

1 **Title: One hundred years into the study of ecotypes, new advances are being made through**
2 **large-scale field experiments in perennial plant systems**

3
4 **Acer VanWallendael^{1,2,3,4}, David B Lowry^{1,2,3,4*}, Jill A Hamilton⁵**

5

6 **1. Department of Plant Biology, Michigan State University, East Lansing, MI, 48824**

7 **2. Department of Energy Great Lakes Bioenergy Research Center, Michigan State University,**
8 **East Lansing, MI, 48824**

9 **3. Program in Ecology, Evolution, and Behavior. Michigan State University, East Lansing, MI,**
10 **48824**

11 **4. Plant Resilience Institute. Michigan State University, East Lansing, MI, 48824**

12 **5. Department of Ecosystem Science and Management, Pennsylvania State University,**
13 **University Park, PA, 16801**

14

15

16 ***Corresponding Author**

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45 **ABSTRACT**

46

47 A hundred years after Turesson first clearly described how local adaptive variation is distributed
48 within species, plant biologists are making major breakthroughs in our understanding of mechanisms
49 underlying adaptation from local populations to the scale of continents. While the genetics of local
50 adaptation has typically been studied in smaller reciprocal transplant experiments, it is now being
51 evaluated with whole genomes in large-scale networks of common garden experiments with
52 perennial switchgrass and poplar trees. These studies support the hypothesis that a complex
53 combination of loci, both with and without adaptive trade-offs, underlie local adaptation and that
54 hybridization and adaptive introgression play a key role in the evolution of these species. Future
55 studies incorporating high-throughput phenotyping, gene expression, and modelling will be used to
56 predict responses of these species to climate change.

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

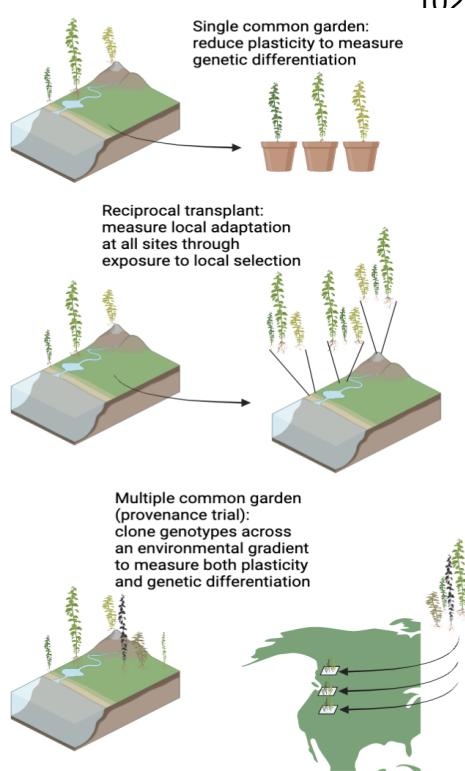
79

80

81

82

83


84

85 **Introduction**

86 One hundred years ago, the Swedish botanist Göte Turesson reported a series of observations from
87 common garden experiments in which he found that plants of the same species collected from
88 different habitats had distinctive genetically based differences in morphology and growth form [1,2].
89 Turesson cogently argued that the differences among populations were due to natural selection,
90 which was a rejection of the Lamarckian paradigm that dominated the literature up to that point [3–
91 7]. To more clearly communicate the phenomena, Turesson coined the term *ecotype* in 1922 to
92 describe distinct groups of plant populations that are locally adapted to particular habitats. These
93 ecotypes were identifiable by having a shared suite of genetically-based traits that could be observed
94 when grown in common garden experiments. A hundred years later, plant biologists continue to build
95 on Turesson's legacy of understanding how natural selection shapes variation within plant species
96 through common garden experiments [8]. In this review, we highlight recent advances in
97 understanding plant adaptations in two perennial plant species through long-term common garden
98 experiments and outline our perspective on where the field is headed next.

99

100 Distinguishing genetic from environmentally-based variation in plant species has required a rigorous
101 development of experimental methods in plant evolutionary ecology. Turesson's compelling

122

123 **Figure 1:** Three types of experiments
124 that test different aspects of local
125 adaptation. Poplar icons represent
126 genotypes.

102 intellectual arguments in early publications have earned him credit for much of the early work to measure locally adaptive variation within species. However, Langlet [9] correctly pointed out that provenance trials in the field of forestry examining the relationship between ecology and genetics, the study of *genecology*, had long recognized within species adaptive genetic variation, even if they had not clearly articulated those findings in an evolutionary context. Provenance trials consist of planting common gardens at multiple locations along environmental gradients to assess the relationship of fitness to distances from a home environment (Figure 1). In the middle of the 20th-century, Clausen, Keck, and Hiesey combined Turesson's ecotype concept with provenance trials across California [10,11] to establish reciprocal transplant experiments as the gold standard for testing whether ecotypes are locally adapted to their home environments.

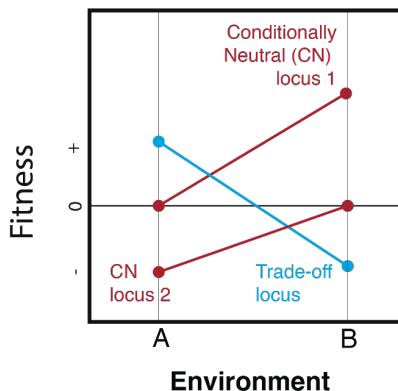
127

128 Today, common garden experiments have entered the population genomic era, as whole-genome data
129 sets are becoming increasingly available for accessions planted in geographically widespread
130 common garden experiments. A number of annual and short-lived perennial plant systems, including
131 *Arabidopsis*, *Mimulus*, and *Boechera*, have begun to bring reciprocal transplant common garden field
132 studies into the genomic era [12–14]. Here, we focus on two long-lived perennial systems,
133 switchgrass (*Panicum*) and poplar trees (*Populus*), where larger networks of multiyear common
134 gardens are being used to gain a more comprehensive understanding of local adaptation across
135 geographic space. The results from these two systems illustrate current and emerging approaches to
136 understanding locally adaptive allelic variation is distributed on the scale of continents.

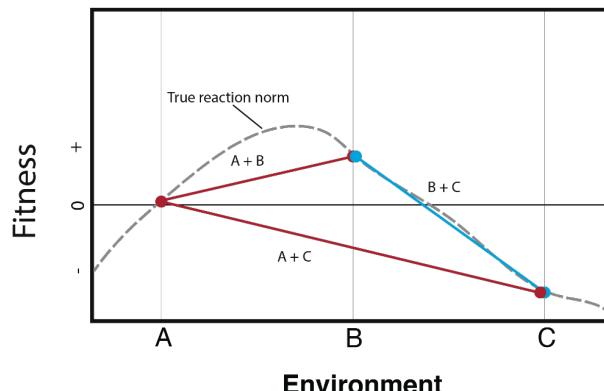
137

138 **Understanding the role of fitness trade-offs in local adaptation in switchgrass**

139 Switchgrass, *Panicum virgatum*, is a large perennial North American grass species that has a native
140 range from Central America to Southern Canada [15,16]. Across this range, switchgrass exhibits a
141 wide array of genetic variation and adaptive phenotypes. Recent common garden research has
142 leveraged a strategically constructed quantitative trait locus (QTL) mapping population and a large
143 diversity panel to understand the genomics of adaptation from South Texas to South Dakota [17,18].
144 This recent work builds on historical efforts by forage grass researchers, who have long recognized
145 that there are striking patterns of local adaptation of switchgrass across North America. Classic
146 common garden research by Calvin McMillan in Nebraska and Texas found strong patterns
147 consistent with local adaptation along a latitudinal gradient stretching across the length of the Great
148 Plains [19,20]. In addition to these clinal patterns of adaptive variation, other researchers found
149 evidence that there are several distinct ecotypes of switchgrass that likely originated through
150 geographic isolation into distinct refugia during glaciation. Researchers generally recognized two
151 major switchgrass ecotypes, upland and lowland. The lowland ecotype was generally associated with
152 wetter riparian habitats in the southern United States, while the upland ecotype was thought to
153 primarily occur in more northern regions and typically drier habitats. In the central US where these
154 ecotypes co-occur, Porter [21] conducted a series of experiments to demonstrate strong physiological
155 divergence between the upland and lowland ecotypes. Thus, adaptive genetic variation in switchgrass
156 is distributed both along environmental gradients correlated with latitude and as a mosaic of more
157 discrete ecotype variation [16].


158

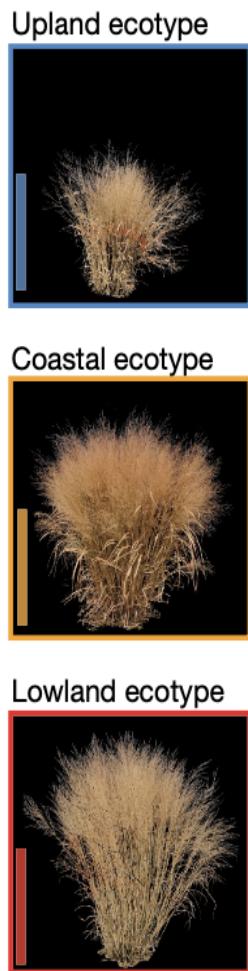
159 The strength of the switchgrass system in the study of ecological genetics lies in the construction of
160 large-scale, replicated experiments. While McMillan and Porter were able to document
161 morphological differentiation that seemed to be adaptive across the species, modern studies have
162 sought to directly link ecotypic variation to underlying genetic loci. To understand the genetic
163 architecture of local adaptation between northern upland and southern lowland ecotypes, researchers
164 developed genetic mapping populations derived from crosses between upland and lowland
165 germplasm [22,23]. One of these upland \times lowland mapping populations was clonally divided
166 through vegetative propagation and planted into 10 field sites spanning 17 degrees of latitude from
167 South Texas to South Dakota and Michigan in 2015 [17]. This experimental design resulted in the
168 exact same set of genotypes being planted across 10 different environmental conditions, allowing for


169 a comprehensive analysis of the genotype, environment, and genotype \times environment contributions
170 to trait variation and fitness. This experiment has facilitated QTL analyses across all of these sites to
171 understand how the genetic architecture of trait variation and fitness changes across space [24–27].
172

173 Critically, the network of common gardens has allowed researchers to rigorously test a long-held
174 prediction of evolutionary theory: that local adaptation is the result of fitness trade-offs at the
175 individual genetic locus level [28–30]. This theoretical work suggested that the loci involved in
176 adaptation should exhibit a fitness advantage in their home environment but a fitness cost in a foreign
177 environment (Figure 2a), leading to increased phenotypic differentiation among habitats. However,
178 recent studies have indicated that not all loci underlying local adaptation exhibit fitness trade-offs
179 [31]. Most of these studies only used two field sites in a single year, which means that the lack of
180 trade-offs could be the result of failure to measure a sufficient proportion of climate space where
181 trade-offs might manifest (Figure 2b). With the switchgrass common garden network replicated at
182 many sites, it was possible to determine the extent to which there are trade-offs at individual loci.
183 While this work detected a few loci with clear trade-offs across space, there were many more loci
184 that had effects on biomass in one geographic region with non-significant effects in other regions
185 [17]. Thus, some combination of trade-offs and conditional neutrality is responsible for the overall
186 patterns of local adaptation, a pattern that also has been observed previously in two-site reciprocal
187 transplant experiments [31]. Further, using perennial plants for these studies provides the important
188 context of temporal variation in selection pressure, which may be essential to understanding
189 adaptation under climate change.

A. Local adaptation by two genetic mechanisms

B. Drawbacks of two-site studies: nonlinear reaction norms



190
191 **Figure 2:** Detecting the genetic basis of local adaptation. **A.** Two ways that loci can produce local
192 adaptation: single *trade-off* locus increases fitness in one environment, while decreasing it in another
193 (blue reaction norm); two *conditionally neutral* loci can each have effects in only one environment,
194 but combine to form a local advantage (red reaction norms). **B.** Nonlinear reaction norms can result
195 in studies misinterpreting local adaptation patterns. In this scenario, the trade-off for the locus will
196 only be detected if environments B and C are sampled (blue line), owing to an underlying nonlinear
197 reaction norm (dashed gray line).

198 While QTL mapping populations are powerful tools to understand the impacts of genetic loci on
199 traits and fitness, Genome-Wide Association Studies (GWAS) offer improved precision to identify
200 individual causal genes due to a high number of natural recombination events [12,32,33]. To further
201 elucidate the complement of genes contributing to local adaptation in switchgrass, researchers
202 established a new set of common garden experiments with a diversity panel at 10 field sites (only one
203 site was different from [17]) in North America and 3 sites in Mexico (spanning 24° of latitude) in
204 2018 and 2019 (Figure 3)[18]. This diversity panel is composed of 732 tetraploid genotypes of
205 switchgrass collected from across eastern North America and clonally propagated at each field site.
206

207 As expected, the diversity panel revealed a strong signal of local adaptation, with lowland genotypes
208 generally having higher biomass at southern field sites, while the upland genotypes displayed the
209 opposite pattern [18]. Winter kill in the north has been by far the largest source of mortality in the
210 experiment. Overwinter survival has long been known to be important in switchgrass, but it recently

211 received increased research attention due to it being a primary factor limiting the planting of highly productive southern lowland bioenergy cultivars in the northern United States [34–38]. Many candidate genes underlying adaptive trait variation, including overwinter survival, were revealed through GWAS. Further understanding these fitness-related genes will facilitate future gene editing efforts powered by advances in switchgrass *Agrobacterium*-mediated transformation [39,40].

One of the key results of genome resequencing in the tetraploid diversity panel was that patterns of population genetic structure were discordant with the morphological clustering of plant accessions into ecotypes [18]. Incorporating switchgrass from the eastern USA revealed a third “coastal” ecotype in addition to the previously recognized upland and lowland ecotypes (Figure 4). Population genomic analyses similarly identified three major groups, but these were surprisingly discordant from the morphological ecotypes. This finding contradicts the assumption that ecotypes exist as structure groups, where both structure in trait variation and population genetic structure are inexorably correlated across geographic space [41]. Of particular interest, numerous genotypes with the upland ecotype from the northeastern US clustered with the genetic group containing the new coastal ecotype. Haplotype-level analyses revealed regions of introgression from the mostly upland population into the mostly coastal population, and further that these introgressed regions were enriched for GWAS-detected loci that enhance winter survival [18]. This result suggests that adaptive introgression from the upland population allowed coastal plants to maintain fitness along the northern Atlantic coast.

237

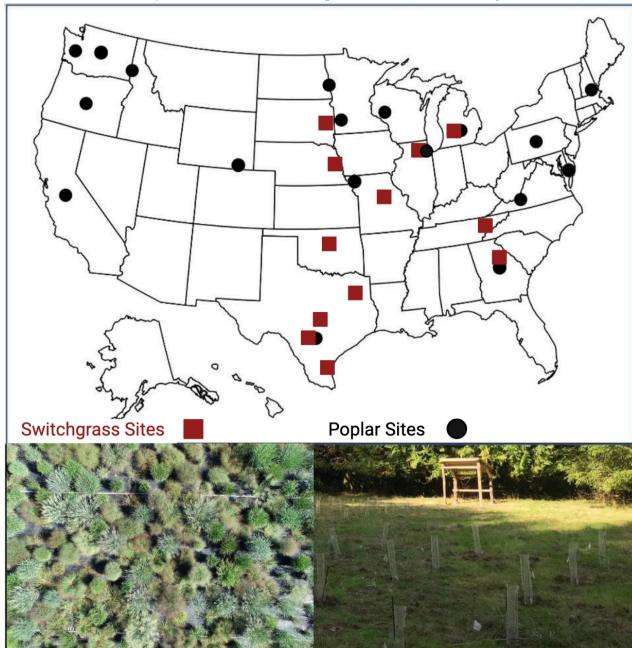
238 **Figure 3:** Representative samples of each recognized switchgrass ecotype. Bars indicate 1 meter.
239 From [18]

240

241 In coming years, the network of switchgrass common garden experiments will facilitate a better
242 understanding of how specific abiotic and biotic environmental factors have contributed to adaptive
243 evolution across geographic space. For example, VanWallendael et al. [24] identified two major
244 QTLs for resistance of switchgrass to pathogenic rust fungi. Interestingly, these QTLs both have
245 strong effects in northern sites, but were rarely detected in southern sites, suggesting that genotype x
246 environment interactions play a critical role in shaping biotic interactions across space. In addition to
247 research on pathogens, mutualistic microbes assist with nutrient uptake and may confer additional
248 stress tolerance in leaves [42], and are differentially partitioned across portions of roots [43]. In
249 switchgrass leaves, the fungal microbiome is differentially partitioned across genetic populations, a
250 pattern that may be driven by variation in plant immune response genes [44].

251

252 ***Populus* as a model system for ecological, evolutionary, and community genomics**


253 Forestry, more than any other field of plant science, has utilized provenance trials to understand the
254 impact of seed provenance, or origin, on traits important for growth and persistence under varying
255 abiotic and biotic environments [9,45–47]. Indeed, the field of genecology, commonly applied within
256 forestry, largely derives from Turesson's observations of the relationship between heritable trait
257 variation and that of the environment, serving as foundation to the contemporary field of ecological
258 genomics [48]. Thus, understanding the relationship between genotypic or ecotypic variation across
259 environments provides a powerful tool to predicting the health and productivity of reforested regions
260 across space and time [49]. Provenance trials provide invaluable resources which extend our ability
261 to assess adaptation and evaluate populations' capacity for evolution under changing climatic
262 conditions. With the inclusion of new whole genome datasets, extension to new statistical
263 approaches, and the development of new phenotyping platforms the value of provenance trials has
264 only increased.

265

266 *Populus* has become a model genus for studies of local adaptation in forest trees due to its compact
267 genome, rapid growth, ease of vegetative propagation, and extensive natural genomic and phenotypic
268 variation [50,51]. Extensive surveys of range-wide genomic variation in poplar species [52,53],
269 paired with phenotypic measurements from long-term common garden experiments [54–56] have
270 advanced our understanding of the role natural selection has played in shaping adaptive variation
271 within and between Poplar species [57–60]. In addition, due to the propensity of *Populus* species to
272 form natural hybrids and the degree to which hybrids often exhibit heterosis or adaptive introgression
273 for traits valuable in cultivation, the species has become a key model leading advances in breeding
274 and functional genomics [59,61–63]. Finally, poplar is a model system for community genetics - or
275 the study of genetic interactions among species and their abiotic environment [64,65] where heritable
276 trait variation within poplar genotypes have measurable impact to the biotic community impacting
277 ecosystem function [65]. Thus, research using *Populus* capitalizes on its value as a keystone species
278 to understand species' impact across scales of biodiversity, from genes to individuals to populations
279 and communities, to understand the relationship between genetic and environmental variation
280 necessary to predict phenotypic responses across complex environments.

281

282 The relatively nascent nature of commercial breeding in forest trees, where many species are only
283 one to three generations from their wild progenitors [66], emphasizes the value that natural hybrid
284 zones provide. Natural hybrid zones circumvent much of the challenge associated with traditional
285 breeding in long-lived species by offering natural, replicated hybrid crosses. Moreover, where
286 ecological differences exist between hybridizing species, zones of contact provide the opportunity to
287 directly evaluate the role natural selection has had on admixture, providing insight into the
288 architecture of adaptation. A unique aspect of *Populus* has been the value of comparative genomics
289 and admixture mapping within naturally replicated contact zones between two species [59,67].
290 Within the context of climate change, standing genetic variation generated from natural zones of
291 introgression provides a mechanism to facilitate adaptation to novel environments [68–70]. Notably,
292 the contact zone between *Populus trichocarpa* x *balsamifera* indicates expansion of the range of *P.*
293 *trichocarpa*, which traditionally is characterized by a maritime climate has benefitted from
294 introgression with more continental *P. balsamifera* [59,71]. Thus, a valuable reservoir of adaptive
295 genetic variation may be maintained within zones of introgression with natural selection structuring
296 rangewide genomic and phenotypic variation [55,59,68,71]. Efforts to develop an understanding of
297 the role genome x genome (GxG) interactions may play alongside genotype x environment (GxE)
298 interactions are underway within *P. trichocarpa* x *balsamifera*. Clonally replicated poplar common
299 garden experiments have been established at 18 distinct environments across the United States as part
300 of the PopUp Poplar Network (Figure 5; <http://popup-poplars.com>). These plantings sourced a
301 latitudinal gradient of native field-collected *P. trichocarpa*, *P. balsamifera*, and their hybrids
302 spanning six replicated contact zones across the Rocky Mountains, from Washington to Alaska. This
303 model system pairs whole genome sequences, clonally replicated common gardens, and climate
304 modeling to understand how genotypic variation, genomic ancestry, and environmental variation
305 interact to produce phenotypic variation important to climate adaptation and hybrid breeding. This
306 living laboratory provides an unprecedented resource to quantify the role of hybridization to
307 evolution and adaptation, the role of natural selection in shaping quantitative trait variation, and the
308 role interactions between abiotic and biotic factors may have on plant fitness and community and
309 ecosystem function.

310
311
312
313
314
315
316
317

Figure 4: Locations of PopUp Poplar Network sites (black circles) and switchgrass diversity panel planting locations (red squares) across North America. At each poplar location, two replicates of 50 Poplar clones of mixed genomic ancestry between *Populus trichocarpa*, *P. balsamifera*, and their hybrids have been planted and maintained since 2020. Inset pictures of switchgrass gardens at Kellogg Biological Station (left) and poplar at Evergreen State University (right) (Photo Credit: Robert Goodwin and Dylan Fischer)

318
319
320
321
322
323
324
325
326
327
328
329
330

Future Directions: Predicting locally adaptive responses to climate change

Current studies of switchgrass are greatly advancing researchers' understanding of how individual loci contribute to the process of evolution at the scale of a continent. One of the most consequential results of this study being conducted in multiple sites and years is that it has enabled the prediction of locus-specific effects on traits and fitness in unmeasured environments. For example, Lowry et al. [17] developed models based on the QTL results from the ten common garden locations to predict allelic effects of loci based on a suite of local environmental conditions. From this modelling effort, it was possible to construct predictive maps across central North America of where individual alleles would be most beneficial to increasing fitness. In the future, these genetic models can be integrated with climate change models to predict how additive allelic effects will shift over time [72]. This future research will complement recent work on trait and fitness predictions for switchgrass at the cultivar level [73].

331
332
333
334
335
336

A major recent advance in predicting plant evolution in response to changed or novel environments leverages spatially-informed genomic datasets with genome-environment associations to predict genotype performance across future environments [74]. These predictions, which assess the degree to which genotype-environment associations are perturbed from locally adapted fitness peaks under climate change, provide an ability to forecast the impact climate change may have on fitness [74–77]. Gougherty et al. [77] recently used genes associated with the flowering-time pathway in *Populus*

337 *balsamifera* to characterize the impact disruptions may have to the maintenance of variation
338 necessary for persistence across the species' range. Broadly, this landscape-level assessment
339 identified regions across the species' distribution that may lack the variation needed to adapt to
340 change and those that may benefit from rescue via migration [77,78]. In combination with advances
341 in machine learning, these new forecasting approaches enhance our ability to predict maladaptation
342 to changed conditions with practical application to restoration under current and future climates [76].
343

344 Plant breeding is increasingly incorporating high-throughput phenotyping through unmanned aerial
345 vehicles (UAVs) through drones and through satellite-based remote sensing of hyperspectral data
346 [79,80], and local adaptation studies will follow in the not too distant future. These systems provide
347 models to bridge the genome to phenotype gap for applications both to breeding and evaluation of
348 intraspecific variation essential to restoration efforts [81,82]. Genetic-based trait detection at this
349 spatial and temporal resolution will advance the scale of associations needed to quantify genetic
350 variation for traits important to adaptation. Further, gene expression analyses within hybrid mapping
351 populations and diversity panels will usher in a new era of expression QTL (eQTL) studies to
352 understand how gene regulation contributes to local adaptation. Field eQTL mapping has already
353 recently been conducted in a common garden experiment of a close relative of switchgrass (*Panicum*
354 *hallii*; [83]). Further, gene expression analyses are now beginning to be incorporated into field
355 reciprocal transplant experiments [13,84,85]. One hundred years after Turesson [2] first clearly
356 articulated how ecotype variation arises from natural selection driving local adaptation, rigorous
357 experimental studies have allowed researchers to more clearly understand the role genetics play in
358 the generation of within-species variation, but the challenge of understanding plants' response to
359 global climate change is a reminder that we still have much to learn.
360

361 **Funding**

362 This review is based upon work supported in part by the Great Lakes Bioenergy Research Center,
363 U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research
364 under Award Number DE-SC0018409 to DBL, and NSF-RESEARCH-PGR (1856450) to JAH. We
365 received further funding from the U.S. Department of Energy through a grant (DE-SC0017883) to
366 DBL.
367

368 **Declaration of competing interest**

369 The authors declare that they have no known competing financial interests or personal relationships
370 that could have appeared to influence the work reported in this paper.
371

372 **Acknowledgements**

373 The authors wish to thank the numerous undergraduates, field technicians, graduate students,
374 postdocs, and collaborators who have spent countless hours in the field maintaining and making
375 measurements on our networks of switchgrass common garden experiments and PopUp Poplar
376 Network.
377
378

379 **References**

380 1. Turesson G: **The genotypical response of the plant species to the habitat.** *Hereditas* 1922,
381 3:211–350.

382 2. Turesson G: **The species and the variety as ecological units.** *Hereditas* 1922, 3:100–113.*

383 This classic paper is where Turesson articulated the conceptual framework for the term ecotype.

384 3. Bonnier G: **Les plantes de la région alpine et leurs rapports avec le climat.** In *Annales de*
385 *géographie*. . Persée-Portail des revues scientifiques en SHS; 1895:393–413.

386 4. Bonnier G: *Nouvelles observations sur les cultures expérimentales à diverses altitudes et*
387 *cultures par semis*. Librairie générale de l'enseignement; 1920.

388 5. Hall HM, Clements FE: *The Phylogenetic Method in Taxonomy: The North American Species of*
389 *Artemisia, Chrysothamnus, and Atriplex*. Carnegie institution of Washington; 1923.

390 6. Hagen JB: **Experimentalists and naturalists in twentieth-century botany: experimental**
391 **taxonomy, 1920–1950.** *J Hist Biol* 1984, 17:249–270.

392 7. Smocovitis VB: **One hundred years of American botany: a short history of the Botanical**
393 **Society of America.** *American Journal of Botany* 2006, 93:942–952.

394 8. Johnson LC, Galliart MB, Alsdurf JD, Maricle BR, Baer SG, Bello NM, Gibson DJ, Smith AB:
395 **Reciprocal transplant gardens as gold standard to detect local adaptation in grassland**
396 **species: New opportunities moving into the 21st century.** *J Ecol* 2021, doi:10.1111/1365-
397 2745.13695.

398 9. Langlet O: **Two Hundred Years Genecology.** *Taxon* 1971, 20:653–721.*

399 A classic must read paper for those interested in the debate about how adaptive genetic variation is
400 distributed within species. It covers the long history of tree provenance trials.

401 10. Clausen J, Keck DD, Hiesey WM, Others: *Experimental studies on the nature of species. III.*
402 *Environmental responses of climatic races of Achillea*. Carnegie Inst. Wash. Publ.; 1948.

403 11. Clausen J, Keck DD, Hiesey WM, Others: *Experimental studies on the nature of species. I.*
404 *Effect of varied environments on western North American plants*. Carnegie Inst. Wash. Publ.;
405 1940.

406 12. Exposito-Alonso M, 500 Genomes Field Experiment Team, Burbano HA, Bossdorf O, Nielsen
407 R, Weigel D: **Natural selection on the *Arabidopsis thaliana* genome in present and future**
408 **climates.** *Nature* 2019, 573:126–129.**

409 In one of the most robust tests of genomic evolution ever conducted in multicellular organisms,
410 researchers measured the genomic impacts of abiotic selection on *Arabidopsis* genotypes in two
411 divergent climates. They found extensive selection, resulting in a frequency shifts in ~5% of
412 genome-wide variants. These shifts can be paired with climate change predictions, and allow
413 researchers to forecast the evolutionary impacts of imminent climate change.

414 13. Gould BA, Chen Y, Lowry DB: **Gene regulatory divergence between locally adapted**
415 **ecotypes in their native habitats.** *Molecular Ecology* 2018, **27**:4174–4188.

416 14. Lin Y-P, Mitchell-Olds T, Lee C-R: **The ecological, genetic and genomic architecture of local**
417 **adaptation and population differentiation in *Boechera stricta*.** *Proc Biol Sci* 2021,
418 **288**:20202472.

419 15. Casler MD: **Switchgrass Breeding, Genetics, and Genomics.** In *Switchgrass: A Valuable*
420 *Biomass Crop for Energy.* Edited by Monti A. Springer London; 2012:29–53.

421 16. Lowry DB, Behrman KD, Grabowski P, Morris GP, Kiniry JR, Juenger TE: **Adaptations**
422 **between ecotypes and along environmental gradients in *Panicum virgatum*.** *Am Nat* 2014,
423 **183**:682–692.

424 17. Lowry DB, Lovell JT, Zhang L: **QTL× environment interactions underlie adaptive**
425 **divergence in switchgrass across a large latitudinal gradient.** *Proceedings of the National*
426 *Academy of Sciences* 2019,

427 18. Lovell JT, MacQueen AH, Mamidi S, Bonnette J, Jenkins J, Napier JD, Sreedasyam A, Healey
428 A, Session A, Shu S, et al.: **Genomic mechanisms of climate adaptation in polyploid**
429 **bioenergy switchgrass.** *Nature* 2021, **590**:438–444.**

430 The recently published switchgrass genome offers one of the few polyploid perennial plant genomes,
431 as well as an incredibly detailed look at the climatic adaptation of this system. Genome-wide
432 associations made possible by an extensive replicated diversity panel use “multivariate adaptive
433 shrinkage” to share information between planting sites, and improve estimates of genetic
434 associations. This technique, combined with climate associations in the study, offer potential future
435 directions for genomically informed local adaptation studies.

436 19. McMillan C: **The Role of Ecotypic Variation in the Distribution of the Central Grassland of**
437 **North America.** *Ecol Monogr* 1959, **29**:286–308.

438 20. McMillan C: **Ecotypic differentiation within four north American prairie grasses. II.**
439 **Behavioral variation within transplanted community fractions.** *Am J Bot* 1965, **52**:55–65.

440 21. Porter CL Jr: **An analysis of variation between upland and lowland Switchgrass, *Panicum***
441 ***virgatum* L., in central Oklahoma.** *Ecology* 1966, **47**:980–992.

442 22. Milano ER, Lowry DB, Juenger TE: **The Genetic Basis of Upland/Lowland Ecotype**
443 **Divergence in Switchgrass (*Panicum virgatum*).** *G3* 2016, **6**:3561–3570.

444 23. Tornqvist C, Taylor M, Jiang Y, Evans J, Robin Buell C, Kaeppler SM, Casler MD:
445 **Quantitative Trait Locus Mapping for Flowering Time in a Lowland × Upland**
446 **Switchgrass Pseudo-F 2 Population.** *The Plant Genome* 2018, **11**:170093.

447 24. VanWallendael A, Bonnette J, Juenger TE, Fritschi FB, Fay PA, Mitchell RB, Lloyd-Reilley J,
448 Rouquette FM Jr, Bergstrom GC, Lowry DB: **Geographic variation in the genetic basis of**
449 **resistance to leaf rust between locally adapted ecotypes of the biofuel crop switchgrass**
450 **(*Panicum virgatum*).** *New Phytol* 2020, **227**:1696–1708.

451 25. Bragg J, Tomasi P, Zhang L, Williams T, Wood D, Lovell JT, Healey A, Schmutz J, Bonnette

452 JE, Cheng P, et al.: **Environmentally responsive QTL controlling surface wax load in**
453 **switchgrass.** *Theor Appl Genet* 2020, **133**:3119–3137.

454 26. Zhang P, Duo T, Wang F, Zhang X, Yang Z, Hu G: **De novo transcriptome in roots of**
455 **switchgrass (*Panicum virgatum* L.) reveals gene expression dynamic and act network**
456 **under alkaline salt stress.** *BMC Genomics* 2021, **22**:82.

457 27. Zhang L, MacQueen A, Bonnette J, Fritschi FB, Lowry DB, Juenger TE: **QTL x environment**
458 **interactions underlie ionome divergence in switchgrass.** *G3* 2021,
459 doi:10.1093/g3journal/jkab144.

460 28. Felsenstein J: **The theoretical population genetics of variable selection and migration.** *Annu*
461 *Rev Genet* 1976, **10**:253–280.

462 29. Levene H: **Genetic Equilibrium When More Than One Ecological Niche is Available.** *Am*
463 *Nat* 1953, **87**:331–333.

464 30. Hedrick PW, Cockerham CC: **Partial inbreeding: Equilibrium heterozygosity and the**
465 **heterozygosity paradox.** *Evolution* 1986, **40**:856–861.

466 31. Wadgymar SM, Lowry DB, Gould BA, Byron CN, Mactavish RM, Anderson JT: **Identifying**
467 **targets and agents of selection: innovative methods to evaluate the processes that**
468 **contribute to local adaptation.** *Methods Ecol Evol* 2017, **8**:738–749.

469 32. Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J, Juenger TE, Hyma K,
470 Acharya C, Mitchell SE, et al.: **Genome-environment associations in sorghum landraces**
471 **predict adaptive traits.** *Sci Adv* 2015, **1**:e1400218.*

472 33. Bellis E, McLaughlin C, DePamphilis C, Lasky J: **The geography of parasite local adaptation**
473 **to host communities.** *Ecography* 2021, **44**:1205–1217.

474 34. Peixoto M de M, Sage RF: **Improved experimental protocols to evaluate cold tolerance**
475 **thresholds in Miscanthus and switchgrass rhizomes.** *Glob Change Biol Bioenergy* 2016,
476 **8**:257–268.

477 35. Sage RF, de Melo Peixoto M, Friesen P, Deen B: **C4 bioenergy crops for cool climates, with**
478 **special emphasis on perennial C4 grasses.** *J Exp Bot* 2015, **66**:4195–4212.

479 36. Poudel HP, Sanciangco MD, Kaeppeler SM, Buell CR, Casler MD: **Quantitative Trait Loci for**
480 **Freezing Tolerance in a Lowland x Upland Switchgrass Population.** *Front Plant Sci* 2019,
481 **10**:372.

482 37. Poudel HP, Sanciangco MD, Kaeppeler SM, Buell CR, Casler MD: **Genomic Prediction for**
483 **Winter Survival of Lowland Switchgrass in the Northern USA.** *G3* 2019, **9**:1921–1931.

484 38. Poudel HP, Lee D, Casler MD: **Selection for winter survivorship in lowland Switchgrass.**
485 *Bioenergy Res* 2020, **13**:109–119.

486 39. Liu Y, Merrick P, Zhang Z, Ji C, Yang B, Fei S-Z: **Targeted mutagenesis in tetraploid**
487 **switchgrass (*Panicum virgatum* L.) using CRISPR/Cas9.** *Plant Biotechnol J* 2018, **16**:381–
488 393.

489 40. Chen Q, Song G-Q: **Protocol for Agrobacterium-Mediated Transformation and Transgenic**
490 **Plant Production of Switchgrass.** *Methods Mol Biol* 2019, **1864**:105–115.

491 41. Lowry DB: **Ecotypes and the controversy over stages in the formation of new species.** *Biol J*
492 *Linn Soc Lond* 2012, **106**:241–257.

493 42. Grady KL, Sorensen JW, Stopnisek N, Gittar J, Shade A: **Assembly and seasonality of core**
494 **phyllosphere microbiota on perennial biofuel crops.** *Nat Commun* 2019, **10**:4135.**

495 43. Singer E, Bonnette J, Kenaley SC, Woyke T, Juenger TE: **Plant compartment and genetic**
496 **variation drive microbiome composition in switchgrass roots.** *Environ Microbiol Rep* 2019,
497 **11**:185–195.

498 44. VanWallendael A, Benucci GMN, da Costa PB: **Host genetic control of succession in the**
499 **switchgrass leaf fungal microbiome.** *bioRxiv* 2021, doi.org/10.1101/2021.03.26.437207

500 45. Illingworth K: **Variation in the susceptibility of Lodgepole pine provenances to Sirococcus**
501 **shoot blight.** *Can J For Res* 1973, **3**:585–589.

502 46. Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR,
503 Gomulkiewicz R, Klein EK, Ritland K, et al.: **Long-distance gene flow and adaptation of**
504 **forest trees to rapid climate change.** *Ecol Lett* 2012, **15**:378–392.

505 47. Aitken SN, Bemmels JB: **Time to get moving: assisted gene flow of forest trees.** *Evol Appl*
506 2016, **9**:271–290.

507 48. Turesson G: **The plant species in relation to habitat and climate.** *Hereditas* 1925, **6**:147–236.

508 49. Hamilton JA, El Kayal W, Hart AT, Runcie DE, Arango-Velez A, Cooke JEK: **The joint**
509 **influence of photoperiod and temperature during growth cessation and development of**
510 **dormancy in white spruce (*Picea glauca*).** *Tree Physiol* 2016, **36**:1432–1448.

511 50. Tuskan GA, Gunter LE, Yang ZK, Yin T, Sewell MM, DiFazio SP: **Characterization of**
512 **microsatellites revealed by genomic sequencing of *Populus trichocarpa*.** *Can J For Res* 2004,
513 **34**:85–93.

514 51. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S,
515 Rombauts S, Salamov A, et al.: **The genome of black cottonwood, *Populus trichocarpa* (Torr.**
516 **& Gray).** *Science* 2006, **313**:1596–1604.

517 52. Keller SR, Olson MS, Silim S, Schroeder W, Tiffin P: **Genomic diversity, population**
518 **structure, and migration following rapid range expansion in the Balsam Poplar, *Populus***
519 ***balsamifera*.** *Molecular Ecology* 2010, **19**:1212–1226.

520 53. Olson MS, Levsen N, Soolanayakanahally RY, Guy RD, Schroeder WR, Keller SR, Tiffin P:
521 **The adaptive potential of *Populus balsamifera* L. to phenology requirements in a warmer**
522 **global climate.** *Mol Ecol* 2013, **22**:1214–1230.

523 54. McKown AD, Guy RD, Klápník J, Geraldes A, Friedmann M, Cronk QCB, El-Kassaby YA,
524 Mansfield SD, Douglas CJ: **Geographical and environmental gradients shape phenotypic**
525 **trait variation and genetic structure in *Populus trichocarpa*.** *New Phytol* 2014, **201**:1263–

526 1276.

527 55. McKown AD, Klápková J, Guy RD, Geraldes A, Porth I, Hannemann J, Friedmann M, Muchero
528 W, Tuskan GA, Ehlting J, et al.: **Genome-wide association implicates numerous genes**
529 **underlying ecological trait variation in natural populations of *Populus trichocarpa*.** *New*
530 *Phytol* 2014, **203**:535–553.

531 56. Soolanayakanahally RY, Guy RD, Silim SN, Song M: **Timing of photoperiodic competency**
532 **causes phenological mismatch in balsam poplar (*Populus balsamifera* L.).** *Plant, Cell &*
533 *Environment* 2013, **36**:116–127.

534 57. Evans LM, Slavov GT, Rodgers-Melnick E, Martin J, Ranjan P, Muchero W, Brunner AM,
535 Schackwitz W, Gunter L, Chen J-G, et al.: **Population genomics of *Populus trichocarpa***
536 **identifies signatures of selection and adaptive trait associations.** *Nat Genet* 2014, **46**:1089–
537 1096.

538 58. Holliday JA, Zhou L, Bawa R, Zhang M, Oubida RW: **Evidence for extensive parallelism but**
539 **divergent genomic architecture of adaptation along altitudinal and latitudinal gradients in**
540 ***Populus trichocarpa*.** *New Phytol* 2016, **209**:1240–1251.

541 59. Suarez-Gonzalez A, Hefer CA, Lexer C, Cronk QCB, Douglas CJ: **Scale and direction of**
542 **adaptive introgression between black cottonwood (*Populus trichocarpa*) and balsam poplar**
543 **(*P. balsamifera*).** *Mol Ecol* 2018, **27**:1667–1680.

544 60. Suarez-Gonzalez A, Hefer CA, Christe C, Corea O, Lexer C, Cronk QCB, Douglas CJ:
545 **Genomic and functional approaches reveal a case of adaptive introgression from *Populus***
546 ***balsamifera* (balsam poplar) in *P. trichocarpa* (black cottonwood).** *Mol Ecol* 2016, **25**:2427–
547 2442.

548 61. Brunner AM, Busov VB, Strauss SH: **Poplar genome sequence: functional genomics in an**
549 **ecologically dominant plant species.** *Trends in Plant Science* 2004, **9**:49–56.

550 62. Cronk QCB: **Plant eco-devo: the potential of poplar as a model organism.** *New Phytol* 2005,
551 **166**:39–48.

552 63. Janes JK, Hamilton JA: **Mixing It Up: The Role of Hybridization in Forest Management**
553 **and Conservation under Climate Change.** *For Trees Livelihoods* 2017, **8**:237.

554 64. Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf EV,
555 Allan GJ, DiFazio SP, Potts BM, et al.: **A framework for community and ecosystem genetics:**
556 **from genes to ecosystems.** *Nat Rev Genet* 2006, **7**:510–523.

557 65. Whitham TG, Allan GJ, Cooper HF, Shuster SM: **Intraspecific Genetic Variation and Species**
558 **Interactions Contribute to Community Evolution.** 2020, doi:10.1146/annurev-ecolsys-
559 011720-123655.

560 66. Dungey HS: **Pine hybrids — a review of their use performance and genetics.** *For Ecol*
561 *Manage* 2001, **148**:243–258.

562 67. Lindtke D, González-Martínez SC, Macaya-Sanz D, Lexer C: **Admixture mapping of**
563 **quantitative traits in *Populus* hybrid zones: power and limitations.** *Heredity* 2013, **111**:474–

564 485.

565 68. DE Carvalho D, Ingvarsson PK, Joseph J, Suter L, Sedivy C, Macaya-Sanz D, Cottrell J, Heinze
566 B, Schanzer I, Lexer C: **Admixture facilitates adaptation from standing variation in the**
567 **European aspen (*Populus tremula* L.), a widespread forest tree.** *Mol Ecol* 2010, **19**:1638–
568 1650.

569 69. Hamilton JA, Lexer C, Aitken SN: **Genomic and phenotypic architecture of a spruce hybrid**
570 **zone (*Picea sitchensis* × *P. glauca*).** *Mol Ecol* 2013, **22**:827–841.

571 70. Hamilton JA, Miller JM: **Adaptive introgression as a resource for management and genetic**
572 **conservation in a changing climate.** *Conserv Biol* 2016, **30**:33–41.

573 71. Geraldes A, Farzaneh N, Grassa CJ, McKown AD, Guy RD, Mansfield SD, Douglas CJ, Cronk
574 QCB: **Landscape genomics of *Populus trichocarpa*: the role of hybridization, limited gene**
575 **flow, and natural selection in shaping patterns of population structure.** *Evolution* 2014,
576 **68**:3260–3280.

577 72. Waldvogel A-M, Feldmeyer B, Rolshausen G, Exposito-Alonso M, Rellstab C, Kofler R, Mock
578 T, Schmid K, Schmitt I, Bataillon T, et al.: **Evolutionary genomics can improve prediction of**
579 **species' responses to climate change.** *Evol Lett* 2020, **4**:4–18.

580 73. Zhang L, Juenger TE, Lowry DB, Behrman KD: **Climatic impact, future biomass production,**
581 **and local adaptation of four switchgrass cultivars.** *Glob Change Biol Bioenergy* 2019,
582 **11**:956–970.

583 74. Capblancq T, Fitzpatrick MC, Bay RA, Exposito-Alonso M, Keller SR: **Genomic Prediction of**
584 **(Mal)Adaptation Across Current and Future Climatic Landscapes.** 2020,
585 doi:10.1146/annurev-ecolsys-020720-042553.*

586 75. Fitzpatrick MC, Keller SR: **Ecological genomics meets community-level modelling of**
587 **biodiversity: mapping the genomic landscape of current and future environmental**
588 **adaptation.** *Ecol Lett* 2015, **18**:1–16.

589 76. Rellstab C: **Genomics helps to predict maladaptation to climate change.** *Nature Climate*
590 *Change* 2021, **11**:85–86.

591 77. Gougherty AV, Keller SR, Fitzpatrick MC: **Maladaptation, migration and extirpation fuel**
592 **climate change risk in a forest tree species.** *Nature Climate Change* 2021, **11**:166–171.

593 78. Aitken SN, Whitlock MC: **Assisted Gene Flow to Facilitate Local Adaptation to Climate**
594 **Change.** *Annual Review of Ecology, Evolution, and Systematics* 2013, **44**:367–388.

595 79. Feng X, Zhan Y, Wang Q, Yang X, Yu C, Wang H, Tang Z, Jiang D, Peng C, He Y:
596 **Hyperspectral imaging combined with machine learning as a tool to obtain high-**
597 **throughput plant salt-stress phenotyping.** *Plant J* 2020, **101**:1448–1461.*

598 Hyperspectral images of plants can provide detailed and high-throughput phenotyping. The resulting
599 images are information-rich, and therefore well-suited to machine learning algorithms used to obtain
600 meaningful phenotypes. This study is a model for use of hyperspectral imaging to detect plant stress
601 in a format that can be used in both controlled and field settings.

602 80. Thorp KR, Thompson AL, Harders SJ, French AN, Ward RW: **High-Throughput Phenotyping**
603 **of Crop Water Use Efficiency via Multispectral Drone Imagery and a Daily Soil Water**
604 **Balance Model.** *Remote Sens* 2018, **10**:1682.

605 81. Ludovisi R, Tauro F, Salvati R, Khoury S, Mugnozza Scarascia G, Harfouche A: **UAV-Based**
606 **Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to**
607 **Drought.** *Front Plant Sci* 2017, **8**:1681.

608 82. Sankey JB, Sankey TT, Li J, Ravi S, Wang G, Caster J, Kasprak A: **Quantifying plant-soil-**
609 **nutrient dynamics in rangelands: Fusion of UAV hyperspectral-LiDAR, UAV**
610 **multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-**
611 **encroached desert grassland.** *Remote Sens Environ* 2021, **253**:112223.

612 83. Lovell JT, Jenkins J, Lowry DB, Mamidi S, Sreedasyam A, Weng X, Barry K, Bonnette J,
613 Campitelli B, Daum C, et al.: **The genomic landscape of molecular responses to natural**
614 **drought stress in *Panicum hallii*.** *Nat Commun* 2018, **9**:5213.

615 84. Kenkel CD, Matz MV: **Gene expression plasticity as a mechanism of coral adaptation to a**
616 **variable environment.** *Nat Ecol Evol* 2016, **1**:14.

617 85. Lohman BK, Stutz WE, Bolnick DI: **Gene expression stasis and plasticity following**
618 **migration into a foreign environment.** *Mol Ecol* 2017, **26**:4657–4670.*

619 Measuring gene expression in field settings is a methodological challenge, but can offer important
620 insights into natural responses to changes in the local environment. In this study, researchers showed
621 that foreign populations of locally adapted stickleback fish converged on the gene expression profiles
622 of locally adapted populations, but that this plastic response was not fully sufficient to maintain
623 fitness. These results show the importance of disentangling plasticity and genetic differentiation in
624 transplant studies, and offer new tools for local adaptation researchers to understand how populations
625 respond to their environment.

626

627