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(J Nonlocal Models

1 Using computational models in practice

1 nPINNS: nonlocal Physics-Informed Neural Networks
1 Data-driven solutions

 Data-driven discovery

[ A nonlocal model for turbulent Couette flow

[ Conclusions



+ | Discovery of Nonlocal Model Parameters from Data

(1 can calibrate any isotropic elastic solid for given ®, .
1 With detailed knowledge of microstructure, in some cases
can derive é.

( This raises several questions:

1 Is the choice of influence function or horizon important?

(d Does choice of these parameters make a difference in
getting a physically correct answer or a physically
incorrect answer?

[ Is any specific choice just as good as any other? Is there a
single best choice for a specific application? Are there
multiple good choices?

(J How do you tell?

J Data-driven methods present the opportunity to discover
these parameters from data.

 Let’s talk about Physics-Informed Neutal Networks (PINNs),
both for (1) data-driven solution to PDEs, and (2) data-
driven discovery of model parameters.

6 Example: Nonlocal Isotropic Elastic Material\

U Governing equations and parameters
O pii(x,t) = j (T[x, t1{x' —x) - T[x',t](x - x'))dV,

H !
DT[X,t]<x'—x3 - (@@Z‘Fﬂ@edjx,;x
m m X —x||

Q kis bulk modulus, p is shear modulus

U o is peridynamic influence function
K Q3 § is peridynamic horizon /




s | Train a Neural Network to Solve a PDE (Naive Approach)

 Train deep neural network (DNN) to solve this PDE:

2 2
f X; au TR au; au EEE au ;;A :O
OX, OX, OX,0X, OX,0X,

L Naive approach: Train network minimizing loss based on provided training data

Minimize

1
_Z|UNN(xk)_u(xk)|
N, i

2

om m mm o o o o

O In practice, this requires lots of data.
1 There is no explicit notion of governing physics anywhere in this system.



« | PINNs*: Train a2 Neural Network to Solve a PDE

 Train deep neural network (DNN) to solve this PDE:

2 2
f X; du )0 au; 0'u )0 0’u ;;A =0
OX, OX, OX,0X, OX,0X,

1 Physics-Informed Neural Network (PINN) explicitly incorporates physics by constraining network output

PDE(A)
_________________________________ -
/
! :
: : Minimize
: 8u aZu azu A O : MSEu + MSEf
: T Tox, oxox, Toxoxy - : 1 N )
: MSE, = — uNN(xk)—u(xk)‘
| | N, &
\ I 1 N¢
s MSE, =—>"If(x, )"
________________________________ - 7 Nf k=1

O In general, this requires much less data and can produce highly accurate solutions.

* M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential
equations, J. Comput. Phys. 378 (2019) 686-707.



; 1 PINNs*: Train 2 Neural Network to Solve a PDE

(J PINNs can be used in two ways:
(J Data-driven solutions to PDEs (i.e., A is known and we seek u(x)).
(J Data-driven discovery of PDEs (i.e., A is unknown and we seek u(x) and A).
In this case, A becomes a parameter of our PINN.

PDE(A)
_________________________________ -
/
! :
: : Minimize
: au aZu aZu A O : MSEu + MSEf
: T Tox, oxox, Toxoxy - : 1 N )
: MSE, = — uNN(xk)—u(xk)‘
| | N, &
\ I 1 N¢
/ MSE, =—>"If(x, )"
________________________________ - 7 Nf k=1

* M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential
equations, J. Comput. Phys. 378 (2019) 686-707.



s | Knowledge of Physics vs. Data

(J PINNs = Neural Networks + Data + Physical Laws

1 How much do we know about governing physics?
1 How much data do we have?

O An alphabet of PINNS has been developed:
(d cPINNs: conservative PINNs
( vPINNSs: variations PINNs
O pPINNs: parareal PINNs
(J sPINNs: stochastic PINNs
( fPINNSs: fractional PINNs
( LesPINNSs: LES PINNs
[ nPINNs: Nonlocal PINNs
[ xPINNs: eXtended PINNs

d Next: Universal Nonlocal Laplace Operator

Small Data

Lots of Physics

Some Data

Some Physics

Big Data

--------------- -I

No Physics




9 ‘ Universal Nonlocal Laplace Operator

1 Given broad spectrum of experimental data, we desire flexible operator.
O i.e., operator discovery using parameterized classical Laplacian with data governed by a nonlocal Laplacian will
not work well. But we don’t know in advance the functional form data obeys.

Solutions to -L; _ su(x) = -sin(2mx)
0.5 T T . e T

(d Use this operator*: —
N > —5:8.1 | I
u — U(X 03} " |
-L; u(x)=C; j ) d(m) Vx e ool A A e - |
Bs(x) |y - x||2 041 [;T;(?tional Laplacian| - B
J So that these properties are satisfied: 01|
!Si_f)‘g('%,a Ju(x) = -Au(x) Vae€(0,2)  (Classical Laplacian) oa)
Eliim (-‘EB a )U(X) = (-A)(X/2 u(x) Va e (O’ 2) (FraCtionaI LapIaCian) 0 0 0.1 0.2 0.3 0.4 0I5 0.6 0.7 0.8 0.9 1
—>00 ! «
4 )
O Apply nPINNs to this problem: i
-L; u(x)=f(x) xeQ I
u(x)=g(x) xeQ, ‘
* This operator bridges fractional and local operators. For more on related unification results, see - J

M. D’Elia, M. Gulian, H. Olson, G. E. Karniadakis. A Unified Theory of Fractional, Nonlocal, and Weighted Nonlocal Vector Calculus, 2020 arXiv:2005.07686.



10 ‘ Nonlocal Physics-Informed Neural Networks (nPINNs)

(1 nPINNS can be summarized in 3 steps:
1. Collect observations or high fidelity simulations of the solution, u_, -L. u(x)=f(x) xeQ
2. Approximate the solution with a fully connected NN: u(x) = uy,(x; 6) '
3. Minimize the loss function with respect to the unknown parameters

u(x)=g(x) x e

\ 4

1
-L; uw(x)-f(x)=0 } : { Loss | Minimize -
]

P e e |

N . .
Z(-L&GUNN(Xk;e) _ f(xk))z Residual points: {xk }: .

k=1 Nobs

k=1

Observation points: {X, |

gf(xk)z |

N

Z(-LS,GUNN (x,.;0)—f(x, ))2 Zol(uNN (X, ;0) —ugy (X, ))2

 Inverse mode (data-driven discovery): Loss(0,5, )=+ 4 k=t

N Nobs
Z f(x, )’ Zuobs (%, )°
k=1 k=1

J Forward mode (data-driven solution): Loss(0)=




1 ‘ Computational Results: Data Driven Solutions

1 nPINNs solutions show universal Laplace operator reproduces classical and fractional Laplacians

003 nPINN solutions: -L‘s'“u(x)=sin(21r X) 08 nPINN solutions: -L % @ u(x)=sin(2 x x)

04r a=0.5, §=1e100 .

0.02F 0=0.5, §=1e-10 } *  @=0.5 (Fractional Laplacian)
= 031 =1.5, §=1e100 I

=1.5, §=1e-20 a=15,

@  &=1e *  a=15 (Fractional Laplacian)

a=1.9, §=1e-100 02 .
001 _ ) - a=1.9, §=1e100

===0a=2.0 (Laplacian) 0.1 *  @=1.9 (Fractional Laplacian)]

Z o0 g o
-0.1
-0.01
-0.2
-0.3
-0.02
-0.4
_003 1 1 1 1 1 1 1 1 1 _05 | 1 1 1 1 1 1 1 1
0] 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X X
. o 2
lim(-£; , )u(x) = -Au(x) Vo e(0,2) lim(-L, , Julx) = (-A)"u(x) Vae(0,2)
—>0 !
(Classical Laplacian) (Fractional Laplacian)



12 ‘ Computational Results: Data Driven Solutions

(1 nPINNSs can reproduce discontinuous solutions (o.=0, 6 = 0.3)*

X xe€[-9,0.5) 1
u(x)=+ ,
X~ xe(0.5,1+9] 0.9t
0.8t
(0 x €[0,0.5-3) 0 L
—%FSZ —8+§+(28—§—In6)x 06
o’ |2 8 2
, ) x [0.5-§,0.5) Sos |
+H=+x°Ind—(x° —x)In——x} >
2 2 0.4t
f(x) =+ 501
——2[—62—6—i+(26+§+xln6) 0.3 1
07| 2 8 2
3 . x €(0.5,0.5+09) 0.2
—(E+len8+(x2 —x)Inx—E} 01
—2 x €[0.5+9,1.0], 0 :
- 0 0.5 1

*X. Chen, M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics, Comput. Methods Appl. Mech. Eng. 200(9-12) (2011) 1237-1250.



13 ‘ Computational Results: Data Driven Solutions

O Convergence of nPINN solution to solution of classical Laplacian (6—0) and fractional Laplacian (6—x)

Relative error

Convergence of u® to u.

asd— 0
las

‘(' 5,00 )U(X) —(-A)U(x)‘ ~5%* asd—>0

Relative error

Convergence of u®to uc...as 4> o0
100. e
[ —0—=05|:

0_1 _ ..........
07 F
03
10 0 2 4 ) 6

10 10 10 10

]

‘(-,Cm )u(x) = (-A)OL/2 u(x)‘ ~ FIHEDY 98§ —> 00



1« | Computational Results: Data Driven Discovery

1 nPINNSs can discover parameterized operator from data: Seek (6,a) € (0,) x (0,2). L ou(x)=f(x) xeQ
0,0

0 Q=(0,1), g(x) = 0, f(x) = sin(27x)

d Training data: 100 uniformly spaced points in QU Q;

O Optimal (6°,a) = (1.4, 0.8)

Initial guess 1

@® Initial guess 141

1.2 1
Converged value

1.0 A

0.8 f
d c"..o

0.6 1

% True solution

0.4 A

0.2 1

0.0 — T
05 1.0 15 20

5
Initial guesses: (9,,0,) =(1,0.5)
Relative errors: e, =2.64x10*

1.4 -
1.2 A
1.0 A
0.8 -

0.6 :

0.24:

0.0 4

0.4:

Initial guess 2

é 1I0 15
(0]
(8,,,) = (10,0.5)
e, = 1.43x1072

u(x)=g(x) x e

Initial guess 3

1.4 e
1.2 A
1.0 A
0.8 {#
0.6 -
0.4

0.2 A

0.0 = .
0 1000 «—— Scale change

0]
(85,05) = (1000,0.5)
e, = 2.69x10"



s | Computational Results: Data Driven Discovery

J nPINNSs can discover parameterized operator from data: Seek (6,a) € (0,%) (0,2).
d Q=(0,1), g(x) =0, f(x) = sin(27x)
d Training data: 100 uniformly spaced points in QU Q;

-L; u(x)=f(x) xeQ
u(x)=g(x) x e

O Optimal (6°,0) = (14.0, 0.8) <« Increase & by 10x from previous example

Initial guess 1

Initial guess 2

Initial guess 3

1.0 1.0 1.0 L5958 0-0.579

@ |Initial guess . mimics
‘ e
0.8 - .o% 081 . ®  0.8q% =5 Lo-14,0:08
Converged value < e : for f(x), g(x), etc.
% True solution 0.6 - 064 : 0.6 -
s e £ o

0471 0.4{ i 0.4

0.2 1 0.29 | 0.2 -

0-0 I I 0.0 I I 0.0 I T

5 10 15 5 10 15 0 1000 «— Scale change
6 6

Initial guesses: (9,,0,) =(1,0.5)
Relative errors: e, =5.46x10%

(5,,0,) = (10,0.5)

e, = 1.06x10%

5
(85,0,5) = (1000,0.5)
e; = 8.17x104 <

Wrong answer,
but comparable

error!



6 ‘ Turbulence Modeling of Couette Flow

O 1D equation for Couette flow

=0, y+ c [O, 2Re ] y=D Moving plate (velocity U, ) g——>
. «— | | — >
dimensionless Reynolds stress Aty=D: U=U,
dimensionless total shear stress
U+, y+ are dimensionless variables based on wall units D .
J Total shear stress equation
du" [ —\+ .\ Aty=0: U=0
dy” (uv) =1, y"e[0,2Re ] © < N e >
Y= Fixed wall
1 Propose new nonlocal model for Couette flow:
(LU =1, 50,aly)<(01))
 New operator is not the operator L&a we explored previously!
éIsim (£~5 N )U+ — Combinaton of Caputo fractional derivatives
—>0 !
] ,_duU’ -
lim ('Lé,a )U = < Reduces to local model only in viscous sublayer where Reynolds stress << 1.

a(y")—1,8—>x

dy”’



17 ‘ Turbulence Modeling of Couette Flow

O Use nPINN to jointly estimate J, o/(y+). Use separate neural networks for U, .
M Train using DNS data* for three different Reynolds numbers, Re_= 125, 180, 250.
d Use 6, = 100, 1e10.

Neural Network oy (ALY volume constraints

u(y™) =g(y") in Qs

P +
\s. —————————————————— @ ||£6!aNN(y )uNN(y+) | f(y+)||2
Neural Network unn(y™;0,,) . ,
jemmmm s —m—m - Es (Y7 ¥ equation residual Loss(0,,6,00)

minimization |
lunn () — vobs (H )17 |

N

-—— o — —
o e e - —
| |

b B SEEe—

——————————————————

predictions and observation misfit (6, ) ‘

*V. Avsarkisov, S. Hoyas, M. Oberlack, Jose Pedro Garcia-Galache, Turbulent plane Couette flow at moderately high Reynolds number, J. Fluid Mech. 751 (2014).



18 ‘ Turbulence Modeling of Couette Flow

Estimated fractional order and § 13 . _ Computed fotal shear stresses
1k ——, \ i 195k ReT=125 (60: 100, 4. 99.46, Loss: 4.63e-6) |
\ ReT=180 ( 60: 100, §: 101.2, Loss: 5.56e-6)
12F Re =250 ( §: 100, &: 100.6, Loss: 1.63e-5) -
0.8 [ 1 T 0
- ReT=125 (60: 1e10, §: 1e10, Loss: 2.95e-6)
\ (R — — Re =180 (4§, 1e10, & 1e10, Loss: 4.08e-6) |
i 06 A S 7 fo 1AL Re =250 (6, 1€10, 4: 1e10, Loss: 1.27e-5) i
= Re =125 (§: 100, 4: 99.48, Loss: 4.63e-6) NS '
T 0 N F= T =1
— Re =180 (4.. 100, 4: 101.2, Loss: 5.56e-6) \\ 105+ i
04 T 0 \ 1 -
ReT=250 ( 60: 100, 4. 100.6, Loss: 1.63e-5) !
— = Re =125 (4, 110, §: 1e10, Loss: 2.95¢-6) \ Tr - aed 2 ]
021 |- — Re =180 (4. 110, & 1e10, Loss: 4.08e-6) 7
T 0 095 | i
ReT=250 ( 50: 1e10, §: 1e10, Loss: 1.27e-5)
A | Ll Ll Ll Ll L 09 TR S L il Ll L1l L1l Lt
1073 102 107 10° 10’ 102 10° 107 1072 10 10° 10’ 10° 10°
y" y’
Profile of fractional order in wall units Computed total shear stress (true stress t*=1)
Observations:

O Fractional order = 1 near walls. Agrees with limit behavior for small Reynolds stress.

O Loss function not sensitive to changes in d.

 Estimated fractional order profiles a(y*) on top of each other independent of 5, Re_. Suggests existence of
universal fractional order o(y*) that reproduces DNS data independent of these Reynolds numbers.*

O Fractional orders different for y* > 20, but with similar losses. Operators are distinct, but action on velocity is
essentially the same (Mimic operator).

*For more, see P.P. Mehta, G. Pang, F. Song, G.E. Karniadakis, Discovering a universal variable-order fractional model for turbulent Couette flow using a physics-informed neural network, Fract. Calc. Appl. Anal., 22 (6) (2019), pp. 1675-1688.



19 ‘ Turbulence Modeling of Couette Flow

Computed Reynolds stresses (60: 100)

Computed Reynolds stresses (60: 1e10)

1F + Req_=125 (nPINN, é: 9946) 1 # Re =125 (nPINN, & 1610,)
.
Re =125 ( DNS data) Re =125 ( DNS data)
§ o8t + Re‘r=180 ( nPINN, 4101 .2) 8 08 " ReT=180 ( nPINN, & 1610) 4
2 Re_=180 (DNS data) % Re, =180 (DNS data) £
% sl Re =250 (nPINN, 6:100.6)| B g Re =250 (nPINN, 5 1e10)| &
T Re_=250 ( DNS data) ,/“ o Re =250 ( DNS data) /‘7 J
= ] - T 3
g d 7] o
S04 # % 04 F |
O £t c it
< ' oy '
5 & @ i
¥ 4 J
02F F 4 0.2 !
i Ed
F 4 w4
ot FEEIEIRRTS e o a ot e *i .
107 10° 10" 10° 10 10° 10" 10° 10°
+ +
y y
Observations:

(J Computed Reynolds stresses on top of those reported from DNS dataset.

O Very different values of  produce same stresses. These and other results (not shown) imply larger values of
d are more physically meaningful, and there is a threshold above which the nPINN reaches the same
accuracy.



20 ‘ Summary

Journal of Computational Physics 422 (2020) 109760 I
 Nonlocal Models

Contents lists available at ScienceDirect = ::':mﬂ:fﬁm

Journal of Computational Physics

1 Using computational models in practice

www.elsevier.com/locate/jcp

D nPINNS: nonlocal PhYSICS-'ﬂfOFmEd Neural Networks nPINNs: Nonlocal physics-informed neural networks for a N |
[ Data-driven solutions parametrized nonlocal universal Laplacian operator. mE I

. . Algorithms and applications
D Data-drlven dlscovery G. Pang?, M. D’Elia”*, M. Parks ¢, G.E. Karniadakis*

2 Division of Applied Mathematics, Brown University, RI, United States of America
b Computational Science and Analysis, Sandia National Laboratories, CA, United States of America
¢ Center for Computing Research, Sandia National Laboratories, NM, United States of America

[ A nonlocal model for turbulent Couette flow

Guofei Pang, Marta D'Elia, Michael L. Parks, George E. Karniadakis,
. nPINNs: nonlocal Physics-Informed Neural Networks for a
[ Conclusions parametrized nonlocal universal Laplacian operator. Algorithms and
Applications, Journal of Computational Physics, 422, 109760, 2020.
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