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ABSTRACT

Physics models—such as thermal, structural, and fluid
models—of engineering systems often incorporate a geometric
aspect such that the model resembles the shape of the true system
that it represents. However, the physical domain of the model is
only a geometric representation of the true system, where
geometric features are often simplified for convenience in model
construction and to avoid added computational expense to
running simulations. The process of simplifying or neglecting
different aspects of the system geometry is sometimes referred
to as “defeaturing.” Typically, modelers will choose to remove
small features from the system model, such as fillets, holes, and
fasteners. This simplification process can introduce inherent
error into the computational model. A similar event can even take
place when a computational mesh is generated, where smooth,
curved features are represented by jagged, sharp geometries. The
geometric representation and feature fidelity in a model can play
a significant role in a corresponding simulation’s computational
solution. In this paper, a porous material system—represented by
a single porous unit cell—is considered. The system of interest
is a two-dimensional square cell with a centered circular pore,
ranging in porosity from 1% to 78%. However, the circular pore
was represented geometrically by a series of regular polygons
with number of sides ranging from 3 to 100. The system response

quantity under investigation was the dimensionless effective
thermal conductivity, £*, of the porous unit cell. The results show
significant change in the resulting k* value depending on the
number of polygon sides used to represent the circular pore. In
order to mitigate the convolution of discretization error with this
type of model form error, a series of five systematically refined
meshes was used for each pore representation. Using the finite
element method (FEM), the heat equation was solved
numerically across the porous unit cell domain. Code
verification was performed using the Method of Manufactured
Solutions (MMS) to assess the order of accuracy of the
implemented FEM. Likewise, solution verification was
performed to estimate the numerical uncertainty due to
discretization in the problem of interest. Specifically, a modern
grid convergence index (GCI) approach was employed to
estimate the numerical uncertainty on the systematically refined
meshes. The results of the analyses presented in this paper
illustrate the importance of understanding the effects of
geometric representation in engineering models and can help to
predict some model form error introduced by the model
geometry.
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= area
= porosity

= error

= domain boundary

= characteristic mesh size

= mesh number

= thermal conductivity

= thermal conductivity matrix
= cell length

= total quantity

= shape function

= domain

= order of accuracy

= heat flow

= mesh refinement factor

= radius

= energy source

= triangle index

= temperature

= triangle node temperature vector
= uncertainty

= cell width

= x-coordinate

= y-coordinate
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Subscripts

a = pore

C = cold

eff = effective
f = formal

r = boundary

H = mesh number, hot
Linf = L-infinity norm
MMS = manufactured solution
n =normal

num = numerical

RMS = root mean square
sides = polygon sides

t = triangle

v = nodes
Superscripts

* = dimensionless

‘ = per unit length

I

= per unit area
1. INTRODUCTION

A porous material as a special case of heterogenecous
materials includes voids (i.e., locales of material absence) within
the bulk material. Effective properties are a means of describing
the general behavior of the system—based on the
characterization of the pertinent heterogeneities or conditions in
the system. As engineering systems become increasingly
complex, it can be advantageous—and even necessary—to use
effective properties to analyze and predict system performance

in a feasible manner. Such approaches can be useful in a variety
of applications. It has been shown, for example, that the
heterogeneous microstructures of thermal barrier coatings
(TBCs) on gas power turbine blades at a material level have
significant effects on the effective thermal conductivity of the
TBCs. Effective thermal conductivity plays a significant role in
the performance and longevity of the TBCs and consequently the
turbine blades that they protect [1-5]. Furthermore, additive
manufacturing technology—a form of which is commonly
known as 3D printing--has made it possible to have
computerized fabrication of porous structures in various forms
including foam and lattice at different scales. This manufacturing
process has a natural need for understanding thermal transport in
porous materials—considering the non-homogenous and high-
temperature processes used—where additive manufacturing can
be used specifically for thermal applications [6-8]. The thermal
performance and advantage of other advanced materials—such
as aerogels and doped polymers—are driven by their
heterogeneous characteristics and can be seen in marine, oil and
gas, aerospace, energy, and thermal management industries [9-
12]. The expansive set of industries and specific thermal
applications where heterogencous materials are of immediate
consequence is immeasurable. Thus, the pursuit of measuring,
analyzing, and predicting the thermal performance of such
materials is in high demand.

While the effective thermal response of porous structures
has attracted the attention of researchers recently, the
configuration of pore structures--especially with the presence of
sharp edges--have not been investigated thoroughly yet. The
smaller pore size in various geometries is an inevitable topic in
the future horizon of 3D printing technology and hierarchy
porous structures. The main objective of the investigation
covered in this paper is to study the effect of the existence of
sharp edges in organized polygonal pore formats on the thermal
behavior of a porous structure. In this work, high fidelity
computational analyses are conducted and verified to obtain the
effective thermal response of various pore polygonal geometries
and study the variation of the thermal response with respect to
the geometry of sharp edges for the same porosity value.

2. SYSTEM DESCRIPTION

In order to investigate possible implications of geometric
fidelity and representation on porous material thermal responses,
a porous unit cell system was defined in two dimensions to
capture a fundamental porous material description. As shown in
Figure 1, the two-dimensional unit cell has dimensions # and L
in the x and y rectangular directions, respectively. The porous
material is defined with a centered circular pore of radius, Ry,
where, for the sake of this study, the negative and positive x
boundaries and the pore wall boundary are made to be adiabatic.
A temperature gradient is enforced across the domain, where the
negative and positive y boundaries are held at hot and cold
temperatures 7y and T¢, respectively. The prescribed
temperature differential induces an average heat flow per unit
length, g, across the hot and cold boundaries.
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Figure 1. System of interest is two-dimensional unit cell
with centered circular pore and enforced temperature
gradient

The overall effective thermal conductivity of the porous
system—in the direction of the system temperature gradient—is
computed as

q'L

kerr = Gorow M)
The effective response is further non-dimensionalized as
k* = keff/kl’ (2)

where a k* value less than 1 indicates a reduction in thermal
conduction, and a value greater than 1 would indicate an increase
in thermal conduction, with respect to the bulk material thermal
conductivity. For this system, the characteristic geometry of the
system of interest is porosity, o, which is the fraction of the unit
cell occupied by the pore. Thus,

o = R&, 3)

Lw

A series of a values was considered for this study in the
range of [1%,78%], where k* changes as response to changing
o. Previous work has spent a great deal of effort investigating
this same system with respect to the k*-a correlation [13-17].
However, this work is dedicated more specifically to
understanding the impact of geometric representation of the
circular pore on £*. Although the true system of interest is the
circular pore system shown in Figure 1, computational methods
and model simplifications would often represent the smooth,
continuous circular pore feature with some non-smooth,
discontinuous representation, such as a polygon. Thus, for this
study, each porous system—a single given circular pore size—is
represented by a series of regular polygons with number of sides,
Niiges, ranging from 3 to 100. Figure 2 illustrates the
representation of a single circular porous system by regular

polygons with 3, 4, and 5 sides, where the polygonal pore
geometry is circumscribed by circular geometry which the
polygonal geometry represents.

Figure 2. Multiple fixed polygonal representations used to
represent the same circular pore

By controlling the geometric representation of the circular
pores, the effects of geometric pore representation can be
distinctly separated from the effects of porosity, where the
former has model form error implications. The following section
describes the computation methods used for these analyses that
allow for the segregation of the model form and porosity
dependence effects on the effective thermal response of the
porous system.

3. SOLUTION APPROACH

To determine ¢’, and, subsequently, k*, in the system of
interest the temperature distribution across the computational
domain must be determined and is done so by solving the
governing two-dimensional, steady state, isotropic heat transport
equation,

8T | 9T
Gz+55)+s=0, 4)
where k is thermal conductivity, T is temperature, x and y are
rectangular positions, and S is the general heat source
distribution.

The finite element (FE) method was used in this work to
computationally solve the governing partial differential equation
(PDE) of Equation (3) across the system. The FE method
requires the discretization of both the domain and the governing
PDE. Figure 3 illustrates the domain discretization into an
unstructured triangular mesh, where each small triangle is a
single finite element.

When using the FE method, the governing equation must be
solved across each triangular element simultaneously.
Discretization of the problem induces numerical error into the
computational solution, U,um, where, for this study, Uum is
computed for the ultimate system response quantity (SRQ) of k*.
As the mesh is refined (i.e., elements’ sizes made smaller), the
solution to the PDE and SRQ’s derived from the solution are
expected to change (even if slightly) and should begin to
converge to single solution. The following subsections describe
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the discretization of both the computational domain and the
governing PDE.

Figure 3. Discretization of computational domain into
unstructured triangular elements

3.1 DOMAIN DISCRETIZATION

As described previously, prior to mesh generation, the
polygonal geometric representation of the circular pore was
fixed. Generally speaking, in most modeling workflows, the base
geometry of a feature (in this case the circular pore) is defined
such that the meshing algorithm creates elements across the
domain, resulting in some geometric representation of the
smooth, curved surfaces based on the sizes of the elements. In
this system of interest, for example, the circular pore geometry
would be assigned, some control mesh size would be prescribed,
then the meshing algorithm would generate a mesh, resulting in
a polygonal (not necessarily a regular polygon) model pore
structure with Nizes being inherently dependent on the chosen
mesh size and algorithm. However, in this study, the pore
geometry assigned to the meshing algorithm was intentionally
defined as a regular polygon so that Njiq.; would not be dependent
on the mesh size or meshing algorithm.

Figure 4 illustrates a notional triangle element used in the
FE discretization of the computational domain for this study.
Each element is comprised of three nodes or vertices, where node
i of triangle ¢ is at location (x;;):;) and has temperature 7};. The
triangle itself occupies area 4,. For this study, three-node linear
triangle elements were used for the FE method.

In order to facilitate methods for establishing code accuracy
and estimating numerical uncertainty due to discretization,
systematic mesh refinement was used to generate five,
successively refined meshes for each given system (each o-Nyides
combination). In each system mesh series, the five meshes are
assigned a mesh number, H, from 5 to 1, where H=5 is the
coarsest mesh and H=I/ is the finest mesh in the series,
respectively. For each mesh, a characteristic mesh size (or
length), 2, was computed as

hy = |——3Ha, (5)

NeH 1

to describe the size of each mesh quantitatively. Here, V,  is the
total number of triangle elements in the mesh. Figure 5 shows an
example of systematic mesh refinement for a single porous

system model, where Figure 5a through Figure 5S¢ show mesh
H=5 through H=I, respectively. The meshes were refined
systematically such that the mesh refinement factor, r;j,
computed by Equation (6), from mesh H=j to mesh H=i, was
approximately 2.0, where j and i are the mesh numbers of the
coarser and finer of two successive meshes in the refinement
series, respectively.

Ty = hi/h; (6)

Ty s(Xe3Y13)

Ty (X 1:Y11)

b/

Ty o(X 21 2)

Figure 4. Notional linear triangle element

Figure 5. Example of systematic mesh refinement of a single
computational domain

3.2 PDE DISCRETIZATION

The Galerkin FE method was employed as the
computational approach to solving the governing heat equation
across the discretized porous unit cell domain. The discretized
form of Equation (4) can be expressed as

4 Copyright © 2021 by ASME



fﬂ (VN)TKVNAQT = fn NTSd0 — fr NTq)dr, (7)
which is solved for each linear triangle element simultaneously.
In the discretized PDE, N is the linear interpolation shape
function row vector for elemental field variables, K is the 2x2
thermal conductivity matrix, € is the element area, T is the three-
element column vector of the temperatures at the triangle
element nodes, ¢, " is the boundary normal heat flux on a triangle
boundary, and I is the triangle boundary. In condensed matrix
form Equation (7) looks like

GT = P, (8)

where G is the conductance matrix and P, is the three-row
column vector for net heat load corresponding to the nodes with
temperatures found in 7. The discretized PDE is solved
iteratively using computational tools. The following section
describes the computational evaluation of the discretized heat
transfer problem and the associated methods.

4. COMPUTATIONAL EVALUATION

Geometric discretization (or mesh generation) of the
computational domain was performed using the Gmsh software
tool [18]. Personal FE element code [19] was used to solve
Equation (8) across the computational domain, where a
conjugate gradient solution update was used to drive down
residuals in the energy balance. Equation (9) describes the
element-wise three-row column vector for residual heat, p,
whose elements, p;, express imbalance in the energy equation for
each node.

p=P—GT )

The solution to the discretized PDE was updated on a given
mesh H until the root mean square (RMS) of the mesh residuals,
prus., fell below 1.0x10°8, where

1 Ny,
PrRMSH = mzilePzz- (10)

The L-infinity norm of the residuals, priy;n, Was also tracked for
each solution, where

Pringn = Max (|p]). (11)

1<isNypH

The following subsections describe the code and solution
verification techniques that were used to assess the code
accuracy and estimate numerical uncertainty in the
computational approach used for this study.

4.1 CODE VERIFICATION

As mentioned previously, the computational solution to the
problem is expected to converge to some asymptotic solution as

the mesh on the domain is refined. The rate at which the solution
converges is referred to as the order of accuracy, p. The formal
order of accuracy, py, describes the theoretical rate at which the
solution is expected to converge, based on the computational
method used. In this case, the FE method employed has p/=2.0,
meaning that the error in the solution is expected to decrease
twice as fast as the decrease in 4. In order to vet the accuracy of
the implemented code (i.e., how accurately the code solves the
governing PDE) some reference solution is required.

Often in engineering computation, an exact, analytical
solution is sought for a given problem in order to verify that the
computational tool properly solves the problem of interest. With
respect to governing PDE solutions for complex physics, such as
with the heat equation in a porous unit cell, no analytical solution
exists. However, the Method of Manufactured Solutions (MMS)
circumvents the issue arising from a lack of analytical solution
[20]. MMS allows for the user to prescribe an analytical
solution—one that does not necessarily reflect real physical
behavior. For the method, the MMS form of the governing
equation can be presented as

a2T a2T
ke (T 4 2208 ) 1 s = 0, (12)

where Tyus is the user-prescribed manufactured solution, and
Suwms 1s the heat source distribution associated with the MMS
problem. In most cases, trigonometric and/or exponential
functions are used to define Ty because of their conveniently
smooth and infinitely differentiable characteristics. With Tyms
known (i.e., defined by the user), rearrangement of Equation (12)
yields the energy source distribution—as shown in Equation
(13)—required across the domain to result in the Tyms
temperature distribution.

a%T a%T
Swus (6, ) = —k (T5s 4 Swes) (13)

For the MMS code verification aspect of a study, the same
computational domain as the original problem of interest is used,
however, all boundary conditions are modified to respect the
manufactured solution. For example, Dirichlet boundary
conditions would be set to Tyus along the boundary, and heat
flux boundary conditions would be derived based on the spatial
derivative of Tys. For the problem at hand, the manufactured
solution used was defined as

Tums(x,y) = cos(2mx) sin(my + 0.75), (14)
and the resulting manufactured heat source distribution is

Sums(x,y) = 512 cos(2mx) sin(my + 0.75). (15)
Swmus, 18 applied across the domain, replacing all source terms
associated with the original problem of interest. The temperature

boundary conditions for the system of interest, 7, include 7 and
Tc, such that

5 Copyright © 2021 by ASME



Tr = Tyus- (16)

In the original problem of interest, the normal heat flux, g, at the
adiabatic boundaries is equal to 0.0. With the boundary normal
vector, n, pointing out of the domain, applied boundary ¢, ” for
the MMS problem is given to be

"o _(2mk sin(2mx) sin(my + 0.75)}
=" {—n cos(2mx) cos(my + 0.75)) (17

where a positive ¢g,” value is heat entering the domain. The
governing PDE is then solved computationally using the FE
method with the MMS source terms and boundary conditions
enforced.

Error can be computed between the computationally-
determined temperature solution and the prescribed MMS
solution. For this study, both the RMS and L-infinity norm
errors, gy, and ezing 1, respectively, were computed across each
mesh H. The error metrics are given in Equation (18) and
Equation (19).

R = \/ o Tt (T = Tws,)” (18)
€Linf,H = 15?;"1:1\]XH(|TIZ - TMMS,iD (19)

The observed order of accuracy is the actual convergence
rate of the solution—as opposed to the theoretical convergence
rate—determined using the change in error with mesh
refinement. In this study, the observed orders of accuracy on
mesh H using erms,y and eLiy;n are denoted by prus,z and prin,
respectively, and are shown in Equation (20) and Equation (21).

_ In(eLrms,H/€LRMS,H+1)

PrusH = In(hy/hy+1) (20)
_ In(epins,n/€LinfH+1)

Prinf.t = In(hy/hH+1) @D

It is expected that the observed order of accuracy would
converge to py with mesh refinement. If the mesh is not refined
enough, the solution convergence behavior may be very different
from the theoretical behavior. This sometimes erratic or non-
theoretical behavior regime is considered the “non-asymptotic
egime,” whereas the “asymptotic regime” refers to the
sufficiently refined mesh solution behavior regime where the
solution converges to the asymptotic solution in a near
theoretical manner. With these characteristics in mind, the MMS
code verification approach provides a convenient tool for
debugging code providing credibility evidence towards the
correct implementation of the numerical methods used to obtain
information on the problem of interest. The notion of asymptotic
convergence is used in the solution verification approach in the
next subsection to help estimate numerical uncertainty.

4.2 SOLUTION VERIFICATION

Beyond code verification, solution verification is used to
estimate the numerical uncertainty in the solution due to
discretization. For this study, the global deviation grid
convergence index (GCI) was used to estimate U,u» on k*. As
with MMS in code verification, a series of systematically refined
meshes is used to observe the relative SRQ convergence and
observed order of accuracy with respect to pr As opposed to
MMS for code verification, solution verification uses the original
problem of interest, with all the original boundary conditions and
source terms (if any). For this study, U,..» was computed only on
the finest mesh of each five-mesh refinement series. In this
process, the mesh size and k* values for H=3, 2, and I were
required. An original description of the global deviation GCI
process is presented in [21], and other applications of the method
for problems similar to those presented in this work can be found
in [13-17].

Initially, the modified transcendental order of accuracy, p;,
is computed on the fine mesh as

pe=n|(% - 1) (

and the global observed order of accuracy deviation, Ap, is
subsequently determined from

k3—k3
ky=k3

)+ /im(rars), 22)

Ap = min(|pf - pt|, 0.95pf). (23)

The global deviation factor in Equation (23) expresses by how
much the convergence of the solution on the fine mesh appears
to deviate from the formally expected behavior, thus the global
observed order of accuracy is determined simply as

p" =ps—4p. (24)

A factor of safety term, FS, is scaled between 1.1 and 3.0 based
on the relative observed order of accuracy of the SRQ
convergence with respect to the formal order of accuracy such
that

FS =3.0-19(p"/p;)". (25)

From using the FS and the relative convergence behavior of the
SRQ on the finest two meshes, numerical uncertainty due to
discretization on the fine mesh &* is estimated as

Unum = FS |Ges = k)/ (5 = 1)) (26)

Equation (26) represents the 95% confidence level uncertainty
estimate of the SRQ on the fine mesh. The derivation suggests
that the uncertainty estimate is scaled based on proximity of the
SRQ convergence behavior to the asymptotic regime. Thus, the
closer the solution appears to be to asymptotic regime, the
smaller the uncertainty estimate. Note that this method considers
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observed convergence rates better than the theoretical rate to be
penalized the same as observed converge rates worse than
theoretical, hence the title of global “deviation.”

The following section describes results for the system of
interest, including MMS code and GCI solution verification.

5. RESULTS AND DISCUSSION

The following subsections address the MMS code
verification results and the system behavior of the problem of
interest, including numerical uncertainty estimate results.

5.1 CODE VERIFICATION: MMS
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Figure 6. MMS observed order of accuracy using RMS
error converges approximately to formal order of accuracy
with mesh refinement

Using the MMS approach for each porosity level modeled
between 1% and 78% and each polygon representation with Nyizes
between 3 and 100, 1176 MMS studies were performed. Figure
6 and Figure 7 show the RMS and L-infinity norm MMS solution
observed order of accuracy convergence behaviors with mesh
refinement for each of the five-mesh domain mesh series. Note
than for both error computation approaches and for all mesh
series, the observed order of accuracy approximately approaches
the formal second-order accurate behavior. This trend lends
credibility evidence for the subsequent results presented for the
problem of interest, where the convergence of the solution on the
fine mesh is near the theoretical convergence rate and is
consistently so across all 1176 mesh series, suggesting correct
implementation of the numerical method.

—— Formal
10 4

Order of Accuracy
(=] [++]
) \

-
L

T T T T T T T T
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Mesh Size

Figure 7. MMS observed order of accuracy using L-infinity
norm error converges approximately to formal order of
accuracy with mesh refinement

5.2 PROBLEM OF INTEREST

On the problem interest, each circular pore was represented
by a series of polygonal pores with Nyiqs ranging from 3 to 100.
As the number of sides increases, the true model porosity
asymptotically approaches the underlying circular pore system
porosity. For each of the underlying circular porous systems,
Figure 8 shows the convergence of the actual model porosity to
the underlying system porosity. Likewise, Figure 9 shows the
relative change in model porosity from Niges t0 Niidest!
normalized by the underlying circular pore porosity. Note in both
figures that the model porosity appears to be qualitatively
converged using between 20 and 40 polygon sides. Note that in
Figure 9 all of the system curves are identical as the normalized
model porosity is not dependent on absolute porosity but only
relative geometry.

0.8
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0.7 4

Model Porosity
o o o o
(%] w B L
L | L L

e
=
1

e
=]
|

|

T T T T
0 20 40 60 80 100
Palygon Sides

Figure 8. Polygonal model porosity converges
asymptotically to circular system porosity
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Figure 9. Rate of change of polygonal model porosity
normalized by circular porosity with increasing number of
polygonal pore sides

Figure 10 illustrates the qualitative convergence of the
temperature distribution on the problem of interest for a series of
five systematically refined meshes, where Figure 10a through
Figure 10e are solutions on mesh H=5 through H=I,
respectively. Note the apparent qualitative convergence with
mesh refinement, especially by mesh H=1.

0 1 2 3 4

R

alelae
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Figure 10. Computational temperature contours
qualitatively converge with mesh refinement

Figure 11 shows an example of the fine mesh temperature
contours for a single underlying circular porosity for six of the
first 23 polygonal pore representations indicated by Nyizes 3, 5, 8,
12, 17, and 23. The porosity of a polygonal model pore with 23
sides is 99.76% of the underlying circular pore porosity. Note
that with an increase in Njizs, the model pore converges towards

a circular shape, and the temperature contour in the domain
converges in a like manner. It is critical to note the obvious
asymmetry of the temperature contours in the y direction for the
pores with an odd number of sides. Likewise, the geometric
effects of the pore geometry on the qualitive temperature
distribution shape are readily apparent on systems with lower
number of pore sides.

0 1 2 3 4

N

Alalae
alele

Figure 11. Computational temperature contours
qualitatively converge with increasing polygon sides

Figure 12 presents the actual effective thermal behavior of
the porous systems with respect to Nyqes and coordinated by
porosity. The black error bars in the plot indicate the U, values
as determined by the GCI approach, again representing the 95%
confidence level. In most cases, the U is extremely low with
the median uncertainty estimate at 0.022% of the fine mesh i*
value. The minimum and maximum Uy, values were 0.0003%
and 30.5% of the fine mesh k* values, where only 7 of the 1176
fine mesh data points had numerical uncertainty estimates
greater than 10.0%. Of those 1176 data points, 1105 had
uncertainty estimates below 1.0% of the fine mesh &* values.
Note in Figure 13 that as the porosity level increases, the fine
mesh k* value begins to oscillate with lower Nyges. Such
oscillatory behavior is expected due to the increasingly
significant effects of pore geometry with increased porosity. The
behavior is studied in part in [14] and is not surprising. Despite
and low-Niis behavior, each porosity system eventually
converges towards some circular £* response. Some of the larger
uncertainty estimates could be due to meshing limitations in the
mesh generator, low quality mesh regions with the extreme low
and high porosity systems, and early converged solutions on
lower porosity domains. In Figure 13, the markers indicate the
solution point at which increasing the number of polygon sides
begins changing the resultant £* value by less than 1% of the
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Niizes=100 k* value, approximating a roughly 99% converged
response with respect to geometric representation. The
discrepancy between the low Niizs models and the converged
Niides=100 responses illustrates model form error, as opposed to
the numerical error estimated using solution verification. Thus,
these results have approximately segregated the two error
sources for these analyses.
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71%
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Fine Mesh k*

024 . Tr—— —
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Figure 12. k* values converge in apparent asymptotic
behavior with relatively low numerical uncertainty

The results presented here show that geometric
representation of a porous system void can play a significant role
in the effective thermal response of the domain. Whereas the
system requires a polygon with roughly 20 to 40 sides to
effectively represent the porosity of the system, most all of the
systems required well below 20 sides to effectively capture the
effective thermal conductivity of the systems. It is evident,
however, that with increasing porosity, the risk of introducing
model form error into the solution also increases, thus geometric
fidelity can have a significant impact on the level of error present
in the computed effective thermal response of the porous system.

6. CONCLUSION

This paper has presented a thorough analysis of the effective
thermal response of a two-dimensional porous system using the
finite element method, where polygons were used to represent
circular pores in computational models. Code verification was
performed using the Method of Manufactured solutions to show
an approximately second-order accurate FE implementation, and
solution verification was used to estimate numerical uncertainty
in k* of the porous system due to discretization. Numerical
uncertainties were shown to be relatively low with very few
exceptions. In this work, model form error was illustrated due to
geometric fidelity, where polygonal representation of a circular
pore impacted the effective thermal response of the system. The
computational trends show that systems with larger porosities
require a higher number of polygon sides to effectively capture
the circular pore’s effective thermal response.
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