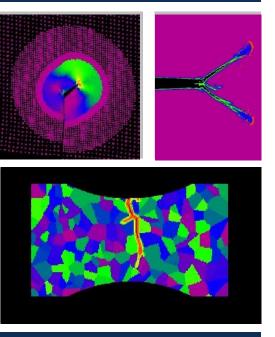
SAND2021-2245C





Exceptional service in the

national

interest

# Combined Lagrangian and Eulerian approaches in peridynamic material modeling

#### **Stewart Silling**

Multiscale Science Department Sandia National Laboratories Albuquerque, New Mexico

ASME IMECE 2016 Phoenix, Arizona November, 2016







Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXXP

#### Outline

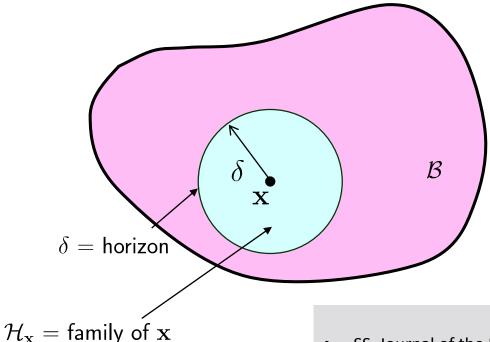


- Peridynamics background
- Eulerian vs. Lagrangian material models
  - Combining the two
- Applications
  - Contact and friction
  - Postfailure response
  - Soft materials
  - Bird strike

# Peridynamics basics: Horizon and family



- Any point x interacts directly with other points within a distance  $\delta$  called the "horizon."
- The material within a distance  $\delta$  of  ${\bf x}$  is called the "family" of  ${\bf x}$ ,  ${\cal H}_{\bf x}$ .



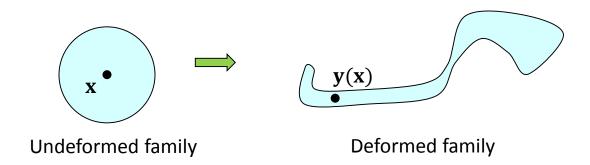
General references

- SS, Journal of the Mechanics and Physics of Solids (2000)
- SS and R. Lehoucg, Advances in Applied Mechanics (2010)
- Madenci & Oterkus , Peridynamic Theory & Its Applications (2014)

#### Motivation



- The traditional form of peridynamics is Lagrangian.
  - Material models refer explicitly to a reference (undeformed) configuration.
  - Good assumption for solids if there isn't too much deformation
  - This is not well-suited to fluids and large deformations.



 What about materials that have both solid-like and fluid-like behavior?

#### States:



#### Objects that keep track of families

A state is a mapping whose domain is a family.

$$\underline{A}\langle \xi \rangle = \text{something}$$

where  $\xi$  is a bond in a family  $\mathcal{H}$ .

Famous states: Deformation state...

$$\underline{\mathbf{Y}}[\mathbf{x}]\langle \mathbf{q} - \mathbf{x} \rangle = \mathbf{y}(\mathbf{q}) - \mathbf{y}(\mathbf{x}) = \text{deformed image of the bond}$$

Force state...

$$\underline{\mathbf{T}}[\mathbf{x}]\langle \mathbf{q} - \mathbf{x} \rangle = \mathbf{t}(\mathbf{q}, \mathbf{x}) = \text{force density within a bond}$$

• Dot product of states  $\underline{A}$  and  $\underline{B}$ :

$$\underline{A} \bullet \underline{B} = \int_{\mathcal{H}} \underline{A} \langle \xi \rangle \underline{B} \langle \xi \rangle \ d\xi.$$

### Thermodynamic form of a peridynamic material model



Oterkus, Madenci & Agwai, JMPS (2014)

• First law expression:

$$\dot{\varepsilon} = \mathbf{T} \bullet \mathbf{Y} + r + h$$

where  $\varepsilon$  is the internal energy density, r is the source rate, h is the rate of heat transport.

SS & Lehoucg, Adv Appl Mech (2010)

• Second law expression:

$$\theta \dot{\eta} \ge r + h$$

where  $\theta$  is the temperature and  $\eta$  is the entropy.

• Free energy:

$$\psi = \varepsilon - \theta \eta$$
.

Assume a material model of the form

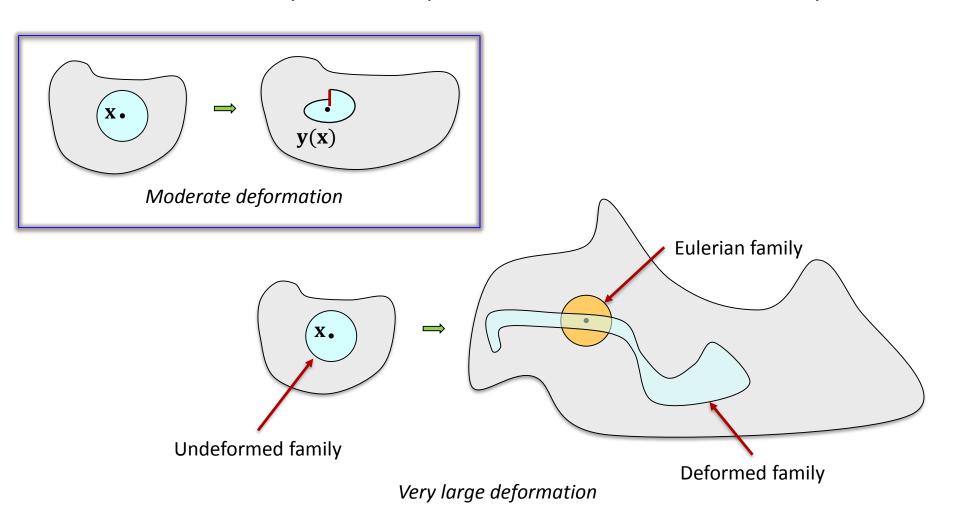
$$\psi(\underline{\mathbf{Y}}, \theta)$$

• First + second laws imply (through Coleman-Noll or similar method):

$$\underline{\mathbf{T}} = \psi_{\underline{\mathbf{Y}}}, \qquad \eta = -\psi_{\theta}.$$

# For fluids, we'd like to apply the horizon the deformed configuration

• Points interact only with other points within  $\delta$  in the Eulerian family.



#### Effectively Eulerian material models



 A Lagrangian material model involves both the undeformed and deformed bond vectors. Example:
 This term makes the model Lagrangian

$$\underline{\mathbf{T}}\langle \boldsymbol{\xi} \rangle = (|\underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle| - |\boldsymbol{\xi}|) \frac{\underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle}{|\underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle|}.$$

 An Eulerian material model has bond forces that depend only on the deformed bond vectors. Example:

$$\underline{\mathbf{T}}\langle\boldsymbol{\xi}\rangle = |\underline{\mathbf{Y}}\langle\boldsymbol{\xi}\rangle|^{-n} \frac{\underline{\mathbf{Y}}\langle\boldsymbol{\xi}\rangle}{|\underline{\mathbf{Y}}\langle\boldsymbol{\xi}\rangle|},$$

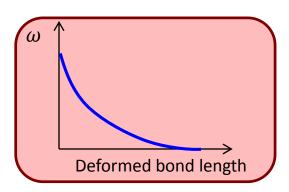
n > 0.



#### Eulerian model for a fluid

Define a nonlocal density by

$$\rho = \rho_0 \int_{\mathcal{B}} \omega(|\underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle|) \ dV_{\boldsymbol{\xi}}$$



where  $\rho_0$  is the reference density and  $\omega$  is a weighting function such that  $\int \omega = 1$ . Integration is in the reference configuration.

Compute the pressure from

$$p = -\frac{1}{\rho^2} \frac{\partial \psi}{\partial \rho}.$$

where  $\psi$  is the free energy density.

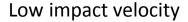
ullet The force state is found from the Frechet derivative of  $\psi$  to be

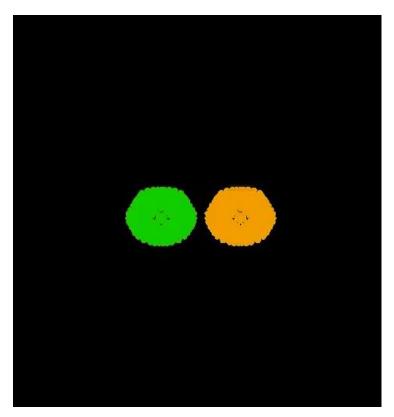
$$\underline{\mathbf{T}}\langle \boldsymbol{\xi} \rangle = \frac{\partial \psi}{\partial \underline{\mathbf{Y}}} = \frac{\partial \psi}{\partial \rho} \frac{\partial \rho}{\partial \underline{\mathbf{Y}}} = \frac{p\omega'(\boldsymbol{\xi})}{\rho^2} \frac{\underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle}{|\underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle|}.$$



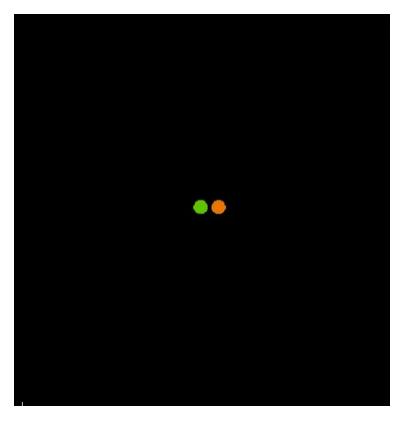
#### Surface tension examples

- Two droplets collide.
- Mie-Gruneisen EOS is used.





High impact velocity



# Combining Lagrangian and Eulerian response in a single material model



- We'd like to model both fluid-like and solid-like response in the same material model.
- Combine the two as a linear combination of force states:

$$\underline{\mathbf{T}} = \beta(p)\underline{\mathbf{T}}^E + (1 - \beta(p))\underline{\mathbf{T}}^L$$

where  $\underline{\mathbf{T}}^E$  and  $\underline{\mathbf{T}}^L$  are the Eulerian (fluid-like) and Lagrangian (solid-like) contributions respectively.

- $\beta(p)$  is a pressure-dependent interpolation parameter,  $0 \le \beta \le 1$ .
- Example: EOS & bond-based:

$$\underline{\mathbf{T}}\langle \boldsymbol{\xi} \rangle = \left( \frac{\beta(p)p\omega'(\boldsymbol{\xi})}{\rho} + (1 - \beta(p))C(\boldsymbol{\xi})(|\underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle| - |\boldsymbol{\xi}|) \right) \frac{\underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle}{|\underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle|}$$

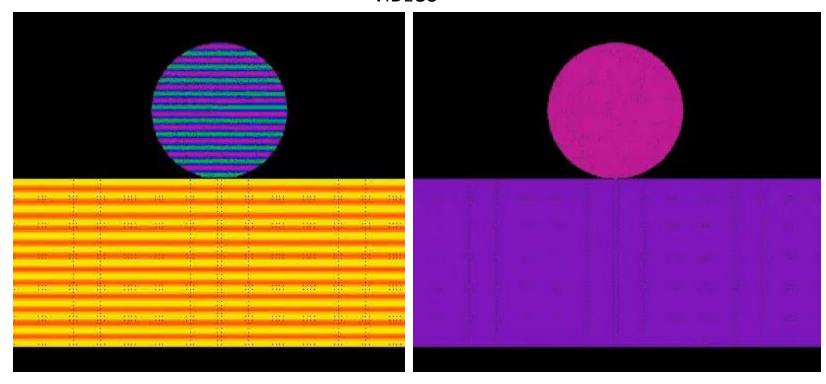
#### Friction and contact as Eulerian forces



$$\underline{\mathbf{T}}^{\text{friction}}\langle \boldsymbol{\xi} \rangle = F \frac{\underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle}{|\underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle|} \text{sgn}(\underline{\dot{\mathbf{Y}}}\langle \boldsymbol{\xi} \rangle)$$

where F is the frictional bond force.

#### **VIDEOS**

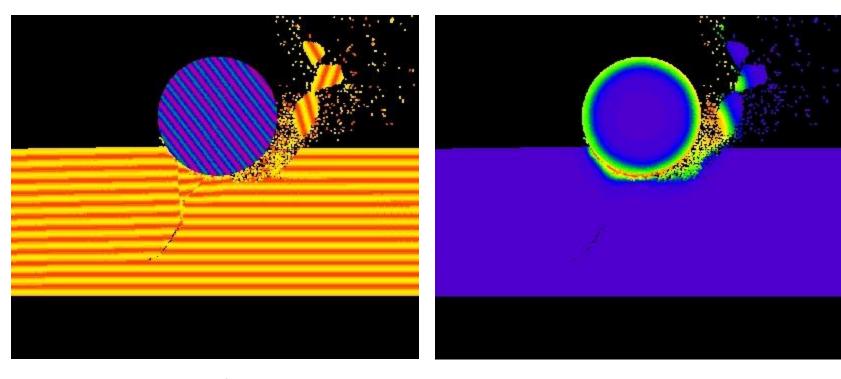


Material deformation

Damage

## Frictional forces contribute to material failure



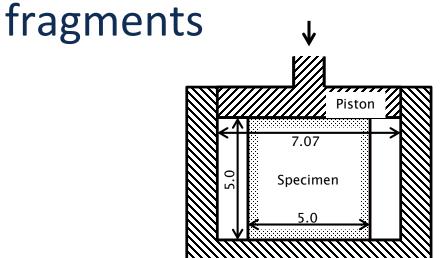


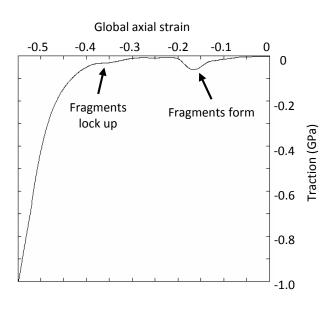
Material deformation

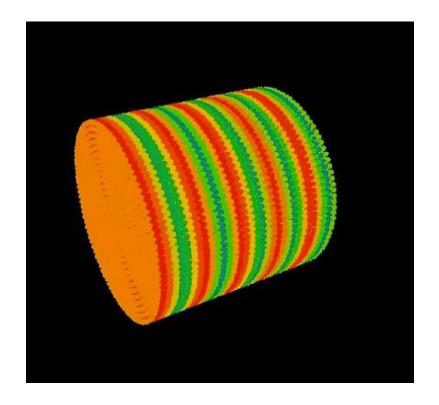
Temperature

Fragmentation and recompression of





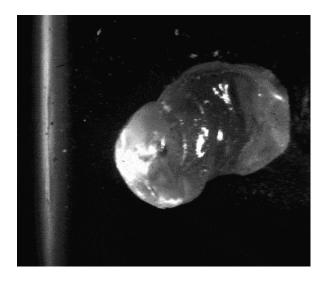


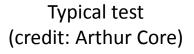


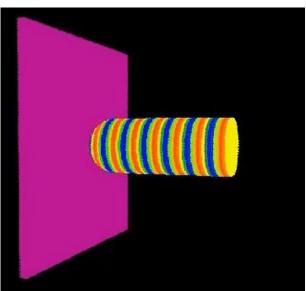
#### Bird strike simulant (gelatin)



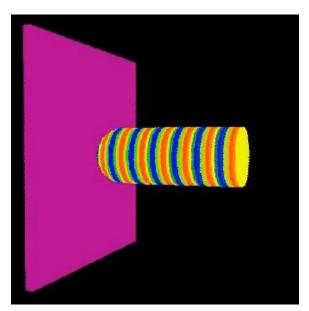








Meshless PD



Meshless PD with bond damage

#### Summary



- An Eulerian material model is a special case of a Lagrangian model that doesn't explicitly involve undeformed bonds.
  - Can assume that the horizon cuts off interactions in the deformed configuration.
  - Search for neighbors in each time step (changes over time).
- Otherwise, Eulerian and Lagrangian parts of a model are the same and can be combined arbitrarily.