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Pulsed Power

Large scale experimental facilities at SNL

* Radiation sources

* High energy density material science

* Create astrophysical conditions in a laboratory
setting

Magnetically Insulated Transmission Lines

Legacy development of these platforms has been
experimental/empirical. Programmatic desire for
science based design (i.e. computation) for future
systems.

Issues:

Challenging (non-linear) models physics
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New Features of Our Coupling Algorithm

Variational — couple through surface integrals — this allows it to apply to arbitrary meshes

Implicit coupling — introduces no new stability constraints — we developed an efficient linear solver to
handle implicit solves

Self-consistent — coupling is based directly on assumptions made to by the TL model — we enforce
continuity of voltage and current at the interface 0
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We enforce voltage continuity via a constraint and a Lagrange multiplier
. . . Simulation Time (ns)

Allows us to apply an additional boundary conditional at the EM/TL interface

We apply an absorbing BC at the interface that absorbs non-TEM modes

Reduces unphysical ringing due to reflection of non-TEM modes



Abstract Modeling Problem
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Maxwell’s Equations
(P2 +J—curl H=0
%—]? +curl E=0

div D =p
L div B=0

Simple Dielectric
D =cE
B =uH
Homogeneous BCs

{E xn=0 onconductors

Hxn=0 onsymmetry

J is data




Tr nsve %lectromagenetic Mode

Fun ment r these geomet |
Higher modes (TE TM) have a high pass like dispersion
relationship
TEM is the ideal mode for powerflow on [0, /] ‘
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Sketching the Variational Formulation

Our notion of spaces for our fields

(E,B,V,I) ¢ H(curl, Q) x H(div, Qpm) x HH(0,4) x L?(0,¢)

)
/ eat W +J W B .curl ¥ dV V¥ € H(curl, Qgm)
QrMm
/ 9B . & + curl E- ®dV V@ < H(div, Qgm)
R
/ CY ) — 12248 vy € H'(0,¢)
0
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We are going to add coupling conditions



Spectral Coupling

Our notion of spaces for our fields

(E,B,V,I) ¢ H(curl, Q) x H(div, Qpm) x HH(0,4) x L?(0,¢)

Use L2 projections to “pick off the TEM part”

/ eE(t, 0, 71,72) - Eo(T1,72) dA := CV (1, 1)
r \ Y J \_'_l \_'_I
3D Electric Field TEM E Profile TEM

Voltage
/MH(t,g, 7'1,7'2) ¥ HQ(Tl,TQ) dA = L[(t,g)
ro\ , [ S ——

3D Magnetic Field TEM H Profile TEM Current

If you enforce these two conditions then the TEM component of the
Maxwell’s equations solution will match at the boundary

Dirichlet condition

Neumann condition



Naive couplings

Dirichlet Maxwell/ Neumann Neumann Maxwell/ Dirichlet

Tel gﬁp;ernlr V(1. 0)Eo x n [PEERR| - = 1(¢,/)Hy x n

r

.

0.5

— Absorber B
== No Absorber

Both methods have the problem of reflecting non-TEM components off 04
coupling interface in the EM domain. Problematic for plasmas!

Red lineout is equiv to Neumann Maxwell/ Dirichlet Telegrapher solution
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Non-TEM absorber and voltage coupling |

s
We can use this projection to define a first order outgoing wave condition
2 2 for non-TEM Waves! Add this to variational Ampere’s law
Mren : L3(T) — LAT) 1 ‘
- (E) - fFEE'EUdA /Z_ (E—HTEME)XH-\PXHdA
TEM = Lo I'
IT EEO . Eo dA I
How do we impose 2 boundary conditions at the same time? i
Impose voltage coupling as a constraint and relax with a Lagrange multiplier )\ E R
( OE |
/ 5 W+J-¥—puB-curl ¥ dV
Qrn
{ —I—f (Z_l(I — HTEI\JI)(E) -+ )\EE(]) xn-¥xn VWP H(CUI‘I,QEM)
]
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Current coupling

BM fF,LLH()'HQ dA

_—/HXH'EodA
I

:/Q E@t EQ—I—J EO—[L_lB curl E() dV EO’F —EO
EM

14
Introduce a Neumann oV oLV
condition to couple / C ¢ 1 on dS T IEMw(E)
0
Test Ampere’s law against EO we can solve for )\

C)\ — IEM This gives us exact energy conservation !



Variational Formulation Summary

(E,B,\,V,I) € H(curl, Qpn) x H(div, Qpm) X R x HY(0,4) x L*(0, )

,
/Q e - U +J -0 —p 'B-curl ¥4V
—I—/\A(Zl(I—HTEM)(E)—I—)\EEo) xn-¥xn VW EH(CUI‘I,QEM)
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Discretization

Lowest order Nedelec elements for E
Lowest order Raviart Thomas elements for B
P1 elements for V

PO elements for |

A is discrete

Implicit RK method for time integration —i.e. implicit midpoint or Crank
Nicolson.



Linear Solver for the Coupled System

* Fully coupled linear system

Av [ glly, XM
Ax = f t 0 —CIly. A
H{;ﬁ k‘t 0 ATL X717,

e Exact block LU decomposition

AM 0 0
_A — ( ft S 0 )
Iy, K =11 KLAL f Srr
7 A, Ay 9Ty,
0 1 (=C — ["Ayrg)sy Ty,
( 0 0 z

SA = _ftAi;flf:

Sri = Arp — [K' Ay g + K Ay f(C + [T A 9)sy 11T, Iy,

|

* Exact inverse requires 1 EM solve
plus 2 for each TL whenever the
time-step changes

* An augmented TL system solve
(S1,) for each TL (assumed small
compared to EM solve —we do a
small direct solve on each MPI rank)

* For fixed time-step simulations, the
cost per time-step is essentially the

same as solving EM and TL

r el ~ Al
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Verification: O-Wave between Parallel Plates
e Simulating a transient O-wave where the middle of the domain is 3D

-Qcm

(a) CFL varies from (4.35, 7.53)

EM and the sides are 1D TLs

-3 cm

p.p-w. | p-p-p. g rate &x rate
21.8 2.5 1.43 - 1.64 —
43.6 D 8.24e-1 | 0.79 | 1.10 | 0.69
87.2 10 | 1.99e-1 | 2.04 | 2.56e-1 | 1.98
174.5 20 | 4.99e-2 | 1.99 | 6.11e-2 | 2.06

(b) CFL varies from (0.54,0.94)

p.p-w. | p.p-p. Ex rate &n rate
21.8 10 | 7.84e-2 7.06e-2
43.6 20 | 3.37e-2 | 1.21 | 2.41e-2 | 1.55
87.2 40 | 1.61e-2 | 1.07 | 1.03e-2 | 1.22
174.5 80 | 7.97e-3 | 1.01 | 5.16e-3 | 0.99

» Using implicit midpoint time-stepping
(second order) and first order conforming
finite elements for the EM

* Large CFL — error is dominated by time
discretization — obtain expected second
order convergence

» Small CFL — error is dominated by spatial
discretization — obtain expected first order
convergence
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Verification: Coaxial Waveguide

* Coaxial waveguide driven by an

equivalent circuit

* Obtained first order convergence
to analytic steady-state solution

EM'

Coax

2R,

h (m) % ER rate éR rate
1.00e — 03 | 5.70 | 7.89¢ — 02 5.01le — 02
5.99¢ — 04 | 9.70 | 7.30e — 02 | 0.15 | 4.70e — 02 | 0.12
4.64e — 04 | 123 | 6.77¢ — 02 | 0.29 | 4.49e¢ — 02 | 0.17
3.59¢ — 04 | 15.9 | 5.57¢ — 02 | 0.76 | 3.64¢ — 02 | 0.82
2.78¢ — 04 | 20.5 | 4.21¢ — 02 | 1.09 | 2.67¢ — 02 | 1.20
2.15e — 04 | 26.5 | 3.25¢ — 02 | 1.00 | 2.03e — 02 | 1.07
1.67¢ — 04 | 34.2 | 2.52¢ — 02 | 1.00 | 1.55¢ — 02 | 1.05
1.29¢ — 04 | 44.3 | 1.91e — 02 | 1.08 | 1.17e — 02 | 1.07
1.00e — 04 | 57.0 | 1.45¢ — 02 | 1.06 | 8.96e — 03 | 1.06

—t

{*';L

(b) 3D domain Qgj7, 0.1 mm

mesh
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Demonstration: 18a Convolute

 EM simulation on 18a geometry driven by 4 TLs

* Early time-steps are cheap until pulses reach

equivalent to BERTHA model

* Have demonstrated good agreement with
CHICAGO for same problem elsewhere

e Coupled linear solver scales similarly to EM

alone
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LOAD

=
. SimuEIlDation T:i?ne [n:;;lm o 0 Simuﬁgtion Tisgﬂe l(ns;“J .
Ref. Els. Rate | Steps | CFL DR | Nodes | Wall (s) | Rate
1 2.14 M — 5000 19.7 2 2667 — 23.4
2 19.3 M 9.01 | 10000 19.6 16 5614 2.10 | 184
3 154.7 M | 8.0 | 20000 23.3 128 16241 2.89 | 27.9
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Questions




Maxwell’s Equations on 11, = I' x [0, /]

E=(E.FE,)
H = (HT7 Hn)
0 -0, 0O, Eagz; curl . H,, — a%n xH =0
0, 0 —0, ea(%'”'f rot,H, =0
_87'2 87’1 0 ,LLaEI;T CU.I‘ITEn + %H X ET =0
H uag” rot,E. =0

(%eEn + div,eE, =0

rot., 0



Transverse Electromagnetic Mode (TEM Mode)
E,. =B, =0 Separate variables

ET — V(n, t)Eo(Tl, TQ)

OE ‘'nxH. =0

e — O H, = I(n,t)Ho(71, 72)
nSe + gnx B =0

Evolution equations:

oV 0l __
EEE() 5., 11 X H() =0

ol oV __
EUHO | @nnXEO =0

rot;H, =0

div.eE. =0

rotTET =0 {

(f_iVT/LHT — O Mode condition: EO X 1NN X HO



Cross sectional profiles: Laplace problems
€Q€r — € Hofbyr = H
—div,e.grad._p = 0 rot, .. leurl v =0

Eo = —grad_yp Hy = p teurl, v
plor, =0 Ylor, =0
plorg = 1 Ho - slorx = 7

€, [l constant :>C,OOC¢:>EOO(II><HO

For MITLs this is reasonable : the medium is vacuum

These transverse profiles satisfy the mode condition

We're going to chose a convenient normalization H() —



Projection out transverse profile
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