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The Columbia Accident 

On February 1st 2003 STS-107 with Shuttle 
orbiter Columbia disintegrated over Texas, 
minutes before it was scheduled to land.
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Foam impact during launch

During the ascent phase a piece of foam insulation broke off 
from the shuttle’s propellant tank damaging (?) the shuttle’s 
left wing.
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Damage Scenario Investigated

The resulting hole allowed overheated 
gases to burn through the wing cavity, 
compromise its structural integrity, 
leading to a loss of the vehicle during 
descent
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Temperature and Heating Profile
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Boltzmann Equation and the
Direct Simulation Monte Carlo Method (DSMC)

molecules move molecules collide
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n(r,t) = f (r,c,t)d 3c∫
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The velocity distribution function can be replaced by a particle-based 
distribution function like the Klimontovich distribution function: 

Substituting into the Boltzmann equation we have 2 N differential equations:



Boltzmann Equation and the
Direct Simulation Monte Carlo Method (DSMC)

molecules move molecules collide
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DSMC is a physical, statistical, molecular-level simulation method

n(r,t) = f (r,c,t)d 3c∫
f (r,c,t)d 3rd 3c→ Expected number of molecules at time t  in at r + d 3r,c + d 3c



Direct Simulation Monte Carlo
How DSMC works

DSMC molecule-simulators statistically represent a large number
of real molecules (O(1010)-O(1015))
Computational molecules move ballistically, collide statistically, and interact 

statistically with surfaces like real molecules
Molecular movement, surface-interaction, and collision are implemented 

sequentially in the algorithm
Cell-based molecular statistics (“moments”) are sampled and averaged over 

many time steps for steady flow
DSMC is inherently a transient method

Steady state is the ensemble average of unsteady state moves

Deterministic ballistic moveStochastic binary collisions

+ =
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DSMC vs. Boltzmann Equation
• Instead of solving Newton’s laws of motion (Molecular Dynamics), DSMC 

replaces explicit intermolecular forces with stochastic collisions
• It has been shown that DSMC is equivalent to solving the Boltzmann 

equation (Nambu 1980, Babovsky 1989, Wagner 1992)
• DSMC has been shown to reproduce exact known solutions (Chapman-

Enskog, Moment Hierarchy) of the Boltzmann equation (Gallis et al. 2004, 
2006) for non-equilibrium flows

• In fact, DSMC is superior to solving the Boltzmann equation
• DSMC can model complicated processes (e.g., polyatomic molecules, chemically 

reacting flows, ionized flows) for which Boltzmann-type transport equations are 
not even known (Struchtrup 2005)

• DSMC includes fluctuations, which have been shown to be physically realistic 
(Garcia 1990) but which are absent from the Boltzmann equation

The objective of DSMC is to simulate complicated gas flows using 
only collision mechanics of simulated molecules in the regime described 
by the Boltzmann equation
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Navier-Stokes vs. Boltzmann Equation
§ The Navier-Stokes equations for gases can be derived from 

the Boltzmann equation assuming:
§ Near-equilibrium conditions
§ Local Thermodynamic Equilibrium (LTE)
§ Continuum medium

§ Conservations equations (mass, momentum, energy) can be 
derived as averages of molecular properties

§ Transport is given by averaging molecular fluxes. Under LTE 
Newton’s, Fourier’s and Fick’s laws are obtained

Claude NavierGeorge Stokes
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The Need for Molecular-Level Treatment
Non-equilibrium effects

Non-equilibrium effects: 
§ Non-Maxwell, Chapman-Enskog

velocity distribution functions
§ Non-linear transport properties
§ Non-Boltzmann internal energy, 

no energy equipartition 
§ Non-Arrhenius chemical reactions 
§ Non-continuous temperature and 

velocity profiles (Knudsen layers close to walls)

§ Can be caused by:
§ Reduced collisionality (low density)
§ Strong gradients even in near-continuum conditions

Non-equilibrium velocity distribution functions 
in the front a Mach 25 normal shock of helium
Pham-Van-Diep, et al. , Science, 1989
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Quantifying Non-Equilibrium
Fourier and Couette Flow
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Investigate transport in gas between parallel plates
§ Fourier flow: heat conduction in stationary gas
§ Couette flow: momentum transport in isothermal shear flow

Apply DSMC to Fourier flow and Couette flow
§ Heat flux, shear stress: one-dimensional, steady

Compare DSMC to analytical “normal solutions”
§ Normal: outside Knudsen layers
§ Solutions: Chapman-Enskog (CE), Moment-Hierarchy (MH)

Verify DSMC accuracy at arbitrary heat flux, shear stress
§ Thermal conductivity, viscosity; velocity distribution
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Near-Equilibrium: 
Chapman-Enskog (CE) Theory

§ Chapman and Enskog analyzed Boltzmann collision term
§ Perturbation expansion using Sonine polynomials
§ Near equilibrium, appropriate in continuum limit

§ Determined velocity distribution and transport properties
§ Thermal conductivity K, viscosity μ, mass self-diffusivity D
§ Prandtl number Pr from “infinite-to-first” ratios K∞/K1, μ∞/μ1
§ Distribution “shape”: Sonine polynomial coeffs. ak/a1, bk/b1

§ Values for all Inverse-Power-Law (IPL) interactions
§ Maxwell and hard-sphere are special cases
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Extracting CE Parameters from DSMC
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DSMC moments of velocity distribution function
§ Temperature T, velocity V
§ Heat flux q, shear stress τ
§ Higher-order moments

DSMC values for VSS molecules (variable-soft-sphere)
§ Thermal conductivity and viscosity: Keff and μeff
§ Sonine-polynomial coefficients: ak/a1 and bk/b1

§ Applicable for arbitrary KnL, Knq, Knτ



Temperature and Velocity Profiles

Low heat flux and shear stress: Knq = 0.006, Knτ = 0.003
§ Argon-like: initial T = 273.15 K, p = 266.644 Pa, λ = 24 μm
§ Walls: L = 1 mm = 42λ, ΔT = 70 K, ΔV = 100 m/s
§ Nc = 120, Δt = 7 ns, Δx = 2.5 µm, ~109 samples/cell, 32 runs

Small velocity slips, temperature jumps, Knudsen layers
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DSMC Reproduces Infinite-Approximation 
Chapman-Enskog Velocity Distribution

Sonine polynomial coefficients for temperature (left) & velocity (right) gradients
• Hard-sphere values are shown, other interactions have similar agreement
• Higher-order (k > 5) coefficients (not shown) also have similar agreement

Gallis M. A., Torczynski J. R., Rader D. J., “Molecular Gas Dynamics Observations of Chapman-Enskog 
Behavior and Departures Therefrom in Nonequilibrium Gases”, Physical Review E, 69, 042201, 2004.
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DSMC Reproduces Infinite-Approximation 
Chapman-Enskog Transport Coefficients

Thermal conductivity (left) and viscosity (right) away from walls
• Maxwell and hard-sphere results bound most gases
• Agreement with Chapman-Enskog theory verifies DSMC
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Moment-Hierarchy Method
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Moment-Hierarchy (MH) normal solution
– Solve Boltzmann eqn. recursively for Maxwell molecules 
– MH solution extends CE solution to finite Knq and Knτ

– Collision-term moments bilinear in distribution moments

Compare MH and DSMC for Maxwell molecules
– Dependence of K, µ, ak/a1, bk/b1 on Knq and Knτ

Gallis M. A., Torczynski J. R., Rader D. J., Tij M., Santos A., “Normal Solutions of the Boltzmann 
Equation for Highly Nonequilibrium Fourier and Couette Flow”, Phys. Fluids, 18, 017104, 2006. 

Andres Santos



Maxwell Normalized Sonine Coefficients

DSMC and MH Maxwell normal solutions for ak/a1 and bk/b1
§ Four DSMC simulations: ΔT = 70, 200, 300, 400 K
§ MH: VSS-Maxwell (solid) and IPL-Maxwell (dashed) differ
§ DSMC and MH VSS-Maxwell normal solutions agree 
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Maxwell Normal Transport Coefficients

DSMC and MH Maxwell normal solutions for K and µ
§ Finite Knt (shear stress), low Knq (heat flux)
§ Eight DSMC simulations: ΔV = 100, …, 800 m/s
§ Thermal conductivity from viscous heating, larger errors
§ Offset MH by DSMC discretization error

Agree to within DSMC discretization error
21



DSMC Numerical Error

Traditional DSMC rule-of-thumb guidelines:
§ Take enough samples to drive statistical error down to “acceptable” level
§ Keep time step smaller than ~1/4 mean collision time
§ Keep cell size smaller than ~1/3 mean free path
§ Use a minimum of ~20 particles per cell

These guidelines give 2% error, which is similar to the uncertainty in 
measured transport properties for most gases

§ DSMC is subject to the same constraints as other numerical methods.
§ DSMC is correct to the limit of vanishing discretization.
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DSMC Numerical Error

Four parameters control DSMC error: 
Statistical error (1)

Samples per cell (Sc) 
Discretization error (3)

• Particles per cell (Nc)
• Cell size (Δx)
• Time step (Δt)

molecules move molecules collide
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DSMC Convergence

• Curves are best fits
• Error bars represent 95% confidence intervals
• Quadratic convergence for Δx, Δt
• First-order convergence O(1/Nc), as 
• Higher-order for long time steps

Nc →∞
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Functional Form of Error

Functional form that represents DSMC data
• Ad hoc series expansion in Dx, Dt, and 1/Nc

• Perform least-squares fitting of entire data set

Cross terms show convergence behavior is complex

Rader D. J., Gallis M. A., Torczynski J. R., Wagner W., “DSMC Convergence Behavior of the 
Hard-Sphere-Gas Thermal Conductivity for Fourier Heat Flow”, Phys. Fluids, 18, 077102, 2006. 
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Sandia DSMC code SPARTA
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Developing an Exascale DSMC Code

SPARTA = Stochastic PArallel Rarefied-gas Time-accurate Analyzer

General features
• 2D or 3D, serial or parallel
• Cartesian, hierarchical grid

• Oct-tree (up to 16 levels in 64-bit cell ID)
• Multilevel, general NxMxL instead of 2x2x2

• Triangulated surfaces cut/split the grid cells
• 3D via Schwartzentruber algorithm
• 2D via Weiler/Atherton algorithm
• Formulated so can use as kernel in 3D algorithm

• C++, but really object-oriented C
• Designed to be easy to extend
• New collision/chemistry models, 

boundary conditions, etc.

• Code available at http://sparta.sandia.gov
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Simulation of Complicated Shapes

Grid generation (107 cells) completed in 0.3 seconds on 16 processors
Geometry comprises multiple “water-tight” bodies

Mir Space Station
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SPARTA simulation: reacting gas flow 
through TPS material
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Adaptive Gridding
Adaptive adaptation allows more efficient calculations

• Time: 6 levels of adaptation vs uniform grid: 4.33x speedup
• Memory: 

• 6 levels of adaptation runs on 1 64 GB 16 core Linux
• uniform grid required a 1TB 120 code Linux

Example of multiple-level grid generation in 3D



In-Situ Visualization in DSMC-SPARTA

Options
1. Use built-in jpeg libraries to color molecules in cells
2. Use built-in jpeg libraries to color cell according to some variable (e.g. 

density)
3. Link with Paraview in-situ (Catalyst) to provide high quality engineering 

analysis software.
Quantitative data can be obtained from these plots in some cases (mixing 
problems) using  image processing software.

1 2 3
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Aiming for MPI+X via Kokkos

• What is Kokkos:
• Programming model in development at Sandia
• C++ template library
• Open-source
• Stand-alone

• Goal: write application kernels only once, and run them efficiently on a 
wide variety of hardware platforms

• Two major components:
• Data access abstraction via Kokkos arrays optimal layout & access 

pattern for each device: GPU, Xeon Phi, etc.
• Parallel dispatch of small chunks of work auto-mapped onto back-end 

languages: CUDA, OpenMP, etc.
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Efficient Communication & Load Balancing
To achieve maximum efficiency:
§ One communication per step

§ Multiple passes if needed (or can bound molecule move)
§ Communication with modest count of neighbor processors

§ One processor = compact clump of cells via load balancing
§ Ghost region = nearby cells within user-defined cutoff
§ Store surface information for ghost cells to complete move

§ Balance across processors, static or dynamic
§ Geometric method: recursive coordinate bisection (RCB)
§ Weighted by cell count or molecules or CPU

Example:
1B cells on1024 BG/Q node
Worst case: move all cells
Balance time = 15 s:
(RCB=2, move=12, ghosts=1)
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Parallel Efficiency: The Competitive Advantage

• The advantages of DSMC come at a cost 
• DSMC is computationally efficient but computationally intense 
• Its successful application to real problems depends heavily on its parallel 

performance

• 1000x speedup required for some problems of interest
• Monte Carlo methods usually have good parallel performance 

• The workload depends mainly on the molecules within a cell
• Relatively less need to communicate information between cells
• Trivial to parallelize in velocity space

The necessary speedup can be achieved without any loss of accuracy 
or convergence characteristics through parallel computing 

=
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SPARTA Benchmarking

• Flow in a closed box
• Stress test for communication

• No preferred communication direction
• 3D regular grid, 104-1011 (0.1 trillion) grid cells
• 10 molecules/cell, 105-1012 (1 trillion) molecules

• Effect of threading
• 2 threads/core = 1.5 speed
• 4 threads/core = 2x speed
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SPARTA Benchmarking

16 cores/node
1 task/core

16 cores/node
4 tasks/core

• Weak scaling indicates, 10% peak performance reduction from 1 to 106 cores
• 2 tasks/core gives 1.5x speedup, 4 tasks/core gives 2x speedup
• A total of 1 trillion molecules can be simulated on one third of the BG/Q
• Maximum number of tasks is 2.6 million

16 cores/node
2 tasks/core
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Validation for Hypersonic Flow
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Rayleigh-Taylor Instability

39

Typical 3D DSMC simulation characteristics:
Physical Domain: 1 mm x 1 mm x 4 mm 

# Cells: 62.5 billion
# Particles: 1.2 trillion
# Cores: ½ million

Run time: 90 hrs (5400 CPU years)
Time steps: 200,000 × 0.1 ns = 20 μs



Richmyer-Meshkov Instability
Baroclinic Creation of Vorticity

Nondimensional amplitude for 
an initially small perturbation 
compared to theoretical & 
empirical models
(Gallis et al., Physics of Fluids 
2015)

DSMC        Experiment (Morgan et al., JFM, 2012)              Navier-Stokes

The concentrated vorticity 
causes the interface to develop 
into mushroom-like shapes with 
spirals of the light gas circling 
the centers of vorticity. 

The spirals break, and strong 
mixing appears, while the stems 
of the mushroom get thinner. 

Finally, the shaded vortices 
interact with the stems of the 
mushrooms.



Turbulence at the Molecular Level
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Taylor-Green (TG) vortex flow is a generic turbulent flow 
• Incompressible TG flow is used in validation of codes and evaluation of 

subgrid-scale models
• Initial condition contains only a single length scale (single wave number)
Turbulent energy cascade can be observed numerically in TG flow
• Flow undergoes a rapid buildup of a fully turbulent dissipative spectrum
• Late-time flow exhibits basic features of isotropic, homogeneous turbulence

Incompressible TG flow has been successfully simulated at the molecular level.



Taylor-Couette Flow: Problem Description
§ From G.A. Bird, Molecular Gas Dynamics and the Direct Simulation 

of Gas Flows, 1994,§15.4, pg. 378
§ Domain Definition: and 
§ Here: r1 = 0.5 m and r2 = 1.

§ Concentric cylinders
§ Boundary conditions:

§ Cylinder walls are diffusely reflective 
§ Top/bottom of domain periodic 
§ Initial conditions:
§ Stationary and uniform gas with density such 

that  → Kn = 0.02
§ At t = 0 s, inner cylinder rotates with  

– For argon:  2071 rad/s

§ Taylor Number: 

§ Exceeds critical value of 33,110 → flow instabilities/vortices
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SPARTA Results: 
3D Axisymmetric with Periodic BCs

§ Streamline projections onto a slice 
of the domain show four counter-
rotating vortices develop 

§ Vortex centers are not at equal 
heights on opposite sides of the 
slice

§ Wavy 3D structure in streamlines is 
observed when full domain is shown 



Taylor-Couette Instability in Literature

Wavy Taylor Vortices
Images from Ronald L. Panton, Incompressible Flow, 2nd Edition, §22.13, pg. 737-738

Inner Reynolds Number :
Outer Reynolds Number :
Here,          rad/s and

Rei = ri (ro − ri )ω i /ν
Reo = ro(ro − ri )ωo /ν

ω o = 0 ν = 2.1117 m2 / s → Reo = 0, Rei = 259

Reo = 0, Rei = 259



Conclusions
§ DSMC is a fundamental form of computational fluid dynamics,

originating from an interest in high altitude flow.
§ It contains all the physics without having to make 

assumptions about local thermodynamic equilibrium or the 
macroscopic nature of the flow. 

§ DSMC contains thermal fluctuations, absent from most CFD 
techniques.

§ DSMC is computationally intensive but enabled by massively 
parallel processing. 
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