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Vision: Rapid failure prediction based on microstructure, geometry,
2 I and loading conditions

f N

Microstructure
Simulation Code
1.0
I ey
I =
As-built Geometry I | Q 08
l b — ' 'ﬂ‘ﬂllTlme HH:MM:s55 | -8
| e.282 a
-— = = v 0.6 1
e — = =
‘©
e — = 2
4
-— - £
| E 0.2
' o
\_ ) I S 00 1700 1800 1900 2000 2100 2200
4 Boundary Conditions A [ \ a / Failure Load
o | l
g |
N |
o 29 oo .
5, = Qualification, Topology
%] . . .
B Optimization, etc.
-4
00 05 10 15 20 25 30 35 4.0
\ Time ) Image: oldcomputers.net




3 I Today: Failure Prediction is Difficult and Slow Even With a Team

1. Create Mesh (Days-

Weeks)

2. Iteratively Calibrate

Material Model with
l Damage (Days-Weeks) .

Can physics-informed Deep Learning (DL) algorithms be Je

3. Run Many Large Simulations (Days-Weeks-

Months)
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trained to rapidly identify the initial microstructural o1 $

conditions that lead to incipient failure initiation?
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Why Machine Learning?

Some problems are difficult to solve with a directly-coded algorithm

° Don’t generalize well

° Have to write a program by hand for each specific task [

Machine learning (ML) is good at:
° Recognizing patterns

° Anomaly detection
° Prediction
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Introduction to Machine Learning

Typical computer algorithms:
> have an input,

> do some computation,
> and produce some output

Algorithm:

Square root
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6 I Introduction to Machine Learning

Machine learning algorithms:
> have lots of inputs,

° do some computation,
> and produce a function

Input data: Algorithm:

X1y X9y X3y oee

y1’ y27 y3’ 000 SVM
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Introduction to Machine Learning

Layers are functions with "trainable” parameters

° e.g.y=mx+b

Layering linear functions models non-linear functions

input

md tanh(W,7%) -

Training step:

> Send an input, x, through the network

° Repeat!

o Compare the output, y, to the known output
o Update layer parameters

- -

hidden

hidden

activations

activations
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Deep Learning

Big neural networks

Multiple layers capture “deep” statistical
information in data

Require more intensive computing resources

Include:
o Convolutional neural networks

o Recurrent neural networks

Methods:
> Supervised
° Unsupervised

° Semi-supervised

Slide: Carianne Martinez, Drew Levin,
Demitri Maestas, Matthew Smith
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9 I QOutline

* Part 1: Predicting AM Mechanical Response
* Training Data Generation Using Porous AM Material
* Data Mapping
* Local Variations in Stress State
* Deep Learning Algorithm
* Deep Learning Predictions
* Conclusions

* Part 2: Current work on predicting failure in AA6061



10 I Part 1 Project Overview: Predicting AM Mechanical Response

Training Data: High fidelity model
results from AM dogbones loaded in

tension
DL Model: Supervised 3D CNN

Inputs: Porosity and final state
equivalent plastic strain

Output: Metric Classification

Submitted to: Additive
Manufacturing

True

Metrics

Metric: Peak Load
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T = time corresponding to peak load
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Feit = required load

d.ri = required displacement

EQPS,,;; = required equivalent plastic strain



11 I Experimental CT measurements inform training data meshes

e large pore
* small pore
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12 I Varying fidelity models test statistical representation of voids

V applied to sample

cutoff

Lofi I Lofi Mesh Lofi Mesh Spherical pores Ellip pores

Mesh 0 1 2 (1.5 million elements)



Low fidelity predictions versus full-fidelity
prediction

Ve ytoff applled to sample , I I
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V..o @Pplied to sample
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15 I Calibration to tensile specimens

350
o
< 300
0
0 250
Q
S 200
wn
2 150
5
Q@ 100 — Model
£ @ Calibration
2 50 Exp. Data
LL

0

0.00 0.01 0.02 0.03 0.04 0.05

Engineering Strain

Plasticity is captured with Voce hardening model
o = 0y, + A(1 — exp(—néP))

Model calibrated using porous mesh from CT scan — captures “matrix” response



16

L)

Different porosity samples lead to different local behavior
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Force-displacement and max EQPS show large variations due to
17 I pore structures
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Deep Learning algorithm requires uniform voxel (3D Pixel) data

format

M

Sierra simulations results
from tetrahedral mesh

Results mapped to uniform
hexahedral mesh

Hex elements in pores
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Statistics of original data EQPS vs. mapped data EQPS illustrates

smoothing

Original vs. Mapped Data

Simulation Data
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opecimens snNow large 10Cal stress state variations even in
nominal uniaxial tension simulations > Reduces risk of
20 ¥ extrapolation
o1 vs. o3 Colored by EQPS
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opecimens snNow large 10Cal stress state variations even in

nominal uniaxial compression simulations > Reduces risk of

extrapolation
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22 I Deep Learning algorithm architecture

Flatten Dense

Model Inputs per Voxel
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* Model architecture based on Huang et al. Front. Neurosci. 2019
* OQutput is classification — pass/fail for failure metric




True Label

Failure prediction results in test sets for network trained only on
23 ¥ tension

______________________________________________________________________________________

Failure Metric: Sample failed to reach a required load before onset of strain localization.
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True Label

Failure prediction results in test sets for network trained only on
24 ¥ tension
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True Label

Failure prediction results in test sets for network trained only on
25 ¥ tension
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True Label

Failure prediction results in test sets for network trained only on
26 ¥ tension
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27 I Memory management becomes an issue with large datasets

Current 3D training samples contain 750k voxels — approaching memory
limits on GPU.

Multiple components of the DL process live in GPU memory
simultaneously.

* DL model weights

* Activation function values

* Backpropagation update values

* 3D element values (batch of inputs)

Scaling options
* Batch size limitations
Smaller/simpler architecture

* Loading different architecture layers across GPUs
* Loading single architecture layer across GPUs

* Patch-wise CNNs
* Physics Informed Neural Networks — use physical insights to
perform computations
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Using GANs to augment CT images of AM material — Collaboration
28 I with Amir Farimani and Francis Ogoke (CMU)

* Generative Adversarial Networks (GANs) produce new
samples from a training set while preserving the underlying
statistics.

* GANSs are trained to minimize the distance between the
distribution of the training data and the generated samples.

TRUE
generator new CT discriminator
G(z) samples D(G(2)) FALSE
‘ \ / ‘ Metric MNotes
loss
[, ]

Volume Distribution

Mearest Neighbor Distances
random noise real CT Location Distribution
Ellipticity [z
samples pticit Ve
< Moment of Inertia
Surface Area
Mallat Scattering Transform || = | * | * @y

GAN network schematic



29 I Conclusions

* Deep Learning was able to predict performance variation due to microstructural features 5 orders of
magnitude faster than FEA (nearly instantaneous).

* Model maintained predictiveness in different part geometries and stress states.

* DLis able to pick up on patterns that subject matter experts cannot. Prior to this work we explored
looking at stress measures to predict ductility with little success.

* Using large datasets for DL training, such as volumetric data used here, on GPUs is a challenge.



Vision: Rapid failure prediction based on microstructure, geometry,
30 I and loading conditions enabled by Deep Learning
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New 3-year project: Failure Prediction Using Deep Learning in
31 1 AA6061

* Extending approach to include Diffraction
Contrast Tomography (DCT), in situ pCT,
Digital Volume Correlation (DVC), crystal
plasticity, and continuum damage
modeling.

. . , _ Macroscale Strain Fields .
* Collaboration with Prof. Mike Sangid From Simple Analysis Fast Failure
(Purdue) for HEDM on Proposed Design \ | Probability Prediction
\\\
™,

* Collaboration with Billy Oates and \
,* Ji

Brandon Krick (FAMU/FSU) for TEM i Yo% 8
TRAINED DEEP P(0)=0.92
~ LEARNING NETWORK )
\ Accelerated /

Design Change




Diffraction Contrast Tomography (DCT) to Crystal Plasticity
32 I workflow enables simulation of real microstructures

DCT video of tensile gauge section: Philip Noell
Crystal Plasticity: Hojun Lim

d1

~156 grains, 2.5 um voxel size
Removed all grains < 10 voxels
15,410,688 data points (254x237x254)
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Microstructure information
Grain volume distribution ., Grain volume distribution (voxels)

Full resolution (no defeature)
156 grains
9,284,343 elements
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Crystal plasticity simulations — 10% uniaxial tension
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Von Mises stresses at 10% deformation — 4 largest grains
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36 I Future Work

* Multiscale coupling — mesoscale CP to macroscale continuum damage simulations
* Digital Volume Correlation (DVC) testing

* In situ micron-scale CT testing

* High Energy Diffraction Microscopy (Prof. Mike Sangid)

* TEM for failure initiation mechanisms (Profs. Billy Oates and Brandon Krick)

* TriBeam characterization on deformed DCT+CP simulated sample

e Combining all of the above in an ML/DL model for failure predictions
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Questions?

kyljohn@sandia.gov




