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ABSTRACT 
Physics models—such as thermal, structural, and fluid 

models—of engineering systems often incorporate a geometric 
aspect such that the model resembles the shape of the true system 
that it represents. However, the physical domain of the model is 
only a geometric representation of the true system, where 
geometric features are often simplified for convenience in model 
construction and to avoid added computational expense to 
running simulations. The process of simplifying or neglecting 
different aspects of the system geometry is sometimes referred 
to as “defeaturing.” Typically, modelers will choose to remove 
small features from the system model, such as fillets, holes, and 
fasteners. This simplification process can introduce inherent 
error into the computational model. A similar event can even take 
place when a computational mesh is generated, where smooth, 
curved features are represented by jagged, sharp geometries. The 
geometric representation and feature fidelity in a model can play 
a significant role in a corresponding simulation’s computational 
solution. In this paper, a porous material system—represented by 
a single porous unit cell—is considered. The system of interest 
is a two-dimensional square cell with a centered circular pore, 
ranging in porosity from 1% to 78%. However, the circular pore 
was represented geometrically by a series of regular polygons 
with number of sides ranging from 3 to 100. The system response 
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quantity under investigation was the dimensionless effective 
thermal conductivity, k*, of the porous unit cell. The results show 
significant change in the resulting k* value depending on the 
number of polygon sides used to represent the circular pore. In 
order to mitigate the convolution of discretization error with this 
type of model form error, a series of five systematically refined 
meshes was used for each pore representation. Using the finite 
element method (FEM), the heat equation was solved 
numerically across the porous unit cell domain. Code 
verification was performed using the Method of Manufactured 
Solutions (MMS) to assess the order of accuracy of the 
implemented FEM. Likewise, solution verification was 
performed to estimate the numerical uncertainty due to 
discretization in the problem of interest. Specifically, a modern 
grid convergence index (GCI) approach was employed to 
estimate the numerical uncertainty on the systematically refined 
meshes. The results of the analyses presented in this paper 
illustrate the importance of understanding the effects of 
geometric representation in engineering models and can help to 
predict some model form error introduced by the model 
geometry.  
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A = area 
α = porosity  
ε = error 
Γ = domain boundary 
h = characteristic mesh size 
H = mesh number  
k = thermal conductivity 
K = thermal conductivity matrix 
L = cell length 
N = total quantity 
N = shape function 
Ω = domain 
p = order of accuracy 
q = heat flow 
r = mesh refinement factor 
R = radius 
S = energy source 
t = triangle index 
T = temperature 
T = triangle node temperature vector  
U = uncertainty 
W = cell width 
x = x-coordinate 
y = y-coordinate  
 
Subscripts 
α = pore  
C = cold 
eff = effective  
f = formal 
Γ = boundary 
H = mesh number, hot 
Linf = L-infinity norm 
MMS = manufactured solution  
n = normal  
num = numerical 
RMS = root mean square 
sides = polygon sides  
t = triangle 
v = nodes   
 
Superscripts  
* = dimensionless 
‘ = per unit length 
‘‘ = per unit area 
 
1. INTRODUCTION 

 
A porous material as a special case of heterogeneous 

materials includes voids (i.e., locales of material absence) within 
the bulk material. Effective properties are a means of describing 
the general behavior of the system—based on the 
characterization of the pertinent heterogeneities or conditions in 
the system. As engineering systems become increasingly 
complex, it can be advantageous—and even necessary—to use 
effective properties to analyze and predict system performance 

in a feasible manner. Such approaches can be useful in a variety 
of applications. It has been shown, for example, that the 
heterogeneous microstructures of thermal barrier coatings 
(TBCs) on gas power turbine blades at a material level have 
significant effects on the effective thermal conductivity of the 
TBCs. Effective thermal conductivity plays a significant role in 
the performance and longevity of the TBCs and consequently the 
turbine blades that they protect [1-5]. Furthermore, additive 
manufacturing technology—a form of which is commonly 
known as 3D printing--has made it possible to have 
computerized fabrication of porous structures in various forms 
including foam and lattice at different scales. This manufacturing 
process has a natural need for understanding thermal transport in 
porous materials—considering the non-homogenous and high-
temperature processes used—where additive manufacturing can 
be used specifically for thermal applications [6-8]. The thermal 
performance and advantage of other advanced materials—such 
as aerogels and doped polymers—are driven by their 
heterogeneous characteristics and can be seen in marine, oil and 
gas, aerospace, energy, and thermal management industries [9-
12]. The expansive set of industries and specific thermal 
applications where heterogeneous materials are of immediate 
consequence is immeasurable. Thus, the pursuit of measuring, 
analyzing, and predicting the thermal performance of such 
materials is in high demand.  

While the effective thermal response of porous structures 
has attracted the attention of researchers recently, the 
configuration of pore structures--especially with the presence of 
sharp edges--have not been investigated thoroughly yet. The 
smaller pore size in various geometries is an inevitable topic in 
the future horizon of 3D printing technology and hierarchy 
porous structures. The main objective of the investigation 
covered in this paper is to study the effect of the existence of 
sharp edges in organized polygonal pore formats on the thermal 
behavior of a porous structure. In this work, high fidelity 
computational analyses are conducted and verified to obtain the 
effective thermal response of various pore polygonal geometries 
and study the variation of the thermal response with respect to 
the geometry of sharp edges for the same porosity value.  
 
2. SYSTEM DESCRIPTION 

 
In order to investigate possible implications of geometric 

fidelity and representation on porous material thermal responses, 
a porous unit cell system was defined in two dimensions to 
capture a fundamental porous material description. As shown in 
Figure 1, the two-dimensional unit cell has dimensions W and L 
in the x and y rectangular directions, respectively. The porous 
material is defined with a centered circular pore of radius, Rα, 
where, for the sake of this study, the negative and positive x 
boundaries and the pore wall boundary are made to be adiabatic. 
A temperature gradient is enforced across the domain, where the 
negative and positive y boundaries are held at hot and cold 
temperatures TH and TC, respectively. The prescribed 
temperature differential induces an average heat flow per unit 
length, q’, across the hot and cold boundaries. 
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Figure 1. System of interest is two-dimensional unit cell 
with centered circular pore and enforced temperature 

gradient 

The overall effective thermal conductivity of the porous 
system—in the direction of the system temperature gradient—is 
computed as 

 
 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑞𝑞′𝐿𝐿

(𝑇𝑇𝐻𝐻−𝑇𝑇𝐶𝐶)𝑊𝑊
. (1) 

 
The effective response is further non-dimensionalized as 

 
 𝑘𝑘∗ = 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒/𝑘𝑘1, (2) 

 
where a k* value less than 1 indicates a reduction in thermal 
conduction, and a value greater than 1 would indicate an increase 
in thermal conduction, with respect to the bulk material thermal 
conductivity. For this system, the characteristic geometry of the 
system of interest is porosity, α, which is the fraction of the unit 
cell occupied by the pore. Thus, 
 
 𝛼𝛼 = 𝜋𝜋𝑅𝑅𝛼𝛼2

𝐿𝐿𝐿𝐿
. (3) 

 
A series of α values was considered for this study in the 

range of [1%,78%], where k* changes as response to changing 
α. Previous work has spent a great deal of effort investigating 
this same system with respect to the k*-α correlation [13-17]. 
However, this work is dedicated more specifically to 
understanding the impact of geometric representation of the 
circular pore on k*. Although the true system of interest is the 
circular pore system shown in Figure 1, computational methods 
and model simplifications would often represent the smooth, 
continuous circular pore feature with some non-smooth, 
discontinuous representation, such as a polygon. Thus, for this 
study, each porous system—a single given circular pore size—is 
represented by a series of regular polygons with number of sides, 
Nsides, ranging from 3 to 100. Figure 2 illustrates the 
representation of a single circular porous system by regular 

polygons with 3, 4, and 5 sides, where the polygonal pore 
geometry is circumscribed by circular geometry which the 
polygonal geometry represents. 
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Figure 2. Multiple fixed polygonal representations used to 
represent the same circular pore 

By controlling the geometric representation of the circular 
pores, the effects of geometric pore representation can be 
distinctly separated from the effects of porosity, where the 
former has model form error implications. The following section 
describes the computation methods used for these analyses that 
allow for the segregation of the model form and porosity 
dependence effects on the effective thermal response of the 
porous system. 
 
3. SOLUTION APPROACH 

 
To determine q’, and, subsequently, k*, in the system of 

interest the temperature distribution across the computational 
domain must be determined and is done so by solving the 
governing two-dimensional, steady state, isotropic heat transport 
equation, 

 
 𝑘𝑘 �𝜕𝜕

2𝑇𝑇
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑇𝑇
𝜕𝜕𝑦𝑦2

� + 𝑆𝑆 = 0,  (4) 
 
where k is thermal conductivity, T is temperature, x and y are 
rectangular positions, and S is the general heat source 
distribution. 

The finite element (FE) method was used in this work to 
computationally solve the governing partial differential equation 
(PDE) of Equation (3) across the system. The FE method 
requires the discretization of both the domain and the governing 
PDE. Figure 3 illustrates the domain discretization into an 
unstructured triangular mesh, where each small triangle is a 
single finite element. 

When using the FE method, the governing equation must be 
solved across each triangular element simultaneously. 
Discretization of the problem induces numerical error into the 
computational solution, Unum, where, for this study, Unum is 
computed for the ultimate system response quantity (SRQ) of k*. 
As the mesh is refined (i.e., elements’ sizes made smaller), the 
solution to the PDE and SRQ’s derived from the solution are 
expected to change (even if slightly) and should begin to 
converge to single solution. The following subsections describe 
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the discretization of both the computational domain and the 
governing PDE. 

 

 
 

Figure 3. Discretization of computational domain into 
unstructured triangular elements 

 
3.1 DOMAIN DISCRETIZATION 

 
As described previously, prior to mesh generation, the 

polygonal geometric representation of the circular pore was 
fixed. Generally speaking, in most modeling workflows, the base 
geometry of a feature (in this case the circular pore) is defined 
such that the meshing algorithm creates elements across the 
domain, resulting in some geometric representation of the 
smooth, curved surfaces based on the sizes of the elements. In 
this system of interest, for example, the circular pore geometry 
would be assigned, some control mesh size would be prescribed, 
then the meshing algorithm would generate a mesh, resulting in 
a polygonal (not necessarily a regular polygon) model pore 
structure with Nsides being inherently dependent on the chosen 
mesh size and algorithm. However, in this study, the pore 
geometry assigned to the meshing algorithm was intentionally 
defined as a regular polygon so that Nsides would not be dependent 
on the mesh size or meshing algorithm. 

Figure 4 illustrates a notional triangle element used in the 
FE discretization of the computational domain for this study. 
Each element is comprised of three nodes or vertices, where node 
i of triangle t is at location (xt,i,yt,i) and has temperature Tt,i. The 
triangle itself occupies area At. For this study, three-node linear 
triangle elements were used for the FE method. 

In order to facilitate methods for establishing code accuracy 
and estimating numerical uncertainty due to discretization, 
systematic mesh refinement was used to generate five, 
successively refined meshes for each given system (each α-Nsides 
combination). In each system mesh series, the five meshes are 
assigned a mesh number, H, from 5 to 1, where H=5 is the 
coarsest mesh and H=1 is the finest mesh in the series, 
respectively. For each mesh, a characteristic mesh size (or 
length), hH, was computed as 

 
 ℎ𝐻𝐻 = �

1
𝑁𝑁𝑡𝑡,𝐻𝐻

Σ𝑡𝑡=1
𝑁𝑁𝑡𝑡,𝐻𝐻𝐴𝐴𝑡𝑡  (5) 

 
to describe the size of each mesh quantitatively. Here, Nt,H is the 
total number of triangle elements in the mesh. Figure 5 shows an 
example of systematic mesh refinement for a single porous 

system model, where Figure 5a through Figure 5e show mesh 
H=5 through H=1, respectively. The meshes were refined 
systematically such that the mesh refinement factor, ri,j, 
computed by Equation (6), from mesh H=j to mesh H=i, was 
approximately 2.0, where j and i are the mesh numbers of the 
coarser and finer of two successive meshes in the refinement 
series, respectively.  
 
 𝑟𝑟𝑖𝑖,𝑗𝑗 = ℎ𝑗𝑗/ℎ𝑖𝑖  (6) 
 
 

 
 

Figure 4. Notional linear triangle element 

 
 

 
a) 
 

 

 
b) 

 

 
c) 

 
d) 
 

 
e) 

 

Figure 5. Example of systematic mesh refinement of a single 
computational domain 

3.2 PDE DISCRETIZATION 
 
The Galerkin FE method was employed as the 

computational approach to solving the governing heat equation 
across the discretized porous unit cell domain. The discretized 
form of Equation (4) can be expressed as 

 

Tt,3(xt,3,yt,3) 

At
Tt,1(xt,1,yt,1) 

Tt,2(xt,2,yt,2) 

y

x
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 ∫ (𝜵𝜵𝜵𝜵)𝑇𝑇𝑲𝑲𝑲𝑲𝑲𝑲𝑑𝑑𝑑𝑑𝑻𝑻𝛺𝛺 = ∫ 𝑵𝑵𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝛺𝛺 − ∫ 𝑵𝑵𝑇𝑇𝑞𝑞𝑛𝑛′′𝑑𝑑𝑑𝑑𝛤𝛤 , (7) 
which is solved for each linear triangle element simultaneously. 
In the discretized PDE, Ν is the linear interpolation shape 
function row vector for elemental field variables, Κ is the 2x2 
thermal conductivity matrix, Ω is the element area, T is the three-
element column vector of the temperatures at the triangle 
element nodes, qn’’ is the boundary normal heat flux on a triangle 
boundary, and Γ is the triangle boundary. In condensed matrix 
form Equation (7) looks like 
 
 𝑮𝑮𝑮𝑮 = 𝑷𝑷, (8) 
 
where G is the conductance matrix and P, is the three-row 
column vector for net heat load corresponding to the nodes with 
temperatures found in T. The discretized PDE is solved 
iteratively using computational tools. The following section 
describes the computational evaluation of the discretized heat 
transfer problem and the associated methods. 

 
4. COMPUTATIONAL EVALUATION 

 
Geometric discretization (or mesh generation) of the 

computational domain was performed using the Gmsh software 
tool [18]. Personal FE element code [19] was used to solve 
Equation (8) across the computational domain, where a 
conjugate gradient solution update was used to drive down 
residuals in the energy balance. Equation (9) describes the 
element-wise three-row column vector for residual heat, ρ, 
whose elements, ρi, express imbalance in the energy equation for 
each node. 

 
 
 𝝆𝝆 = 𝑷𝑷 − 𝑮𝑮𝑮𝑮 (9) 
 
The solution to the discretized PDE was updated on a given 

mesh H until the root mean square (RMS) of the mesh residuals, 
ρRMS,H, fell below 1.0x10-8, where 
 
 𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅,𝐻𝐻 = �

1
𝑁𝑁𝑣𝑣,𝐻𝐻

∑ 𝜌𝜌𝑖𝑖2
𝑁𝑁𝑣𝑣,𝐻𝐻
𝑖𝑖=1 . (10) 

 
The L-infinity norm of the residuals, ρLinf,H, was also tracked for 
each solution, where 
 
 𝜌𝜌𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐻𝐻 = max

1≤𝑖𝑖≤𝑁𝑁𝑣𝑣,𝐻𝐻
(|𝜌𝜌𝑖𝑖|). (11) 

 
The following subsections describe the code and solution 
verification techniques that were used to assess the code 
accuracy and estimate numerical uncertainty in the 
computational approach used for this study. 

 
4.1 CODE VERIFICATION 

 
As mentioned previously, the computational solution to the 

problem is expected to converge to some asymptotic solution as 

the mesh on the domain is refined. The rate at which the solution 
converges is referred to as the order of accuracy, p. The formal 
order of accuracy, pf, describes the theoretical rate at which the 
solution is expected to converge, based on the computational 
method used. In this case, the FE method employed has pf=2.0, 
meaning that the error in the solution is expected to decrease 
twice as fast as the decrease in hH. In order to vet the accuracy of 
the implemented code (i.e., how accurately the code solves the 
governing PDE) some reference solution is required. 

Often in engineering computation, an exact, analytical 
solution is sought for a given problem in order to verify that the 
computational tool properly solves the problem of interest. With 
respect to governing PDE solutions for complex physics, such as 
with the heat equation in a porous unit cell, no analytical solution 
exists. However, the Method of Manufactured Solutions (MMS) 
circumvents the issue arising from a lack of analytical solution 
[20]. MMS allows for the user to prescribe an analytical 
solution—one that does not necessarily reflect real physical 
behavior. For the method, the MMS form of the governing 
equation can be presented as 

 
 𝑘𝑘 �𝜕𝜕

2𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀
𝜕𝜕𝑦𝑦2

� + 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 = 0, (12) 
 

where TMMS is the user-prescribed manufactured solution, and 
SMMS is the heat source distribution associated with the MMS 
problem. In most cases, trigonometric and/or exponential 
functions are used to define TMMS because of their conveniently 
smooth and infinitely differentiable characteristics. With TMMS 
known (i.e., defined by the user), rearrangement of Equation (12) 
yields the energy source distribution—as shown in Equation 
(13)—required across the domain to result in the TMMS 
temperature distribution. 

 
 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥, 𝑦𝑦) = −𝑘𝑘 �𝜕𝜕

2𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀
𝜕𝜕𝑦𝑦2

�  (13) 
 

For the MMS code verification aspect of a study, the same 
computational domain as the original problem of interest is used, 
however, all boundary conditions are modified to respect the 
manufactured solution. For example, Dirichlet boundary 
conditions would be set to TMMS along the boundary, and heat 
flux boundary conditions would be derived based on the spatial 
derivative of TMMS. For the problem at hand, the manufactured 
solution used was defined as 
 
 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥, 𝑦𝑦) = cos(2𝜋𝜋𝜋𝜋) sin(𝜋𝜋𝜋𝜋 + 0.75), (14) 
and the resulting manufactured heat source distribution is 
 
 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥, 𝑦𝑦) = 5𝜋𝜋2 cos(2𝜋𝜋𝜋𝜋) sin(𝜋𝜋𝜋𝜋 + 0.75). (15) 
 
SMMS, is applied across the domain, replacing all source terms 
associated with the original problem of interest. The temperature 
boundary conditions for the system of interest, TΓ, include TH and 
TC, such that 
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 𝑇𝑇𝛤𝛤 = 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀. (16) 
 
In the original problem of interest, the normal heat flux, qn, at the 
adiabatic boundaries is equal to 0.0. With the boundary normal 
vector, n, pointing out of the domain, applied boundary qn’’ for 
the MMS problem is given to be 
 
 𝑞𝑞𝑛𝑛′′ = −𝒏𝒏 ∙ �2𝜋𝜋𝜋𝜋 sin(2𝜋𝜋𝜋𝜋) sin(𝜋𝜋𝜋𝜋 + 0.75)

−𝜋𝜋 cos(2𝜋𝜋𝜋𝜋) cos(𝜋𝜋𝜋𝜋 + 0.75)�, (17) 

 
where a positive qn’’ value is heat entering the domain. The 
governing PDE is then solved computationally using the FE 
method with the MMS source terms and boundary conditions 
enforced. 

Error can be computed between the computationally-
determined temperature solution and the prescribed MMS 
solution. For this study, both the RMS and L-infinity norm 
errors, εRMS,H and εLinf,H, respectively, were computed across each 
mesh H. The error metrics are given in Equation (18) and 
Equation (19). 

 
 𝜖𝜖𝑅𝑅𝑅𝑅𝑅𝑅,𝐻𝐻 = � 1

𝑁𝑁𝑣𝑣,𝐻𝐻
∑ �𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀,𝑖𝑖�

2𝑁𝑁𝑣𝑣,𝐻𝐻
𝑖𝑖=1   (18) 

 
 𝜖𝜖𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐻𝐻 = max

1≤𝑖𝑖≤𝑁𝑁𝑣𝑣,𝐻𝐻
��𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀,𝑖𝑖��  (19) 

 
The observed order of accuracy is the actual convergence 

rate of the solution—as opposed to the theoretical convergence 
rate—determined using the change in error with mesh 
refinement. In this study, the observed orders of accuracy on 
mesh H using εRMS,H and εLinf,H are denoted by pRMS,H and pLinf,H, 
respectively, and are shown in Equation (20) and Equation (21). 

 
 𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅,𝐻𝐻 = ln�𝜖𝜖𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐻𝐻/𝜖𝜖𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐻𝐻+1�

ln(ℎ𝐻𝐻/ℎ𝐻𝐻+1)
  (20) 

 
 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐻𝐻 =

ln�𝜖𝜖𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐻𝐻/𝜖𝜖𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐻𝐻+1�

ln(ℎ𝐻𝐻/ℎ𝐻𝐻+1)
  (21) 

 
It is expected that the observed order of accuracy would 

converge to pf with mesh refinement. If the mesh is not refined 
enough, the solution convergence behavior may be very different 
from the theoretical behavior. This sometimes erratic or non-
theoretical behavior regime is considered the “non-asymptotic 
egime,” whereas the “asymptotic regime” refers to the 
sufficiently refined mesh solution behavior regime where the 
solution converges to the asymptotic solution in a near 
theoretical manner. With these characteristics in mind, the MMS 
code verification approach provides a convenient tool for 
debugging code providing credibility evidence towards the 
correct implementation of the numerical methods used to obtain 
information on the problem of interest. The notion of asymptotic 
convergence is used in the solution verification approach in the 
next subsection to help estimate numerical uncertainty.  

 

 
4.2 SOLUTION VERIFICATION 

 
Beyond code verification, solution verification is used to 

estimate the numerical uncertainty in the solution due to 
discretization. For this study, the global deviation grid 
convergence index (GCI) was used to estimate Unum on k*. As 
with MMS in code verification, a series of systematically refined 
meshes is used to observe the relative SRQ convergence and 
observed order of accuracy with respect to pf. As opposed to 
MMS for code verification, solution verification uses the original 
problem of interest, with all the original boundary conditions and 
source terms (if any). For this study, Unum was computed only on 
the finest mesh of each five-mesh refinement series. In this 
process, the mesh size and k* values for H=3, 2, and 1 were 
required. An original description of the global deviation GCI 
process is presented in [21], and other applications of the method 
for problems similar to those presented in this work can be found 
in [13-17]. 

Initially, the modified transcendental order of accuracy, pt, 
is computed on the fine mesh as 

 
 𝑝𝑝𝑡𝑡 = ln ��𝑟𝑟1,2

𝑝𝑝𝑡𝑡 − 1� ��𝑘𝑘3
∗−𝑘𝑘2

∗

𝑘𝑘2
∗−𝑘𝑘1

∗�� + 𝑟𝑟1,2
𝑝𝑝𝑡𝑡� / ln�𝑟𝑟1,2𝑟𝑟2,3�, (22) 

 
and the global observed order of accuracy deviation, Δp, is 
subsequently determined from 
 
 𝛥𝛥𝛥𝛥 = min��𝑝𝑝𝑓𝑓 − 𝑝𝑝𝑡𝑡�, 0.95𝑝𝑝𝑓𝑓�. (23) 
 
The global deviation factor in Equation (23) expresses by how 
much the convergence of the solution on the fine mesh appears 
to deviate from the formally expected behavior, thus the global 
observed order of accuracy is determined simply as 
 
 𝑝𝑝∗ = 𝑝𝑝𝑓𝑓 − 𝛥𝛥𝛥𝛥. (24) 
 
A factor of safety term, FS, is scaled between 1.1 and 3.0 based 
on the relative observed order of accuracy of the SRQ 
convergence with respect to the formal order of accuracy such 
that 
 
 𝐹𝐹𝐹𝐹 = 3.0 − 1.9�𝑝𝑝∗/𝑝𝑝𝑓𝑓�

8
. (25) 

 
From using the FS and the relative convergence behavior of the 
SRQ on the finest two meshes, numerical uncertainty due to 
discretization on the fine mesh k* is estimated as 
 𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐹𝐹𝐹𝐹 �(𝑘𝑘2∗ − 𝑘𝑘1∗)/ �𝑟𝑟1,2

𝑝𝑝∗ − 1��.  (26) 
 
Equation (26) represents the 95% confidence level uncertainty 
estimate of the SRQ on the fine mesh. The derivation suggests 
that the uncertainty estimate is scaled based on proximity of the 
SRQ convergence behavior to the asymptotic regime. Thus, the 
closer the solution appears to be to asymptotic regime, the 
smaller the uncertainty estimate. Note that this method considers 
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observed convergence rates better than the theoretical rate to be 
penalized the same as observed converge rates worse than 
theoretical, hence the title of global “deviation.” 

The following section describes results for the system of 
interest, including MMS code and GCI solution verification. 

 
5. RESULTS AND DISCUSSION 

 
The following subsections address the MMS code 

verification results and the system behavior of the problem of 
interest, including numerical uncertainty estimate results. 

 
5.1 CODE VERIFICATION: MMS 

 

 
 

Figure 6. MMS observed order of accuracy using RMS 
error converges approximately to formal order of accuracy 

with mesh refinement 

Using the MMS approach for each porosity level modeled 
between 1% and 78% and each polygon representation with Nsides 
between 3 and 100, 1176 MMS studies were performed. Figure 
6 and Figure 7 show the RMS and L-infinity norm MMS solution 
observed order of accuracy convergence behaviors with mesh 
refinement for each of the five-mesh domain mesh series. Note 
than for both error computation approaches and for all mesh 
series, the observed order of accuracy approximately approaches 
the formal second-order accurate behavior. This trend lends 
credibility evidence for the subsequent results presented for the 
problem of interest, where the convergence of the solution on the 
fine mesh is near the theoretical convergence rate and is 
consistently so across all 1176 mesh series, suggesting correct 
implementation of the numerical method. 

 
 

Figure 7. MMS observed order of accuracy using L-infinity 
norm error converges approximately to formal order of 

accuracy with mesh refinement 

 
5.2 PROBLEM OF INTEREST 

 
On the problem interest, each circular pore was represented 

by a series of polygonal pores with Nsides ranging from 3 to 100. 
As the number of sides increases, the true model porosity 
asymptotically approaches the underlying circular pore system 
porosity. For each of the underlying circular porous systems, 
Figure 8 shows the convergence of the actual model porosity to 
the underlying system porosity. Likewise, Figure 9 shows the 
relative change in model porosity from Nsides to Nsides+1 
normalized by the underlying circular pore porosity. Note in both 
figures that the model porosity appears to be qualitatively 
converged using between 20 and 40 polygon sides. Note that in 
Figure 9 all of the system curves are identical as the normalized 
model porosity is not dependent on absolute porosity but only 
relative geometry. 

 

 
 

Figure 8. Polygonal model porosity converges 
asymptotically to circular system porosity 



 8 Copyright © 2021 by ASME 

 
 

Figure 9. Rate of change of polygonal model porosity 
normalized by circular porosity with increasing number of 

polygonal pore sides 

Figure 10 illustrates the qualitative convergence of the 
temperature distribution on the problem of interest for a series of 
five systematically refined meshes, where Figure 10a through 
Figure 10e are solutions on mesh H=5 through H=1, 
respectively. Note the apparent qualitative convergence with 
mesh refinement, especially by mesh H=1. 
 

 
 

 
a) 
 

 
b) 

 
c) 

 
d) 
 

 
e) 

 

Figure 10. Computational temperature contours 
qualitatively converge with mesh refinement 

Figure 11 shows an example of the fine mesh temperature 
contours for a single underlying circular porosity for six of the 
first 23 polygonal pore representations indicated by Nsides 3, 5, 8, 
12, 17, and 23. The porosity of a polygonal model pore with 23 
sides is 99.76% of the underlying circular pore porosity. Note 
that with an increase in Nsides, the model pore converges towards 

a circular shape, and the temperature contour in the domain 
converges in a like manner. It is critical to note the obvious 
asymmetry of the temperature contours in the y direction for the 
pores with an odd number of sides. Likewise, the geometric 
effects of the pore geometry on the qualitive temperature 
distribution shape are readily apparent on systems with lower 
number of pore sides. 

 

 
 

 
3 

 

 
5 

 
8 

 
12 

 

 
17 

 
23 

Figure 11. Computational temperature contours 
qualitatively converge with increasing polygon sides 

Figure 12 presents the actual effective thermal behavior of 
the porous systems with respect to Nsides and coordinated by 
porosity. The black error bars in the plot indicate the Unum values 
as determined by the GCI approach, again representing the 95% 
confidence level. In most cases, the Unum is extremely low with 
the median uncertainty estimate at 0.022% of the fine mesh k* 
value. The minimum and maximum Unum values were 0.0003% 
and 30.5% of the fine mesh k* values, where only 7 of the 1176 
fine mesh data points had numerical uncertainty estimates 
greater than 10.0%. Of those 1176 data points, 1105 had 
uncertainty estimates below 1.0% of the fine mesh k* values. 
Note in Figure 13 that as the porosity level increases, the fine 
mesh k* value begins to oscillate with lower Nsides. Such 
oscillatory behavior is expected due to the increasingly 
significant effects of pore geometry with increased porosity. The 
behavior is studied in part in [14] and is not surprising. Despite 
and low-Nsides behavior, each porosity system eventually 
converges towards some circular k* response. Some of the larger 
uncertainty estimates could be due to meshing limitations in the 
mesh generator, low quality mesh regions with the extreme low 
and high porosity systems, and early converged solutions on 
lower porosity domains. In Figure 13, the markers indicate the 
solution point at which increasing the number of polygon sides 
begins changing the resultant k* value by less than 1% of the 
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Nsides=100 k* value, approximating a roughly 99% converged 
response with respect to geometric representation. The 
discrepancy between the low Nsides models and the converged 
Nsides=100 responses illustrates model form error, as opposed to 
the numerical error estimated using solution verification. Thus, 
these results have approximately segregated the two error 
sources for these analyses. 

 

 
 

Figure 12. k* values converge in apparent asymptotic 
behavior with relatively low numerical uncertainty 

The results presented here show that geometric 
representation of a porous system void can play a significant role 
in the effective thermal response of the domain. Whereas the 
system requires a polygon with roughly 20 to 40 sides to 
effectively represent the porosity of the system, most all of the 
systems required well below 20 sides to effectively capture the 
effective thermal conductivity of the systems. It is evident, 
however, that with increasing porosity, the risk of introducing 
model form error into the solution also increases, thus geometric 
fidelity can have a significant impact on the level of error present 
in the computed effective thermal response of the porous system. 

 
6. CONCLUSION 

 
This paper has presented a thorough analysis of the effective 

thermal response of a two-dimensional porous system using the 
finite element method, where polygons were used to represent 
circular pores in computational models. Code verification was 
performed using the Method of Manufactured solutions to show 
an approximately second-order accurate FE implementation, and 
solution verification was used to estimate numerical uncertainty 
in k* of the porous system due to discretization. Numerical 
uncertainties were shown to be relatively low with very few 
exceptions. In this work, model form error was illustrated due to 
geometric fidelity, where polygonal representation of a circular 
pore impacted the effective thermal response of the system. The 
computational trends show that systems with larger porosities 
require a higher number of polygon sides to effectively capture 
the circular pore’s effective thermal response. 
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