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Introduction

▪ Core function of many neural network algorithms is the 

dot product, or vector matrix multiply (VMM) operation

▪ Crossbar arrays utilizing resistive memory elements can 

reduce computational energy in neural algorithms by up 

to five orders of magnitude compared to conventional 

CPUs [1]. 

▪ Moving data between a processor, SRAM, and DRAM 

dominates energy consumption [1]. 

▪ By utilizing analog operations to reduce data movement, 

resistive memory crossbars can enable processing of 

large amounts of data at lower energy than conventional 

memory architectures [1]. 
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VMM ASIC Prototype Architecture

▪ Nonvolatile Memory (NVM) Array – Silver-doped chalcogenide 

based (Ag-Ge-Se) conductive-bridging random-access memory 

(CBRAM) post-processed onto CMOS wafer

▪ Readout & ADC – Transimpedance stage sums and converts 

row device currents for on-chip ADC operation. Typically, ADC 

area/power dominate circuit density/energy efficiency [2]. Prototype 

on-chip 10-bit ADC design amortizes area/power by using single 

comparator and counter per column with shared ramping DAC [2]

▪ TIA – 10 programmable gain settings enable scaling of dot 

product sums to span more LSBs of ADC. 

▪ Write & Voltage Pulser – Weight/conductance changes 

achieved by setting modes in row/column drivers then triggering on-

chip voltage pulser to turn on drivers for duration of pulse width. Test 

mode enables direct pulse width measurements

▪ Interface Configuration – 48 I/O pads used in design to 

maintain small areal footprint. A simple serial scan interface used to 

input ~68 internal configuration bits. Additionally, 80-bit serial data 

output from ADC arranged in long shift register for simple scan out 

of VMM values over 2-wire serial interface
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Mode Configuration

➢ Read Mode – An input VIN[i] voltage 

is driven onto rowline and dot 

product sum of the conductances 

and input vector results in a scaled 

voltage on each column’s TIA output. 

➢ Row/column drivers and array 

bitcells form an “H-bridge” 

structure. Mode control bits 

configure bitcell into different 

modes by turning branches of 

row/column drivers on or off
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Mode Configuration

➢ SET Mode – Mode control bits 

enable top branch of the row driver 

bottom branch of column driver. 

External drive bias ~|VSP-VSN| 

applied from TE to BE of CBRAM 

element, increasing its weight value. 

Bias is applied for duration of PULSE 

output from on-chip voltage pulser

➢ RST Mode – Mode control bits 

enable bottom branch of the row 

driver and top branch of column 

driver. External drive bias ~|VRP-VRN| 

applied from BE to TE of CBRAM 

element, decreasing weight value. 

Bias is applied for duration of PULSE 

output from on-chip voltage pulser
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Mode Configuration

➢ VMID Reference – External VMID 

reference voltage exists for returning 

both TE and BE of CBRAM device to a 

known neutral voltage after each Write 

pulse. Ensures device does not dwell 

with a large voltage (due to parasitic 

capacitances) across it for long periods 

after Write pulse has finished

➢ High-Impedance Mode – Cells put 

in a disconnected mode where 

CBRAM device is disconnected from 

bitline. This ensures no participation 

in Read or Write actions impressed 

across the shared bitline. A parallel 

shunt switch is closed, so that any 

transient charging/discharging sees a 

low impedance path
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Python Interface & Dataflow

▪ Python interface created to send/receive VMM 

ASIC data

▪ Instructions encoded in Python interface on PC 

and decoded in Main Control Unit (MCU) of Opal 

Kelly FPGA

▪ Interface PCB designed to enable analog inputs to 

ASIC via board-level DAC ICs using SPI interface

▪ FPGA deserializer unit takes 80-bit serial data 

output (SDO) stream from ASIC into the MCU then 

stored in BRAM; ASIC output data then analyzed 

on a PC

▪ Takeaway – Python interface will be further 

developed to work in conjunction with 

neuromorphic simulation platform CrossSim 

to train network and implement Write-Verify 

routines [1]
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VMM ASIC Output Data

▪ Testing VMM Read/ADC operation prior to 

CBRAM device array integration, last 

array column populated with fixed 

resistors

▪ 10-bit digital counts output from on-

chip ADC when the input voltage 

levels are swept

▪ Column TIAs have inverting gain. Higher 

column currents (i.e., higher input voltages 

or lower column device resistances) cause 

column comparator to trip quicker and 

result in a smaller digital output counts. 

▪ Adjustments to references voltages in column TIA and Ramp DAC are being tested to try and increase range of 

outputs showing linear and negative slope (unshaded region in plot). 

▪ Each digital output count corresponds 

to VMM sum at each input voltage (for 

single test column)
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Ongoing Development

▪ CBRAM Device Arrays – Several wafers have 

now gone through a chemical mechanical 

polishing (CMP) process and dicing. The diced 

samples have been patterned to begin post-

processing and integration of CBRAM arrays. 

Masks have been designed and ASU has a well 

established CBRAM process. In coming weeks, 

CBRAM device arrays will be integrated onto the 

ASIC and measured 

▪ Python Interface – Continuing to refine and 

optimize Python interface to handle dataflow to 

and from VMM ASIC. Write-Verify routines being 

developed in anticipation of CBRAM device array 

integration. Goal is to adapt the existing 

interface to incorporate CrossSim for network 

training using measured device properties and 

variabilities
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