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MD Approximations Change Over Time
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3 I What Makes a Machine Learned Interatomic Potential?

Training Data Descriptor
* Generated using quantum Describes the local atomic

Regression Method
Linear regression

methods environment * Kernel ridge regression
« Can mcluc}e: ¢ Requ1rem§nts | . Gaussian process
* Energies ¢ Rotatlon/.'l'raljslatl.on/. - Non-linear optimization
* Forces Permutgtlon invariant . Neural Networks
» Stresses « Equivariant forces
« Variety of atomic « Smooth differentiable
configurations « Extensible
« Bulk structures, liquids, * Some Examples
surfaces, defects, etc. « Bispectrum, SOAP, ACE, SNAP
Moment Tensors, etc. * Energies, forces, and

stresses from DFT
* Bispectrum component
descriptors
Linear regression




SNAP Definition and Work Flow
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1 Materials for Fusion Energy

» Difficult to develop materials to handle
extreme conditions within tokamak
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‘ Plasma Material Interactions in Tungsten  Tritium Retention

Effect of He on H Blistering
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Kajita, et al. J. Nucl. Mater, 418, (2011) 152-158
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. Hydrogen Blisters
W-Be Intermetallics
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.1 Tungsten-Beryllium SNAP Fitting w-Be Intermetallic Formation Energies (e

-m

- Initially fit SNAP potential for pure 0.67 030 -2.20

elements C14 WBe2 -0.87 -1.27 -4.20
* Making a multi-element SNAP potential C WBe 0.92 -1.15 -4.19
does sacrifice some accuracy from either 15 2 ' ' '
pure component fit. Cie WBe, -0.90  -1.22  -4.20
* Training set includes W-Be intermetallic L,, WBe, -0.51 -0.15 -4.58
Descripion  Ng  Np op  or D,B WBe,, 0.96 -0.34  -6.69
W-Be:
Elastic Deform!’ 3946 68040 3-10° 2.10° Be Defect Formation Energies in W (eV)
Equation of State” 1113 39627 2-10° 4-10* _ 1 1
DFT-MD' 3360 497124 7-10* 6- 102 2t =
Surface Adhesion 381 112527 2-10* 9-10% [111] Dumbbell 4.30 3.66 0.67
T Multiple crystal phases included in this group: Substitution 3.11 3.29 -2.00
Surface Hollow Site -1.05  -1.39 -3.52
Tetrahedral 4.13 4.20 -0.28
[110] Dumbbell 4.86 4.29 -0.03
Octahedral 3.0 5.11 0.34

[1] M. A. Wood, M.A. Cusentino, B.D. Wirth and A.P. Thompson, Phys. Rev. B 99, 184305 9 g
[2] C. Bjérkas et al 2010 J. Phys.: Condens. Matter 22 352206 Surface Bridge Site  1.01 0.44 -1.30



8 ‘ Beryllium Deposition Results in Near Surface Mixed Layer
75 eV Implantation
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High energy (75 eV) and low energy (0 eV) beryllium
deposition on tungsten surfaces
Formation of disordered mixed materials layer in first
2 nm of surface
. Some intermetallic growth observed within mixed
- materials layer

o | However, mixed materials layer appears to be
kinetically trapped at MD time scales
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| Be Disrupts Helium Diffusion and Bubble Growth in W
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Pure H or N Data
Dimer and Trimer binding curve
Molecular binding curves
Random configurations of molecules at varying
densities
DFT-MD

W-H Data
H and H, adsorption on W surface
H defects in bulk tungsten
Sheared/Strained configurations of H defects in
bulk W

W-N Data
N adsorption and surface diffusion on (100),
(110), (111) surfaces
N, dissociation on (100), (110), (111) surfaces
NEB of N into bulk W for (100) and (110)
surface
N defects in bulk W
W,N, bulk structures
W,N, sheared/strained structures

0 | Extending SNAP for W-H and W-N

H, Adsorption WN NiAs Structure
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Objective Functions
Energy/force errors on training data
W or W,N, cohesive energies
W and W-H or W-N defect formation energies
H/N dimer and trimer binding energies
H/N atom and molecular surface binding energies




1 I Challenges in Developing W-H and W-N SNAP Potentials

» Have never used SNAP for gaseous species before

* Hydrogen and nitrogen raining data is also more sparse
compared to crystalline structures i.e. tungsten

» Difficult resides in how to get correct gas behavior (like
forming dimers but not trimers) without inherent physics built

-in to potential form

Poor Clustering Behavior
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2 I Changes to Fitting Results in Better Hydrogen and Nitrogen Potentials

* Modifications to fitting workflow
yielded better results in reproducing
correct gas species behavior

* Adjustments included:

* Only including training data near
potential energy well

* Making radial cutoff much shorter
(1.5 A for H and 2.0 A for N)

» Adding extra objective function
for dynamics behavior

» Adjusted ZBL cutoff

» Adjusted objective function for
binding curves
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13 ‘ Preliminary Results for W-H and W-N SNAP Bulk

Pronerties W-H Bulk Properties

o | snap
Ef? (eV) -4.75 -4.74
E}' ¢t (eV) 0.88 0.85
EP°*(eV) 1.26 1.17
E7*? (eV) 4.08 4.25
E}’ (eV) 3.27 3.30
W,N, Cohesive Energies W-N Bulk Properties
T o | s T oFr | onae
P62mmc (WN,) (eV) -1.84 -2.64 Ef"’z (eV) -9.79 -9.71
P6ém2 (WN,) (eV) -0.92 -2.63 Ef¢t(eV) 1.26 1.45
NiAs (WN) (eV) -0.83 -1.35 E,?“(eV) 0.53 0.56
WC (WN) (eV) -0.24 -1.00 Efs‘“’(eV) 4.15 1.23

MoSi, (W,N) (eV)  -0.07 -0.06 E (eV) 3.27 2.95



4 I Summary

 SNAP is a versatile ML interatomic potential that
has been applied to a variety of materials including
materials for fusion energy

* A W-Be SNAP potential has been developed and
used to study Be implantation in W and extended to
simulation He implantation W-Be materials

* The current SNAP potential is being extended for W
-H and W-N and SNAP can reproduce gas species )
behavior both in vacuum and in metals
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Depth {nm)

 Future work entails the development of one W-Be-H
-He-N potential for studying fusion energy materials
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s I Variations of SNAP
Quadratic SNAP

| 1 |

* Linear terms are 4-body

* Quadratic terms are 7-body

* Number of linear coefficients grows as O(J3)

» Number of quadratic coefficients grows as = 0(J%)
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