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Resources are limited, which is your best choice?
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Qualitative Properties

Near QM Accuracy

Twobody (B.C.)
Lennard-Jones, Hard 
Sphere, Coulomb, 
Bonded

Manybody (1980s)
Stillinger-Weber, 
Tersoff, Embedded 
Atom Method

Advanced (90s-
2000s)
REBO, BOP, COMB, 
ReaxFF

Big Data / Deep / 
Machine Learning 
(2010s)
GAP, SNAP, NN,…

Plimpton and Thompson, 
MRS Bulletin (2012).

MD Approximations Change Over Time2

SNAP - GPU

SNAP Tungsten 
4M atoms Best Speed

4 ns/day
30 katoms/node

EAM Copper
4M atoms

20x
Best Speed
80 ns/day
4M atom/node

Gayatri, Moore et al. (2020) https://arxiv.org/abs/2011.12875

GPU Timings

https://arxiv.org/abs/2011.12875


What Makes a Machine Learned Interatomic Potential?3

Descriptor
• Describes the local atomic  

environment
• Requirements

• Rotation/Translation/. 
Permutation invariant

• Equivariant forces
• Smooth differentiable
• Extensible

• Some Examples
• Bispectrum, SOAP, ACE, 

Moment Tensors, etc.

Regression Method
• Linear regression
• Kernel ridge regression
• Gaussian process
• Non-linear optimization
• Neural Networks

Training Data
• Generated using quantum 

methods
• Can include:

• Energies
• Forces
• Stresses

• Variety of atomic 
configurations 
• Bulk structures, liquids, 

surfaces, defects, etc. SNAP
• Energies, forces, and 

stresses from DFT
• Bispectrum component 

descriptors
• Linear regression



SNAP Definition and Work Flow
4

Model Form

Regression Method

• β vector fully describes a SNAP potential
• Decouples MD speed from training set size

DFT TrainingSet of DescriptorsWeights Code available: https://github.com/FitSNAP/FitSNAP

M. A. Wood, M.A. Cusentino, B.D. Wirth and A.P. Thompson, Phys. Rev. B 99, 
184305



Materials for Fusion Energy5

• Difficult to develop materials to handle 
extreme conditions within tokamak

•Large heat loads of 10-20 MW/m3

• High particles fluxes of ~1024 m-2s-1 of 
mixed ion species (H/He/Be/N etc.)

iter.org

Wirth, et al.  MRS Bulletin 36 (2011) 216-222

• Many complex processes that occur at the 
plasma/material interface that can lead to 
material degradation

Beryllium First Wall

Tungsten Divertor

Plasma: 
~90% H/10% He
With impurities 

(Be,N,etc.)



Plasma Material Interactions in Tungsten
6

Baldwin, et. al.  J. Nucl. Mater. 363-365 (2007) 1179-1183

W-Be Intermetallics

Effect of He on H Blistering

Ueda, et. al.  J. Nucl. Mater. 386-388 (2009) 725-728

Material Degredation

Tritium Retention

Kajita, et al. J. Nucl. Mater, 418, (2011) 152-158

Helium Fuzz Growth

Kajita, et al. Nucl. Fus. 471, 886-890 (2007)

Hydrogen Blisters

Ye, et al. J. Nucl. Mater. 313-316, 72-76 (2003) Kreter, et al. Nucl. Fus.. 59, 086029 (2019)

Effect of Plasma Impurities on 
Hydrogen Retention



Tungsten-Beryllium SNAP Fitting7

• Initially fit SNAP potential for pure 
elements

• Making a multi-element SNAP potential 
does sacrifice some accuracy from either 
pure component fit. 

• Training set includes W-Be intermetallic 
structures 

DFT1 SNAP1 BOP2

[111] Dumbbell 4.30 3.66 0.67

Substitution 3.11 3.29 -2.00

Surface Hollow Site -1.05 -1.39 -3.52

Tetrahedral 4.13 4.20 -0.28

[110] Dumbbell 4.86 4.29 -0.03

Octahedral 3.0 5.11 0.34

Surface Bridge Site 1.01 0.44 -1.30

Be Defect Formation Energies in W (eV)

[1] M. A. Wood, M.A. Cusentino, B.D. Wirth and A.P. Thompson, Phys. Rev. B 99, 184305
[2] C. Björkas et al 2010 J. Phys.: Condens. Matter 22 352206

W-Be Intermetallic Formation Energies (eV)

Phase Composition DFT1 SNAP1 BOP2

B2 WBe 0.67 0.30 -2.20

C14 WBe2 -0.87 -1.27 -4.20

C15 WBe2 -0.92 -1.15 -4.19

C16 WBe2 -0.90 -1.22 -4.20

L12 WBe3 -0.51 -0.15 -4.58

D2B WBe12 -0.96 -0.34 -6.69



Beryllium Deposition Results in Near Surface Mixed Layer8

75 eV Implantation

Intermetallic Growth

• High energy (75 eV) and low energy (0 eV) beryllium 
deposition on tungsten surfaces

• Formation of disordered mixed materials layer in first 
2 nm of surface

• Some intermetallic growth observed within mixed 
materials layer

• However, mixed materials layer appears to be 
kinetically trapped at MD time scales

Cusentino, et al. Nucl. Fusion, in review
Fluence: 1.4 x 1020 m-2

Baldwin, et. al.  J. Nucl. Mater. 363-365 (2007) 1179-1183

Experimentally Observed W-Be Intermetallics



Be Disrupts Helium Diffusion and Bubble Growth in W
9

Crystalline W Amorphous W-Be

Blue: He 
Purple: Be  
Gray: W

12 nm

6 nm

Tungsten:
Larger He clusters 

distributed 
throughout 

simulation cell

Laves/Deposited 
Layer:

Smaller He 
clusters mostly 

located near the 
surface

WBe2 C14 Structure

M.A. Cusentino et al 2020 
Nucl. Fusion 60 126018

Increasing TIme

Fluence: 
2.5 x 1019 m-2



Extending SNAP for W-H and W-N10

Pure H or N Data
• Dimer and Trimer binding curve
• Molecular binding curves
• Random configurations of molecules at varying 

densities 
• DFT-MD

W-H Data
• H and H2 adsorption on W surface
• H defects in bulk tungsten
• Sheared/Strained configurations of H defects in 

bulk W

W-N Data
• N adsorption and surface diffusion on (100), 

(110), (111) surfaces
• N2 dissociation on (100), (110), (111) surfaces
• NEB of N into bulk W for (100) and (110) 

surface
• N defects in bulk W
• WxNx bulk structures
• WxNx sheared/strained structures

H2 Adsorption WN NiAs Structure

Objective Functions
• Energy/force errors on training data
• W or WxNx cohesive energies
• W and W-H or W-N defect formation energies
• H/N dimer and trimer binding energies
• H/N atom and molecular surface binding energies



Challenges in Developing W-H and W-N SNAP Potentials11

• Have never used SNAP for gaseous species before
• Hydrogen and nitrogen raining data is also more sparse 

compared to crystalline structures i.e. tungsten
• Difficult resides in how to get correct gas behavior (like 

forming dimers but not trimers) without inherent physics built
-in to potential form

Poor Clustering Behavior

Movie colored by 
PE/atom

- Green is nominal H2 
energy

- Reproduces correct 
binding curves

Poor Energetics

Hydrogen Binding Curves



Changes to Fitting Results in Better Hydrogen and Nitrogen Potentials12

Nitrogen Binding Curves

• Modifications to fitting workflow 
yielded better results in reproducing 
correct gas species behavior

• Adjustments included:
• Only including training data near 

potential energy well
• Making radial cutoff much shorter 

(1.5 Å for H and 2.0 Å for N)
• Adding extra objective function 

for dynamics behavior
• Adjusted ZBL cutoff
• Adjusted objective function for 

binding curves



Preliminary Results for W-H and W-N SNAP Bulk 
Properties

13

DFT SNAP

-4.75 -4.74

0.88 0.85

1.26 1.17

4.08 4.25

3.27 3.30

DFT SNAP

-9.79 -9.71

1.26 1.45

0.53 0.56

4.15 1.23

3.27 2.95

DFT SNAP

P62mmc (WN2) (eV) -1.84 -2.64

P6m2 (WN2) (eV) -0.92 -2.63

NiAs (WN) (eV) -0.83 -1.35

WC (WN) (eV) -0.24 -1.00

MoSi2 (W2N) (eV) -0.07 -0.06

W-H Bulk Properties

W-N Bulk PropertiesWxNx Cohesive Energies



Summary

•  SNAP is a versatile ML interatomic potential that 
has been applied to a variety of materials including 
materials for fusion energy

• A W-Be SNAP potential has been developed and 
used to study Be implantation in W and extended to 
simulation He implantation W-Be materials

• The current SNAP potential is being extended for W
-H and W-N and SNAP can reproduce gas species 
behavior both in vacuum and in metals

• Future work entails the development of one W-Be-H
-He-N potential for studying fusion energy materials

14

Contact: 
mcusent@sandia.gov



Variations of SNAP15

R R

WD-SNAP

R R

EME-SNAP
SNAP for Multiple Elements

• Linear terms are 4-body
• Quadratic terms are 7-body
• Number of linear coefficients grows as O(J3)
• Number of quadratic coefficients grows as = O(J6)

Quadratic SNAP Neural Network SNAP


