Dissipation of moving vortices in thin films
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Moving vortices in thin superconducting films are considered within the time-dependent London
description. The dissipation due to out-of-core normal excitations for two vortices moving together
turns out to have a minimum for the separation vector a parallel to the velocity and equal to
am =~ 2.2 A, where A is the Pearl length. The minimum entropy production suggests that moving
vortices should have a tendency to form chains along the velocity with a period of the order ay,.

I. INTRODUCTION

Problems of vortex dynamics in superconductors have
recently come back to the community attention because
new and more accurate experimental techniques become
available. Vortex velocities well above the speed of sound
are now attainable along with more sensitive methods of
measuring field distributions [1-3].

Moving vortices, pushed by the Lorentz force due to
applied transport current, dissipate energy replenished
by the current source. In this situation, the heat transfer
should be taken into account [2], to mention one of the
complications. One of the facts attracting attention is
that moving vortices tend to form chains extended along
the velocity [1, 4]. The chains have periods a >> &,
the vortex core size, so that the linear London approach
may provide useful insights notwithstanding the London
inability to treat the vortex core physics.

In this work we study the dissipation W due to out-
of-core quasiparticles in thin films and find that for a
pair of vortices W(a) has a minimum at a finite sepa-
ration a oriented along the pair velocity v (see remark
[5]). The value of this separation is a,, ~ 2.2 A with the
Pearl length A = 2)\%/d () is the penetration depth of
the film material and d is the film thickness). According
to the principle of minimum entropy production (or min-
imum dissipation) in stationary processes [7] the system
of moving vortices should have a tendency to form chains
along the velocity in which vortices sit at the dissipation
minima.

Within the general approach to slow relaxation pro-
cesses one relates the time derivative of whatever quan-
tity is relaxing, say WU, to the variational derivative of the
free energy functional F(¥), see e.g. [8]:

Xy =52, (1)
where x is the proper relaxation time. The quantity
of interest in our case is the vortex field distribution
h(r,t) away of the vortex core where the London ap-
proach holds and the energy (magnetic+kinetic) is F =
[ d?r (h? + A (curlh)?) /87 [9]:
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This yields
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X = (= X2VRh), (3)
which reduces to the common London equation in equi-
librium.

The relaxation constant y is obtained by comparison
with the time dependent London equation [10], which
at distances large relative to the core size is obtained
assuming that the current consists of the normal and su-
perconducting parts:
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where A is the vector potential, ¥ is the order parameter,
0 is the phase, ¢¢ is the flux quantum, E is the electric
field, and o is the conductivity associated with normal
excitations. At these distances, |¥| is a constant and
acting on Eq. (4) by curl one obtains [10]:
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where r,(t) is the position of the v-th vortex that may
depend on time ¢, 2 is the direction of vortices. The
relaxation time

T =4noN\?/c?. (6)

Comparing this with Eq. (3) one has xy = 4nx7. In fact,
the time-dependent GL equations can be obtained in a
similar manner [8].

II. THIN FILMS

Let the film of thickness d be in the zy plane. Inte-
gration of Eq. (5) over the film thickness gives for the z
component of the field for a Pearl vortex moving with
velocity v:
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Here, g is the sheet current density related to the tangen-
tial field components at the upper film face by 27g/c =
2 x h; A = 2)\?/d is the Pearl length. With the help of
divh = 0 this equation is transformed to:

Oh- Oh. _ dod(r — vt). (8)
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As was stressed by Pearl [9, 11], the problem of a vortex
in a thin film is reduced to that of the stray field distribu-
tion in free space subject to the boundary condition (8) at
the film surface. Since outside the film curlh = divh = 0,
one can introduce a scalar potential for the outside field:

h =V, Vp=0. (9)
The general form of the potential satisfying Laplace equa-
tion and vanishing at z — oo is
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that is checked by direct differentiation. Here, k =
(kz, ky), 7 = (z,y), and (k) is the two-dimensional (2D)
Fourier transform of ¢(r,z = 0). In the lower half-space
one has to replace z — —z.

As is done in [10], one applies the 2D Fourier trans-
form to Eq. (8) to obtain a linear differential equation for
h.k(t), the solution of which is:

(k)eik‘r—kz (10)
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For two vortices separated by a, the right-hand side of
Egs. (7) and (8) is
60 [6(r — vt) + d(r —a — vt)], (12)
so that we obtain for the field

qsoefik-vt(l + efika)
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III. ELECTRIC FIELD AND DISSIPATION FOR
SLOW MOTION

This field is found from quasi-stationary Maxwell equa-
tions curlE = —9;h/c and divE = 0 [8, 12], which yield
in 2D Fourier space:
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For a pair of vortices separated by a, we have
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We are interested in motion with constant velocity v =
v&, so that we can evaluate the fields at t = 0, i.e. the

factor e~*'¥* can be omitted. Then, Eqgs. (14) and (15)
yield:
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Since the pre-factor here contains v, in linear approxima-
tion in velocity the term ik - v7 in denominators can be
discarded for slow motion.

The dissipation power follows:
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We now go to dimensionless g = Ak:

w d*q ¢*(1 + cos qR)
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where Wy = ¢gv?od/2n%c?A? and R = a/A. The first

contribution
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where the upper limit of the divergent integral over ¢
is taken as 1/£ to avoid the vortex core (£ here is the
dimensionless core size). The second contribution is
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with ¢ being the azimuth of g and « is the angle between
R = a/A and X. After substitution 8 = ¢ — «, the
angular integral takes the form

/27r df cos®(B + a) cos(qR cos fB)
0
=2 (Jlézlf) — Jo(qR) cos® a) . (21)

where J; o are Bessel functions of the first kind. The in-
tegration over ¢ can be done analytically resulting in a
cumbersome combination of Bessel and Hypergeometric
functions. We avoid this by doing this integration nu-
merically. The contours of W5(X,Y") = const are shown
in Fig. 1, contours of the total dissipation W = const, are
in fact the same because W7 is a coordinate independent
constant.

A surprising feature of this plot are the two minima at
the X axis situated symmetrically relative to the origin
(v is along X). One of these minima is shown in Fig. 2
where W2(X, 0) is plotted to indicate the minimum posi-
tion at X,, ~ 2.2. To see a clear picture of the dissipation
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FIG. 1. Contours of constant dissipation W2(X,Y) for a
pair of vortices, one at the origin and the other at (X,Y) =
(az,ay)/A moving with the same velocity along the X axis.
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FIG. 2. W3(X,0) vs X for the velocity along the X axis.
S = 0.1, X is in units of A.

W(a) = Wa(a)+ const, we also show the 3D version of
the same result in Fig. 3.

For an arbitrary velocity, one has to keep the term
ikyvT in denominators of electric field components (16).
One then obtains

W d*q q2(1 + cos qR) (22)
Wo ) @l(1+q)?+q25%
The dimensionless parameter
2mod
S=v =2 (23)

is small even for vortex velocities exceeding the speed
of sound presently attainable [1-3] if one takes for the
estimate the conductivity o of normal quasi-particles as
equal to the normal state conductivity. Unfortunately,
there is not much experimental information about the
T dependence of o. Theoretically, this question is still
debated, e.g. Ref.[13] discusses possible strong enhance-
ment of o due to inelastic scattering.

We employ the Fast Fourier Transform to evaluate
the integral (22). The position X,, of the minimum of

FIG. 3. 3D plot of W2(X,Y) for the velocity along the X
axis. (X,Y) = (az,ay)/A.
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FIG. 4. The minimum position X,, vs S.

W(X,0) for each S was obtained from the contour plot
similar to Fig. 1, which was sliced out of the 2D map ob-
tained from the cosine-term of Eq. (22) via 2D FFT. The
result is shown in Fig. 4. Hence, for S < 0.2, which is the
domain of our interest, the minimum is practically in the
same place at X, = x,,/A = 2.2 eiteremark.

IV. DISCUSSION

Hence, the dissipation W of two vortices separated by
R = (X,Y) depends on the pair orientation relative to
the velocity © and on the pair size R. The numerically
evaluated dissipation W(X,Y) is shown in Fig.3. The
dissipation power has a minimum if the pair is oriented
parallel to v and the vortices are separated by a,, ~ 2.2A.

The physical reason for this minimum can be traced
to the magnetic structure of a single moving vortex. It
was shown in [6, 10] that the magnetic field is depleted
in front of the moving vortex and enhanced behind it
due to induced currents of normal excitations. If two
vortices move so that one follows the other and a || v,
in the space between them the depletion of the second is
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compensated by the enhancement due to the leader. The
resulting magnetic field variation in this space is weaker
than for a single vortex. Then the electric field induced in
this intervortex region E o« dih « (v - Vh) is suppressed
along with the dissipation. Clearly, this simple argument
does not work if the pair orientation differs from a | v.

As remarked in the Introduction, the dissipation of two
moving vortices has also been considered in our earlier
work [6], however, the minimum of it, the main result of
the current work, had not been found. A formal reason
for this omission was that for the minimum to be visible,
the divergent part (19) had to be subtracted in advance.
Instead, we have chosen to evaluate the divergent double
integral (17) “brute-force” numerically, an uncontrollable
procedure. Hence, the part of [6] related to dissipation
of two moving vortices is in fact incorrect.

Moving vortices in Pb films were studied in [1]. The
penetration depth of bulk Pb is A & 96 nm and the film
thickness d = 75 nm so that the Pearl length A ~ 250 nm.
Vortices driven across the thin-film bridge by a transport
current are reported to form chains along the velocity
with spacing a depending on the distance from the bridge
edge. Since the driving current decreases with the dis-
tance x from the edge, the vortex velocity depends on z
as well. The team [1] was able to estimate both v(x) and

a(x).

According to our model, the pair of moving vortices
dissipates the least if it is oriented along the velocity and
separated by a,, ~ 2.2A. One can expect the chain of
vortices to have a period of the order a,,. Taking the ex-
perimental estimate of A we obtain a,, &~ 540 nm. In the
experiment [1] the chain period varies from ~ 1500 nm
near the bridge edge to ~ 600nm (for the set of data
with the transprot current 18.9mA). Hence, the order of
magnitude provided by our model is correct. In other
words, the idea that the chain period is dictated by the
minimum of dissipation agrees qualitatively with obser-
vations.

From the data [1], close to the bridge edge the chain
period a = 1.5 ym and the velocity v ~ 16km/s, i.e. the
ratio a/v ~ 107%s. On the other hand,
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where we replaced the velocity with S of Eq. (23). Taking
for a, /v the experimental ratio a/v ~ 1071%s and \ ~
96 nm, we estimate the conductivity of normal excitations
o~ (3x1099)s7L. With S ~ 1072 this gives the Pb
conductivity that again suggests a qualitative relevance
of our model.
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