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2 I Tensors and the CP Decomposition

N-way array used to represent multi-relationship data
> E.g., word frequencies in Amazon product rankin

s L5 7
. . N b, br

Canonical Polyadic (CP) tensor decompositigy ) + bt

> Approximate tensor as a sum of rank-1 tensors5

> Discovers dominant relationships in data

a ar
item
CP minimization problem
A= [81 ce aR]

rrJU[n |X—M||z s.t. M = ajobjoci+:--+agobgocg = [A,B,C] B =1b; ... bg]

. . . C = [Cl ce CR]
Often solved via alternating linear least squares
o Fix all but one term, solve linear least squares problem, iterate
Using... Repeat until convergence... Repeat until convergence...
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s+ I Streaming Tensors — Two Points-of-View

At each time step t, new If we assume factor matrices A, B, and C fixed
3-way hyperslice added through time, then the ideal factorization looks like...
wq wo wp
1 &) CRr
x (1)
)1 by by 1bg
~ + + et
a a ar
R

DC%Zajobjocjowj: [[A,B,C, W]]
=1
x c RN1XN2><N3)<T !

x(t) c RNL XNQXNg

Generic d-way setup is similar.



s | Streaming Tensors — Two Points-of-View

At each time step t, new
3-way hyperslice added

x c RNI X Nox NaqxT

x(t) c RNL XNQXNg

Generic d-way setup is similar.

If we assume factor matrices A, B, and C fixed
through time, then the ideal factorization looks like...

C1 2 CRr

(t)

1 bl W5 ] b2 W,(?t) 1 bR

a ar

R
x® ~ 3" wa;0bjoc = [w?); A B, C]

j=1
A:[al a ... aR] ERNIXR
B = [b1 b, ... bR] ERNQXR
C=[cac...cg c RNsxR



6 ‘ Generic Streaming Formulation

Matching to the
latest temporal Factor matrices vary

observation slowly or not at all

W A0 BO. c“)]] ”QJ

L+ Rw D)+ RAY) + RBY) + R(CY)

Fit historical data with \
updated factors \
(which should Down-weight
change slowly) old information Optionally regularize or

impose other constraints like
nonnegativity




7 ‘ NYC Taxi Dataset — 4-way Tensor

e Data from NYC public records
https://www1.nyc.gov/site/tlc/about/tlc-trip-

record-data.page
O
* 10+ Years of Data <
S

* 4-way Tensor, Updated Daily S| X

— Pickup Zone =

— Dropoff Zone dropoff

— Pickup Hour

— New 3-way tensor each day

e 265 Taxi Zones
https://catalog.data.gov/dataset/nyc-taxi-zones
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https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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¢ | Component #1 (of 50) — Standard Mid-morning Weekday Traffic
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Component #21 (of 50): Weekend Nightlife

Date
| | | I |
400 - ﬂ ‘ ﬂ D 1
|||| fn ||||'| || q| |||"|‘|'“'” '|“" M
- Weekends
200 I|||||| Iml |||||H |||||||| i || |l ".|| ||| ||'||||'||I| iy i | .
0 ||| / ‘ FANAPR Y] | |f| ‘lHL V. H wul Vl [/I / ) AP, |f"|x' PAAVAVAVAY, L/'J VY I;
o o o ] o 2] o (] o o
. 2. 2. . . <. <. 7, <. 2. .
% % R e B Y Y T Yy % Ty
Hour of Day
0.6}
0.4}
0.2}
0 - W
6 12 18 24




Generalized CP (GCP) Tensor Decomposition Allows Flexible
Loss Function
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Hong, Kolda, Duersh, SIREV 2020 (arXiv:1808.07452)

Example Loss Functions

Normal (x, m € R)

f(@,m) = (z —m)’

Poisson(x € N,m > 0)

f(x,m)=m — xlogm

Bernoulli (x €{0,1}, m > 0)
flx,m) =log(m+ 1) —xzlogm

[-divergence (x >0,m > 0,5 = —)

flz,m) =a/vm+m


http://arxiv.org/abs/1808.07452

1 1 Fitting GCP Model

min F(X,M):Zf(x;,m,-) st. M =[Ay...,Ad

Lose the least-squares structure underlying ALS-type algorithms. Instead pursue
gradient-based optimization approach.

Define tensor Y such that

: . of
y(iL,vla) = yi = 5 (i, mi)
Then gradient of objective function given by
oF
Gk = 5 =Y0(Ad O O A1 © A1 0 -~ © Ar)  +— MTTKRP!
k

Unfortunately, Y is in general dense, even when X is sparse, making standard
optimization infeasible.

Insteelldaemploy Stochastic Gradient Descent (SGD) where Y is only randomly
sample

o Stratified: sample zeros and nonzeros separately (requires tensor search)
o Semi-stratified: skip tensor search and adjust for “zeros” that are really nonzeros

"Kolda, Hong, Duersch. Stochastic Gradients for Large-Scale Tensor Decomposition. arXiv 1906.01687, 2019.



http://arxiv.org/abs/1906.01687

12 I High-level View of Optimization & Dependencies

Factor Matrices
at Current lterate

A, A, ...

Sparse, randomly sampled,
intermediate
“gradient tensor”

MTTKRP

Gradient

G,

Factor Matrices
at Next lterate

Gradient
Descent Step

) A




13 ‘ Towards Streaming “Online GCP”

Starting from OnlineSGD (Mardani et al., TSP
2015) :

min fo(f) ~ [wto; a0, 50, cW] H2+

A (w2 + | AO|2 4 [ BO2 + || c0)) ]

For each time step t:
o Least-squares solve for w® holding Aft=A(t-1), Bt)=B(t-1),
C=Ct? fixed
o 1g_Bra((jjient descent updates to A®,B®, C*) holding w(?
ixe

Implemented in combination of Matlab Tensor
Toolbox and C++ GenTen™ GCP library

> High-level algorithm in Matlab

o Fast GenTen math kernels using MEX interface
*Phipps and Kolda, Software for Sparse Tensor Decomposition on Emerging
Computing Architectures, SIAM SISC, 2019.
https://gitlab.com/tensors/genten

I I Em B


https://gitlab.com/tensors/genten

‘ Towards Streaming “Online GCP”

Normalized Local Gaussian Loss
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> High-level algorithm in Matlab CP-ALS (from GenTen).

o " E?Je't gs?nTer} msath k$rneIsD using MEX irgterface

*Phipps and Kolda, Software for Sparse Tensor Decomposition on Emerging N lized Local Gaussian Loss — 1¢() — Tw(®. A B® 1112 /1122
Computing Architectures, SIAM SISC, 2019. ormalized Local Gaussian Loss = | lw™" A, B, CEI/IXC]
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https://gitlab.com/tensors/genten

‘ Towards Streaming “Online GCP”

Starting from OnlineSGD (Mardani et al., TSP
2015) :

fom _ [[W(t); A B, c<t>]] H2 N

A (w2 + | AO|2 4 [ BO2 + || c0))

For each time step t:

o Least-squares solve for w(* holding A®=A(t-1), B(t)=B(t-1),

ct)=ct1) fixed

o Gradient descent updates to A(,B(,

¢’V holding w
fixed

Implemented in combination of Matlab Tensor
Toolbox and C++ GenTen™ GCP library

> High-level algorithm in Matlab

o Fast GenTen math kernels using MEX interface
*Phipps and Kolda, Software for Sparse Tensor Decomposition on Emerging
Computing Architectures, SIAM SISC, 2019.
https://gitlab.com/tensors/genten
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16 I Adding History Term To Improve Global Loss

Add history regularization term to prevent over-
solving for new slices

- ESSEriudily perndiiZing cridiige i idCLor mmduices
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() HW(T); A B, cmﬂ H2

Fixed-size history window
o Each new slice randomly evicts a previous entry

> Many ways history could be captured depending on the
problem of interest
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17 I Adding History Term To Improve Global Loss

Add history regularization term to prevent over-
solving for new slices

o Approximate old slices with CP-model from previous
time step and old time weights (e.g., CP-Stream, Smith
et al, SDM, 2018)

> Only requires storing old time weights, not slices
o Essentially penalizing change in factor matrices
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+ 2 (w2 + | AO)2 + | BO| + | CO)2) ]

Fixed-size history window
o Each new slice randomly evicts a previous entry

> Many ways history could be captured depending on the
problem of interest
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‘ Adding History Term To Improve Global Loss

Add history regularization term to prevent over-
solving for new slices

o Approximate old slices with CP-model from previous
time step and old time weights (e.g., CP-Stream, Smith
et al, SDM, 2018)

> Only requires storing old time weights, not slices
o Essentially penalizing change in factor matrices
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v I Streaming “Online GCP”

Replace sum-of-squares Frobenius norm with
general GCP loss function (i.e., negative log
likelihood):
> Replace least-squares solve with GCP-SGD solve
for wit

- Replace gradient descent updates with GCP-SGD
urdates to A®,B(, ¢V holding w( fixed

> g m)+

ieQ(?)

min
M (D)

Z gt—"

T€Ty

[w; A, B, ] - [wl); a0, B8O, ]|

A (w2 + |A@ 2 1 | BO2 + | €9)2)
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‘ Streaming “Online GCP”

Replace sum-of-squares Frobenius norm with
general GCP loss function (i.e., negative log
likelihood):
> Replace least-squares solve with GCP-SGD solve
for wit/

o Replace gradient descent updates with GCP-SGD
updates to A®,B, ¢V holding w¥ fixed
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22 I Summary and Conclusions

Summary
o Streaming tensor decomposition method for general statistical data types (continuous, count,
binary, ...)

o Incorporation of history sampling to eliminate growth in global loss

o Software implementation combining rapid prototyping of Tensor Toolbox and manycore
performance of GenTen

Challenges

> Online (and static) GCP require tuning of many hyper-parameters (number of samples, learning
rates, ...) particularly when balancing cost versus accuracy

> SGD solver may converge slowly increasing computational cost

Moving forward

> Proper formulation of history window regularization term
o Likely should replace Frobenius norm with GCP loss.
> How to sample that term (same samples as tensor or different, stratified or uniform, ...)?

° In depth evaluation of performance, accuracy
o Address online and static GCP solver challenges
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23 ‘ Multiway “Tensor” Data is Ubiquitous

Neuron activity:
Neuron x Time x Trial

Crime data: Crime x
Location x Hour x Date

Social interaction data:
Person A x Person B
x Venue x Time

Twitter co-occurrence:
Term Ax Term B x Time

Travel data: Start
Location

X Finish Location
x Departure Hour
x Departure Date

Signal processing:
Sensor x Frequency x
Time

Cyber data: Src IP x Dst
IP
x Dst Pg

Tensor Decomposition Finds
Host (¢ Patterns in Massive Data
x Acti (Unsupervised Learning)




Tensor Decomposition Identifies Factors

Data CP Model Sum of r Outer Product Tensors Factor Matrices
L . £
g-8 —ii
X € R *n2x XN M=[A,Ay, ..., A ] € RMr7on2xxnd Ay € R™™7
rod
r; = x(i1,%2,...,1q) mi = miy,iz,.. .1 ZHG”C %) Model Rank

j=1 k=1



25 | Streaming Tensors — 3-way Case

If we assume factor matrices A and B fixed
through time, then the ideal factorization looks
like...

At each time step t, a
new 2-way slice is

added ) i
(1) ~
o X + 4+ e
X (2)
x (1) 1 .2
R
Add matrix each time step: X = Za:f ob;ow; = [A,B, W]
X () ¢ RN1xN2 j=1
= . Ny xR
Entirety is 3-way tensor: A =[a; ap ar] €R
B = [b]_ b2 . bR] c RNQXR

x c RNll‘(Ng){T
W =[w; wy - wg] € RI*E



26 I Component #4 (of 50): Morning Commute to Rockefeller Center
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27 I Component #17 (of 50): Travel to JFK and La Guardia
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22 I Component #20 (of 50): School Morning Dropoff
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Decompositions

New software package GenTen developed at SNL
o E. Phipps, T. Kolda, D. Dunlavy, G. Ballard, T. Plantenga

> Based on C++ port of Matlab Tensor Toolbox
> Publicly available at https://qitlab.com/tensors/genten

> Implements full CP-ALS algorithm for sparse (and dense) tensors, as well
as GCP algorithm for sparse tensors

Incorporates shared memory parallelism for emerging manycore
hardware using Kokkos

o Multicore CPUs via OpenMP, pThreads
> GPUs via Nvidia Cuda (Intel and AMD coming soon)
o Intel Xeon Phi (a.k.a. KNC/KNL) via OpenMP

Implements parallelism for all performance-critical operations
o MTTKRP, tensor inner product, norms, ...

o Can use optimized third-party libraries (MKL, cuBLAS, ...)
o Natively handles data transfers between CPU, GPU memory

Callable from Matlab Tensor Toolbox!
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