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ABSTRACT

A hundred years after Turesson first clearly described how local adaptive variation is distributed
within species, plant biologists are making major breakthroughs in our understanding of mechanisms
underlying adaptation from local populations to the scale of continents. While the genetics of local
adaptation has typically been studied in smaller reciprocal transplant experiments, it is now being
evaluated with whole genomes in large-scale networks of common garden experiments with
perennial switchgrass and poplar trees. These studies support the hypothesis that a complex
combination of loci, both with and without adaptive trade-offs, underlie local adaptation and that
hybridization and adaptive introgression play a key role in the evolution of these species. Future
studies incorporating high-throughput phenotyping, gene expression, and modelling will be used to
predict responses of these species to climate change.
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Introduction

One hundred years ago, the Swedish botanist Gote Turesson reported a series of observations from
common garden experiments in which he found that plants of the same species collected from
different habitats had distinctive genetically based differences in morphology and growth form [1,2].
Turesson cogently argued that the differences among populations were due to natural selection,
which was a rejection of the Lamarckian paradigm that dominated the literature up to that point [3—
7]. To more clearly communicate the phenomena, Turesson coined the term ecotype in 1922 to
describe distinct groups of plant populations that are locally adapted to particular habitats. These
ecotypes were identifiable by having a shared suite of genetically-based traits that could be observed
when grown in common garden experiments. A hundred years later, plant biologists continue to build
on Turesson’s legacy of understanding how natural selection shapes variation within plant species
through common garden experiments [8]. In this review, we highlight recent advances in
understanding plant adaptations in two perennial plant species through long-term common garden
experiments and outline our perspective on where the field is headed next.

Distinguishing genetic from environmentally-based variation in plant species has required a rigorous
development of experimental methods in plant evolutionary ecology. Turesson’s compelling
102 intellectual arguments in early publications have earned him

Single common garden:

% reduce plasticity to measure credit for much of the early work to measure locally

genetic differentiation

adaptive variation within species. However, Langlet [9]
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forestry examining the relationship between ecology and
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Figure 1: Three types of experiments
that test different aspects of local
adaptation. Poplar icons represent
genotypes.
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Today, common garden experiments have entered the population genomic era, as whole-genome data
sets are becoming increasingly available for accessions planted in geographically widespread
common garden experiments. A number of annual and short-lived perennial plant systems, including
Arabidopsis, Mimulus, and Boechera, have begun to bring reciprocal transplant common garden field
studies into the genomic era [12—14]. Here, we focus on two long-lived perennial systems,
switchgrass (Panicum) and poplar trees (Populus), where larger networks of multiyear common
gardens are being used to gain a more comprehensive understanding of local adaptation across
geographic space. The results from these two systems illustrate current and emerging approaches to
understanding locally adaptive allelic variation is distributed on the scale of continents.

Understanding the role of fitness trade-offs in local adaptation in switchgrass

Switchgrass, Panicum virgatum, is a large perennial North American grass species that has a native
range from Central America to Southern Canada [15,16]. Across this range, switchgrass exhibits a
wide array of genetic variation and adaptive phenotypes. Recent common garden research has
leveraged a strategically constructed quantitative trait locus (QTL) mapping population and a large
diversity panel to understand the genomics of adaptation from South Texas to South Dakota [17,18].
This recent work builds on historical efforts by forage grass researchers, who have long recognized
that there are striking patterns of local adaptation of switchgrass across North America. Classic
common garden research by Calvin McMillan in Nebraska and Texas found strong patterns
consistent with local adaptation along a latitudinal gradient stretching across the length of the Great
Plains [19,20]. In addition to these clinal patterns of adaptive variation, other researchers found
evidence that there are several distinct ecotypes of switchgrass that likely originated through
geographic isolation into distinct refugia during glaciation. Researchers generally recognized two
major switchgrass ecotypes, upland and lowland. The lowland ecotype was generally associated with
wetter riparian habitats in the southern United States, while the upland ecotype was thought to
primarily occur in more northern regions and typically drier habitats. In the central US where these
ecotypes co-occur, Porter [21] conducted a series of experiments to demonstrate strong physiological
divergence between the upland and lowland ecotypes. Thus, adaptive genetic variation in switchgrass
is distributed both along environmental gradients correlated with latitude and as a mosaic of more
discrete ecotype variation [16].

The strength of the switchgrass system in the study of ecological genetics lies in the construction of
large-scale, replicated experiments. While McMillan and Porter were able to document
morphological differentiation that seemed to be adaptive across the species, modern studies have
sought to directly link ecotypic variation to underlying genetic loci. To understand the genetic
architecture of local adaptation between northern upland and southern lowland ecotypes, researchers
developed genetic mapping populations derived from crosses between upland and lowland
germplasm [22,23]. One of these upland X lowland mapping populations was clonally divided
through vegetative propagation and planted into 10 field sites spanning 17 degrees of latitude from
South Texas to South Dakota and Michigan in 2015 [17]. This experimental design resulted in the
exact same set of genotypes being planted across 10 different environmental conditions, allowing for
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a comprehensive analysis of the genotype, environment, and genotype X environment contributions
to trait variation and fitness. This experiment has facilitated QTL analyses across all of these sites to
understand how the genetic architecture of trait variation and fitness changes across space [24—27].

Critically, the network of common gardens has allowed researchers to rigorously test a long-held
prediction of evolutionary theory: that local adaptation is the result of fitness trade-offs at the
individual genetic locus level [28-30]. This theoretical work suggested that the loci involved in
adaptation should exhibit a fitness advantage in their home environment but a fitness cost in a foreign
environment (Figure 2a), leading to increased phenotypic differentiation among habitats. However,
recent studies have indicated that not all loci underlying local adaptation exhibit fitness trade-offs
[31]. Most of these studies only used two field sites in a single year, which means that the lack of
trade-offs could be the result of failure to measure a sufficient proportion of climate space where
trade-offs might manifest (Figure 2b). With the switchgrass common garden network replicated at
many sites, it was possible to determine the extent to which there are trade-offs at individual loci.
While this work detected a few loci with clear trade-offs across space, there were many more loci
that had effects on biomass in one geographic region with non-significant effects in other regions
[17]. Thus, some combination of trade-offs and conditional neutrality is responsible for the overall
patterns of local adaptation, a pattern that also has been observed previously in two-site reciprocal
transplant experiments [31]. Further, using perennial plants for these studies provides the important
context of temporal variation in selection pressure, which may be essential to understanding
adaptation under climate change.

A. Local adaptation by two B. Drawbacks of two-site studies: nonlinear
genetic mechanisms reaction norms
Conditionally
Neutral (CN)
locus 1
) True reaction norm
a * ! a * //X:B =
8 GCJ // B+C
= ° =2 ° 7/ N
L L // X
/ A+C
CN ¢ Trade-off ®
locus|2 locus -
A B A B C
Environment Environment

Figure 2: Detecting the genetic basis of local adaptation. A. Two ways that loci can produce local
adaptation: single trade-off locus increases fitness in one environment, while decreasing it in another
(blue reaction norm); two conditionally neutral loci can each have effects in only one environment,
but combine to form a local advantage (red reaction norms). B. Nonlinear reaction norms can result
in studies misinterpreting local adaptation patterns. In this scenario, the trade-off for the locus will
only be detected if environments B and C are sampled (blue line), owing to an underlying nonlinear
reaction norm (dashed gray line).
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While QTL mapping populations are powerful tools to understand the impacts of genetic loci on
traits and fitness, Genome-Wide Association Studies (GWAS) offer improved precision to identify
individual causal genes due to a high number of natural recombination events [12,32,33]. To further
elucidate the complement of genes contributing to local adaptation in switchgrass, researchers
established a new set of common garden experiments with a diversity panel at 10 field sites (only one
site was different from [17]) in North America and 3 sites in Mexico (spanning 24° of latitude) in
2018 and 2019 (Figure 3)[18]. This diversity panel is composed of 732 tetraploid genotypes of
switchgrass collected from across eastern North America and clonally propagated at each field site.

As expected, the diversity panel revealed a strong signal of local adaptation, with lowland genotypes
generally having higher biomass at southern field sites, while the upland genotypes displayed the
opposite pattern [18]. Winter kill in the north has been by far the largest source of mortality in the
experiment. Overwinter survival has long been known to be important in switchgrass, but it recently

211 received increased research attention due to it being a primary factor limiting
Upland ecotype the planting of highly productive southern lowland bioenergy cultivars in the
northern United States [34—38]. Many candidate genes underlying adaptive
trait variation, including overwinter survival, were revealed through GWAS.
Further understanding these fitness-related genes will facilitate future gene
editing efforts powered by advances in switchgrass Agrobacterium-mediated
transformation [39,40].

One of the key results of genome resequencing in the tetraploid diversity
panel was that patterns of population genetic structure were discordant with
the morphological clustering of plant accessions into ecotypes [18].
Incorporating switchgrass from the eastern USA revealed a third “coastal”
ecotype in addition to the previously recognized upland and lowland ecotypes
(Figure 4). Population genomic analyses similarly identified three major
groups, but these were surprisingly discordant from the morphological
ecotypes. This finding contradicts the assumption that ecotypes exist as

Coastal ecotype

structure groups, where both structure in trait variation and population genetic
Lowland ecotype ?tmcture are inexorably correlat.ed across geographic space [41]. Of particular
interest, numerous genotypes with the upland ecotype from the northeastern

US clustered with the genetic group containing the new coastal ecotype.
Haplotype-level analyses revealed regions of introgression from the mostly
upland population into the mostly coastal population, and further that these
introgressed regions were enriched for GW AS-detected loci that enhance
winter survival [18]. This result suggests that adaptive introgression from the
upland population allowed coastal plants to maintain fitness along the

—<< northern Atlantic coast.

237
Figure 3: Representative samples of each recognized switchgrass ecotype. Bars indicate 1 meter.
From [18]
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In coming years, the network of switchgrass common garden experiments will facilitate a better
understanding of how specific abiotic and biotic environmental factors have contributed to adaptive
evolution across geographic space. For example, VanWallendael et al. [24] identified two major
QTLs for resistance of switchgrass to pathogenic rust fungi. Interestingly, these QTLs both have
strong effects in northern sites, but were rarely detected in southern sites, suggesting that genotype x
environment interactions play a critical role in shaping biotic interactions across space. In addition to
research on pathogens, mutualistic microbes assist with nutrient uptake and may confer additional
stress tolerance in leaves [42], and are differentially partitioned across portions of roots [43]. In
switchgrass leaves, the fungal microbiome is differentially partitioned across genetic populations, a
pattern that may be driven by variation in plant immune response genes [44].

Populus as a model system for ecological, evolutionary, and community genomics

Forestry, more than any other field of plant science, has utilized provenance trials to understand the
impact of seed provenance, or origin, on traits important for growth and persistence under varying
abiotic and biotic environments [9,45—47]. Indeed, the field of genecology, commonly applied within
forestry, largely derives from Turesson’s observations of the relationship between heritable trait
variation and that of the environment, serving as foundation to the contemporary field of ecological
genomics [48]. Thus, understanding the relationship between genotypic or ecotypic variation across
environments provides a powerful tool to predicting the health and productivity of reforested regions
across space and time [49]. Provenance trials provide invaluable resources which extend our ability
to assess adaptation and evaluate populations’ capacity for evolution under changing climatic
conditions. With the inclusion of new whole genome datasets, extension to new statistical
approaches, and the development of new phenotyping platforms the value of provenance trials has
only increased.

Populus has become a model genus for studies of local adaptation in forest trees due to its compact
genome, rapid growth, ease of vegetative propagation, and extensive natural genomic and phenotypic
variation [50,51]. Extensive surveys of range-wide genomic variation in poplar species [52,53],
paired with phenotypic measurements from long-term common garden experiments [54—56] have
advanced our understanding of the role natural selection has played in shaping adaptive variation
within and between Poplar species [57-60]. In addition, due to the propensity of Populus species to
form natural hybrids and the degree to which hybrids often exhibit heterosis or adaptive introgression
for traits valuable in cultivation, the species has become a key model leading advances in breeding
and functional genomics [59,61-63]. Finally, poplar is a model system for community genetics - or
the study of genetic interactions among species and their abiotic environment [64,65] where heritable
trait variation within poplar genotypes have measurable impact to the biotic community impacting
ecosystem function [65]. Thus, research using Populus capitalizes on its value as a keystone species
to understand species’ impact across scales of biodiversity, from genes to individuals to populations
and communities, to understand the relationship between genetic and environmental variation
necessary to predict phenotypic responses across complex environments.
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The relatively nascent nature of commercial breeding in forest trees, where many species are only
one to three generations from their wild progenitors [66], emphasizes the value that natural hybrid
zones provide. Natural hybrid zones circumvent much of the challenge associated with traditional
breeding in long-lived species by offering natural, replicated hybrid crosses. Moreover, where
ecological differences exist between hybridizing species, zones of contact provide the opportunity to
directly evaluate the role natural selection has had on admixture, providing insight into the
architecture of adaptation. A unique aspect of Populus has been the value of comparative genomics
and admixture mapping within naturally replicated contact zones between two species [59,67].
Within the context of climate change, standing genetic variation generated from natural zones of
introgression provides a mechanism to facilitate adaptation to novel environments [68—70]. Notably,
the contact zone between Populus trichocarpa x balsamifera indicates expansion of the range of P.
trichocarpa, which traditionally is characterized by a maritime climate has benefitted from
introgression with more continental P. balsamifera [59,71]. Thus, a valuable reservoir of adaptive
genetic variation may be maintained within zones of introgression with natural selection structuring
rangewide genomic and phenotypic variation [55,59,68,71]. Efforts to develop an understanding of
the role genome x genome (GxG) interactions may play alongside genotype x environment (GxE)
interactions are underway within P. trichocarpa x balsamifera. Clonally replicated poplar common
garden experiments have been established at 18 distinct environments across the United States as part
of the PopUp Poplar Network (Figure 5; http://popup-poplars.com). These plantings sourced a
latitudinal gradient of native field-collected P. trichocarpa, P. balsamifera, and their hybrids
spanning six replicated contact zones across the Rocky Mountains, from Washington to Alaska. This
model system pairs whole genome sequences, clonally replicated common gardens, and climate
modeling to understand how genotypic variation, genomic ancestry, and environmental variation
interact to produce phenotypic variation important to climate adaptation and hybrid breeding. This
living laboratory provides an unprecedented resource to quantify the role of hybridization to
evolution and adaptation, the role of natural selection in shaping quantitative trait variation, and the
role interactions between abiotic and biotic factors may have on plant fitness and community and
ecosystem function.
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Figure 4: Locations of PopUp Poplar Network sites (black circles) and switchgrass diversity panel
planting locations (red squares) across North America. At each poplar location, two replicates of 50
Poplar clones of mixed genomic ancestry between Populus trichocarpa, P. balsamifera, and their
hybrids have been planted and maintained since 2020. Inset pictures of switchgrass gardens at
Kellogg Biological Station (left) and poplar at Evergreen State University (right) (Photo Credit:
Robert Goodwin and Dylan Fischer)

Future Directions: Predicting locally adaptive responses to climate change

Current studies of switchgrass are greatly advancing researchers’ understanding of how individual
loci contribute to the process of evolution at the scale of a continent. One of the most consequential
results of this study being conducted in multiple sites and years is that it has enabled the prediction of
locus-specific effects on traits and fitness in unmeasured environments. For example, Lowry et al.
[17] developed models based on the QTL results from the ten common garden locations to predict
allelic effects of loci based on a suite of local environmental conditions. From this modelling effort,
it was possible to construct predictive maps across central North America of where individual alleles
would be most beneficial to increasing fitness. In the future, these genetic models can be integrated
with climate change models to predict how additive allelic effects will shift over time [72]. This
future research will complement recent work on trait and fitness predictions for switchgrass at the
cultivar level [73].

A major recent advance in predicting plant evolution in response to changed or novel environments
leverages spatially-informed genomic datasets with genome-environment associations to predict
genotype performance across future environments [74]. These predictions, which assess the degree to
which genotype-environment associations are perturbed from locally adapted fitness peaks under
climate change, provide an ability to forecast the impact climate change may have on fitness [74-77].
Gougherty et al. [77] recently used genes associated with the flowering-time pathway in Populus
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balsamifera to characterize the impact disruptions may have to the maintenance of variation
necessary for persistence across the species’ range. Broadly, this landscape-level assessment
identified regions across the species’ distribution that may lack the variation needed to adapt to
change and those that may benefit from rescue via migration [77,78]. In combination with advances
in machine learning, these new forecasting approaches enhance our ability to predict maladaptation
to changed conditions with practical application to restoration under current and future climates [76].

Plant breeding is increasingly incorporating high-throughput phenotyping through unmanned aerial
vehicles (UAVs) through drones and through satellite-based remote sensing of hyperspectral data
[79,80], and local adaptation studies will follow in the not too distant future. These systems provide
models to bridge the genome to phenotype gap for applications both to breeding and evaluation of
intraspecific variation essential to restoration efforts [81,82]. Genetic-based trait detection at this
spatial and temporal resolution will advance the scale of associations needed to quantify genetic
variation for traits important to adaptation. Further, gene expression analyses within hybrid mapping
populations and diversity panels will usher in a new era of expression QTL (eQTL) studies to
understand how gene regulation contributes to local adaptation. Field eQTL mapping has already
recently been conducted in a common garden experiment of a close relative of switchgrass (Panicum
hallii; [83]). Further, gene expression analyses are now beginning to be incorporated into field
reciprocal transplant experiments [13,84,85]. One hundred years after Turesson [2] first clearly
articulated how ecotype variation arises from natural selection driving local adaptation, rigorous
experimental studies have allowed researchers to more clearly understand the role genetics play in
the generation of within-species variation, but the challenge of understanding plants’ response to
global climate change is a reminder that we still have much to learn.
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