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Capabilities and Infrastructure

Cell and Module Testing
Battery Abuse Testing Laboratory (BATLab)

Battery Pack/System Testing
Thermal Test Complex (TTC) and Burnsite




Safety Science

-

Materials R&D b
* Non-flammable electrolytes
* Electrolyte salts
* Coated active materials
* Thermally stable materials
W,
\

Testing

* Electrical, thermal, mechanical abuse testing

* Battery calorimetry

* Large scale thermal and fire testing (TTC)

* Failure propagation testing on batteries/systems

* Degradation and diagnostics during and post battery failure)

Simulations and Modeling A
*  Multi-scale models for understanding thermal runaway
* Validating failure propagation models
* Fire Simulations to predict the size, scope, and
consequences of battery fires
J
N

Procedure Development and Stakeholder Interface

* USABC Abuse Testing Manual (SAND 2005 3123)

* OE Energy Storage Safety Roadmap

* R&D programs with NHTSA/DOT to inform best practices,
policies, and requirements

/

Impedance diagnostics
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Sandia is uniquely positioned to study the entire
life cycle of a technology.
New technologies present new risks. A high
rigor environment at Sandia allows those risks to

be adequately managed.



Motivation for Propagation Testing
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How do these behaviors impact a
larger, more complex system?
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Strategies to Mitigate Failure Propagation

Passive
Mitigation <

Active Mitigation
(external energy <
input required)

e Heat dissipation (e.g., heat sink, phase change)

e Inter-cell/inter-module spacing (e.g., triangular
configuration of cylindrical cells)

e Reduce available energy (e.g., limited state of
charge)

e Air cooling
e Liquid cooling (e.g., water, ethylene glycol)

Objective
Reduce the risk of failure propagation with
passive and active thermal management

|
|
|



Unmitigated Failure Propagation

Test Details
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Torres-Castro, L. et al., (2020) J Electrochem. Soc., 167(9): 090515 6
Kurzawski, A., et al. (2020). Proc. Combust. Instit. 38.




Unmitigated Failure Propagation
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Failure Propagation with Passive Mitigation
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* The plates provided an additional thermal mass to dissipate heat release, hence reducing the risk of propagation

* Thinner plates did not prevent failure propagation, but they significantly reduced the overall heat release rate and

propagation speed

Torres-Castro, L. et al., (2020) J Electrochem. Soc., 167(9): 090515
Kurzawski, A., et al. (2020). Proc. Combust. Instit. 38.




Failure Propagation with Passive Mitigation

Risk of Propagation
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* The plates provided an additional thermal mass to dissipate heat release, hence reducing the risk of propagation
* Thinner plates did not prevent failure propagation, but they significantly reduced the overall heat release rate and

propagation speed
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‘ Predicting Thermal Runaway

Large-scale testing is costly, and simulations allow exploration of the design space if well grounded in reality

Short circuit
simulated in

first cell acts Baseline
as boundary cell stack:
condition Thermal
runaway
propagates

* Measurements are reality but simulations allows us to better understand the behavior changes

* Explore boundaries between mitigation and cascading failure

Lamb, J., et al. (2015). J. Power Sources 283: 517-523.
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Temperature-Time Propagation Measurements and Predictior

by Andrew Kurzawski
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° Increase time delay for cell
runaway

(. Prevent propagation for 30%\
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> Reduced SOC results suggest
homogeneous heat capacity

\_ changes of 25% sufficient  /
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Limits of Failure Propagation
by Andrew Kurzawski

Energy per heat capacity, cooling and inter-cell resistance defines propagation limits
Model maps delay in propagation: yellow region is infinite delay— failure to propagate.
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Convection cooling and conduction through stack results in failure to

propagate for some scenarios.

[Consider cost/design tradeoff : cooling versus thermal resistance.]
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Exploration of Mitigation Strategies Through Simulations
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Exploration of Mitigation Strategies Through Simulations
by Randy Shurtz
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Exploration of Mitigation Strategies Through Simulations
by Randy Shurtz

Power, W

Effect of insulator thickness on the heat out of the battery pack
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Water cooling increases decay rate of tails, indicating more heat transfer out of the stack
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Exploration of Mitigation Strategies Through Simulations
by Randy Shurtz

Power, W

Effect of insulator thickness on the heat out of the battery pack
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Exploration of Mitigation Strategies Through Simulations
by Randy Shurtz

Effect of insulator thickness on the heat out of the battery pack
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Insulation and structural materials delay heat transfer to adjacent cells/modules and allow for heat dissipation
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Model Based Experimental Design
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Temperature Profile
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Temperature Profile
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Temperature Profile
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Hypothetical Adjacent Module Temperature Exposure
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The hypothetical adjacent module will be exposed to temperatures
nearly identical when using 0.4mm G10 insulator with water-cooled
plates or 1.6mm G10 insulator with no water

Thicker insulators and the inclusion of water reduces the risk of

failure propagation i
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Hypothetical Adjacent Module Temperature Exposure
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Thicker insulators and the inclusion of water reduces the risk of

failure propagation i
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Hypothetical Adjacent Module Temperature Exposure
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Summary

A cell may exhibit a dramatically different failure response when in a string, module, or pack than during single

-cell abuse testing
Metallic plates are effective in small packs, but there is a trade-off between cost, weight, and volume

Understanding of heat transfer is critical to incorporate the dynamics of heat transfer and make use of the

system thermal mass

Failure testing of large, complex systems is resources intensive. Model-based designs present a potential

remedy to this, allowing us to infer a large amount of information from a relatively small number of tests.
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