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The Columbia Accident rh) peim

On February 15t 2003 STS-107 with Shuttle
orbiter Columbia disintegrated over Texas,
minutes before it was scheduled to land.
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Foam impact during launch
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During the ascent phase a piece of foam insulation broke off
from the shuttle’s propellant tank damaging (?) the shuttle’s
left wing.




Damage Scenario Investigated L

The resulting hole allowed overheated
gases to burn through the wing cavity,
compromise its structural integrity,

leading to a loss of the vehicle during
descent




Temperature and Heating Profile
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Boltzmann Equation and the 7l
Direct Simulation Monte Carlo Method (DSMC)
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molecular motion and pairwise molecular collisions
Ludwig force-induced acceleration (molecular chaos) James Clerk
Boltzmann Maxwell

f(l',c,t)d3rd3c — Expected number of molecules at time t inat T+ d’r.e+d’c
n(r,t)= Jf(r,c,t)d3c

The velocity distribution function can be replaced by a particle-based
distribution function like the Klimontovich distribution function:

N
Sxv,0)= D 8 (x=x,(0))5 (v=v,(1)
Substituting into the Boltzmann equation we have 2 N differential equations:

dx [dt=v. d(mv)/dt=F(x)+C(v,)

molecules move molecules collide




Boltzmann Equation and the
Direct Simulation Monte Carlo Method (DSMC)
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molecular motion and pairwise molecular collisions
Ludwig force-induced acceleration (molecular chaos) James Clerk

Boltzmann Maxwell

f(l',c,t)d3rd3c — Expected number of molecules at time t inat T+ d’r.e+d’c
n(r,t)=| f(r,c,t)d’c
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DSMC is a physical, statistical, molecular-level simulation method




Direct Simulation Monte Carlo )t

How DSMC works
DSMC molecule-simulators statistically represent a large number
of real molecules (O(10'9)-O(10"%))
Computational molecules move ballistically, collide statistically, and interact
statistically with surfaces like real molecules
Molecular movement, surface-interaction, and collision are implemented
sequentially in the algorithm
Cell-based molecular statistics (“moments”) are sampled and averaged over
many time steps for steady flow
DSMC is inherently a transient method
Steady state is the ensemble average of unsteady state moves

¢ o ®@ |@® )
%. @\ l; @/,. o i o @Z
fﬁ‘@.ﬁ o @ -9 @
9¢ 0 @/ 6. t '®~.~@ o B
Jch/ﬁ) @/ @‘g o | ° ®® ©

Stochastic binary collisions Deterministic _t;allistic move




Sandia
P | National
Laboratories

DSMC vs. Boltzmann Equation

* Instead of solving Newton’s laws of motion (Molecular Dynamics), DSMC
replaces explicit intermolecular forces with stochastic collisions

* |t has been shown that DSMC is equivalent to solving the Boltzmann
equation (Nambu 1980, Babovsky 1989, Wagner 1992)

 DSMC has been shown to reproduce exact known solutions (Chapman-
Enskog, Moment Hierarchy) of the Boltzmann equation (Gallis et al. 2004,
2006) for non-equilibrium flows

* |Infact, DSMC is superior to solving the Boltzmann equation

 DSMC can model complicated processes (e.g., polyatomic molecules, chemically
reacting flows, ionized flows) for which Boltzmann-type transport equations are
not even known (Struchtrup 2005)

e DSMC includes fluctuations, which have been shown to be physically realistic
(Garcia 1990) but which are absent from the Boltzmann equation

The objective of DSMC is to simulate complicated gas flows using
only collision mechanics of simulated molecules in the regime described
by the Boltzmann equation

10




Navier-Stokes vs. Boltzmann Equation ) i,

= The Navier-Stokes equations for gases can be derived from
the Boltzmann equation assuming:

= Near-equilibrium conditions
* Local Thermodynamic Equilibrium (LTE)
= Continuum medium

= Conservations equations (mass, momentum, energy) can be
derived as averages of molecular properties

= Transport is given by averaging molecular fluxes. Under LTE
Newton’s, Fourier’s and Fick’s laws are obtained

George Stokes  Claude Navier
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The Need for Molecular-Level Treatment ) e
Non-equilibrium effects

Non-equilibrium effects:
= Non-Maxwell, Chapman-Enskog
velocity distribution functions

= Non-linear transport properties

= Non-Boltzmann internal energy,
no energy equipartition
= Non-Arrhenius chemical reactions

= Non-continuous temperature and
velocity profiles (Knudsen layers close to walls)

= Can be caused by:
= Reduced collisionality (low density)
= Strong gradients even in near-continuum conditions
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Quantifying Non-Equilibrium T =
Fourier and Couette Flow

Fourier Flow Couette Flow
B —
2
T., — -|'2 .1...;.';,..-... P v
Joseph P » ? Maurice
Fourier Couette
*—
oT x=0] heatfluxq |x=L X=0] shearstresst |x=L ov
q=—K— T=—
ox ox

Investigate transport in gas between parallel plates
= Fourier flow: heat conduction in stationary gas
= Couette flow: momentum transport in isothermal shear flow

Apply DSMC to Fourier flow and Couette flow

= Heat flux, shear stress: one-dimensional, steady
Compare DSMC to analytical “normal solutions”

= Normal: outside Knudsen layers

= Solutions: Chapman-Enskog (CE), Moment-Hierarchy (MH)
Verify DSMC accuracy at arbitrary heat flux, shear stress

= Thermal conductivity, viscosity; velocity distribution
13
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Near-Equilibrium:
Chapman-Enskog (CE) Theory
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= Chapman and Enskog analyzed Boltzmann collision term
= Perturbation expansion using Sonine polynomials
= Near equilibrium, appropriate in continuum limit
= Determined velocity distribution and transport properties
= Thermal conductivity K, viscosity u, mass self-diffusivity D
= Prandtl number Pr from “infinite-to-first” ratios K_/Ky, te/14
= Distribution “shape”: Sonine polynomial coeffs. a,/a,, b./b,
= Values for all Inverse-Power-Law (IPL) interactions

= Maxwell and hard-sphere are special cases 14




Extracting CE Parameters from DSMC ) &,
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DSMC moments of velocity distribution function
= Temperature T, velocity V
= Heat flux g, shear stress t
= Higher-order moments

DSMC values for VSS molecules (variable-soft-sphere)
" Thermal conductivity and viscosity: K. and [l

= Sonine-polynomial coefficients: a,/a; and b, /b,
= Applicable for arbitrary Kn,, Kn,, Kn,




Temperature and Velocity Profiles ) =,
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Low heat flux and shear stress: Kn, = 0.006, Kn, = 0.003
= Argon-like: initial T=273.15 K, p = 266.644 Pa, A = 24 um
= Walls: L=1mm =42\, AT=70K, AV =100 m/s
= N.=120, At=7ns, Ax=2.5 um, ~10° samples/cell, 32 runs

Small velocity slips, temperature jumps, Knudsen layers
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DSMC Reproduces Infinite-Approximation 7
Chapman-Enskog Velocity Distribution
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Sonine polynomial coefficients for temperature (left) & velocity (right) gradients
« Hard-sphere values are shown, other interactions have similar agreement
* Higher-order (k > 5) coefficients (not shown) also have similar agreement

Gallis M. A, Torczynski J. R., Rader D. J., “Molecular Gas Dynamics Observations of Chapman-Enskog
Behavior and Departures Therefrom in Nonequilibrium Gases”, Physical Review E, 69, 042201, 2004.

17
-~ ...



DSMC Reproduces Infinite-Approximation g e
Chapman-Enskog Transport Coefficients
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Thermal conductivity (left) and viscosity (right) away from walls
» Maxwell and hard-sphere results bound most gases
» Agreement with Chapman-Enskog theory verifies DSMC
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Moment-Hierarchy Method ) e,
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K_,/K=F([Kn ]=1-c Kn?+O[Kn’] i, /1=F[Kn]=1-c Kn’+O[Kn*]
a,/a =(-1)" 12/1 Kn?/ b, /b, =(=1)" IZB Kn?/

Moment-Hlerarchy (MH) normal solution
— Solve Boltzmann eqgn. recursively for Maxwell molecules
— MH solution extends CE solution to finite Kngy and Kn;,
— Collision-term moments bilinear in distribution moments

S

Andres Santos

Compare MH and DSMC for Maxwell molecules
— Dependence of K, u, ai/ay, bi/bs on Kngand Kn;,

Gallis M. A., Torczynski J. R., Rader D. J., Tij M., Santos A., “Normal Solutions of the Boltzmann
Equation for Highly Nonequilibrium Fourier and Couette Flow”, Phys. Fluids, 18, 017104, 2006.




Maxwell Normalized Sonine Coefficients rh) e,
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DSMC and MH Maxwell normal solutions for a,/a; and b,/b4
= Four DSMC simulations: AT =70, 200, 300, 400 K
= MH: VSS-Maxwell (solid) and IPL-Maxwell (dashed) differ
= DSMC and MH VSS-Maxwell normal solutions agree
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Maxwell Normal Transport Coefficients UL
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DSMC and MH Maxwell normal solutions for Kand u
= Finite Kn; (shear stress), low Kn, (heat flux)
= Eight DSMC simulations: AV =100, ..., 800 m/s
= Thermal conductivity from viscous heating, larger errors
= Offset MH by DSMC discretization error
Agree to within DSMC discretization error

Sandia
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DSMC Numerical Error ) i,

Traditional DSMC rule-of-thumb guidelines:
= Take enough samples to drive statistical error down to “acceptable” level
= Keep time step smaller than ~1/4 mean collision time
= Keep cell size smaller than ~1/3 mean free path
= Use a minimum of ~20 particles per cell

These guidelines give 2% error, which is similar to the uncertainty in
measured transport properties for most gases

= DSMC is subject to the same constraints as other numerical methods.

= DSMC is correct to the limit of vanishing discretization.




DSMC Numerical Error
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molecules move molecules collide

Four parameters control DSMC error:
Statistical error (1)

Samples per cell (Sc)
Discretization error (3)

* Particles per cell (Nc)

* Cell size (Ax)

» Time step (Af)

Sandia
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DSMC Convergence

1.20

1.12

HS Argon 100 I'(fmrn 264.9 Pa
MSCS, Ax,=0.418

0.4 06
Attt

HS Argon, 100 K/mm, 264.9 Pa
MSCS, Ax/ = 0.209

1.20

HS Argon, 100 K/mm, 264.9 Pa

Curves are best fits

Error bars represent 95% confidence intervals
Quadratic convergence for Ax, At

First-order convergence O(1/Ng), as N, — o
Higher-order for long time steps




Functional Form of Error ) feima

Functional form that represents DSMC data
* Ad hoc series expansion in Ax, At, and 1/N¢

» Perform least-squares fitting of entire data set

K ~ ~ ~ ~o o~
~DSHC. 1.0000 +0.0286AF" +0.0411A%° - 0.0016A%° - 0.023AF°A%" +
22
_°-111+’J [1.22A% - 0.26A%% +0.97AF% + ... |+0.95° ..

Cc Cc

Cross terms show convergence behavior is complex

Rader D. J., Gallis M. A., Torczynski J. R., Wagner W., “DSMC Convergence Behavior of the
Hard-Sphere-Gas Thermal Conductivity for Fourier Heat Flow”, Phys. Fluids, 18, 077102, 2006.
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Sandia DSMC code SPARTA oo




Developing an Exascale DSMC Code h) o,

SPARTA = Stochastic PArallel Rarefied-gas Time-accurate Analyzer

General features
« 2D or 3D, serial or parallel
« Cartesian, hierarchical grid
« Oct-tree (up to 16 levels in 64-bit cell ID)
« Multilevel, general NxMxL instead of 2x2x2

« Triangulated surfaces cut/split the grid cells

« 3D via Schwartzentruber algorithm

« 2D via Weiler/Atherton algorithm

* Formulated so can use as kernel in 3D algorithm
« C++, but really object-oriented C

« Designed to be easy to extend

* New collision/chemistry models,

boundary conditions, etc.

« Code available at http://sparta.sandia.gov




Simulation of Complicated Shapes ) .

Mir Space Station

Grid generation (107 cells) completed in 0.3 seconds on 16 processors

Geometry comprises multiple “water-tight” bodies ”




SPARTA simulation: reacting gas flow

through TPS material

. i J.D.m ._ﬁ.u,...

u% =3 z: M, ...?Hﬂ




Sandia
Adaptive Gridding Lf
Adaptive adaptation allows more efficient calculations

- Time: 6 levels of adaptation vs uniform grid: 4.33x speedup
 Memory:

* 6 levels of adaptation runs on 1 64 GB 16 core Linux

« uniform grid required a 1TB 120 code Linux

Example of multiple-level grid generation in 3D




In-Situ Visualization in DSMC-SPARTA ) =,

Options
1. Use built-in jpeg libraries to color molecules in cells

2. Use built-in jpeg libraries to color cell according to some variable (e.g.
density)

3. Link with Paraview in-situ (Catalyst) to provide high quality engineering
analysis software.

Quantitative data can be obtained from these plots in some cases (mixing
problems) using image processing software.




Aiming for MPI+X via Kokkos ) .

*  What is Kokkos:
* Programming model in development at Sandia
e C++ template library
* QOpen-source
e Stand-alone

e Goal: write application kernels only once, and run them efficiently on a
wide variety of hardware platforms

* Two major components:
* Data access abstraction via Kokkos arrays optimal layout & access
pattern for each device: GPU, Xeon Phi, etc.

* Parallel dispatch of small chunks of work auto-mapped onto back-end
languages: CUDA, OpenMP, etc.




Efficient Communication & Load Balancing @&

To achieve maximum efficiency:

= One communication per step
= Multiple passes if needed (or can bound molecule move)
=  Communication with modest count of neighbor processors

= One processor = compact clump of cells via load balancing
= Ghost region = nearby cells within user-defined cutoff
= Store surface information for ghost cells to complete move

Example:

= Balance across processors, static or dynamic

= Geometric method: recursive coordinate bisection (RCB)
= Weighted by cell count or molecules or CPU

33
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Parallel Efficiency: The Competitive Advantag@ o

* The advantages of DSMC come at a cost
« DSMC is computationally efficient but computationally intense

 Its successful application to real problems depends heavily on its parallel
performance

* 1000x speedup required for some problems of interest

« Monte Carlo methods usually have good parallel performance
« The workload depends mainly on the molecules within a cell
« Relatively less need to communicate information between cells
 Trivial to parallelize in velocity space

The necessary speedup can be achieved without any loss of accuracy
or convergence characteristics through parallel computing




SPARTA Benchmarking ) .

* Flow in a closed box

» Stress test for communication

* No preferred communication direction

« 3D regular grid, 104-10" (0.1 trillion) grid cells

* 10 molecules/cell, 10°-10'2 (1 trillion) molecules
» Effect of threading

» 2 threads/core = 1.5 speed

» 4 threads/core = 2x speed




SPARTA Benchmarking ) .
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» Weak scaling indicates, 10% peak performance reduction from 1 to 106 cores
» 2 tasks/core gives 1.5x speedup, 4 tasks/core gives 2x speedup

« Atotal of 1 trillion molecules can be simulated on one third of the BG/Q
« Maximum number of tasks is 2.6 million
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Validation for Hypersonic Flow i) faions

Temperature (K)

020 I T I I 1 1 I L 1 1
Sparta
° Experiment
0.15 - -
‘\‘/‘\
£
=
=
SN
» 0.10
=
T8
et
©
7}
I

0.05

O'08.00 0.05 0.10 0.15 0.20
Distance (m)




Rayleigh-Taylor Instability ) i,

Typical 3D DSMC simulation characteristics:
Physical Domain: 1 mm x 1 mm x 4 mm

# Cells: 62.5 billion
# Particles: 1.2 trillion
# Cores: 2 million
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0.08—— 5 ? -:
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0.041~ 71 Runtime: 90 hrs (5400 CPU years)
sl b Time steps: 200,000 x 0.1 ns =20 s
A 39




Richmyer-Meshkov Instability
Baroclinic Creation of Vorticity

Navier-Stokes

Nondimensional amplitude for
an initially small perturbation
compared to theoretical &
empirical models

(Gallis et al., Physics of Fluids
2015)

fh Natoca

The concentrated vorticity
causes the interface to develop
into mushroom-like shapes with
spirals of the light gas circling
the centers of vorticity.

The spirals break, and strong
mixing appears, while the stems
of the mushroom get thinner.

Finally, the shaded vortices
interact with the stems of the
mushrooms.

Laboratories



Turbulence at the Molecular Level ) i,

Taylor-Green (TG) vortex flow is a generic turbulent flow

* Incompressible TG flow is used in validation of codes and evaluation of
subgrid-scale models

» Initial condition contains only a single length scale (single wave number)

Turbulent energy cascade can be observed numerically in TG flow

* Flow undergoes a rapid buildup of a fully turbulent dissipative spectrum
» Late-time flow exhibits basic features of isotropic, homogeneous turbulence
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Incompressible TG flow has been successfully simulated at the molecular level. 41




Taylor-Couette Flow: Problem Description [z,

= From G.A. Bird, Molecular Gas Dynamics and the Direct Simulation
of Gas Flows, 1994, § 15.4, pg. 378

= Domain Definition: and

= Here:r;=0.5mandr,=1.
= Concentric cylinders
= Boundary conditions:
= Cylinder walls are diffusely reflective
= Top/bottom of domain periodic

= |nitial conditions:

= Stationary and uniform gas with density such
that - Kn=0.02

= Att=0s, inner cylinder rotates with
— Forargon: 2071 rad/s

) 2
- Taonr Number: Ta:4p2w2r1‘/,u2{l—(rlj } =521,600

ro

v

Axis of rotation
Inner rotating surface
Outer stationary surface

r

ry

= Exceeds critical value of 33,110 > flow instabilities/vortices




SPARTA Results: e,
3D Axisymmetric with Periodic BCs

= Streamline projections onto a slice
of the domain show four counter-
rotating vortices develop

= Vortex centers are not at equal
heights on opposite sides of the
slice

=  Wavy 3D structure in streamlines is
observed when full domain is shown




Taylor-Couette Instability in Literature

Inner Reynolds Number : Re, =r(r,—r)w, /v
Outer Reynolds Number: Re, =r,(r,—r)w, /v
Here,w =o0rad/sand v=2.1117m?/s —Re,=0. Re, =259

Inner-Reynolds Mumber = Ry = rifr, — rallisv

Wavy Taylor Vortices

Sandia
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Spiral turbulence
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Turbulent |
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1
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L I 1 I
— 3000 —2000 = 1000 0 \ 1000
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Images from Ronald L. Panton, Incompressible Flow, 2@ Edition, §22.13, pg. 737-738

Re, =0, Re, =259




Conclusions ) e,
= DSMCis a fundamental form of computational fluid dynamics,
originating from an interest in high altitude flow.

= |t contains all the physics without having to make
assumptions about local thermodynamic equilibrium or the
macroscopic nature of the flow.

= DSMC contains thermal fluctuations, absent from most CFD
techniques.

= DSMC is computationally intensive but enabled by massively
parallel processing.




