BASIC RESEARCH NEEDS IN

The Science of
Scientific Software
Development and Use

Investment in Software
is Investment in Science



Investment in Software is Investment in Science

Increasingly powerful and affordable computing has revolutionized scientific and scholarly discovery
across a broad range of fields. Computing relies on software, which has been rapidly growing in scope,
diversity, and complexity. At the same time, the methods, processes, and tools used to produce and
utilize this essential software are often ad hoc, and the study and improvement of them is often done
without the benefit of direct funding or prioritization. Consequently, concerns are growing about the
productivity of the developers and users of scientific software, its sustainability, and the trustworthiness
of the results that it produces.

The US Department of Energy Office of Science (DOE-SC) is at the forefront of modern software-
enabled scientific discovery across numerous areas of computational, experimental, and observational
science, including major investments in national user facilities that support these activities. In December
2021, the DOE-SC Office of Advanced Scientific Computing Research (ASCR) convened a workshop on
basic research needs for the Science of Scientific Software Development and Use (SSSDU). Through
keynote presentations, lightning talks, and breakout groups, participants discussed the current practice
of software development, maintenance, evolution, and use, and considered how the scientific method
could be used to examine these practices and develop more evidence-based approaches to enhance
the impact of software and computing on all areas of science.

Workshop participants identified three priority research directions (PRDs) and three important
crosscutting themes that center on the following overarching insight: software has become an
essential part of modern science that impacts new discovery, policy, and technological development.
To have full confidence in science delivered via software, we must improve the processes and

tools that help us create and use it, and this enhancement requires a deep understanding of the
diverse array of teams and individuals doing the work. The full workshop report will be available at
https.//doi.org/10.2172/1846009.

Priority Research Directions

PRD1: Develop methodologies and tools to comprehensively improve team-based
scientific software development and use

Key question: \What practices, processes, and tools can help improve the development, sustainment,
evolution, and use of scientific software by teams?

As the fundamental understanding of scientific software improves, we foresee that the methodologies
and tools we need will also change to better match and support how developers, users, and other
scientific software stakeholders work toward the goal of accelerating scientific discovery. Although
many scientists have extensive intuition about the principles and dynamics of how their community
develops, uses, and sustains its software products, research is needed to develop a deeper and broader
understanding of software’s role in scientific processes. We believe that developing common mental
models around fundamentals can help the scientific community as a whole observe, understand, and
improve the effectiveness and efficiency of scientific discovery through better methodologies and tools
for the development, use, and sustainment of scientific software, particularly in the context of diverse
collaborative teams.


https://doi.org/10.2172/1846009

PRD2: Develop next-generation tools to enhance developer productivity and software
sustainability

Key questions: How can we create and adapt tools to improve developer effectiveness and efficiency, software
sustainability, and support for the continuous evolution of software? How can we support and encourage the
adoption of such tools by developers?

Numerous tools assist developers with their activities. Many tools that are well established in the larger
software world might not be widely known or used in scientific software development. We anticipate
the rise of future software-generating environments that translate scientific programmer intent into
source code fragments that can then be tuned and refined. We also expect advances in tools that assist
in generating software tests, documentation, clean and readable source code, and more. The challenges
faced by the scientific software community include ensuring that future tools account for the require-
ments of scientific software that might not be high priorities in other fields and addressing opportu-
nities that may be unique but are still critical to scientific software. Work is also needed to facilitate the
adoption of new tools, including effective training, along with help in incorporating these tools into
already-complex workflows.

PRD3: Develop methodologies, tools, and infrastructure for trustworthy software-
intensive science

Key questions: How can we facilitate and encourage effective and efficient reuse of data and software from
third parties while ensuring the integrity of our software and the resulting science? How can we provide flexible
environments that "bake in” the tracking of software, provenance, and experiment management required to
support peer review and reproducibility?

Scientific results are trustworthy only if all aspects of the scientific process can be trusted to produce
correct, transparent, reproducible, and replicable results. Although every scientific software developer
intends to produce trustworthy results, the current state of the practice varies tremendously from
team to team. There are many concerns to consider in ensuring trustworthy computational results, and
all of them must be addressed to some degree if we are to make qualitative progress. Our data and
software must be managed, archived, and retrievable, and our computational steps must be recorded
and available for future use. We must be able to easily detect and correct perturbations in state and
execution, and we must be able to preserve provenance down to the finest granularity for assessment
and audit.

Crosscutting Themes

Theme 1: We need to consider both human and technical elements to better
understand how to improve the development and use of scientific software.

It is common to assume that challenges encountered in software-intensive research can be overcome
only by some new technical innovation. In fact, people—individuals and teams—play enormous roles
in the development and use of software—often in both the challenges and in the potential solutions.
Therefore, we consider this human element essential in our efforts to understand and improve scientific
software development and use, including engagement with social, cognitive, and information scientists
and others who have not historically been part of the DOE computational research community.



Theme 2: We need to address urgent challenges in workforce recruitment and retention
in the computing sciences with growth through expanded diversity, stable career paths,
and the creation of a community and culture that attract and retain new generations of

scientists.

Developing high-performance scientific software requires the combined contributions of many people
with a wide range of skills and backgrounds, most of which are also in high demand in the broader
marketplace. Our ability to staff current and future teams requires strong and sustained efforts to
educate, recruit, and retain a diverse workforce by cultivating a supportive and inclusive culture within
the computing sciences. We urgently need broad and sustained community collaboration to change
the culture and demographic profile of scientific computing with multipronged approaches to expand
the pipeline and workforce.

Theme 3: Scientific software has become essential to all areas of science and
technology, creating opportunities for expanded partnerships, collaboration, and
impact.

Not only has powerful and affordable computing revolutionized the scientific enterprise, computing
also provides the basis of many technological and engineering products and increasingly informs policy
and other consequential decisions. Owing to the broader importance of scientific software, efforts to
better understand and improve its development and use should find allies beyond DOE, including
practitioners in academia and industry, as well as other government agencies that fund computationally
and software-intensive research.

DISCLAIMER: This brochure (https://doi.org/10.2172/1846008) was prepared as an account of work sponsored by an agency of the
United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any
warranty, express orimplied, or assumes any legal liability of responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government.

Office of
Science



https://doi.org/10.2172/1846008

