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 Example: Nonlocal Isotropic Elastic Material

 Governing equations and parameters
 

 

 k is bulk modulus, µ is shear modulus
 ω is peridynamic influence function 
 δ is peridynamic horizon 

Discovery of Nonlocal Model Parameters from Data4

 I can calibrate any isotropic elastic solid for given ω, δ.
 With detailed knowledge of microstructure, in some cases 

can derive δ. 

 This raises several questions:
 Is the choice of influence function or horizon important?
 Does choice of these parameters make a difference in 

getting a physically correct answer or a physically 
incorrect answer?

 Is any specific choice just as good as any other? Is there a 
single best choice for a specific application? Are there 
multiple good choices?

 How do you tell? 

 Data-driven methods present the opportunity to discover 
these parameters from data. 

 Let’s talk about Physics-Informed Neutal Networks (PINNs), 
both for (1) data-driven  solution to PDEs, and (2) data-
driven discovery of model parameters. 
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Train a Neural Network to Solve a PDE (Naïve Approach)5

 Train deep neural network (DNN) to solve this PDE:

 Naïve approach: Train network minimizing loss based on provided training data

 In practice, this requires lots of data. 
 There is no explicit notion of governing physics anywhere in this system. 
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 Train deep neural network (DNN) to solve this PDE:

 Physics-Informed Neural Network (PINN) explicitly incorporates physics by constraining network output

 In general, this requires much less data and can produce highly accurate solutions. 
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* M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential 
equations, J. Comput. Phys. 378 (2019) 686–707.



 PINNs can be used in two ways:
 Data-driven solutions to PDEs (i.e., λ is known and we seek u(x)).
 Data-driven discovery of PDEs (i.e., λ is unknown and we seek u(x) and λ). 

In this case, λ becomes a parameter of our PINN. 
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Knowledge of Physics vs. Data8

 PINNs = Neural Networks + Data + Physical Laws

 How much do we know about governing physics?
 How much data do we have?

 An alphabet of PINNS has been developed:
 cPINNs: conservative PINNs
 vPINNs: variations PINNs
 pPINNs: parareal PINNs
 sPINNs: stochastic PINNs
 fPINNs: fractional PINNs
 LesPINNs: LES PINNs
 nPINNs: Nonlocal PINNs
 xPINNs: eXtended PINNs

 Next: Universal Nonlocal Laplace Operator



Universal Nonlocal Laplace Operator9

 Given broad spectrum of experimental data, we desire flexible operator. 
 i.e., operator discovery using parameterized classical Laplacian with data governed by a nonlocal Laplacian will 

not work well. But we don’t know in advance the functional form data obeys.

 Use this operator*:

 So that these properties are satisfied:

 Apply nPINNs to this problem:

Ω Ωδ

( )
( ) ( )

,

/
,

lim u(x) = - u(x)            ( , )

lim u(x) = - u(x)   ( , )

δ αδ→

α
δ αδ→∞

∆ ∀α∈

∆ ∀α∈
0

2

0 2

0 2

-L

-L

(Classical Laplacian)

(Fractional Laplacian)

Solutions to -Lδ,α=0.5u(x) = -sin(2πx)

, , d
B (x) 2

u(y) u(x)- u(x) = C    x
y x

δ

δ α δ α +α

−
∀ ∈Ω

−∫L

,- u(x) = f(x)   x
u(x) = g(x)   x

δ α

δ

∈Ω

∈Ω

L

* This operator bridges fractional and local operators. For more on related unification results, see 
M. D’Elia, M. Gulian, H. Olson, G. E. Karniadakis. A Unified Theory of Fractional, Nonlocal, and Weighted Nonlocal Vector Calculus, 2020 arXiv:2005.07686.



 nPINNS can be summarized in 3 steps:
1. Collect observations or high fidelity simulations of the solution, uobs
2. Approximate the solution with a fully connected NN: u(x) ≈ uNN(x; θ)
3. Minimize the loss function with respect to the unknown parameters

 Forward mode (data-driven solution): 

 Inverse mode (data-driven discovery): 

Nonlocal Physics-Informed Neural Networks (nPINNs)10
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Computational Results: Data Driven Solutions11

δ << 1
δ >> 1

 nPINNs solutions show universal Laplace operator reproduces classical and fractional Laplacians
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 nPINNs can reproduce discontinuous solutions (α=0, δ = 0.3)*

Computational Results: Data Driven Solutions12
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*X. Chen, M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics, Comput. Methods Appl. Mech. Eng. 200(9–12) (2011) 1237–1250.



 Convergence of nPINN solution to solution of classical Laplacian (δ→0) and fractional Laplacian (δ→∞)

Computational Results: Data Driven Solutions13
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 nPINNs can discover parameterized operator from data: Seek (δ,α) ∈ (0,∞) × (0,2). 
 Ω = (0,1), g(x) = 0, f(x) = sin(2πx)
 Training data: 100 uniformly spaced points in Ω ∪ Ωδ
 Optimal (δ*,α*) = (1.4, 0.8) 

Computational Results: Data Driven Discovery14
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 nPINNs can discover parameterized operator from data: Seek (δ,α) ∈ (0,∞) (0,2). 
 Ω = (0,1), g(x) = 0, f(x) = sin(2πx)
 Training data: 100 uniformly spaced points in Ω ∪ Ωδ
 Optimal (δ*,α*) = (14.0, 0.8)  ← Increase δ* by 10× from previous example
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 1D equation for Couette flow

U+, y+ are dimensionless variables based on wall units
 Total shear stress equation

 Propose new nonlocal model for Couette flow:

 New operator is not the operator Lδ,α we explored previously!

Turbulence Modeling of Couette Flow16
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 Use nPINN to jointly estimate δ, α(y+). Use separate neural networks for U, α. 
 Train using DNS data* for three different Reynolds numbers, Reτ = 125, 180, 250. 
 Use δ0 = 100, 1e10.

Turbulence Modeling of Couette Flow17

*V. Avsarkisov, S. Hoyas, M. Oberlack, Jose Pedro Garcia-Galache, Turbulent plane Couette flow at moderately high Reynolds number, J. Fluid Mech. 751 (2014).



Observations:
 Fractional order ≈ 1 near walls. Agrees with limit behavior for small Reynolds stress. 
 Loss function not sensitive to changes in δ.
 Estimated fractional order profiles α(y+) on top of each other independent of δ, Reτ. Suggests existence of 

universal fractional order α(y+) that reproduces DNS data independent of these Reynolds numbers.* 
 Fractional orders different for y+ > 20, but with similar losses. Operators are distinct, but action on velocity is 

essentially the same (Mimic operator).

Turbulence Modeling of Couette Flow18

Profile of fractional order in wall units Computed total shear stress (true stress τ+=1)

*For more, see P.P. Mehta, G. Pang, F. Song, G.E. Karniadakis, Discovering a universal variable-order fractional model for turbulent Couette flow using a physics-informed neural network, Fract. Calc. Appl. Anal., 22 (6) (2019), pp. 1675-1688.



Observations:
 Computed Reynolds stresses on top of those reported from DNS dataset. 
 Very different values of δ produce same stresses. These and other results (not shown) imply larger values of 

δ are more physically meaningful, and there is a threshold above which the nPINN reaches the same 
accuracy. 

Turbulence Modeling of Couette Flow19
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Guofei Pang, Marta D'Elia, Michael L. Parks, George E. Karniadakis, 
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