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 44 
ABSTRACT 45 
 46 
A hundred years after Turesson first clearly described how local adaptive variation is distributed 47 
within species, plant biologists are making major breakthroughs in our understanding of mechanisms 48 
underlying adaptation from local populations to the scale of continents. While the genetics of local 49 
adaptation has typically been studied in smaller reciprocal transplant experiments, it is now being 50 
evaluated with whole genomes in large-scale networks of common garden experiments with 51 
perennial switchgrass and poplar trees. These studies support the hypothesis that a complex 52 
combination of loci, both with and without adaptive trade-offs, underlie local adaptation and that 53 
hybridization and adaptive introgression play a key role in the evolution of these species. Future 54 
studies incorporating high-throughput phenotyping, gene expression, and modelling will be used to 55 
predict responses of these species to climate change.  56 
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Introduction 85 
One hundred years ago, the Swedish botanist Göte Turesson reported a series of observations from 86 
common garden experiments in which he found that plants of the same species collected from 87 
different habitats had distinctive genetically based differences in morphology and growth form [1,2]. 88 
Turesson cogently argued that the differences among populations were due to natural selection, 89 
which was a rejection of the Lamarckian paradigm that dominated the literature up to that point [3–90 
7]. To more clearly communicate the phenomena, Turesson coined the term ecotype in 1922 to 91 
describe distinct groups of plant populations that are locally adapted to particular habitats. These 92 
ecotypes were identifiable by having a shared suite of genetically-based traits that could be observed 93 
when grown in common garden experiments. A hundred years later, plant biologists continue to build 94 
on Turesson’s legacy of understanding how natural selection shapes variation within plant species 95 
through common garden experiments [8]. In this review, we highlight recent advances in 96 
understanding plant adaptations in two perennial plant species through long-term common garden 97 
experiments and outline our perspective on where the field is headed next. 98 
  99 
Distinguishing genetic from environmentally-based variation in plant species has required a rigorous 100 
development of experimental methods in plant evolutionary ecology. Turesson’s compelling 101 

intellectual arguments in early publications have earned him 102 
credit for much of the early work to measure locally 103 
adaptive variation within species. However, Langlet [9] 104 
correctly pointed out that provenance trials in the field of 105 
forestry examining the relationship between ecology and 106 
genetics, the study of genecology, had long recognized 107 
within species adaptive genetic variation, even if they had 108 
not clearly articulated those findings in an evolutionary 109 
context. Provenance trials consist of planting common 110 
gardens at multiple locations along environmental gradients 111 
to assess the relationship of fitness to distances from a home 112 
environment (Figure 1). In the middle of the 20th-century, 113 
Clausen, Keck, and Hiesey combined Turesson’s ecotype 114 
concept with provenance trials across California [10,11] to 115 
establish reciprocal transplant experiments as the gold 116 
standard for testing whether ecotypes are locally adapted to 117 
their home environments.  118 
 119 
 120 
 121 
 122 

Figure 1: Three types of experiments  123 
that test different aspects of local  124 
adaptation. Poplar icons represent  125 
genotypes.  126 



  127 
Today, common garden experiments have entered the population genomic era, as whole-genome data 128 
sets are becoming increasingly available for accessions planted in geographically widespread 129 
common garden experiments. A number of annual and short-lived perennial plant systems, including 130 
Arabidopsis, Mimulus, and Boechera, have begun to bring reciprocal transplant common garden field 131 
studies into the genomic era [12–14]. Here, we focus on two long-lived perennial systems, 132 
switchgrass (Panicum) and poplar trees (Populus), where larger networks of multiyear common 133 
gardens are being used to gain a more comprehensive understanding of local adaptation across 134 
geographic space. The results from these two systems illustrate current and emerging approaches to 135 
understanding locally adaptive allelic variation is distributed on the scale of continents.   136 
  137 
Understanding the role of fitness trade-offs in local adaptation in switchgrass 138 
Switchgrass, Panicum virgatum, is a large perennial North American grass species that has a native 139 
range from Central America to Southern Canada [15,16]. Across this range, switchgrass exhibits a 140 
wide array of genetic variation and adaptive phenotypes. Recent common garden research has 141 
leveraged a strategically constructed quantitative trait locus (QTL) mapping population and a large 142 
diversity panel to understand the genomics of adaptation from South Texas to South Dakota [17,18]. 143 
This recent work builds on historical efforts by forage grass researchers, who have long recognized 144 
that there are striking patterns of local adaptation of switchgrass across North America. Classic 145 
common garden research by Calvin McMillan in Nebraska and Texas found strong patterns 146 
consistent with local adaptation along a latitudinal gradient stretching across the length of the Great 147 
Plains [19,20]. In addition to these clinal patterns of adaptive variation, other researchers found 148 
evidence that there are several distinct ecotypes of switchgrass that likely originated through 149 
geographic isolation into distinct refugia during glaciation. Researchers generally recognized two 150 
major switchgrass ecotypes, upland and lowland. The lowland ecotype was generally associated with 151 
wetter riparian habitats in the southern United States, while the upland ecotype was thought to 152 
primarily occur in more northern regions and typically drier habitats. In the central US where these 153 
ecotypes co-occur, Porter [21] conducted a series of experiments to demonstrate strong physiological 154 
divergence between the upland and lowland ecotypes. Thus, adaptive genetic variation in switchgrass 155 
is distributed both along environmental gradients correlated with latitude and as a mosaic of more 156 
discrete ecotype variation [16]. 157 
 158 
The strength of the switchgrass system in the study of ecological genetics lies in the construction of 159 
large-scale, replicated experiments. While McMillan and Porter were able to document 160 
morphological differentiation that seemed to be adaptive across the species, modern studies have 161 
sought to directly link ecotypic variation to underlying genetic loci. To understand the genetic 162 
architecture of local adaptation between northern upland and southern lowland ecotypes, researchers 163 
developed genetic mapping populations derived from crosses between upland and lowland 164 
germplasm [22,23]. One of these upland ✕ lowland mapping populations was clonally divided 165 
through vegetative propagation and planted into 10 field sites spanning 17 degrees of latitude from 166 
South Texas to South Dakota and Michigan in 2015 [17]. This experimental design resulted in the 167 
exact same set of genotypes being planted across 10 different environmental conditions, allowing for 168 



a comprehensive analysis of the genotype, environment, and genotype ✕ environment contributions 169 
to trait variation and fitness. This experiment has facilitated QTL analyses across all of these sites to 170 
understand how the genetic architecture of trait variation and fitness changes across space [24–27]. 171 
 172 
Critically, the network of common gardens has allowed researchers to rigorously test a long-held 173 
prediction of evolutionary theory: that local adaptation is the result of fitness trade-offs at the 174 
individual genetic locus level [28–30]. This theoretical work suggested that the loci involved in 175 
adaptation should exhibit a fitness advantage in their home environment but a fitness cost in a foreign 176 
environment (Figure 2a), leading to increased phenotypic differentiation among habitats. However, 177 
recent studies have indicated that not all loci underlying local adaptation exhibit fitness trade-offs 178 
[31]. Most of these studies only used two field sites in a single year, which means that the lack of 179 
trade-offs could be the result of failure to measure a sufficient proportion of climate space where 180 
trade-offs might manifest (Figure 2b). With the switchgrass common garden network replicated at 181 
many sites, it was possible to determine the extent to which there are trade-offs at individual loci. 182 
While this work detected a few loci with clear trade-offs across space, there were many more loci 183 
that had effects on biomass in one geographic region with non-significant effects in other regions 184 
[17]. Thus, some combination of trade-offs and conditional neutrality is responsible for the overall 185 
patterns of local adaptation, a pattern that also has been observed previously in two-site reciprocal 186 
transplant experiments [31]. Further, using perennial plants for these studies provides the important 187 
context of temporal variation in selection pressure, which may be essential to understanding 188 
adaptation under climate change.189 

 190 
Figure 2: Detecting the genetic basis of local adaptation. A. Two ways that loci can produce local 191 
adaptation: single trade-off locus increases fitness in one environment, while decreasing it in another 192 
(blue reaction norm); two conditionally neutral loci can each have effects in only one environment, 193 
but combine to form a local advantage (red reaction norms). B. Nonlinear reaction norms can result 194 
in studies misinterpreting local adaptation patterns. In this scenario, the trade-off for the locus will 195 
only be detected if environments B and C are sampled (blue line), owing to an underlying nonlinear 196 
reaction norm (dashed gray line).  197 



While QTL mapping populations are powerful tools to understand the impacts of genetic loci on 198 
traits and fitness, Genome-Wide Association Studies (GWAS) offer improved precision to identify 199 
individual causal genes due to a high number of natural recombination events [12,32,33]. To further 200 
elucidate the complement of genes contributing to local adaptation in switchgrass, researchers 201 
established a new set of common garden experiments with a diversity panel at 10 field sites (only one 202 
site was different from [17]) in North America and 3 sites in Mexico (spanning 24˚ of latitude) in 203 
2018 and 2019 (Figure 3)[18]. This diversity panel is composed of 732 tetraploid genotypes of 204 
switchgrass collected from across eastern North America and clonally propagated at each field site.  205 
 206 
As expected, the diversity panel revealed a strong signal of local adaptation, with lowland genotypes 207 
generally having higher biomass at southern field sites, while the upland genotypes displayed the 208 
opposite pattern [18]. Winter kill in the north has been by far the largest source of mortality in the 209 
experiment. Overwinter survival has long been known to be important in switchgrass, but it recently 210 

received increased research attention due to it being a primary factor limiting 211 
the planting of highly productive southern lowland bioenergy cultivars in the 212 
northern United States [34–38]. Many candidate genes underlying adaptive 213 
trait variation, including overwinter survival, were revealed through GWAS. 214 
Further understanding these fitness-related genes will facilitate future gene 215 
editing efforts powered by advances in switchgrass Agrobacterium-mediated 216 
transformation [39,40]. 217 
 218 
One of the key results of genome resequencing in the tetraploid diversity 219 
panel was that patterns of population genetic structure were discordant with 220 
the morphological clustering of plant accessions into ecotypes [18]. 221 
Incorporating switchgrass from the eastern USA revealed a third “coastal” 222 
ecotype in addition to the previously recognized upland and lowland ecotypes 223 
(Figure 4). Population genomic analyses similarly identified three major 224 
groups, but these were surprisingly discordant from the morphological 225 
ecotypes. This finding contradicts the assumption that ecotypes exist as 226 
structure groups, where both structure in trait variation and population genetic 227 
structure are inexorably correlated across geographic space [41]. Of particular 228 
interest, numerous genotypes with the upland ecotype from the northeastern 229 
US clustered with the genetic group containing the new coastal ecotype. 230 
Haplotype-level analyses revealed regions of introgression from the mostly 231 
upland population into the mostly coastal population, and further that these 232 
introgressed regions were enriched for GWAS-detected loci that enhance 233 
winter survival [18]. This result suggests that adaptive introgression from the 234 
upland population allowed coastal plants to maintain fitness along the 235 
northern Atlantic coast.  236 
 237 

Figure 3: Representative samples of each recognized switchgrass ecotype. Bars indicate 1 meter. 238 
From [18] 239 



 240 
In coming years, the network of switchgrass common garden experiments will facilitate a better 241 
understanding of how specific abiotic and biotic environmental factors have contributed to adaptive 242 
evolution across geographic space. For example, VanWallendael et al. [24] identified two major 243 
QTLs for resistance of switchgrass to pathogenic rust fungi. Interestingly, these QTLs both have 244 
strong effects in northern sites, but were rarely detected in southern sites, suggesting that genotype x 245 
environment interactions play a critical role in shaping biotic interactions across space. In addition to 246 
research on pathogens, mutualistic microbes assist with nutrient uptake and may confer additional 247 
stress tolerance in leaves [42], and are differentially partitioned across portions of roots [43]. In 248 
switchgrass leaves, the fungal microbiome is differentially partitioned across genetic populations, a 249 
pattern that may be driven by variation in plant immune response genes [44]. 250 
 251 
Populus as a model system for ecological, evolutionary, and community genomics 252 
Forestry, more than any other field of plant science, has utilized provenance trials to understand the 253 
impact of seed provenance, or origin, on traits important for growth and persistence under varying 254 
abiotic and biotic environments [9,45–47]. Indeed, the field of genecology, commonly applied within 255 
forestry, largely derives from Turesson’s observations of the relationship between heritable trait 256 
variation and that of the environment, serving as foundation to the contemporary field of ecological 257 
genomics [48]. Thus, understanding the relationship between genotypic or ecotypic variation across 258 
environments provides a powerful tool to predicting the health and productivity of reforested regions 259 
across space and time [49]. Provenance trials provide invaluable resources which extend our ability 260 
to assess adaptation and evaluate populations’ capacity for evolution under changing climatic 261 
conditions. With the inclusion of new whole genome datasets, extension to new statistical 262 
approaches, and the development of new phenotyping platforms the value of provenance trials has 263 
only increased. 264 
 265 
Populus has become a model genus for studies of local adaptation in forest trees due to its compact 266 
genome, rapid growth, ease of vegetative propagation, and extensive natural genomic and phenotypic 267 
variation [50,51]. Extensive surveys of range-wide genomic variation in poplar species [52,53], 268 
paired with phenotypic measurements from long-term common garden experiments [54–56] have 269 
advanced our understanding of the role natural selection has played in shaping adaptive variation 270 
within and between Poplar species [57–60]. In addition, due to the propensity of Populus species to 271 
form natural hybrids and the degree to which hybrids often exhibit heterosis or adaptive introgression 272 
for traits valuable in cultivation, the species has become a key model leading advances in breeding 273 
and functional genomics [59,61–63]. Finally, poplar is a model system for community genetics - or 274 
the study of genetic interactions among species and their abiotic environment [64,65] where heritable 275 
trait variation within poplar genotypes have measurable impact to the biotic community impacting 276 
ecosystem function [65]. Thus, research using Populus capitalizes on its value as a keystone species 277 
to understand species’ impact across scales of biodiversity, from genes to individuals to populations 278 
and communities, to understand the relationship between genetic and environmental variation 279 
necessary to predict phenotypic responses across complex environments.  280 
 281 



The relatively nascent nature of commercial breeding in forest trees, where many species are only 282 
one to three generations from their wild progenitors [66], emphasizes the value that natural hybrid 283 
zones provide. Natural hybrid zones circumvent much of the challenge associated with traditional 284 
breeding in long-lived species by offering natural, replicated hybrid crosses. Moreover, where 285 
ecological differences exist between hybridizing species, zones of contact provide the opportunity to 286 
directly evaluate the role natural selection has had on admixture, providing insight into the 287 
architecture of adaptation. A unique aspect of Populus has been the value of comparative genomics 288 
and admixture mapping within naturally replicated contact zones between two species [59,67]. 289 
Within the context of climate change, standing genetic variation generated from natural zones of 290 
introgression provides a mechanism to facilitate adaptation to novel environments [68–70]. Notably, 291 
the contact zone between Populus trichocarpa x balsamifera indicates expansion of the range of P. 292 
trichocarpa, which traditionally is characterized by a maritime climate has benefitted from 293 
introgression with more continental P. balsamifera [59,71]. Thus, a valuable reservoir of adaptive 294 
genetic variation may be maintained within zones of introgression with natural selection structuring 295 
rangewide genomic and phenotypic variation [55,59,68,71]. Efforts to develop an understanding of 296 
the role genome x genome (GxG) interactions may play alongside genotype x environment (GxE) 297 
interactions are underway within P. trichocarpa x balsamifera. Clonally replicated poplar common 298 
garden experiments have been established at 18 distinct environments across the United States as part 299 
of the PopUp Poplar Network (Figure 5; http://popup-poplars.com). These plantings sourced a 300 
latitudinal gradient of native field-collected P. trichocarpa, P. balsamifera, and their hybrids 301 
spanning six replicated contact zones across the Rocky Mountains, from Washington to Alaska. This 302 
model system pairs whole genome sequences, clonally replicated common gardens, and climate 303 
modeling to understand how genotypic variation, genomic ancestry, and environmental variation 304 
interact to produce phenotypic variation important to climate adaptation and hybrid breeding. This 305 
living laboratory provides an unprecedented resource to quantify the role of hybridization to 306 
evolution and adaptation, the role of natural selection in shaping quantitative trait variation, and the 307 
role interactions between abiotic and biotic factors may have on plant fitness and community and 308 
ecosystem function. 309 



 310 
Figure 4: Locations of PopUp Poplar Network sites (black circles) and switchgrass diversity panel 311 
planting locations (red squares) across North America. At each poplar location, two replicates of 50 312 
Poplar clones of mixed genomic ancestry between Populus trichocarpa, P. balsamifera, and their 313 
hybrids have been planted and maintained since 2020. Inset pictures of switchgrass gardens at 314 
Kellogg Biological Station (left) and poplar at Evergreen State University (right) (Photo Credit: 315 
Robert Goodwin and Dylan Fischer) 316 
 317 
Future Directions: Predicting locally adaptive responses to climate change  318 
Current studies of switchgrass are greatly advancing researchers’ understanding of how individual 319 
loci contribute to the process of evolution at the scale of a continent. One of the most consequential 320 
results of this study being conducted in multiple sites and years is that it has enabled the prediction of 321 
locus-specific effects on traits and fitness in unmeasured environments. For example, Lowry et al. 322 
[17] developed models based on the QTL results from the ten common garden locations to predict 323 
allelic effects of loci based on a suite of local environmental conditions. From this modelling effort, 324 
it was possible to construct predictive maps across central North America of where individual alleles 325 
would be most beneficial to increasing fitness. In the future, these genetic models can be integrated 326 
with climate change models to predict how additive allelic effects will shift over time [72]. This 327 
future research will complement recent work on trait and fitness predictions for switchgrass at the 328 
cultivar level [73]. 329 
 330 
A major recent advance in predicting plant evolution in response to changed or novel environments 331 
leverages spatially-informed genomic datasets with genome-environment associations to predict 332 
genotype performance across future environments [74]. These predictions, which assess the degree to 333 
which genotype-environment associations are perturbed from locally adapted fitness peaks under 334 
climate change, provide an ability to forecast the impact climate change may have on fitness [74–77]. 335 
Gougherty et al. [77] recently used genes associated with the flowering-time pathway in Populus 336 



balsamifera to characterize the impact disruptions may have to the maintenance of variation 337 
necessary for persistence across the species’ range. Broadly, this landscape-level assessment 338 
identified regions across the species’ distribution that may lack the variation needed to adapt to 339 
change and those that may benefit from rescue via migration [77,78]. In combination with advances 340 
in machine learning, these new forecasting approaches enhance our ability to predict maladaptation 341 
to changed conditions with practical application to restoration under current and future climates [76]. 342 
 343 
Plant breeding is increasingly incorporating high-throughput phenotyping through unmanned aerial 344 
vehicles (UAVs) through drones and through satellite-based remote sensing of hyperspectral data 345 
[79,80], and local adaptation studies will follow in the not too distant future. These systems provide 346 
models to bridge the genome to phenotype gap for applications both to breeding and evaluation of 347 
intraspecific variation essential to restoration efforts [81,82]. Genetic-based trait detection at this 348 
spatial and temporal resolution will advance the scale of associations needed to quantify genetic 349 
variation for traits important to adaptation. Further, gene expression analyses within hybrid mapping 350 
populations and diversity panels will usher in a new era of expression QTL (eQTL) studies to 351 
understand how gene regulation contributes to local adaptation. Field eQTL mapping has already 352 
recently been conducted in a common garden experiment of a close relative of switchgrass (Panicum 353 
hallii; [83]). Further, gene expression analyses are now beginning to be incorporated into field 354 
reciprocal transplant experiments [13,84,85]. One hundred years after Turesson [2] first clearly 355 
articulated how ecotype variation arises from natural selection driving local adaptation, rigorous 356 
experimental studies have allowed researchers to more clearly understand the role genetics play in 357 
the generation of within-species variation, but the challenge of understanding plants’ response to 358 
global climate change is a reminder that we still have much to learn.  359 
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