
Sandia National Laboratories is a multimission 
laboratory managed and operated by National 
Technology & Engineering Solutions of Sandia, 
LLC, a wholly owned subsidiary of Honeywell 
International Inc., for the U.S. Department of 

Energy’s National Nuclear Security 
Administration under contract DE-NA0003525.

1Kyle Johnson, 1Demitri Maestas, 1John Emery 1Matthew Smith, 
1Carianne Martinez, 2Mircea Gregoriu, and 1Steven Sleder

Predicting Mechanical 
Performance in Additive 
Manufacturing Components 
Using Deep Learning 

1Sandia National Laboratories, Albuquerque, NM
2Cornell University, Ithaca, NY

TMS Annual Meeting
March 15-18, 2021

SAND2021-2212C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



Vision: Rapid failure prediction based on microstructure, geometry, 
and loading conditions2
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As-built Geometry

Microstructure

Qualification, Topology 
Optimization, etc.
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Today: Failure Prediction is Difficult and Slow Even With a Team3

Johnson et al. IJF 2019, Kramer, Boyce et al., IJF 2019

1. Create Mesh (Days-
Weeks)

3. Run Many Large Simulations (Days-Weeks-
Months)

2. Iteratively Calibrate 
Material Model with 

Damage (Days-Weeks)

Can physics-informed Deep Learning (DL) algorithms be 
trained to rapidly identify the initial microstructural 
conditions that lead to incipient failure initiation?



Why Machine Learning?4

 Some problems are difficult to solve with a directly-coded algorithm
◦ Don’t generalize well
◦ Have to write a program by hand for each specific task

 Machine learning (ML) is good at:
◦ Recognizing patterns
◦ Anomaly detection
◦ Prediction

Slide: Carianne Martinez, Drew Levin, 
Demitri Maestas, Matthew Smith



Introduction to Machine Learning5

 Typical computer algorithms:
◦ have an input, 
◦ do some computation, 
◦ and produce some output

Input:
x=49

Algorithm:
Square root

Output:
y=7

Slide: Carianne Martinez, Drew Levin, 
Demitri Maestas, Matthew Smith



Introduction to Machine Learning6

 Machine learning algorithms:
◦ have lots of inputs, 
◦ do some computation, 
◦ and produce a function

Input data:
x1, x2, x3, …
y1, y2, y3, …

Algorithm:
SVM

Output:
f(x)

Slide: Carianne Martinez, Drew Levin, 
Demitri Maestas, Matthew Smith



Introduction to Machine Learning7

   

input 

 

hidden 
activations

hidden 
activations output 

 Layers are functions with ”trainable” parameters
◦ e.g. y=mx + b

 Layering linear functions models non-linear functions

 Training step:
◦ Send an input, x, through the network
◦ Compare the output, y, to the known output
◦ Update layer parameters
◦ Repeat!

Slide: Carianne Martinez, Drew Levin, 
Demitri Maestas, Matthew Smith



Deep Learning8

 Big neural networks

 Multiple layers capture “deep” statistical 
information in data

 Require more intensive computing resources

 Include:
◦ Convolutional neural networks
◦ Recurrent neural networks

 Methods:
◦ Supervised
◦ Unsupervised
◦ Semi-supervised

Slide: Carianne Martinez, Drew Levin, 
Demitri Maestas, Matthew Smith



Outline9

• Part 1: Predicting AM Mechanical Response

• Training Data Generation Using Porous AM Material

• Data Mapping

• Local Variations in Stress State

• Deep Learning Algorithm

• Deep Learning Predictions

• Conclusions

• Part 2: Current work on predicting failure in AA6061



Part 1 Project Overview: Predicting AM Mechanical Response10

Training Data: High fidelity model 
results from AM dogbones loaded in 
tension

DL Model: Supervised 3D CNN

Inputs: Porosity and final state 
equivalent plastic strain

Output: Metric Classification

Submitted to: Additive 
Manufacturing

Metrics



Experimental CT measurements inform training data meshes11

large pore
small pore

• Training data consists of dogbone gauge sections loaded in tension past peak load

CT Data: Chris Laursen, Jay Carroll



Varying fidelity models test statistical representation of voids12

Lofi 
Mesh 0

Lofi Mesh 
1

Lofi Mesh 
2

Spherical pores

Vcutoff applied to sample 8

Ellip pores
(1.5 million elements)



Low fidelity predictions versus full-fidelity 
prediction

13

Lofi Mesh 0 Lofi Mesh 1 Lofi Mesh 2 Spherical pores

Vcutoff applied to sample 8

Ellip pores



Low- and full-fidelity vs. experiment
14

Lofi Mesh 0 Lofi Mesh 1 Spherical pores

Vcutoff applied to sample 8

Ellip poresExperiment
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Model 
Calibration
Exp. Data

Calibration to tensile specimens

• Plasticity is captured with Voce hardening model 

• Model calibrated using porous mesh from CT scan – captures “matrix” response



Different porosity samples lead to different local behavior16



Force-displacement and max EQPS show large variations due to 
pore structures17
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Deep Learning algorithm requires uniform voxel (3D Pixel) data 
format18

1 mm 

Sierra simulations results 
from tetrahedral mesh

Results mapped to uniform 
hexahedral mesh

Hex elements in pores 
removed



Statistics of original data EQPS vs. mapped data EQPS illustrates 
smoothing19



20

Compression

Tension

Mixed

Specimens show large local stress state variations even in 
nominal uniaxial tension simulations > Reduces risk of 
extrapolation



21

Compression

Tension

Mixed

Specimens show large local stress state variations even in 
nominal uniaxial compression simulations > Reduces risk of 
extrapolation



Deep Learning algorithm architecture 22

• Model architecture based on Huang et al. Front. Neurosci. 2019 
• Output is classification – pass/fail for failure metric 

ᵃ�ᵄ�ᵄ�ᵄ� ᵅ�ᵅ�ᵅ�ᵄ�ᵅ�

ᵱ� (ᵆ�ᵅ�ᵅ�ᵅ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ� )

Model Inputs per Voxel
Output
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Failure Metric: Sample failed to reach a required load before onset of strain localization.
FEA Simulation Time: 88 minutes on 216 cpus
DL Network Inference Time: 0.02 s on 2 GPUs

Speedup: 264000x

Square Tension Cylindrical Tension Square Compression

Failure prediction results in test sets for network trained only on 
tension 



Test: Accuracy: 56.2%Test: Accuracy: 91.9% Test: Accuracy: 62.3%
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Failure Metric: Sample Max EQPS remained below critical value and displacement reached a 
required value at onset of localization.

FEA Simulation Time: 88 minutes on 216 cpus
DL Network Inference Time: 0.02 s on 2 GPUs

Speedup: 264000x

Square Tension Cylindrical Tension Square Compression

Failure prediction results in test sets for network trained only on 
tension 
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Test Accuracy: 62.5%Test Accuracy: 89.2% Test Accuracy: 85.8%

FailureNo Failure

Predicted Label

FailureNo Failure

Predicted Label

FailureNo Failure

Predicted Label

Square Tension Cylindrical Tension Square Compression

Failure prediction results in test sets for network trained only on 
tension 

Failure Metric: Sample Max EQPS remained below critical value and force reached a required value 
at onset of localization.

FEA Simulation Time: 88 minutes on 216 cpus
DL Network Inference Time: 0.02 s on 2 GPUs

Speedup: 264000x
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Test Accuracy: 80.0%Test Accuracy: 84.7% Test Accuracy: 10.8%
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Square Tension Cylindrical Tension Square Compression

Failure prediction results in test sets for network trained only on 
tension 

Failure Metric: Sample displacement reached a required value at onset of localization.
FEA Simulation Time: 88 minutes on 216 cpus
DL Network Inference Time: 0.02 s on 2 GPUs

Speedup: 264000x



Memory management becomes an issue with large datasets27

Patch-level CNN Classification (Cheng et al., ICDIP Proceedings 
2017)

Current 3D training samples contain 750k voxels – approaching memory 
limits on GPU.

Multiple components of the DL process live in GPU memory 
simultaneously.  

• DL model weights 
• Activation function values 
• Backpropagation update values
• 3D element values (batch of inputs)

Scaling options
• Batch size limitations
• Smaller/simpler architecture

• Loading different architecture layers across GPUs
• Loading single architecture layer across GPUs

• Patch-wise CNNs
• Physics Informed Neural Networks – use physical insights to 

perform computations

Increasing Com
plexity



Using GANs to augment CT images of AM material – Collaboration 
with Amir Farimani and Francis Ogoke (CMU)28

• Generative Adversarial Networks (GANs) produce new 
samples from a training set while preserving the underlying 
statistics.

• GANs are trained to minimize the distance between the 
distribution of the training data and the generated samples.

GAN network schematic



Conclusions29

• Deep Learning was able to predict performance variation due to microstructural features 5 orders of 
magnitude faster than FEA (nearly instantaneous).

• Model maintained predictiveness in different part geometries and stress states.

• DL is able to pick up on patterns that subject matter experts cannot. Prior to this work we explored 
looking at stress measures to predict ductility with little success.

• Using large datasets for DL training, such as volumetric data used here, on GPUs is a challenge.



Vision: Rapid failure prediction based on microstructure, geometry, 
and loading conditions enabled by Deep Learning30

Simulation Code

Boundary Conditions

As-built Geometry

Microstructure
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Image: oldcomputers.net



New 3-year project: Failure Prediction Using Deep Learning in 
AA606131

• Extending approach to include Diffraction 
Contrast Tomography (DCT), in situ µCT, 
Digital Volume Correlation (DVC), crystal 
plasticity, and continuum damage 
modeling.

• Collaboration with Prof. Mike Sangid 
(Purdue) for HEDM

• Collaboration with Billy Oates and 
Brandon Krick (FAMU/FSU) for TEM



Diffraction Contrast Tomography (DCT) to Crystal Plasticity 
workflow enables simulation of real microstructures32

DCT video of tensile gauge section: Philip Noell
Crystal Plasticity: Hojun Lim

• ~156 grains, 2.5 um voxel size
• Removed all grains < 10 voxels
• 15,410,688 data points (254x237x254)



Microstructure information
Full resolution (no defeature)
156 grains
9,284,343 elements

Initial texture

Grain volume distribution (voxels)Grain volume distribution

(100) (110) (111)



Crystal plasticity simulations – 10% uniaxial tension

Grain IDs Von Mises stress (MPa) Equivalent plastic strain



Von Mises stresses at 10% deformation – 4 largest grains 

Grain #100
Vf =9.5%

Grain #119
Vf =7.6%

Grain #33
Vf=7.5%

Grain #75
Vf =7.2%



Future Work36

• Multiscale coupling – mesoscale CP to macroscale continuum damage simulations

• Digital Volume Correlation (DVC) testing

• In situ micron-scale CT testing

• High Energy Diffraction Microscopy (Prof. Mike Sangid)

• TEM for failure initiation mechanisms (Profs. Billy Oates and Brandon Krick)

• TriBeam characterization on deformed DCT+CP simulated sample

• Combining all of the above in an ML/DL model for failure predictions



Questions?

kyljohn@sandia.gov
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