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Pulsed Power
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Z Machine

SATURN

HERMESIII

Large scale experimental facilities at SNL
• Radiation sources
• High energy density material science
• Create astrophysical conditions in a laboratory 

setting

Magnetically Insulated Transmission Lines

Legacy development of these platforms has been 
experimental/empirical. Programmatic desire for 
science based design (i.e. computation) for future 
systems.

Issues:
Multiscale problem
Challenging (non-linear) models physics



New Features of Our Coupling Algorithm
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• Variational – couple through surface integrals – this allows it to apply to arbitrary meshes
• Implicit coupling – introduces no new stability constraints – we developed an efficient linear solver to 

handle implicit solves
• Self-consistent – coupling is based directly on assumptions made to by the TL model – we enforce 

continuity of voltage and current at the interface

• We enforce voltage continuity via a constraint and a Lagrange multiplier
• Allows us to apply an additional boundary conditional at the EM/TL interface
• We apply an absorbing BC at the interface that absorbs non-TEM modes
• Reduces unphysical ringing due to reflection of non-TEM modes



Abstract Modeling Problem
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Maxwell’s Equations

Simple Dielectric

Homogeneous BCs

is data



Transverse Electromagnetic Mode
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Fundamental mode for these geometries. 
Higher modes (TE, TM) have a high pass like dispersion 
relationship
TEM is the ideal mode for powerflow

constantIF

THEN
ARE A SOLUTION TO MAXWELL’S 
EQAUTIONS  ON

WITH DISPERSION RELATIONSHIP



Sketching the Variational Formulation
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Our notion of spaces for our fields

We are going to add coupling conditions



Spectral Coupling
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Use L2 projections to “pick off the TEM part”

3D Electric Field TEM E Profile TEM 
Voltage

3D Magnetic Field TEM H Profile TEM Current

Our notion of spaces for our fields

Dirichlet condition

Neumann condition

If you enforce these two conditions then the TEM component of the 
Maxwell’s equations solution will match at the boundary



Naïve couplings
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Dirichlet Maxwell/ Neumann 
Telegrapher

Neumann Maxwell/ Dirichlet 
Telegrapher

Both methods have the problem of reflecting non-TEM components off 
coupling interface in the EM domain. Problematic for plasmas!

Red lineout is equiv to Neumann Maxwell/ Dirichlet Telegrapher solution



Non-TEM absorber and voltage coupling
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We can use this projection to define a first order outgoing wave condition
for non-TEM Waves! Add this to variational Ampere’s law

How do we impose 2 boundary conditions at the same time?

Impose voltage coupling as a constraint and relax with a Lagrange multiplier
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Current coupling

Introduce a Neumann 
condition to couple

Test Ampere’s law against            we can solve for 

This gives us exact energy conservation !



Variational Formulation Summary
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Discretization
Lowest order Nedelec elements  for E
Lowest order Raviart Thomas elements for B
P1 elements for V
P0 elements for I
     is discrete

Implicit RK method for time integration – i.e. implicit midpoint or Crank 
Nicolson.
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Linear Solver for the Coupled System
• Fully coupled linear system

• Exact block LU decomposition
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• Exact inverse requires 1 EM solve 
plus 2 for each TL whenever the 
time-step changes

• An augmented TL system solve 
(STL) for each TL (assumed small 
compared to EM solve – we do a 
small direct solve on each MPI rank)

• For fixed time-step simulations, the 
cost per time-step is essentially the 
same as solving EM and TL 
decoupled



Verification: O-Wave between Parallel Plates
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• Using implicit midpoint time-stepping 
(second order) and first order conforming 
finite elements for the EM

• Large CFL – error is dominated by time 
discretization – obtain expected second 
order convergence

• Small CFL – error is dominated by spatial 
discretization – obtain expected first order 
convergence

• Simulating a transient O-wave where the middle of the domain is 3D 
EM and the sides are 1D TLs



Verification: Coaxial Waveguide

• Coaxial waveguide driven by an 
equivalent circuit

• Obtained first order convergence 
to analytic steady-state solution
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Demonstration: 18a Convolute
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• EM simulation on 18a geometry driven by 4 TLs 
equivalent to BERTHA model

• Have demonstrated good agreement with 
CHICAGO for same problem elsewhere

• Coupled linear solver scales similarly to EM 
alone

• Early time-steps are cheap until pulses reach 
the EM domain 



Questions
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Maxwell’s Equations on 
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Transverse Electromagnetic Mode (TEM Mode)
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Separate variables

Evolution equations:

Mode condition:



Cross sectional profiles: Laplace problems
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constant

We’re going to chose a convenient normalization

For MITLs this is reasonable : the medium is vacuum 

These transverse profiles satisfy the mode condition



Projection out transverse profile
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