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Overview

Take a viewpoint and see where it leads

We Adopt an Adaptive Basis Viewpoint of Neural Networks

This perspective leads to:

* A new initialization strategy based on stability analysis

* A hybrid least squares/gradient descent training algorithm for regression
* A hybrid Newton/gradient descent training algorithm for classification

More details can be found in:

o Cyr, Gulian, Patel, Perego, and Trask. "Robust training and initialization of deep neural networks:
An adaptive basis viewpoint." In Mathematical and Scientific Machine Learning, pp. 512-536.
PMLR, 2020.

o Patel, Trask, Gulian, and Cyr. "A block coordinate descent optimizer for classification problems
exploiting convexity." arXiv preprint arXiv:2006.10123 (2020). (Accepted to AAAI!)



Neural Networks

A neural network is a parameterized model:

Neural Network NN(QE’ @) — Y

Input Parameters
It is composed of multiple layers®
U1 = A()JJ -+ b(),
uir1 = g(ui; {Ai b)) i=1

Output



‘ Neural Networks cont...

Feed
Forward

U1 = o(Azu; + b;)

ResNet Uit1 = U; + O'(Aiui =+ bi)
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Activation Function Bias Vector
Weighting Matrix



Determining the Parameters

Neural network should map data according to the sampled training set :
Input Output

Find ® minimizing the in the model over the training set:

N
Parameters mén ; Loss (NN(CUna @)7 yn)

Loss function is model/data difference:

model data)
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An Adaptive Basis Perspective

View a neural network as producing a “basis” followed by a projection

Taking this perspective we will explore:
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(basis controls)

1. Parameter initialization
2. Training algorithms
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Regression
Classification

(projected coefficients)

(output approximation)



Parameter Initialization: An Experiment

Experimental setup:
1. Initialize weights and biases

2. Propagate [0,1]? through the neural network
o RelU activations (no batch norm)
o Feed-forward and ResNet

HKAXKXXXAS

3. What does the basis look like?
o Isitagood basis?
o Is this a good place to start training?
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‘ He Initialization

“He™ is a standard technique: for ReLU’s with batch norm
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Plot the image of [0,1]% through all layers
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*He, K., Zhang, X., Ren, S., & Sun, J. (2015). In Proceedings of the IEEE international conference on computer vision (pp. 1026-1034).
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What is happening? ResNets

L=0 L=2 L=4 L=38 L=16 L=32 L=64 L=128

- A

1.2 4.6 7.8 110.0  2300.0 7.9e+05 7.le+l1l 6.6e+22

Each layer updateis: Xj11 = T + O‘(Al:l?l)

i1~ L+ Nap ~ (I + M)

A is the spectral radius of A;

Related to exploding/vanishing gradients, if initialized
weights are too large inference with DNN will be unstable



Our Approach: “Box” Initialization

Goals:

* Remain Bounded

* Don’t Collapse: Requires growth of cell size
* Keep cut-plane is in cell at each layer

Initialize weights so that A < L~ ! gives:

rr ~ (1+ L Hlag <elag
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* “Box” prevents, collapse and
exponential growth

¢ [0,1]? cube maps to nearly a
cube after 128 layers



Experiments: Initialization with Box vs. He
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Approximating a discontinuous function composed

of two polynomials (network width is 2)

* Only Box with ResNet (orange crosses) works
well

* Box does better over multiple samples, more
robust achieving some convergence on average

He Initialization of width-32 ReLU network
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* Both He and Box work okay for small
numbers of layers

* He suffers for large numbers of layers

* Box leads to smaller errors, with better
performance for large numbers of layers
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Adaptive Basis Approaches to Training
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Adaptive Basis Perspective Suggests a Training Approach

= Split Neural Network Parameters

* Nonlinear: &y
* Linear: ¢,

= Generalized Sketch of Training Approach
1. Update ¢y with gradient descent: “Refine” basis
2. Solve optimization problem for &; : Project onto basis



Regression with Hybrid LS/GD

Applying Approach to Regression problems: a
Least Squares/Gradient Descent algorithms

argmin
g, &1

u— Y &(w, €M)

function LSGD(ééq )
¢ = ¢f
¢ = LS(&Y)

for:=1... do
¢ = GD(¢)
¢k = LS(g")

end for
end function
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Applying Approach to Classification problems:

Trammg Data GD Prediction NGD Prediction

Classification with Newton/GD E

a Newton/Gradient Descent algorithms 4
argmm Yi,c log y?, c) . j i
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Final Thoughts

The adaptive basis perspective lead to ideas O O O :%
tha!lt |m”p'r9ye‘d qeural network training | A O oy %2
* "Box”initialization was developed by understanding KK AL AL g,
how to generate a good basis O O 000
« LSGD was developed by splitting coefficients from >< >< oy
basis parameters — 0 Qf O O

» Taking advantage of the convexity the regression &

loss
* NGD was developed by splitting coefficients from
basis parameters
» Taking advantage of the convexity of the 107
classification loss Lot

POU Net convergence

107° 4

Next Step: Partition of Unity Neural Networks
* https://arxiv.org/abs/2101.11256, accepted to AAAI 105
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