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Tensors and the CP Decomposition2

 N-way array used to represent multi-relationship data
◦ E.g., word frequencies in Amazon product rankings

 Canonical Polyadic (CP) tensor decomposition
◦ Approximate tensor as a sum of rank-1 tensors
◦ Discovers dominant relationships in data

 CP minimization problem

 Often solved via alternating linear least squares
◦ Fix all but one term, solve linear least squares problem, iterate
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Repeat until convergence…Using… Repeat until convergence…

MTTKRP
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Streaming Tensors – Two Points-of-View4
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Generic d-way setup is similar.
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Generic Streaming Formulation6

Matching to the 
latest temporal 

observation
Factor matrices vary 

slowly or not at all

Fit historical data with 
updated factors 
(which should 
change slowly)

Down-weight 
old information Optionally regularize or 

impose other constraints like 
nonnegativity



NYC Taxi Dataset – 4-way Tensor7

• Data from NYC public records 
https://www1.nyc.gov/site/tlc/about/tlc-trip-
record-data.page

• 10+ Years of Data

• 4-way Tensor, Updated Daily
– Pickup Zone
– Dropoff Zone
– Pickup Hour
– New 3-way tensor each day

• 265 Taxi Zones
https://catalog.data.gov/dataset/nyc-taxi-zones
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Component #1 (of 50) – Standard Mid-morning Weekday Traffic8



Component #21 (of 50): Weekend Nightlife9



Generalized CP (GCP) Tensor Decomposition Allows Flexible 
Loss Function
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Example Loss Functions

Hong, Kolda, Duersh, SIREV 2020 (arXiv:1808.07452)

http://arxiv.org/abs/1808.07452


Fitting GCP Model*11

 Lose the least-squares structure underlying ALS-type algorithms.  Instead pursue 
gradient-based optimization approach.

 Define tensor Y such that 

 Then gradient of objective function given by

 Unfortunately, Y is in general dense, even when X is sparse, making standard 
optimization infeasible.  

 Instead, employ Stochastic Gradient Descent (SGD) where Y is only randomly 
sampled

◦ Stratified:  sample zeros and nonzeros separately (requires tensor search)
◦ Semi-stratified:  skip tensor search and adjust for “zeros” that are really nonzeros

MTTKRP!

*Kolda, Hong, Duersch. Stochastic Gradients for Large-Scale Tensor Decomposition. arXiv 1906.01687, 2019.

http://arxiv.org/abs/1906.01687


High-level View of Optimization & Dependencies12

Sparse, randomly sampled, 
intermediate

“gradient tensor”

Factor Matrices 
at Current Iterate

Data

Gradient
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Towards Streaming “Online GCP”13

Starting from OnlineSGD (Mardani et al., TSP 
2015) :

For each time step t:
◦ Least-squares solve for w(t) holding A(t)=A(t-1), B(t)=B(t-1), 

C(t)=C(t-1) fixed
◦ Gradient descent updates to A(t),B(t), C(t) holding w(t) 

fixed

Implemented in combination of Matlab Tensor 
Toolbox and C++ GenTen* GCP library

◦ High-level algorithm in Matlab
◦ Fast GenTen math kernels using MEX interface

*Phipps and Kolda, Software for Sparse Tensor Decomposition on Emerging 
Computing Architectures, SIAM SISC, 2019.  
https://gitlab.com/tensors/genten

https://gitlab.com/tensors/genten
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Comparison of Online SGD local and global Gaussian loss 
applied to 1 year of NYC taxicab data with non-streaming 
CP-ALS (from GenTen). 

https://gitlab.com/tensors/genten
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Growth in global loss 
due to missing history

Comparison of Online SGD local and global Gaussian loss 
applied to 1 year of NYC taxicab data with non-streaming 
CP-ALS (from GenTen). 

https://gitlab.com/tensors/genten


Adding History Term To Improve Global Loss16

Add history regularization term to prevent over-
solving for new slices

◦ Approximate old slices with CP-model from previous 
time step and old time weights (e.g., CP-Stream, Smith 
et al, SDM, 2018)

◦ Only requires storing old time weights, not slices
◦ Essentially penalizing change in factor matrices

Fixed-size history window
◦ Each new slice randomly evicts a previous entry
◦ Many ways history could be captured depending on the 

problem of interest
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Adding History Term To Improve Global Loss18

Add history regularization term to prevent over-
solving for new slices

◦ Approximate old slices with CP-model from previous 
time step and old time weights (e.g., CP-Stream, Smith 
et al, SDM, 2018)

◦ Only requires storing old time weights, not slices
◦ Essentially penalizing change in factor matrices

Fixed-size history window
◦ Each new slice randomly evicts a previous entry
◦ Many ways history could be captured depending on the 

problem of interest
Comparison of local and global Gaussian loss applied to 1 
year of NYC taxicab data with 30 randomly selected history 
window.



Streaming “Online GCP”19

 Replace sum-of-squares Frobenius norm with 
general GCP loss function (i.e., negative log 
likelihood):

◦ Replace least-squares solve with GCP-SGD solve 
for w(t)

◦ Replace gradient descent updates with GCP-SGD 
updates to A(t),B(t), C(t) holding w(t) fixed



Streaming “Online GCP”20

 Replace sum-of-squares Frobenius norm with 
general GCP loss function (i.e., negative log 
likelihood):

◦ Replace least-squares solve with GCP-SGD solve 
for w(t)

◦ Replace gradient descent updates with GCP-SGD 
updates to A(t),B(t), C(t) holding w(t) fixed

Demonstration of streaming OnlineGCP with two likelihood 
functions, including non-streaming GCP, CP-ALS 
(Gaussian) and CP-APR (Poisson) on 1 year of NYC taxicab 
data.



Summary and Conclusions

 Summary
◦ Streaming tensor decomposition method for general statistical data types (continuous, count, 

binary, …)
◦ Incorporation of history sampling to eliminate growth in global loss
◦ Software implementation combining rapid prototyping of Tensor Toolbox and manycore 

performance of GenTen

 Challenges
◦ Online (and static) GCP require tuning of many hyper-parameters (number of samples, learning 

rates, …) particularly when balancing cost versus accuracy
◦ SGD solver may converge slowly increasing computational cost

 Moving forward
◦ Proper formulation of history window regularization term

◦ Likely should replace Frobenius norm with GCP loss.
◦ How to sample that term (same samples as tensor or different, stratified or uniform, …)?

◦ In depth evaluation of performance, accuracy
◦ Address online and static GCP solver challenges

21
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Multiway “Tensor” Data is Ubiquitous23

Neuron activity: 
Neuron x Time x Trial

Travel data: Start 
Location 
x Finish Location 
x Departure Hour 
x Departure Date

Crime data: Crime x 
Location x Hour x Date

Signal processing: 
Sensor x Frequency x 
Time

Social interaction data: 
Person A x Person B 
x Venue x Time

Cyber data: Src IP x Dst 
IP 
x Dst Port x Time

Twitter co-occurrence: 
Term A x Term B x Time

Host data: Host 
x Action/Library x Time

Tensor Decomposition Finds 
Patterns in Massive Data
(Unsupervised Learning)



Tensor Decomposition Identifies Factors24

CP Model

≈ defined by

Data Factor Matrices

Model Rank



Streaming Tensors – 3-way Case25
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Component #4 (of 50): Morning Commute to Rockefeller Center26



Component #17 (of 50): Travel to JFK and La Guardia 
Airports
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Component #20 (of 50): School Morning Dropoff28



GenTen :  Software for Generalized Canonical Polyadic Tensor 
Decompositions

29

 New software package GenTen developed at SNL
◦ E. Phipps, T. Kolda, D. Dunlavy, G. Ballard, T. Plantenga
◦ Based on C++ port of Matlab Tensor Toolbox
◦ Publicly available at https://gitlab.com/tensors/genten
◦ Implements full CP-ALS algorithm for sparse (and dense) tensors, as well 

as GCP algorithm for sparse tensors

 Incorporates shared memory parallelism for emerging manycore 
hardware using Kokkos

◦ Multicore CPUs via OpenMP, pThreads
◦ GPUs via Nvidia Cuda (Intel and AMD coming soon)
◦ Intel Xeon Phi (a.k.a. KNC/KNL) via OpenMP

 Implements parallelism for all performance-critical operations
◦ MTTKRP, tensor inner product, norms, ...
◦ Can use optimized third-party libraries (MKL, cuBLAS, ...)
◦ Natively handles data transfers between CPU, GPU memory

 Callable from Matlab Tensor Toolbox!

https://gitlab.com/tensors/genten


30 What is Kokkos?

DDR

HBM

DDR

HBM

DDRDDR

DDR

HBMHBM

Multi-Core Many-Core APU CPU+GPU

Drekar

TrilinosSPARC

Applications & Libraries

Kokkos
performance portability for C++ applications

Albany

EMPIRELAMMPS

SIERRA etc...

C. Trott, et al., https://github.com/kokkos/kokkos

https://github.com/kokkos/kokkos

