n

Update frames

MTD 1 1 Yes 1

Stop!

As stated before, these commands could be spoofed. For our
design, we suggest using a 256-bit HMAC (16 DWs) when
sending any MTD commands. This would increase the amount
of time the MTD Update command consumes on the bus. A
variety of schemes exist to construct an appropriate message
authentication code (MAC) and are outside of the scope of this
paper. To keep devices in sync, a MTD Update command could
be sent at the end of minor, major, and/or super frames.

IV. UNPREDICTABILITY OF THE ADDRESS ASSIGNMENTS

The MTD algorithm is designed to generate sequences of
address updates for each node over time that are complex, avoid
repeating patterns, and are difficult for an attacker to predict.
The MTD algorithm contains several parameters that can be
adjusted to affect the unpredictability of the address sequence.
In this section, we analyze how different system parameter
settings affect the inherent unpredictability of the MTD-
generated sequences. We draw on concepts from information
theory to perform this analysis without having to make explicit
assumptions about an attacker’s capabilities.

A. System Parameters for Evaluation

We examined two system parameters, the offset method and
the number of state matrix columns. The specific values tested
for this experiment are shown in TABLE III. In addition, we

! Technically, the MTD Stop command does not require any
data words. However, MIL-STD-1553 doesn’t support non-
mode code broadcast with zero data words.

examined the effect of updating the state matrix on address
unpredictability, as detailed in the next section.

TABLE III. SYSTEM PARAMETERS ANALYZED FOR THE
UNPREDICTABILITY STUDY
System Parameter Values
Offset Method Static, Current, Linear-S,
Linear-C
State Matrix Columns 128, 256, 512
State Matrix Updates No Updates, 1 Update

B. Experimental Setup

The input data for this experiment is a sequence of addresses
generated by the MTD algorithm. This sequence can essentially
be treated as a time series, where each timestep corresponds to
an address update. For simplicity, we limit our analysis to
address assignment for a single node, and leave it as a future
effort to ensure that the address assignments are independent
across nodes.

In total we generated 3,720 address sequences, and each
sequence consists of 4,096 address updates. The following
process was used to generate the address sequences:

1. Create 10 state matrices using 10 PRNG seeds.

2. For each state matrix, generate 31 address sequences for
each of the 12 unique combinations of offset and number
of state matrix columns.

3. To simulate the effect of state matrix updates, create 5 pairs
of state matrices at random from the set of 10.

a) For each pair, extract the first half (2,048 address
updates) for all sequences generated using the two state
matrices.

b) Concatenate the two half sequences from each state
matrix for each parameter combination. This will
simulate the effect of switching state matrices halfway
through the sequence while retaining the same system
parameters.

Given this data set of address sequences, we used the
following process to evaluate unpredictability:

1. Calculate a set of nine unpredictability metrics (detailed in
Section C), and average each metric over the 31 address
sequences per state matrix and unique parameter setting.

2. Compute the Overall Predictability Metric per state matrix
and parameter setting by averaging across all metric
values.

3. For each system parameter under analysis, for example the
choice of offset method, average across all address
sequences that use the same parameter value.

C. Unpredictability Metrics

We use the following set of nine metrics to quantify
unpredictability of the MTD-generated address sequences. The
metrics quantify entropy, complexity, and turbulence using
different criteria. We use the term “unpredictability” to represent
the difficulty of predicting the sequencing as measured by the

group of these nine metrics. Third party python packages were
used to implement the permutation, spectral, sample, and SVD
entropy, as well as the Lempel-Ziv complexity [14].

e Shannon’s Entropy: Measures the uniformity of address
assignments for node x using an empirical estimate of
frequency.

e Lempel-Ziv Complexity: Measures complexity based on
the compressibility of the time series [15].

e Sample Entropy: Determines the regularity and patterns
in the data and how that varies over increasing window
sizes [16].

e Permutation Entropy: Measures how subsets of the time
series relate to each other based on the ordinal rankings
of values within each subset [17].

e Spectral Entropy: Measures the distribution of
frequencies in the data by computing the entropy of the
power spectral density of the data.

e SVD Entropy: Computes the entropy of the singular
values of a matrix built from subsets of the time series.

The remaining 3 metrics were generated using a transition
matrix. This matrix is an N x N matrix where N is the number
of addresses. The entry in the i row and j* column represents
the empirical probability that a node assigned to address 7 will
subsequently be assigned to node ;.

e Transition Entropy: Averages the Shannon’s entropy of
each row of the transition matrix.

e Transition Uniformity: Averages the distance between
each row distribution and a uniform distribution [18].

e Transition Turbulence: Measure the weighted edge
density of the transition matrix, with the weights
determined by the effective degree of each node [18].

All of the metrics were normalized to the range [0,1], where
1 indicates higher unpredictability. Given that each metric
evaluates unpredictability based on a different set of criteria, we
also compute an Overall Unpredictability score by averaging
across the nine metric values. Due to differences in sensitivity,
interpretation, and values between the nine metrics, this score
should not be treated as an absolute measure of unpredictability.
Instead, the score can be used to evaluate the effect of system
parameters on unpredictability, by examining trends in whether
the score increases or decreases as the system parameters are
varied.

D. Unpredictability Study Results

The Overall Unpredictability Scores for each system
parameter setting are shown in TABLE IV. In addition, we plot
the averaged metric scores for each system parameter setting in
Fig. 6.

TABLE IV. OVERALL UNPREDICTABILITY SCORE FOR SYSTEM
PARAMETERS
Number of Overall Unpredictability Score
State Matrix Columns
512 0.8497 +0.0306
256 0.8456 £0.0395
128 0.8399 + 0.0443
Offset Method Overall Unpredictability Score
Linear-C 0.8797 £ 0.0006
Linear-S 0.8795 + 0.0008
Current 0.8183 +0.0067
Static 0.8002 £ 0.0155
State Matrix Updates Overall Unpredictability Score
1 State Matrix Update 0.8482 + 0.0349
No Updates 0.8451 +£0.0389

All scores exceed 0.8. Given a maximum possible score of
1.0, these scores provide confidence in the MTD algorithm. Use
of the linear methods results in higher unpredictability scores
than those resulting from the current and static approaches. The
number of columns and use of state matrix updates does not
appear to have a significant effect on the Unpredictability
Scores.

Linear methods, in particular Linear-C, produces sequences
that have higher unpredictability than the other offset methods.
Updating the state matrix at least once as well as increasing the
number of state matrix columns does also slightly improve
unpredictability.

As shown in Fig. 6, the set of unpredictability metrics are
either unaffected or similarly affected by the parameter values.
In particular the metrics based on the transition matrix, the
Transition Turbulence and the Transition Uniformity, are the
most sensitive to changes in the system parameters.

This experiment allows us to demonstrate quantitatively that
the Linear-C or Linear-S offset methods are preferable and
provide a set of tools to evaluate future parameter changes.

V. RELIABILITY AND RESILIENCE EXPERIMENTS

We considered two experiments to evaluate the MTD
algorithm. We use the first experiment to assesses whether “the
use of the MTD algorithm introduces unacceptable, negative
impact on the operations” on MIL-STD-1553 hardware. We use
the second experiment to assess whether “use of the MTD
algorithm provides measurable benefits to the cyber resilience”
of an application running on the MIL-STD-1553 network

Fig. 6. Comparison of unpredictabilty metrics, averaged over all address

A Lempel Ziv A Permutation Entropy Transition Shannon Entropy
Shannon Entropy 4 Spectral Entropy A Transition Uniformity
A Sample Entropy A SVD Entropy Transition Turbulence
1.04 4 &) A Ta [} F)
A A
0.9 4 A A
A
A A
A A ry A A A
— 4 A
2
[
5
> 0.8
=
£
=
E A A
a
c
> 0.7+
w
o
o
s
< A
0.6 4 A A
0.5 1
A A
&
(1,@"° & z?,\'c’ @gf‘ A B & &
& ol N Number of State Matrix Columns
Offset Method

sequences, when varying the offset method (/eff) and number of state matrix
columns (right). The offset methods are arranged from lowest to highest overall
unpredictability scores per TABLE IV.

A. Fibonacci Experiment

For the first experiment, we consider a hardware setup that
is designed to calculate Fibonacci numbers?. Starting with the
first two Fibonacci numbers (0 and 1), two nodes (i.e., BC and
RT) calculate up to the 24™ Fibonacci number (46,368). We
chose this number as it is the largest 16-bit unsigned value which
fits into a single DW. After reaching this value (termed a
generation), the process resets with the first two Fibonacci
numbers.

One node serves as the host, and the other node serves as the
participant node. The host node sends two Fibonacci numbers
(e.g., 8, 13), and the participant node sends the result back. The
host uses the result and sends the next two Fibonacci numbers
(e.g., 13, 21). The sequence continues until the host receives the
24t Fibonacci number.

1) Hardware

The experimental hardware setup consists of a single
ENET2-1553 device from AltaData Technologies?. The device
has 2 dual-redundant (i.e., two buses) channels. We used one
channel for the BC and RT and another for the BM as shown in
Fig. 7. We connected the two channels to the same bus using a
bus coupler (also from AltaData) on bus A. Bus B was not used
for our experimentation.

2 Calculation of Fibonacci numbers is selected merely as an
illustrative example and to avoid discussion of real but
potentially sensitive processes.

3 https://www.altadt.com/product/enet2-1553/

Laptop running
AltaView

(]

Ethernet Switch

ENET2-1553 as
Host node (BC)
Participant node (RT)
on channel 1 Bus A

AltaView GUI as BM
on channel 2 Bus A

@ 1553 Bus D

Fig. 7. Fibonacci experimentation setup

2) Software

We used the AltaAPI dynamic link library (dll) with our C++
codebase. The application programming interface (API) allowed
the computer to read and write to the bus as needed. We used a
multi-threaded approach to mimic different devices on the bus.
In other words, each node (host, participant) ran in a separate
thread. The entire Fibonacci calculation occurs via
communication between these devices over the MIL-STD-1553
bus. Each node (i.e., host, participant) uses the dll to read and
write to the bus. Effectively, the host node serves as a BC and
the participant node serves as a RT. We use the tool AltaView
(a graphical user interface (GUI) tool) to capture all traffic on
the bus by serving as a BM.

3) Performance Evaluation

We evaluated the code size, size of the state matrix, and time
required to generate a state matrix to evaluate the feasibility of
implementing MTD in a real-time environment. We further
evaluated the reliability of the algorithm (i.e., calculation of the
correct Fibonacci sequence), and additional messages created
and sent when MTD is used. The last quantity is used to
determine if the inclusion of MTD could cause traffic congestion
and unacceptable delays (i.e., overhead).

B. Cyber Resilience Experiment

For the second experiment, we consider a scenario in which
an attacker is performing reconnaissance on the MIL-STD-1553
network and is attempting to exfiltrate data. We assume a similar
network and the Fibonacci process as described in the previous
experiment. We further assume an attacker is on the bus
listening to all traffic to and from a specific address that the
attacker believes corresponds to a “high-value”, target node.

Without MTD the adversary can listen and capture all traffic
to and from the target node. With MTD, the adversary is
expected to capture less information since the adversary is not
expected to know how the address changes. We quantify how
much less information the adversary captures when using MTD.

1) Adversarial Model
In our experiment, we assume the adversary has direct access
to the bus and can read/monitor all data on the bus. The
adversary does not know the secret key shared offline. The
adversary does not know the address of the target node, so it
guesses as to the starting address.

We assume two different types of adversaries. The “static”
adversary continues to listen at the same address for the entirety
of the experiment. The “learning” adversary can detect when an
MTD update occurs and then requires a certain number of
frames to identify the target node’s new address.

2) Hardware
We utilize the same hardware as the previous experiment,
but we add another ENET2-1553. In this arrangement, we have
4 channels of MIL-STD-1553. We utilize two channels. One
channel has a host node (BC), participant node (RT), and
listening node (BM). The second channel has what we call the
exfiltration node (exfil BM) as shown in Fig. 8.

3) Software
The software uses the same AltaAPI dll to connect with the
ENET2-1553 devices. For this experiment, we do not use the
AltaView tool as we programmatically capture data for both the
regular BM and exfil BM.

4) Cyber Resilience Metrics
We measure the number of messages from the BC to the
target node that the exfiltration listening BM contains at the end
of the experiment. This quantity is measured with and without
the MTD algorithm running. We quantify the cyber resilience
benefit of the MTD by comparing the quantities resulting when
MTD is used and not used.

Laptop running

T Ethernet Switch

Q_%

(1553 Bus)

ENET2-1553 as
Host node (BC)
Participant node (RT)
Listening node (BM)
on channel 1 Bus A

ENET2-1553 as
exfil listening node (BM)
on channel 2 Bus A

Fig. 8. Adversarial cyber resilience experiment setup

5) Experimental Design
To capture the stochastic variability, we use the following
experimental design. For the static adversary,

1) The target node starts at address 1.

2) Set the MTD update frequency to once per frame.

3) Randomly select an address (0-31) for the exfiltration
BM to listen to. Each address is assigned equal
probability of being chosen (1/31).

a) Perform 1000 generations of the Fibonacci
calculation.

b) Compare the number of messages found on the
exfiltration BM to the number of actual messages
to the target node found on listening BM.

4) Repeat steps 3, 3a, and 3b 24 more times, for a total of
25 trials.

5) Repeat steps 2) to 4) but change the update frequency
to once per N frames where N =6, 11, 16,..., 96.

For the learning adversary, we use the following process:

1) The target node starts at address 1.

2) Set the MTD update frequency to once per frame.

a) Perform 1000 generations of the Fibonacci
calculation.

b) Assume the adversary requires L=2 frames to learn
the target nodes new address.

c) Calculate the ratio of total messages sent to the
target vs. the number of messages that the
adversary missed because it took L frames to learn
the new address.

3) Repeat steps 2b and 2¢ for L = 4,8, 16, 32, 64, 128
4) Repeat all steps 2-3 but change the update frequency to
once per N frames where N =6, 11, 16,..., 96.

VI. ANALYSIS AND RESULTS

A. MTD Algorithm Performance

The first experiment allowed us to determine various
attributes about the codebase of the MTD algorithm. The second
algorithm gave us the ability to quantify the benefit of using
MTD.

1) Code Size

We compiled the MTD algorithm in C++ to a dll in debug
mode. The unoptimized code size is 1.6 MB. Many general-
purpose computing systems will have plenty of space to hold the
dll. For smaller processing systems (i.e., microcontrollers), the
code size may be a concern. Another aspect of code size is the
size of the state matrix. The size depends on the number of
columns generated. While the array is only 31 numbers, we
calculated it based on 32 bytes for a single column due to the
fact most memory would be allocated using a multiple of 2. For
our work, we limited the number of columns to 65,536. At this
size the state matrix occupies 2 MB as show in TABLE V.

TABLE V. SIZE OF STATE MATRIX
Number of Columns Approximate Size (KB)
1 0.03125
4 0.125
16 0.5
64 2
256 8
1024 32
4096 128
16384 512
65536 2048

2) State Generation

In addition to the size of the code and state matrix, the
performance needed to generate the state is another
consideration. We benchmarked state generation using a modern
desktop computer* desktop computer to determine the speed of
the algorithm. We determined that the maximum amount of time
needed for state generation is slightly under 19 seconds as
shown in Fig. 9. Both measuring directly and computing directly

4 1Intel Core i7-6700 CPU @ 3.40 GHz

(18594 ms / 65536 rounds) showed the speed to generate a
column requires at least 283 microseconds as shown in Fig. 10.
Slower processors will require more time, so this suggests that
the state matrix should be generated before usage.

Elapsed Time (ms) vs Rounds

20000 18594
18000
16000
14000
12000
10000

2000

6000 4696

4000
2000 1130
o 0 1 4 17 69 E -

1 4 16 64 256 1024 4096 16384 65536

Average Time (us) vs Rounds
400

378

350

300 750 282 279 272 273 275 286 283
250
200
150
100
50
0

1 4 64 256

Fig. 9. Time to generate the state matrix

Fig. 10. Time to generate a column of the state matrix

3) Reliability

The two nodes correctly calculated the 24™ Fibonacci
number in every experiment that we conducted. Even when
resetting the numbers back to 0 and 1 (i.e., start a new
generation), the nodes calculated the correct number (0xB520 or
46,368). This accuracy gives us confidence in the reliability of
the MTD algorithm. As mentioned before MTD does come with
a cost. The MTD commands do consume time on the bus that
would otherwise be idle. For this simple experiment, a frame
consisted of 2 messages:

e Message #1: Fibonacci numbers sent from host to
participant node

e Message #2: Next Fibonacci number in the sequence sent
from the participant node to the host node

When we add the MTD update command, we add one
message to the two-message frame. This incurs an overhead of
50%. If we send an MTD update every 2 frames (4 messages),
we have an overhead of 25%. Therefore, the system designer has
the option to send an MTD update every X frames as shown in
TABLE VI. We use the following formulate to calculate
overhead:

(# of messages with MTD) — (# of messages without MTD)
of messages without MTD

We multiply the result by 100 to get the percent overhead.
As the reader can see, the impact of overhead to the system can
be reduced or increase based on the frequency of sending the
MTD update command.

1024 4096 16384 65536

TABLE VI. MTD FRAME OVERHEAD
MTD Frequency Framing Overhead (%)
(# of frames between Update
commands)
1 50.0
2 25.0
3 16.7
5 10.0
10 5.0
20 2.5
50 1.0
100 0.5

B. Cyber Resilience Evaluation

Fig. 11 displays the results for the static adversary. Across
all frequencies, the average fraction of messages exfiltrated is
about 0.032, which is approximately 1/31, the pink horizontal
line in Fig. 11. This result matches the theoretical expectation.
If the adversary randomly selects an address to listen to and stays
at that address, the target node will be at that address for
approximately 1/31 of the messages.

This result is somewhat counterintuitive because one would
expect more frequent MTD updates to increase resilience.
However, because we assume the static defender listens at the
same address for the entire time, we cannot observe the impact
the frequency of MTD updates has on a learning attacker.

0.35 T T

O Mean
--------------- 95% Cl| |

o
w
T

0.25

Fraction of Messages Exfiltrated
e 2 o
- (9] N

g

o

@
T

c
o}

10 20 30 40 50 60 70 80 90
MTD Update Frequency = 1/N

Fig. 11. Static Adversary Results: update frequency = once per 1, 6, ..., 96
frames.

Fig. 12 displays the results for the learning adversary, and
the different adversary learning rates are shown with different
colors. In this figure, we can see the cyber resilience benefits of
updating more frequently. When the update frequency is faster
than the learning frequency, no messages are exfiltrated. When
the update frequency is slower than the learning rate, we observe

that a smaller difference between update frequency and learning
rates results in fewer exfiltrated messages.

For example, when the MTD update occurs every 10 frames
and the adversary has a learning rate of 8 (i.e., 8 frames pass
before the adversary learns the new address), the adversary
exfiltrates 2 out of 10 messages on average. If the adversary can
double its learning rate to 4 (i.e., 4 frames pass before the
adversary learns the new address), the adversary can exfiltrate 6
out of 10 messages on average. (Note that for several MTD
update frequency- learning rate combinations, no messages are
exfiltrated. In these instances, the yellow dot (corresponding to
learning rate of 128 frames) may be on top of the other colored
dots.)

® 2 ® [] L]
) B ‘
0.9 ® 4) [] *
® 3 ® L]
081 @ 16 L4
o 32
0.7 4 ® []]

128

=]
>

T
®

Fraction of Messages Exfiltrated
o o o o
N w o [$)]

L]

@

o
o

0 I L I L
0 10 20 30 40 50 60 70 80 90

MTD Update Frequency = 1/N
Fig. 12. Learning Adversary Results: MTD update frequency = once per 1, 26,

51, 76, 101frames. Adversary learning rates denoted with different colors. L=
implies that X frames must be sent for the adevsray to learn the new address.

From these results, we conclude that MTD can significantly
(~97%) reduce the amount of messages exfiltrated by the static
adversary. Against a learning adversary, more frequent MTD
updates are more effective at decreasing exfiltration. If the
update occurs more frequently than the adversary’s learning
rate, exfiltration may be prevented entirely.

VII. CONCLUSIONS AND FUTURE WORK

The MTD algorithm worked well for MIL-STD-1553 and its
bus-based topology. Other protocols such as CAN bus should
work behave similarly as they are bus-based protocols as well.
Non-bus protocols such as Spacewire (switched-based
topology) would provide a different set of challenges to integrate
the algorithm [19]. Synchronization in switched-based
topologies may require a reliable transport at a higher protocol
level.

While our focus has been on real-time protocols, the MTD
algorithm has no assumption of the environment. It could be
applied to non-real-time systems. For example, one could
interpret the various columns as keys. A system could use the
index value to synchronize which keys all participating nodes
use at a given moment in time.

Our experimentation requires a host node. For MIL-STD-
1553, the BC is a natural host node. For CAN bus, all nodes can

send at the same time and arbitration is built into the protocol.
How is a host node selected for these protocols? Is a host node
needed? Furthermore, peer-to-peer networks may need to
operate without a host node. These concerns remain an open area
of research.

Last, we focused mainly on the usage of the algorithm. There
are other research topics we could pursue to improve the
performance of the algorithm as well as its entropy. For
example, how many columns are required to encounter every
address once? Maybe there is not a need for 65,536 columns. Is
there an optimal number of columns? Does this optimal value
change if we use a different offset mechanism? In general, there
are more research questions we can pursue specific to
optimizing the algorithm and its design.

ACKNOWLEDGEMENT

This paper describes objective technical results and analysis.
Any subjective views or opinions that might be expressed in the
paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government. This
work is supported by the Laboratory Directed Research and
Development program of Sandia National Laboratories. Sandia
National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National

Nuclear Security Administration under contract
DENA0003525.

REFERENCES
[1] M. Hegarty. “MIL-STD-1553 Goes Commercial,” Data Device

Corporation. June 2010.

[2] B. W. Gensch. “Evolving Moving Target Defense Configurations,”
UMM CSeci Senior Seminar Conference, May 2016 Morris, MN

[3] N.Ahmed, B. Bhargava: Mayflies: A Moving Target Defense Framework
for Distributed Systems. Proceedings of ACM Conference on Computers
and Communications Security (CCS) workshop on Moving Target
Defense: 59-64, Vienna, October, 2016

[4] N. Ahmed and B. Bhargava. “Bio-inspired Formal Model for Space/Time
Virtual Machine Randomization and Diversification,” IEEE Transactions
on Cloud Computing, April, 2019

[S] N. Ahmed, B. Bhargava. "Towards Targeted Anomaly Detection
Deployments in Cloud Computing," IEEE International Conference on
Cloud Computing and Services Science. Lisbon, Portugal, May 2015.

[6] Chavez, W. Stout, and S. Peisert. “Techniques for the Dynamic
Randomization of Network Attributes,” Proceedings of the 49th Annual
IEEE International Carnahan Conference on Security Technology, 2015.

[7] K. A. Farris and G. Cybenko, “Quantification of moving target cyber
defenses,” in Proceedings Volume 9456, Sensors, and Command,
Control, Communications, and Intelligence (C3I) Technologies for
Homeland Security, Defense, and Law Enforcement XIV, 2017, p.
94560L94560L.

[8] S. Jones, A. Outkin, J. Gearhart, et al. “Evaluating Moving Target
Defense with PLADD,” SAND2015-8432R, Sandia National
Laboratories, Albuquerque, New Mexico.

[9]1 S. Hossain-McKenzie, C. Lai, A. Chavez, E. Vugrin, "Performance-
Based Cyber Resilience Metrics: An Applied Demonstration Toward
Moving Target Defense", IECON 2018 Proceedings.

[10] United States Department of Defense. “Digital Time Division
Command/Response Multiplex Data Bus”, February 2018.

[11] Stan, Orly, et al. "Intrusion detection system for the mil-std-1553

communication bus." IEEE Transactions on Aerospace and Electronic

Systems 56.4 (2019): 3010-3027.

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

Woo, Samuel, et al. "Can id shuffling technique (cist): Moving target
defense strategy for protecting in-vehicle can," IEEE Access 7 (2019):
15521-15536.

Brown, Richard, et al. "Dynamic Address Validation Array (DAVA) A
Moving Target Defense Protocol for CAN bus," Proceedings of the 7th
ACM Workshop on Moving Target Defense. 2020.

R. Vallat. 2020. EntroPy, ver. 0.1.2 [Online].
https://raphaelvallat.com/entropy.

A. Lempel and J. Ziv, “On the Complexity of Finite Sequences”, IEEE
Transactions on Information Theory, vol. 22, no.1, pp 75-81, 1976.

Available:

J.S. Richman and J. R. Moorman, “Physiological time-series analysis
using approximate entropy and sample entropy,” American Journal of
Physiology-Heart and Circulatory Physiology, vol. 278, no. 6, pp. 2039-
2049, 2000.

C. Bandt and B. Pompe, “Permutation entropy — a natural complexity
measure for time series,” Phys Rev Lett, vol. 88, no. 17, Apr 2002.

A. Bramson, A. Baland, and A. Iriki, “Measuring dynamical uncertainty
with revealed dynamics markov models,” Frontiers in Applied
Mathematics and Statistics,vol. 5, no. 7, Feb 2019.

Star-dundee.com “SpaceWire’s User Guide,” Retrieved 27 October 2019

