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. | Deep Learning and Time Parallelism

= More layers can improve
performance

= Several groups have shown very
deep networks offer improvement

= GoogLeNet has 22 layers’

= Huang et al show improvement on
Cifar-10 data using up to 1200 layers?

= Recurrent neural networks

= Very deep networks may be
ignored due to training limitations.

1) Szegedy et al. Going Deeper with Convolutions. 2015.
2) Huang et al. Deep Networks with Stochastic Depth. 2016.
3) kdnuggets.com
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, | Deep Learning and Time Parallelism

= Separate groups of layers
between processors

= Neural networks are not
naturally parallelized in time
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Time decomposition using multigrid
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Deep Learning and Spatial Decomposition

Original 2D slices 3D decomposition

Medical image segmentation sees improvements when using 3D spatial
decomposition.

High Resolution Medical Image Analysis with Spatial Partitioning. Hou et al. 2019
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6 ‘ How spatial decomposition works
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Approach — combine spatial and time parallelism

= Combine two PyTorch frameworks: DistDL and TorchBRAID.
= The combo framework is currently called DTB.

= Compare performance of space-time parallelism with lone space or time
parallelism

= Architecture
= Processor - 2.1 GHz Intel Broadwell E5-2695 v4 : 2 sockets : 18 cores

= RAM per node — 128 GB
ﬁ' TorcéRAlD

= 1.8 pFlops
DistDL

O PyTorch
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Results — Convolution layers
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distdl - forward pass
distdl - backward pass
tb - forward pass

tb - backward pass

- dtb - forward pass

- dtb - backward pass
serial - forward pass
serial - backward pass

100 200 300 400 500
Num processors

Problem Size per Process (Space, Layer)

Procs DistDL B DTB

1 163, 8 163, 8 163, 8

2 163, 2x8 2x163, 8 163, 8

2? 163, 22x8 | 22x163, 8 163, 8

23 163, 23°x8 | 23x163, 8 163, 8

24 163, 24x8 | 24x163, 8 163, 8

2N 163, 2"x8 | 2Nx163, 8 163, 8

DTB exhibits weak scaling behavior while others slow

down



‘ Results — Convolution layers
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Initial spatial size = 128"3. Initial layers = 128

X —e— distdl - forward pass
, X —e— distdl - backward pass
10 i —Hl- tb - forward pass
- M- tb - backward pass
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DTB is up to 2 orders of magnitude faster




10 I Conclusion and Future Work

= Important takeaways

= Spatial + time parallelism can
offer significant speedups

= The combination enables
research into deeper networks for
large image segmentation

= Future work

= Apply framework to real-world
datasets

= Can we integrate spatial multigrid
for further speedups?
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Average time (seconds)

‘ Results — Convolution followed by batch norm

o Spatial size per processor = 16"3. Layers per processor = 8. batch=4 o Spatial size per processor = 16*3. Layers per processor = 8. batch=8
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down




Initial spatial size = 128%3. Initial layers = 128. batch = 4 Initial spatial size = 128%3. Initial layers = 128. batch = 8
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‘ Results — Convolution followed by batch norm E
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tb - backward pass
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DTB is up to 2 orders of magnitude faster




Test Accuracy (%) of 10000
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Time (s)

Strong/Weak Scaling
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