o

Pacific
Northwest

NATIONAL LABORATORY

PNNL-32590

NRAP-Open-lAM: Generic
Aquifer Component

Development and Testing
February 2022

Diana H Bacon

EEEEEEEEEEEE
Prepared for the U.S. Department of Energy

under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312
ph: (800) 553-NTIS (6847)
email: orders@ntis.gov <https://www.ntis.gov/about>
Online ordering: http://www.ntis.gov

PNNL-32590

NRAP-Open-IAM: Generic Aquifer Component

Development and Testing

February 2022

Diana H Bacon

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354

PNNL-32590

Abstract

The Generic Aquifer Model calculates the concentrations of dissolved salt and dissolved CO-
surrounding a leaking legacy well. The Generic Aquifer model can also estimate the size of an
“‘impact plume” where concentration changes exceed user-specified thresholds. The model is a
component of NRAP-Open-IAM, an open-source Integrated Assessment Model (IAM)
developed by the National Risk Assessment Partnership (NRAP) to perform risk assessment for
geologic CO; storage. The input parameters were selected to cover a wide range of
groundwater aquifers and leakage rates. The generic aquifer model was developed using a
generative adversarial deep learning network, trained using a large synthetic dataset of STOMP
multiphase flow simulations. The deep learning model predictions of dissolved salt and
dissolved CO- in the aquifer compare well to the original STOMP simulation results. The extent
of aquifer impacted by leaking CO or brine is calculated using a user-defined mass fraction
threshold. The aquifer impact volumes calculated based on STOMP simulation results compare
well to those calculated based on the deep learning model. In a provided python script, gridded
observation results from the generic aquifer component of NRAP-Open-IAM are converted to
HDF5 format files for monitoring design with the DREAM code.

Abstract ii

PNNL-32590

Acknowledgments

The research presented in this report was completed as part of the National Risk Assessment
Partnership (NRAP). Funding for this project was provided to Pacific Northwest National
Laboratory (PNNL) under DOE contract number DE-AC0576RL01830 by the U.S. Department
of Energy’s (DOE’s) Office of Fossil Energy. A portion of the modeling research was performed
using PNNL'’s Research Computing cluster.

Acknowledgments iii

PNNL-32590

Acronyms and Abbreviations

CCUSs Carbon capture, utilization, and storage

EDX Energy Data Exchange

IAM Integrated Assessment Model

L1 Loss See MAE

MAE The mean absolute error between STOMP and surrogate model
predictions

NETL National Energy Technology Laboratory

NRAP National Risk Assessment Partnership

ROM Reduced Order Model

SDWA Safe Drinking Water Act

US DOE United States Department of Energy

USEPA United States Environmental Protection Agency

Acronyms and Abbreviations iv

PNNL-32590

Contents

Y 01 1 =T R ii
ACKNOWIEAGIMENTS ...ttt et e e e e e e e e e e e e e e e e s e n e e e e e e e e aannnes iii
Acronyms and ADDreVviatioNS...........ooi e iv
(O] 01 (= | SRS v
1.0 INEFOAUCHION ..o 7
2.0 INPUL Parameters ..o, 10
3.0 STOMP SIMUIALIONSeeeiiieeeeeeee e e e e e e s e e e e e e e e sennneeeeeeaeeeaaannes 12
4.0 IMpact DeliN@AtiONcooveiiiiei 13
5.0 LI =11 11T OO P PSP PPPPPPPPPP 15
6.0 Validationooooeeiee 19
7.0 LIS (] Lo OO PP PPPPPPPPPPP 21
8.0 OULPUL FOr DREAM ...ttt e e e et e e e e e e s r e e e e e e s eeannsneeeeeaeeeaaannes 29
9.0 R C =Y =] o7 RSP 31
ApPENdiX A = STOMP INPULoueiiiiieeieie e e e e e e e e e e e e e e e e e s snnnneeeeeeeeaanns A1
Appendix B — Example NRAP-Open-IAM script generating DREAM Filesccccovvveeeennn. B.1
Figures

Figure 1. Workflow summary for development and testing of the Generic Aquifer
component of NRAP-OPEN-IAM. ... e 9

Figure 2. Pair plot for input parameters of simulations used to train the aquifer model for
the depth interval 2100 to 2400 m, showing the uniform distribution of

values iN 6250 SAMPIES.uuiiiiiiiiiiiiiiiei ettt eeeeeees 11
Figure 3. Dissolved CO. mass fraction after 70-year CO: leak at rate of 2.56 kg/s. 12
Figure 4. Dissolved salt mass fraction after 70-year brine leak at rate of 16.6 kg/s. 12
Figure 5. CO2 Mass Fraction in each grid cell of an example STOMP simulation. 13
Figure 6. Node volume for each grid cell close to the leak..............ccoooiiiiiiiii i 14
Figure 7. Generator ArChIiteCUIeooi i e 16
Figure 8. Discriminator ArChiteCtUreoooi i 17
Figure 9. Generator L1 Loss during Training (2100-2499m salt mass fraction).............cccccee...... 17
Figure 10. Discriminator Loss during Training (2100-2499m salt mass fraction) 18
Figure 11. Generator GAN Loss during Training (2100-2499m salt mass fraction)..................... 18
Figure 12. Generator MAE during Validation (CO2 mass fraction).ccccocceeeeiiiiiiiiiiieeee 19
Figure 13. Generator MAE during Validation (Salt mass fraction)...........ccccocoeiiiiiiiinieee 20

Figure 14. Comparison of target and predicted CO. mass fraction after leak consisting of
7.09x10% kg CO; and 2.57x10° kg water containing 1.01x10? kg sallt.................. 21

Contents v

PNNL-32590

Figure 15. Comparison of target and predicted salt mass fraction after leak consisting of

1.26 kg CO; and 4.39x10° kg water containing 1.93x10% kg sallt. 21
Figure 16. Comparison of target and predicted CO, mass fraction for all grid locations

and times in the test dataset. ... 23
Figure 17. Comparison of target and predicted salt mass fraction for all grid locations

and times in the test dataset. ... 24
Figure 18. Comparison of target and predicted plume volume (m?®) assuming a threshold

CO2 mass fraction 0f 0.02.oeeiiiiiiieeiciie e 25
Figure 19. Comparison of target and predicted plume volume (m?®) assuming a threshold

salt mass fraction Of 0.02.oooiiiiiiiie e 26
Figure 20. Normalized Root Mean Square Error comparison for all deep learning model

predictions in test dataset. ... 28
Tables
Table 1. Ranges of input parameters for the Generic Aquifer component.ccccccooevinnnnen. 10

Table 2. Mean Absolute Error (MAE) for aqueous mass fraction predictions in each
depth interval. ... e aaaeaes 22

Table 3. Mean Absolute Error (MAE) for plume volume predictions in each depth
INEEIVALL o 27

Contents Vi

PNNL-32590

1.0 Introduction

Carbon capture, utilization, and storage (CCUS) technologies are being developed, both
domestically and internationally, for their potential to mitigate environmental impacts associated
with atmospheric release of carbon dioxide (COz) from anthropogenic sources, such as power
production from fossil fuels and other large industrial sources. Over the last decade, the United
States Department of Energy (US DOE) has invested millions of dollars developing carbon
capture technologies and demonstrating safe and secure geologic carbon storage via a number
of pilot-scale projects sited throughout the country (NETL 2015). To date, these projects have
stored more than 16 million tonnes of CO2 (NETL 2018).

Within the US, CO injection activities are overseen by the US Environmental Protection Agency
(EPA) following regulations (the Class VI Rule) promulgated under the Safe Drinking Water Act
(SDWA) (USEPA 2010). The Class VI regulations are designed to protect underground sources
of drinking water (USDWSs), and include strict requirements for site characterization, CO.
injection well construction, injection operations, site monitoring, financial liability, and record
keeping/reporting. Key elements of the Class VI permitting process include delineating an Area
of Review (AoR) and defining an appropriate Post-Injection Site Care (PISC) period for the
project, both of which require simulated CO, saturations and pressure distributions from
computational models. The models are based on site-specific data and are updated periodically
during the lifetime of the project to evaluate reservoir performance and evolution of the storage
system.

Despite the sophistication of today’s multi-physics reactive transport codes, significant
uncertainty exists in predicting the performance of geologic storage reservoirs. Challenges
associated with developing greenfield sites include the inherit difficulty in scaling a few point
source measurements of geological structure and reservoir permeability derived from
characterization of borehole samples throughout the extensive area likely to be impacted by a
commercial-scale CO; injection, a lack of site-specific data on the behavior of supercritical CO>
in the reservoir being evaluated, and understanding changes in the transport behavior of carbon
dioxide caused by changes in pressure and/or temperature and the buoyant nature of CO, over
the long time scales required for geologic sequestration to have long-term benefit to
atmospheric CO- levels. Additionally, the computational resources required to run high fidelity
simulations limits their usefulness in performing sensitivity analysis for uncertainty reduction.

To help address this need, the US DOE established the National Risk Assessment Partnership
(NRAP), an initiative across five US DOE national laboratories with the goal of developing
defensible, science-based methodologies and platforms for quantifying risks amidst system
uncertainty. In 2017, the NRAP team released a set of ten tools (i.e., the NRAP Toolset) that
can be used to estimate risks associated with carbon sequestration
(https://edx.netl.doe.gov/nrap/).

NRAP-Open-IAM is an open-source Integrated Assessment Model (IAM) developed by the
National Risk Assessment Partnership (NRAP) to perform risk assessment for geologic CO2
storage (GCS) (Vasylkivska et al. 2021). The goal of NRAP-Open-IAM is to extend beyond risk
assessment into risk management, containment assurance, and decision support. NRAP-Open-
IAM builds on many years of NRAP tool development for risk assessment, including the NRAP-
IAM-CS also developed by the NRAP project (Pawar et al. 2016). An open-source Python
framework allows NRAP-Open-IAM to: 1) take advantage of standard Python libraries and other
open source analytical libraries written in Python; 2) be applied on multiple platforms; 3) have

Introduction 7

PNNL-32590

more flexible options of selecting modules for a specific study; and 4) give advanced users the
option to modify the IAM to fit their need as well as enhancing the potential for community
contributions to the software. The implementation of the reduced-order models and analytical
tools within the NRAP-Open-IAM makes the risk assessment process computationally efficient
enough to simulate an operational CO; storage site, potential events and various scenarios in a
probabilistic/ensemble manner. The NRAP-Open-IAM is equipped with capabilities to: 1) inform
monitoring design; 2) assess model concordance to measured field data; 3) evaluate mitigation
alternatives; and 4) provide probabilistic risk assessment and update the risk as new data
becomes available.

NRAP-Open-IAM models are created by linking reduced order representations of sophisticated
component models together into a complete GCS system. Each component model describes
the structure or flow behavior in a critical element of a GCS site. Component models are
modular and are designed to be interchangeable. Users build NRAP-Open-IAM models by
selecting component models and specifying inputs that represent the characteristics of their
GCS site. Inputs to NRAP-Open-IAM component models can either be specified as a single
value or a range of values. If a range of values is identified for some model inputs, these values
will be randomly sampled when stochastic simulations are run. The component models of
NRAP-Open-IAM fall are organized into four major categories:

e Stratigraphy. The stratigraphy component details the structure of the GCS system.
Stratigraphy inputs include the number of shale and aquifer layers in the model, the
thicknesses of these layers, and the thickness of the reservoir.

e Reservoir. The reservoir component describes the conditions in the reservoir during the
simulation time period. NRAP-Open-lIAM is not a reservoir simulator. However, users
can simulate a simplified COz injection using the simple and analytical reservoir
components. Inputs for these models include reservoir characteristics (permeability,
porosity, thickness, extent), CO- and brine characteristics (density, viscosity), and
injection rate. More sophisticated reservoir behavior can be included in the NRAP-Open-
IAM by including simulation results from a high-fidelity numerical simulator as a look up
table.

e Leakage pathway. The leakage pathway component simulates the upward flow of CO,
and brine out of the reservoir. NRAP-Open-IAM contains multiple interchangeable
leakage pathway components that can simulate flow through cemented and uncemented
wells, seals, and faults. Users must specify the properties of the leakage pathway, which
vary depending on its type. For example, the inputs for the cemented wellbore
component are the well radius, the permeability of the well cement, and the permeability
of potential thief zones.

¢ Receptor. The receptor component simulates either the flow of CO, and brine in an
aquifer (shallow or deep) or the atmosphere. Aquifer component models consider
geochemical reactions and predict the size of CO, and brine impact plumes. Several
aquifer components exist that represent different types of aquifers (e.g., carbonate, deep
alluvium). Model inputs for each aquifer component typically include general
characteristics of the formation, such as its thickness, depth, porosity, permeability, and
anisotropy. The atmosphere component simulates CO; dispersion after leakage out of
the ground. Inputs for the atmosphere component include ambient pressure and
temperature, wind velocity, CO- source temperature, and coordinates of potential
receptors.

Introduction 8

PNNL-32590

The characteristics of the aquifer component models for NRAP-Open-IAM have evolved over
time. The first two aquifer component models developed for NRAP-Open-IAM were based on
using site-specific data from two aquifers, the Edwards Aquifer (Bacon et al. 2016) and the High
Plains Aquifer (Carroll et al. 2016). However, the models accept aquifer characteristics as
variable inputs and so they may have more broad applicability. (Keating et al. 2016) concluded
that pH and TDS predictions are the most transferable to other aquifers based on the analysis of
the nine water quality metrics (pH, TDS, 4 trace metals, 3 organic compounds) and presented
guidelines for determining the aquifer types for which those two surrogate models should be
applicable.

The FutureGen2 aquifer models were designed to be more general in order to encompass both
carbonate and sandstone aquifers overlying the FutureGen 2.0 proposed carbon storage site
(Bacon et al. 2019). Five monitoring metrics were used to indicate an aquifer impact: pressure,
temperature, dissolved CO,, pH and TDS. The precision thresholds of sensors from the
proposed monitoring plan for the FutureGen 2.0 site (FutureGen Industrial Alliance 2013) were
used to delineate an impact for each of these metrics.

The new Generic Aquifer Model described in this report calculates the concentrations of
dissolved salt and dissolved CO; surrounding a legacy well. The Generic Aquifer model can
also estimate the size of an “impact plume” where concentration changes exceed user-specified
thresholds. Dissolved CO; was selected because Romanak et al. (2012) found that dissolved
inorganic carbon (DIC) was a useful monitoring metric because changes in DIC with CO,
leakage were consistent across geochemical environments, indicating that prior characterization
of aquifer minerals may not be necessary if DIC is used as the primary monitoring parameter.
Dissolved salt was selected because salinity often increases with depth (Bloomfield et al. 2020),
resulting in a notable difference in salinity between the storage reservoir and an overlying
aquifer.

This report describes the workflow for development and testing of the Generic Aquifer

component for NRAP-Open-lAM, summarized in Figure 1.
Input STOMP Validation
Parameters Simulations
* Define * Construct a * Fit the deep *Run the *Run the

model input synthetic learning trained best-fitting
parameters dataset model using models on deep

«Use using 80% of the 10% of the learning
statistical STOMP synthetic synthetic models on
sampling to multiphase dataset dataset the
define input flow * Save * determine remaining
for a large simulations trained which of the 10% of the
synthetic model every saved synthetic
dataset 20 epochs models best dataset

fits the data
— — — N N

Figure 1. Workflow summary for development and testing of the Generic Aquifer component of
NRAP-Open-IAM.

Introduction 9

PNNL-32590

2.0 Input Parameters

The input parameters shown in Table 1 were selected to cover a wide range of groundwater
aquifers. Thickness is the aquifer thickness from bottom to top. Depth is the depth below ground
surface (bgs) to the top of the aquifer. Porosity is the fraction of void space in the aquifer rock.
Horizontal permeability is a measure of the ability of the aquifer rock to transmit fluid in the
horizontal direction. Anisotropy is the ratio of the vertical to horizontal permeability. The initial
aquifer salinity is the mass fraction of salt in the aquifer before a leak occurs. The leak salinity is
the mass fraction of salt in fluid leaking into the aquifer. The CO2 and brine leakage rates are
given in mass units of kilograms per second. Because permeability, anisotropy and leakage
rates vary over several to many orders of magnitude, the log base 10 of their values are used as
input.

Table 1. Ranges of input parameters for the Generic Aquifer component.

Parameter min max
Thickness (m) 25 250
Depth (m bgs) 100 4100
Porosity 0.02 0.2
Horizontal Permeability (log1o m?) -14 -10
Anisotropy (log1o Kn/K.) 0 3
Initial Aquifer Salinity (mass fraction) 0 0.015
Leak Salinity (mass fraction) 0.015 0.05
CO- Leak Rate (log1o kg/s) -9 1.5
Brine Leak Rate (logio kg/s) -9 1.5

Random samples of the model input parameters were selected using Latin Hypercube Sampling
(Iman et al. 1981), assuming that each parameter is uniformly distributed. The parameter space
was divided into ten depth intervals of 400 m each, and 6250 samples were generated for each
depth interval, for a total of 62,500 samples. Figure 2 shows a pair plot illustrating the
distribution of parameter values for one of the depth intervals. The number of parameter
samples is so large and evenly distributed that the datapoints appear as a nearly solid block of
color.

Input Parameters 10

PNNL-32590

- 005 on E 002 003 004 005
depth por fog_permh an aquifer_salinity log_co2_rate log_brine_rate reservolr_salinity

Figure 2. Pair plot for input parameters of simulations used to train the aquifer model for the
depth interval 2100 to 2400 m, showing the uniform distribution of values in 6250 samples.

The sample set of input parameters for each depth interval was divided into three subsets:
training, validation and test. The training dataset is the subset of data that is used to fit the
model. The validation dataset is the subset of data that is used for an unbiased evaluation of a
model fitted on the training dataset while tuning model hyperparameters (For example, see
Section 5.0 for a discussion of adjustments to the model training rate). The testing dataset is the
subset of data used for an unbiased evaluation of a final model fitted on the training dataset.

An unbiased evaluation means that the model is validated and tested on data that has not been
seen during training. Randomly splitting the entire dataset into three subsets is a common
method for unbiased evaluation. In this case, 80% of the data was randomly selected to be in
the training dataset, while the validation and testing datasets each received 10% of the data.
This is commonly referred to as an 80-10-10 split, where 80% + 10% +10% = 100%.

Input Parameters 11

PNNL-32590

3.0 STOMP Simulations

The 62,500 STOMP simulations were conducted using the input parameters from Section 2.0.
Simulations were performed using STOMP-CO2 (isothermal multiphase flow of CO2 and brine).
Parameters were substituted into a template input file using a python script. The python script
also performed the train-valid-test split as described in section 2.0 using Scikit-learn (Pedregosa
et al. 2011). Both the template input file and the python script are listed in Appendix A.

The initial temperature and pressure in the simulations were assumed to be a function of depth.
Hydrostatic initial pressures and a geothermal gradient of 1.2 °F/100 ft (21.7 °C/km) (Vaught
1980) were assumed. Simulations were run for a simulation time of 70 years, and model output
saved at 0, 1, 2, 5, 10 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 and 70 years.

To encompass impact plumes for both very small and very large CO- or brine leaks, a radial grid
of 50 miles (80,467 meters) in radius was used. Grid radii ranged in size from 3.24 m to 5,877 m
in the horizontal direction. Ten vertical grids were used, each one-tenth of the aquifer thickness,
for a total of 1000 nodes. For each of the leakage scenarios, distributions of dissolved CO- and
dissolved salt were calculated.

As an example of STOMP simulation output, Figure 3 shows predicted dissolved CO, mass
fraction in an aquifer after 70 years of CO, leakage at a rate of 2.56 kg/s and brine leakage at a
rate of 9.6x107° kg/s. In another example, Figure 4 shows dissolved salt mass fraction in an
aquifer after 70 years of brine leakage at a rate of 4.6x10®° kg/s and brine leakage at a rate of
16.6 kg/s.

0.056
0.048
0.040
0.032
0.024
0.016
0.008
0.000
—0.008

2320

2340

Depth (m)
IN)
w
o
o

2380

2400

200 400 600 800 1000 1200 1400 1600
Radial Distance from Well (m)

Figure 3. Dissolved CO, mass fraction after 70-year CO- leak at rate of 2.56 kg/s.

2250

0.045
0.040
0.035
0.030
0.025
0.020
0.015
0.010
0.005
0.000

2275

£ 2300
~

‘g 2325
o

2350

y y T
200 400 600 800 1000 1200 1400 1600
Radial Distance from Well (m)

Figure 4. Dissolved salt mass fraction after 70-year brine leak at rate of 16.6 kg/s.

STOMP Simulations 12

PNNL-32590

4.0 Impact Delineation

To delineate the impact of a leak on an aquifer, a threshold concentration must be set. The
generic aquifer component allows the user to specify the threshold values for dissolved CO»
mass fraction and dissolved salt mass fraction. These values may range between 0 and 1.
However, it should be noted that the leak dissolved salt mass fraction is limited to a range of
0.015 to 0.05, so these are practical limits for the dissolved salt mass fraction threshold.

The impact metrics are volume, average radius and average thickness of the impact plume in
the aquifer. An example grid of CO2 mass fraction predictions is shown in Figure 5. If the user
sets the threshold for CO2 mass fraction to 0.04, then the grid cells that are shaded black will be
considered a part of the impact plume. Volumes for each cell in the grid are shown in Figure 5.

e To calculate the plume volume, the node volume for each cell above the threshold is
summed.

e To calculate the average thickness of the plume, the thickness of the plume in each
column with cells above the threshold is averaged.

e To calculate the average radius of the plume, the radius of the plume in each row with
cells above the threshold is averaged.

0.05
2320
0.04
2340
C
.©
_ 0.03 &
S S
~ L
< 0
B 2360 %
[
o) =
0.02 S
O
2380
- 0.01
2400
T T - 000

25 50 75 100 125 150 175 200
Distance from leak (m)

Figure 5. CO, Mass Fraction in each grid cell of an example STOMP simulation.

Impact Delineation 13

PNNL-32590

2320 4 600
500
2340 A
— 400 %
£ £
< =)
B 2360 2003
Q 3
[e]
=2
200
2380 1
100
2400 A

25 50 75 100 125 150 175 200
Distance from leak (m)

Figure 6. Node volume for each grid cell close to the leak.

Impact Delineation 14

PNNL-32590

5.0 Training

Deep learning surrogate models were trained to predict dissolved CO, and dissolved salt mass
fraction in an aquifer in response to CO; and brine leakage, like the results shown in Figure 3
and Figure 4.

Pix2Pix is a Generative Adversarial Network, or GAN, model (Isola et al., 2017) that has been
shown to have wide applicability to image-to-image translation problems with minimal
modification. The similarity between image-to-image translation and the input-output fields
utilized by flow models has been recognized, and the Pix2Pix method has been applied to
predicting CO, plume migration in two-dimensional horizontal heterogeneous formations by
Zhong et al. (2019). Using example code as a starting point (Google, 2021), the method has
been extended to reproducing outputs of the STOMP simulator based on a set of input
parameters. The neural networks were implemented in Tensorflow 2.5 using Keras.

The method uses two competing neural networks, a generator and a discriminator. The
generator architecture, shown in Figure 7, is a modified U-Net (Ronneberger et al. 2015)
regressor. Each encoder block is 2D Convolution — Batch normalization — Leaky ReLU. Each
decoder block is Transposed 2D Convolution — Batch normalization — Dropout (applied to the
first 3 blocks) — ReLU. Skip connections pass information directly between similarly-sized
encoder and decoder layers. The discriminator architecture (Figure 8) is a classifier that
classifies a patch of the model output as either real (STOMP output) or fake (generator output).
Each discriminator block is 2D Convolution — BatchNorm — Leaky ReLU.

All inputs were on a 100 x 10 grid. Input layers were padded to achieve dimensions that are
powers of two (128 x 16) to enable symmetric convolution and deconvolution. Cropping layers
are applied to output so that predictions are on the original 100 x 10 grid.

Neural networks were trained separately for predicting dissolved CO- and dissolved salt. The
training batch size was 1. There were ten model inputs for the dissolved CO- and dissolved salt
deep learning models (Table 1). Given the STOMP grid dimensions of 100 x 10, the deep
learning model inputs were a 4-dimensional tensor of size [batch size, 100, 10, 10] and model
outputs were a 4-dimensional tensor of [batch size, 100, 10, 1].

Isola et al. (2017) used the Adam optimizer for rapid convergence. However, use of this
aggressive optimizer can lead to mode collapse of the GAN, wherein the generator predicts the
same solution for every time step. Zhong et al. (2019) solved this problem using the SCP
optimizer and only updating the discriminator every 5 epochs. However, that solution required
thousands of training epochs. To avoid mode collapse, the original Adam optimizer was used
with a reduced training rate for the discriminator (2x10°) which was two orders of magnitude
lower than that for the generator (2x10™*). This modification resulted in acceptable predictions in
100 training epochs and avoided mode collapse.

Training 15

[(None, 1

input_1: InputLa
{nput putiayer [None, 1

00, 1, 10, 10)]
00, 1, 10, 10)]

zero_padding3d: ZeroPadding3D

input: | (None, 100, 1. 10, 10)

output: | (None. 128, 1. 16. 10)

| input: IiNeneA

128.1,16, 10) |

| i fl: Sequential | output: I (None,

64.1.16.64) |

) . input: | (None, 64, 1, 16, 64)
sequential_1: Sequential
output: | (None, 32. 1. 16. 128)

[Cinput: T None. 32. 1.16.128) |
[output: [None, 16, 1, 16, 256) |

| sequential _2:

| sequential_3: Sequential

(None, 16, 1. 16, 256)
(None, 8, 1, 8,256)

sequential _4:

[input: | (None. 8. 1.8, 256) |

[output: [(None, 4.1.4.256) |

[inpu: | (None, 4,1.4,256) |

sequential _S:

| output: | (None, 2, 1,2, 256) |

[input: | (None, 2,1

£2.256) |

sequential_6: Se

| output: | (None. 1. 1

.1,256) |

[input:] (None. 1.1

.1.256) |

sequential_7: Sequential
I output: I (None, 2, 1

.2.256) |

[input: | T(None, 2,

1.2, 256), (None, 2, 1,2,256)] |

[output:

(None, 2, 1,2,512) |

sequential_§: Sequential

(None, 2, 1,2, 512)
(None, 4, 1, 4, 256)

LG [input: T [(None. 4, 1. 4.256). (None, 4, 1. 4. 256)] |
’ [output: | (None. 4, 1, 4,512) |
s input: | (None, 4. 1,4,512) |
I st % ouput. | (None, 8. 1.8, 256) |
e [input: T [None, 8. 1, 8.256). (None, 8, 1, 8. 256)] |
- [output: | (None, 8, 1, 8, 512) |
o [input:] (None.8.1,8.512) |
‘ sequential_I0: [output: | (None. 16. 1. 16.256) |
e [input: T ((None, 16, 1, 16.256). (None, 16, 1. 16, 256)] |
- [output: | (None. 16, 1. 16.512) |

o [inpu: | None, 16,1, 16.512) |

‘ sequental_L1: Se [Coutput: | None, 32,1, 16. 128) |
. e [input:] [(None, 32, 1,16, 128), (None, 32, 1. 16, 128)] |
= [Coutput: | (None, 32, 1, 16, 256) |
12 [input:] (None. 32, 1. 16,256) |
sequential 12 [Couput: | None. 64, 1. 16.64) |

[input: T [(None, 64,1, 16, 64), (None, 64, 1. 16,64)] |

| output:] (None. 64.

1. 16, 128) |

cropping3d: Cropping3D

Figure 7. Generator Architecture

Training

PNNL-32590

16

input: | [(None. 100, 1. 10. 10)]

input_image: InputLayer
output:

[(None, 100, 1, 10, 10)]

:

target_image: InputLayer

input:

[(None, 100, 1, 10, 1)]

output:

[(None, 100, 1, 10. 1)]

:

input:

(None, 100, 1, 10. 10)

zero_padding3d_1: ZeroPadding3D

output:

(None, 128, 1. 16, 10)

7e10_

dding3d_2: ZeroPadding3D

input:

(None, 100, 1. 10, 1)

output:

(None, 128, 1. 16, 1)

T~

/

input: | [(None, 128, 1. 16, 10), (None, 128, 1, 16, 1)]

te_6: C
output: (None, 128, 1. 16, 11)
13: S | input: | (None. 128, 1. 16, 11)
N h output: [(None, 64, 1, 8, 64)
X X input: | (None, 64. 1. 8. 64)
sequential_14: Seq al
output: | (None, 32, 1. 4, 128)

!

zero_padding3d_3: ZeroPadding3D

input: | (None. 32, 1. 4, 128)

output:

(None, 34, 1. 6, 128)

\

conv3d_9: Conv3D

input:

(None, 34, 1.6. 128)

output:

(None, 31. 1,3, 256)

I

batch_normalization_13: BatchNormalization

input:

(None, 31. 1, 3.256)

output:

(None, 31, 1, 3,256)

I

leaky_re_lu_9: LeakyReLU

input:

(None, 31. 1, 3. 256)

output:

(None, 31, 1. 3, 256)

'

input: | (None, 31. 1. 3.256)

zero_padding3d_4: ZeroPadding3D

output: | (None, 33, 1. 5. 256)

.

input:
conv3d_10: Conv3iD

(None, 33, 1. 5. 256)

output:

(None, 30. 1. 2. 1)

Figure 8. Discriminator Architecture

PNNL-32590

Figure 9 shows that on average the mean absolute error (L1 loss) between the dissolved salt

mass fractions predicted by the deep learning model decreases with each training epoch.

102{ ®e
A °
S
- °
® ° o.':. .
g ..5...00 °° ° ° .
T °® ® ®%e ° o ¢
O 1073 ° QO.O..eo..’. ° 'o.
® e %% e o o e oo,
° ° Co o oo °
° ° o o ’.
.\
0 20 40 60 80 100
Epoch

Figure 9. Generator L1 Loss during Training (2100-2499m salt mass fraction)

Training

17

PNNL-32590

The generator loss function is equal to the GAN loss + lambda * L1 loss, where the L1 loss is
the mean absolute error between STOMP simulation results and the machine learning model
prediction. Lambda is a weighting factor to ensure that the two terms in the loss function are of
the same order of magnitude. Values of 100 for lambda were used. The GAN loss is sigmoid
cross entropy (binary classification), indicating how often a result generated by the machine
learning model is classified correctly. The discriminator loss is equal to the sum of two binary
classification losses, one for classifying “real” images (STOMP predictions) correctly and
another for classifying “fake” images (generator predictions) correctly. If either the generator
GAN loss or the discriminator loss gets very low it's an indicator that one model is dominating
the other, and the combined model is not training successfully. The value log(2) = 0.69 for the
generator and 2 x log(2) = 1.395 for the discriminator are good reference points for these
losses, as it indicates a perplexity of 2, where the discriminator is on average equally uncertain
about the two options. The loss functions for the discriminator (Figure 10) and the generator
(Figure 11) were monitored during training using Tensorboard to ensure that they remained
close to these values.

[]
1.392 A
@ 1.390
o []
f L4 °
o
‘s 1.388 °
k= ° ° o L4
£ o o o L/ °
= oo 0@, 000 ®0ot%
3 1.386 o N %W o« ®ac® S ene’ o,
=) oo ° 'Y ° o Qo ° [J
° ° ® []
1.384
[]
L]
1.382 1 . .
0 20 40 60 80 100

Epoch

Figure 10. Discriminator Loss during Training (2100-2499m salt mass fraction)

0.7000 A

0.6975 A °

0.6950 1 % S o °° > ®

Generator Gan Loss
o o o
[*)] [=)] [=)]
© © O
~ o N
w o w

[]
[]
[]

[]
L]
L

0.6850 - °
0.6825 -
0.6800{ ©
0 20 40 60 80 100
Epoch

Figure 11. Generator GAN Loss during Training (2100-2499m salt mass fraction)

Training 18

6.0 Validation

PNNL-32590

During training, the model was saved every 20 epochs. Each saved model was run against the
validation dataset representing 10% of the data. L1 loss is the mean absolute error between

STOMP simulation results and the machine learning model prediction. The generator L1 loss for
each depth interval for CO2 mass fraction is shown in Figure 12.

0.0004

0.00035

w
< 0.0003
=

0.00025

0.0002
20

Figure 12. Generator MAE during Validation (CO2 mass fraction).

As long as the validation loss continues to decrease during training, the model is not overfitting.

40

60
Epoch

80

100

——100-499m
500-899m
900-1299m
1300-1699m

——1700-2099m

——2100-2499m

—2500-2899m

——2900-3299m

——3300-3699m

——3700-4099m

For each depth interval, the model with the lowest validation error is saved for further testing.

For example, for the 900-1299m depth interval, the validation loss is lowest for the model saved
after 100 training epochs, so this model is used for further testing. However, for the 2900-3299m

depth interval, the validation loss is lowest for the model saved at 60 training epochs, so that

model is used for further testing. A similar selection process was used to select the best models

for testing aqueous salt models (Figure 13).

Validation

19

0.00045
0.0004
0.00035

2 00003
<o

0.00025

0.0002

0.00015
20 40 60 80
Epoch

Figure 13. Generator MAE during Validation (Salt mass fraction).

Validation

100

PNNL-32590

——100-499m
——500-899m
——900-1299m
1300-1699m
——1700-2099m
——2100-2499m
——2500-2899m
——2900-3299m
——3300-3699m
——3700-4099m

20

Testing

7.0 Testing

The optimal models identified during validation (Section 6.0) were run on the test dataset

PNNL-32590

consisting of 10% of the data. Example results for a large (mostly) CO- leak are shown in Figure
14. The absolute error is generally low except for a few spots on the edge of the plume. The

same is true for different example results of a (mostly) salt leak shown in Figure 15.

Time: 70.0 yr; CO, Mass: 7.09E+08, kg; Water Mass: 2.57E+03, kg; Salt Mass: 1.01E+02, kg; MAE: 5.11E-04

~N
@
]
o

Depth (m)

NOONN
20w
S ® o
S o o

Target Aqueous CO», mass fraction
r 0.056

- 0.048
- 0.040
-0.032
r0.024
r0.016
r0.008
[0.000

Depth (m)

T T T T T T T ~--0.008
400 600 800 1000 1200 1400 1600

Radial Distance from Well (m)

Predicted Aqueous CO,, mass fraction

i
|
)
o
S
®

400 600 800 1000 1200 1400 1600
Radial Distance from Well (m)

Aqueous CO, Difference, mass fraction

2320,

2340

Depth (m)
~
I
&
3

2380

2400

& 0.016

400 600 800 1000 1200 1400 1600
Radial Distance from Well (m)

Figure 14. Comparison of target and predicted CO2 mass fraction after leak consisting of

7.09x108 kg CO2 and 2.57x10° kg water containing 1.01x10? kg salt.

Time: 70.0 yr; CO, Mass: 1.26E+00, kg; Water Mass: 4.39E+09, kg; Salt Mass: 1.93E+08, kg; MAE: 6.50E-04

Target Aqueous Salt, mass fraction

2250

2275

2300

Depth (m)

2325

2350

- 0.045
- 0.040
-0.035
- 0.030
- 0.025
r 0.020
r 0.015
0.010
r 0.005
~-0.000

600 800 1000 1200 1400 1600
Radial Distance from Well (m)

Predicted Aqueous Salt, mass fraction

Depth (m)

r 0.045
- 0.040
- 0.035
-0.030
r 0.025
I-0.020
r 0.015
r0.010
r 0.005
—-0.000

600 800 1000 1200 1400 1600
Radial Distance from Well (m)

Aqueous Salt Difference, mass fraction

0.018
0.015
0.012
0.009
0.006
0.003
0.000
—0.003
—0.006

200

T T T v v y —0.009
400 600 800 1000 1200 1400 1600

Radial Distance from Well (m)

Figure 15. Comparison of target and predicted salt mass fraction after leak consisting of 1.26 kg

CO; and 4.39x10° kg water containing 1.93x10°® kg salt.

21

PNNL-32590

The testing dataset for each depth interval consists of 625 simulations. With a grid of 100x10 =
1000 cells and 17 saved time steps, this results in 10,625,000 different points in space and time
to compare for each of the 10 depth intervals and 2 types of prediction (CO and salt).
Scatterplots comparing the target STOMP results and the predictions of the machine learning
model for each depth interval are shown in Figure 16 for aqueous CO, mass fraction and in
Figure 17 for aqueous salt mass fraction. The aqueous CO, mass fraction range up to values on
the order of 10 and aqueous salt mass fractions range up to values on the order of 10™.

The mean absolute error between mass fractions predicted by STOMP and the deep learning
model for all points in each depth interval are shown in Table 2. The mean absolute error was
calculated using the following python functions:

def_error(actual: np.ndarray, predicted: np.ndarray):
" Simple error """
return actual - predicted

def mae(actual: np.ndarray, predicted: np.ndarray):
" Mean Absolute Error """
return np.mean(np.abs(_error(actual, predicted)))

The mean absolute error between the aqueous CO» and aqueous salt are two to three orders of
magnitude lower, on the order of 10, with the worst fit being for CO> in the shallowest depth
interval. Since in the 100-499m depth interval the large variability of thermodynamic properties
of free phase CO. is expected as the conditions are close to its critical point, modeling is more
difficult to fit a single model.

Table 2. Mean Absolute Error (MAE) for agueous mass fraction predictions in each depth
interval.

MAE, Salt MAE, CO:
Depth Interval Mass Fraction Mass Fraction

100-499m 2.82E-04 5.56E-04
500-899m 1.98E-04 2.58E-04
900-1299m 2.03E-04 2.68E-04
1300-1699m 1.98E-04 2.61E-04
1700-2099m 2.13E-04 2.74E-04
2100-2499m 2.37E-04 2.80E-04
2500-2899m 1.90E-04 2.84E-04
2900-3299m 3.15E-04 3.24E-04
3300-3699m 2.06E-04 2.46E-04
3700-4099m 2.70E-04 3.05E-04

Testing 22

Testing

107

10-12

107

Predicted

102

10-21

10772

1077

10712

10717

Predicted

102

10-2

103

1072

10”7

10712

10717

Predicted

1022

10777

1022

1077

107

10712

1077

Predicted

1072
1077

10-%

Figure

Aqueous CO; Mass Fraction 100-499m

107 1077 10°% 10V 107 1077 107
Target

Agqueous CO; Mass Fraction 1300-1699m

1072 1077 102 10V 102 1077 1072
Target

Aqueous CO; Mass Fraction 2500-2899m

107% 10777 10°%2 1077 10°2 107 1072
Target

Agueous CO; Mass Fraction 3700-4099m

107% 10777 10°% 1077 1072 1077 1072
Target

16. Comparison of target and predicted CO, mass fraction for all grid locations and times

1072

10-1

Predicted

10722

104

1072

102

107

1072

1047

Predicted

102

10777

102

10

1077

1012

1017

Predicted

102

1027

10-2

Aqueous CO, Mass Fraction 500-899m

1077 1077 10°% 10V 10 107 107
Target

Agqueous CO; Mass Fraction 1700-2099m

1072 1077 1072 10 107 107 1072
Target

Aqueous CO; Mass Fraction 2900-3299m

1072 1077 10°%2 1077 1072 1077 1077
Target

in the test dataset.

10-?

107

102

1077

107

10

Aqueous CO, Mass Fraction 900-1299m

102 107 107 107 107 1077 107
Target

Aqueous CO; Mass Fraction 2100-2499m

1072 1077 102 10717 1072 1077 10-2
Target

Aqueous CO; Mass Fraction 3300-3699m

1072 1077 1072 1077 10712 107 1072
Target

PNNL-32590

23

Testing

PNNL-32590

Aqueous Salt Mass Fraction 100-499m Aqueous Salt Mass Fraction 500-899m Aqueous Salt Mass Fraction 900-1299m
1
10 10" 10
1072
10 102
2 2 g0
& 107 & 107 & 10 7
e
/
107 s 10
-
o ’]
.
107
10-5
10-* 10~ 10 102 10- 10 10- 10 10-! 10°* 10 100 107 107 107!
Target Target Target
Aqueous Salt Mass Fraction 1300-1699m Aqueous Salt Mass Fraction 1700-2099m Aqueous Salt Mass Fraction 2100-2499m
107 107 107
2 10
“ 1072 o 1072 b
E £ g
z z g
£ " & € 0
/ 107 /
> 4 0 7
’ t 4 10+ .
10 » ¢
’ 1044 ,*
v
107 107 1077 10 1074 10-* 1077 107 10-* 107 1077 107
Torget Target Target
Aqueous Salt Mass Fraction 2500-2899m Aqueous Salt Mass Fraction 2900-3299m Agueous Salt Mass Fraction 3300-3699m
1
107 101 10 /
1072
3107 p107? 3
i z 2
[& £ 107
107 10
»
10- -
.
. #
104 10 s
5 107
10 1077 1072 1071 10 1072 1072 10° 107 107 107 1072 107
Target Torget Target
Aqueous Salt Mass Fraction 3700-4099m
107t 7
F
102
=
&
g 1077
&
'
.
104 8
*
10,
107 107 1073 1072 107

Target

Figure 17. Comparison of target and predicted salt mass fraction for all grid locations and times
in the test dataset.

As seen in Figure 14 and Figure 15, the machine learning model seems to predict the shape of
CO2 and salt plumes accurately. To confirm this, the plume volume was determined as
described in Section 4.0, for both CO; and salt for both the STOMP simulation and the machine
learning model at all time steps in the test dataset for each depth interval. Assuming a threshold
mass fraction of 0.02, the predicted plume volumes range in size up to 10'® m* for aqueous CO>
(Figure 18) and up to 10° m® for aqueous salt (Figure 19). The mean absolute error between the
target and predicted plume volumes (Table 3) is on the order of 107, which is several orders of
magnitude lower than the maximum plume size.

24

Testing

Predicted

10°

10°

Agueous CO; Volume, m? 100-499m

Target

Aqueous CO; Volume, m? 1300-1699m

Target

Aqueous CO; Volume, m? 2500-2899m

10° 10° 107 10°

Aqueous CO;, Volume, m? 3700-4099m

10° 10° 107 10°
Target

Predicted

Predicted

Predicted

10°

£

10°

107

2

107

10°

2

10°

Agueous CO; Volume, m? 500-899m

Agueous CO; Volume, m? 1700-2099m

Target

Aqueous CO; Volume, m? 2900-3299m

10° 10* 107 10°
Torget

Ppredicted

Predicted

Predicted

101

10°

107

10°

10°

10°

10°

Aqueous CO; Volume, m? 900-1299m

10° 10* 10" 10°
Target

Agqueous CO; Volume, m? 2100-2499m

101

10° 10° 107 10°
Target

Aqueous CO; Volume, m? 3300-3699m

PNNL-32590

Figure 18. Comparison of target and predicted plume volume (m?®) assuming a threshold CO,
mass fraction of 0.02.

25

Testing

Predicted

Predicted
=
2

Predicted
-
2

10°

10?

107

Aqueous Salt Volume, m* 100-499m

100 100 10* 10° 10° 10" 10° 10°
Target

Aqueous Salt Volume, m* 1300-1699m

i

102 10° 10° 10° 10° 10" 10" 10°
Target

Aqueous Salt Volume, m* 2500-2899m

102100 104 10° 205 107 10° 10°
Target

Aqueous Salt Volume, m* 3700-4099m

107 10° 100 10° 105 107 10° 10°
Target

Predicted

Predicted

Predicted

Aqueous Salt Volume, m* 500-899m

10° 100 10° 10° 10° 10" 10° 10°
Target

Agueous Salt Volume, m* 1700-2099m

10 10° 10° 10° 10° 10" 10° 10°
Target

Aqueous Salt Volume, m* 2900-3299m

107 10° 10 10° 10° 107 10° 10°
Torget

Predicted

Aqueous Salt Volume, m* 900-1299m

10 10° 10 10° 10° 10" 10* 10°
Target

Aqueous Salt Volume, m* 2100-2499m

102 10 10' 10° 10° 10° 10* 10°
Target

Aqueous Salt Volume, m? 3300-3699m

PNNL-32590

Figure 19. Comparison of target and predicted plume volume (m?®) assuming a threshold salt

mass fraction of 0.02.

26

PNNL-32590

Table 3. Mean Absolute Error (MAE) for plume volume predictions in each depth interval.

MAE, CO. MAE, Salt
Impact Volume Impact Volume
Depth Interval (m) (m?)
100-499m 3.00E+07 2.54E+06
500-899m 1.16E+07 1.60E+06
900-1299m 3.03E+07 1.41E+06
1300-1699m 1.07E+07 1.46E+06
1700-2099m 1.18E+07 1.28E+06
2100-2499m 9.73E+06 1.64E+06
2500-2899m 1.07E+07 1.71E+06
2900-3299m 2.18E+07 1.80E+06
3300-3699m 5.49E+06 1.54E+06
3700-4099m 1.14E+07 1.57E+06

Because the mass fractions and plume volumes have such different ranges, it is difficult to
compare the accuracy between their models. For this comparison, a different error metric is
used, normalized mean square error (NRMSE). The NRMSE facilitates the comparison
between models with different scales, and was calculated using the following python functions:

def_error(actual: np.ndarray, predicted: np.ndarray):
mon Simple er‘r‘or‘ mon
return actual - predicted

def mse(actual: np.ndarray, predicted: np.ndarray):
""" Mean Squared Error
return np.mean(np.square(_error(actual, predicted)))

def rmse(actual: np.ndarray, predicted: np.ndarray):
""" Root Mean Squared Error
return np.sqrt(mse(actual, predicted))

def nrmse(actual: np.ndarray, predicted: np.ndarray):
""" Normalized Root Mean Squared Error
return rmse(actual, predicted) / (actual.max() - actual.min())

The results shown in Figure 20 show that the NRMSE for CO; volume predictions are 3-5 times
lower than for CO, mass fraction predictions. The NRMSE for salt volume predictions are on the
same order as the NRMSE for salt mass fractions. So in general, the accuracy of the plume
predictions is either better or about the same as the pointwise mass fraction predictions.

Testing 27

PNNL-32590

0.06
0.05
0.04
L
N
= 0.03
o
zZ
0.02
N II II I I
0 TRURERRURER Y
< <
> P = s° s s s $° s s
X O Q © Q X > Vv © Q
X & & & & & v N & &
N 2 Q Q Q QS Q Q Q Q
A S
m CO2 Mass Fraction = CO2 Volume Salt Mass Fraction = Salt Volume

Figure 20. Normalized Root Mean Square Error comparison for all deep learning model
predictions in test dataset.

Testing 28

PNNL-32590

8.0 Output Processing for DREAM

The Designs for Risk Estimation and Management (DREAM) tool was developed to assist in
determining optimal placement of monitoring devices to detect carbon dioxide (CO,) leakage
from storage formations. DREAM optimizes across user-provided output from subsurface
leakage simulations with the objective of identifying monitoring schemes that minimize time to
first detection of user-specified leakage indicators. DREAM employs a simulated annealing
approach that searches the solution space by iteratively mutating potential monitoring schemes
built of various configurations of monitoring locations and leak detection parameters. This
approach has proven to be orders of magnitude faster than an exhaustive search of the entire
solution space (Yonkofski et al. 2020).

An example python script named iam_sys_analytical_mswell_generic_lhs.py can be found in
the NRAP-Open-lIAM examples/scripts folder and is listed in Appendix B. The script builds a
system model consisting of an analytical reservoir component, a multisegmented wellbore
component, and a generic aquifer component. Twenty-five simulations are run using Latin
Hypercube Sampling. The results of these simulations are then converted into an HDF5 file
format suitable for further analysis with DREAM.

The generic aquifer component generates predictions on a 100x10 cylindrical grid, centered on
each well. DREAM expects simulation results to be on a 3D structured grid. A utility gridding
module named enmesh.py (included with NRAP-Open-IAM) facilitates this conversion. Finally,
the results for each of the 25 results are written to HDF5 files in the required format.

Output Processing for DREAM 29

PNNL-32590

9.0 Conclusions

The new Generic Aquifer component of NRAP-Open-IAM calculates the concentrations of
dissolved salt and dissolved CO. surrounding a leaking legacy well, and estimate the volume of
an “impact plume” where concentration changes exceed user-specified thresholds. The input
parameters were selected to cover a wide range of groundwater aquifers and leakage rates.
The generic aquifer model was developed using a generative adversarial deep learning
network, trained using a large synthetic dataset of STOMP multiphase flow simulations. The
deep learning model predictions of dissolved salt and dissolved CO: in the aquifer compare well
to the original STOMP simulation results. The extent of aquifer impacted by leaking CO- or brine
is calculated using a user-defined mass fraction threshold. The aquifer impact volumes
calculated based on the deep learning model compare well to those calculated based on
STOMP simulation results. Gridded observation results from the generic aquifer component of
NRAP-Open-IAM can be converted to HDF5 format files to use as input for monitoring design
with the DREAM code.

Conclusions 30

PNNL-32590

10.0 References

Bacon DH, NP Qafoku, ZX Dai, EH Keating, and CF Brown. 2016. “Modeling the impact of
carbon dioxide leakage into an unconfined, oxidizing carbonate aquifer.” International
Journal of Greenhouse Gas Control 44:290-299. 10.1016/j.ijggc.2015.04.008.

Bacon DH, CMR Yonkofski, CF Brown, DI Demirkanli, and JM Whiting. 2019. “Risk-based post
injection site care and monitoring for commercial-scale carbon storage: Reevaluation of
the FutureGen 2.0 site using NRAP-Open-IAM and DREAM.” International Journal of
Greenhouse Gas Control 90:102784. 10.1016/j.ilggc.2019.102784.

Bloomfield JP, MA Lewis, AJ Newell, SE Loveless, and ME Stuart. 2020. “Characterising
variations in the salinity of deep groundwater systems: A case study from Great Britain
(GB).” Journal of Hydrology: Regional Studies 28. 10.1016/j.ejrh.2020.100684.

Carroll SA, M Bianchi, K Mansoor, L Zheng, Y Sun, N Spycher, and J Birkholtzer. 2016.
Reduced-Order Model for Estimating Impacts from CO2 Storage Leakage to Alluvium
Aquifers: Third-Generation, Combined Physical and Chemical Processes. NRAP-TRS-
[1-009-2016, U.S. Department of Energy, National Energy Technology Laboratory,
Morgantown, WV.

FutureGen Industrial Alliance I. 2013. Underground Injection Control Permit Applications for
FutureGen 2.0 Morgan County Class VI UIC Wells 1, 2, 3, and 4 — Supporting
Documentation. FG-RPT-017-Revision 1, Jacksonville, lllinois.

Iman RL, JC Helton, and JE Campbell. 1981. “An Approach to Sensitivity Analysis of Computer
Models: Part I—Introduction, Input Variable Selection and Preliminary Variable
Assessment.” Journal of Quality Technology 13(3):174-183.
10.1080/00224065.1981.11978748.

Keating E, D Bacon, S Carroll, K Mansoor, YW Sun, LE Zheng, D Harp, and ZX Dai. 2016.
“Applicability of aquifer impact models to support decisions at CO2 sequestration sites.”
International Journal of Greenhouse Gas Control 52:319-330.
10.1016/j.ijggc.2016.07.001.

NETL. 2015. Carbon Storage Atlas, 5th Edition. National Energy Technology Laboratory,
Pittsburgh, PA.

NETL. 2018. Carbon Storage Research, 11/1.

Pawar RJ, GS Bromhal, SP Chu, RM Dilmore, CM Oldenburg, PH Stauffer, YQ Zhang, and GD
Guthrie. 2016. “The National Risk Assessment Partnership's integrated assessment
model for carbon storage: A tool to support decision making amidst uncertainty.”
International Journal of Greenhouse Gas Control 52:175-189.
10.1016/j.ijggc.2016.06.015.

Pedregosa F, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, M Blondel, P
Prettenhofer, R Weiss, V Dubourg, J Vanderplas, A Passos, D Cournapeau, M Brucher,
M Perrot, and E Duchesnay. 2011. “Scikit-learn: Machine Learning in Python.” Journal of
Machine Learning Research 12:2825-2830.

Romanak KD, RC Smyth, C Yang, SD Hovorka, M Rearick, and J Lu. 2012. “Sensitivity of
groundwater systems to CO2: Application of a site-specific analysis of carbonate
monitoring parameters at the SACROC CO2-enhanced oil field.” International Journal of
Greenhouse Gas Control 6:142-152. 10.1016/j.ijggc.2011.10.011.

Ronneberger O, P Fischer, and T Brox. 2015. “U-Net: Convolutional Networks for Biomedical
Image Segmentation.” Medical Image Computing and Computer-Assisted Intervention,
Pt 1ii 9351:234-241. 10.1007/978-3-319-24574-4_28.

USEPA. 2010. Federal Requirements Under the Underground Injection Control (UIC) Program
for Carbon Dioxide (CO2) Geologic Sequestration (GS) Wells. EP Agency. 237.
Federal Register.

References 31

PNNL-32590

Vasylkivska V, R Dilmore, G Lackey, YQ Zhang, S King, D Bacon, BL Chen, K Mansoor, and D
Harp. 2021. “NRAP-open-lIAM: A flexible open-source integrated-assessment-model for
geologic carbon storage risk assessment and management.” Environmental Modelling &
Software 143. 10.1016/j.envsoft.2021.105114.

Vaught TL. 1980. Assessment of the geothermal resources of lllinois based on existing
geologic data. United States. 10.2172/6773972

Yonkofski CM, JM Whiting, BZ Huang, and AC Hanna. 2020. Designs for Risk Evaluation and
Management (DREAM) Tool User’s Manual, Version: 2020.01-2.0. NRAP-TRS-III-001-
2020, National Energy Technology Laboratory, Morgantown, WV.

References 32

Appendix A — STOMP Input
A.1 STOMP Input File Template

~Simulation Title Card

1,

Generic Aquifers,

D.H. Bacon,

Pacific Northwest National Laboratory,
03 Mar 2021,

11:11 AM PDT,

1,

CO2 and brine leakage into aquifers

~Solution Control Card

Normal,

STOMP-CO2E w/isothermal,

2,

0,s,100,yr,0.001,s,0.01,yr,1.05,16,1.e-06,
100,yr,170,yr,0.001,s,0.001,yr,1.05,16,1.e-06,
999999,

Variable Aqueous Diffusion,

Variable Gas Diffusion,

0,

~Grid Card

Cylindrical,

100,1,10,

0.00,m, 3.24,m, 6.73,m, 10.49,m, 14.56,m, 18.94,m, 23.67,m, 28.77,m, 34.27,m,
40.20,m, 46.60,m, 53.51,m, 60.96,m, 69.00,m, 77.67,m, 87.02,m, 97.11,m,
107.99,m, 119.73,m, 132.40,m, 146.06,m, 160.80,m, 176.70,m, 193.85,m, 212.35,m,
232.31,m, 253.84,m, 277.07,m, 302.12,m, 329.15,m, 358.31,m, 389.76,m, 423.69,m,
460.29,m, 499.77,m, 542.37,m, 588.31,m, 637.88,m, 691.35,m, 749.03,m, 811.25,m,
878.37,m, 950.77,m, 1028.88,m, 1113.14,m, 1204.04,m, 1302.09,m, 1407.87,m,
1521.97,m, 1645.06,m, 1777.84,m, 1921.08,m, 2075.60,m, 2242.29,m, 2422.11,m,
2616.08,m, 2825.33,m, 3051.06,m, 3294.57,m, 3557.25,m, 3840.61,m, 4146.29,m,
4476.05,m, 4831.77,m, 5215.50,m, 5629.45,m, 6076.00,m, 6557.72,m, 7077.37,m,
7637.94,m, 8242.66,m, 8895.00,m, 9598.71,m, 10357.83,m, 11176.74,m, 12060.13,m,
13013.09,m, 14041.10,m, 15150.06,m, 16346.35,m, 17636.85,m, 19028.97,m,
20530.72,m, 22150.73,m, 23898.32,m, 25783.53,m, 27817.19,m, 30011.01,m,
32377.58,m, 34930.52,m, 37684.51,m, 40655.36,m, 43860.17,m, 47317.36,m,
51046.79,m, 55069.92,m, 59409.86,m, 64091.57,m, 69141.96,m, 74590.06,m,
80467.20,m,

0.0,deg,1,degq,

?bottom,m,?dz,m,

~Rock/Soil Zonation Card

1,
Aquifer,1,100,1,1,1,10,

Appendix A

PNNL-32590

A1

PNNL-32590

~Mechanical Properties Card
Aquifer, 2650, kg/m”3, ?por, ?por, 1e-06, 1/m, Millington and Quirk,

~Hydraulic Properties Card
Aquifer,?permh, m*2, ?permh, m”*2, ?permv, m*2,

~Saturation Function Card
Aquifer,Brooks and Corey w/ Entrapment, ?psi,, ?lambda, ?srw, 0.2,

~Aqueous Relative Permeability Card
Aquifer,Burdine,,

~Gas Relative Permeability Card
Aquifer,Burdine,,

~Salt Transport Card
Aquifer, 1.0, ft, 0.1, ft,

~Solute/Porous Media Interactions Card
Aquifer, 1.0, ft, 0.1, ft,

~Thermal Properties Card
Aquifer,Parallel,2.38, W/m K,2.38, W/m K,2.38,W/m K,930,J/kg K,

~Species Link Card

2,

H+,pH,
Total_CO2(aq),Aqueous CO2,

~Initial Conditions Card
Hydrostatic,32.0,MPa,-3169.5,m,23,C,0,m,-0.0217,C/m,?aquifer_salinity,-2700.0,m,0,1/m,

~Boundary Conditions Card

3,

East,Aqueous Unit Gradient,Gas Initial Condition,Salt Outflow,
100,100,1,1,1,10,1,

Bottom,Aqueous Zero Flux,Gas Zero Flux,Salt Zero Flux,
1,100,1,1,1,1,1,

Top,Aqueous Zero Flux,Gas Zero Flux,Salt Zero Flux,
1,100,1,1,10,10,1,

~Source Card

2,

CO2 Leak

Gas Mass Source,Water Relative Humidity,1,1,1,1,2,9,1,
100,yr,?source_pressure,MPa,?co2_rate, kg/s,0.0,,,,,,

Brine Leak

Appendix A A2

PNNL-32590

Aqueous Mass Source, Dissolved Salt Mass Fraction, NULL,1,1,1,1,2,9,1,
100,yr,?source_pressure,MPa,?brine_rate,kg/s,?reservoir_salinity,,,,,,

~Surface Flux Card

2,

Aqueous Mass Flux,kg/s,kg,East,100,100,1,1,1,10,
Gas CO2 Flux,kg/s,kg,East,100,100,1,1,1,10,

~Output Options Card

1,

1,1,5,

1,1,year,m,deg,6,6,6,

8,

Integrated CO2 Mass, kg,
Integrated CO2 Aqueous,kg,
Integrated CO2 Gas,kg,
Integrated CO2 Mass Source,kg,
CO2 Aqueous Mass Fraction,,
Gas Pressure,MPa,
Temperature,C,

Aqueous Salt Mass Fraction,,
17,

100,yr,

101,yr,

102,yr,

105,yr,

110,yr,

115,yr,

120,yr,

125,yr,

130,yr,

135,yr,

140,yr,

145,yr,

150,yr,

155,yr,

160,yr,

165,yr,

170,yr,

23,

X Node Centroid,m,

Y Node Centroid,m,

Z Node Centroid,m,
Rock/Soil type,,

Diffusive Porosity,,
x-intrinsic permeability,m"2,
z-intrinsic permeability,m”2,
Gas Saturation,,
Temperature,C,

Aqueous Pressure,MPa,
Gas Pressure,MPa,

Appendix A A3

PNNL-32590

CO2 Aqueous Mass Fraction,,
Aqueous Salt Mass Fraction,,
Aqueous Density,kg/m”3,
xnc Aqueous Vol,m/yr,

ync Aqueous Vol,m/yr,

znc Aqueous Vol,m/yr,

CO2 Mass Source Intkg,
H20 Mass Source Int,kg,
CO2 Mass Source Rate,kg/s,
H20 Mass Source Rate,kg/s,
Salt Mass Source Int,kg,

Salt Mass Source Rate,kg/s,

A.2 Python Script to Generate STOMP Input Files

glob
numpy np
0s
string
re
argparse
pandas pd
sklearn.model_selection train_test_split

get_trailing_number(s):

m = re.search(r'\d+$', s)
int(m.group()) m None
make_run_dirs(df,)) E
input_list = []
substitute_parameters/() DE
findstring = '?' + parametername
m, line enumerate(input_list):
findstring in line:
line_list = [x.strip() X line.split(',")]
n,1i enumerate(line_list):

findstring in 1i:
line_list[n]=str(parametervalue)
input_list[m] = ",".join(line_list)

input permeability in m"2

output Brooks Corey parameters psi, lambda and residual saturation
rel_perm(JE
permeability < -

. , 0.)
>= 4, and permeability <

. . ,0.)
permeability >= 2. and permeability <

| A | B)

permeability

’

Appendix A A4

pressure

Appendix A

PNNL-32590

return (1.008,1.3532,0.044002)

cmd = "mkdir —-p " + out_dir
os.system(cmd)

for i,sample in df.iterrows():

copy the template folder
dir = out_dir + "/run" + str(i+l)
print('Making directory ', dir)

cnd = "rm -rf " + dir
os.system(cmd)
cnd = "cp -r " + template_dir + " " + dir

os.system(cmd)

read input template into a list

template = dir + "/input.template"

with open(template, 'r') as file_path:
input_list = file_path.readlines()

input_list = [x.strip() for x in input_list]

file_path.closel()

substitute parameters

layers = 10

dz = str(layers) + '@' + str(sample['thick']/layers)
substitute_parameters('dz',dz)
#substitute_parameters('depth',sampl['depth'])

bottom = sample['depth'] — samplel['thick']
substitute_parameters('bottom',bottom)

#salinity = -2.50e-05 * sample['depth'] - 1.11e-02
#substitute_parameters('salinity',salinity)

por = sample['por']

substitute_parameters('por',por)

permh = 10.xxsample['log_permh']
substitute_parameters('permh',permh)

permv = permh / 10.xxsample['log_aniso']
substitute_parameters('permv',permv)

bc_psi, bc_lambda, bc_srw = rel_perm(permh)
substitute_parameters('psi',bc_psi)
substitute_parameters('lambda', bc_lambda)
substitute_parameters('srw',bc_srw)

co2_rate = 10xxsample['log_co2_rate']
substitute_parameters('co2_rate',co2_rate/(layers-2)/360) # 1 degree
brine_rate = 10xxsamplel['log_brine_rate']
substitute_parameters('brine_rate',brine_rate/(layers-2)/360)
source_pressure = 1-sample['depth']*1000%9.81/1E+6 # hydrostatic

substitute_parameters('source_pressure',source_pressure)
aquifer_salinity = sample['aquifer_salinity']
substitute_parameters('aquifer_salinity',aquifer_salinity)
reservoir_salinity = samplel'reservoir_salinity']
substitute_parameters('reservoir_salinity',reservoir_salinity)

print out the new input file
inputfile = dir + '/input'

A5

if __name__ == "_ _main__":

PNNL-32590

thefile = open(inputfile, 'w')
for line in input_list:

print(line, =thefile)

input arguments
parser = argparse.ArgumentParser(='Make simulation

directories')

Appendix A

parser.add_argument('——sample', ='sample file to read')
parser.add_argument('—-—template', ='template folder to copy')
args = parser.parse_args()

df = pd.read_csv(args.sample, =True)

y = range(1,len(df)+1)

df_train, df_rem, y_train, y_rem = train_test_split(

df_vg{: g%_test, y_vai,.yltest = train_iesi_split(
df_rem, y_rem, =0.5, =42)

base=0s.path.basename(args.sample)
out_dir = os.path.splitext(base) [¢]

make_run_dirs(df_train, args.template, out_dir+'/train')

make_run_dirs(df_val, args.template, out_dir+'/valid')
make_run_dirs(df_test, args.template, out_dir+'/test')

A6

PNNL-32590

Appendix B — Example NRAP-Open-IAM script generating
DREAM Files

This example couples the simple reservoir, multisegmented wellbore and
generic aquifer models. The saturation/pressure output produced by simple
reservoir model is used to drive leakage from a single multisegmented
wellbore

model, which is passed to the input of an adapter that provides well
coordinates, |C02| and brine leakage rates and cumulative mass fluxes to the
generic aquifer model. HDF5 files for input to DREAM are created.

Example of run:
$ python iam_sys_reservoir_mswell_generic_lhs.py

import sys,o0s

sys.path.insert(0,o0s.sep.join(['.."',"..", "source']))

import numpy as np

from openiam import SystemModel, AnalyticalReservoir

from openiam import MultisegmentedWellbore, GenericAquifer, RateToMassAdapter
import matplotlib.pyplot as plt

from scipy.interpolate import RegularGridInterpolator

import openiam.enmesh as en

import h5py

if __name__ == "_ _main__":
For multiprocessing in Spyder
__spec__ = None

Define keyword arguments of the system model

num_years = 10

time_array = 365.25%np.arange(0.0,num_years+1)

sm_model_kwargs = {'time_array': time_array} # time is given in days

Create system model
sm = SystemModel(model_kwargs=sm_model_kwargs)

legacy well location
xloc = 200
yloc = 200

Add reservoir component
ares = sm.add_component_model_object(AnalyticalReservoir(name="ares',
parent=sm,
injX=0., injY=0., locX=xloc, locY=yloc))

Add parameters of reservoir component model
ares.add_par('number0OfShaleLayers', value=3, vary=False)
ares.add_par('shalelThickness', value=100.0, vary=False)
ares.add_par('aquiferlThickness', value=100.0, vary=False)
ares.add_par('shale2Thickness', value=100.0, vary=False)
ares.add_par('aquifer2Thickness', value=100.0, vary=False)
ares.add_par('shale3Thickness', value=500.0, vary=False)

Appendix B B.1

PNNL-32590

ares.add_par('injRate', value=1.0, vary=False)

Add observations of reservoir component model
ares.add_obs_to_be_linked('pressure')
ares.add_obs_to_be_linked('C02saturation')
ares.add_obs('pressure')
ares.add_obs('C02saturation')
ares.add_obs('mass_C02_reservoir')

Add multisegmented wellbore component

ms =
sm.add_component_model_object(MultisegmentedWellbore(name="ms"',parent=sm))

ms.add_par('logWellPerm', min=-14.0, max=-12.0, value=-13.0)

Add linked parameters: common to reservoir and wellbore components
ms.add_par_linked_to_par('number0OfShaleLayers',
ares.deterministic_pars['numberOfShaleLayers'])
ms.add_par_linked_to_par('shalelThickness"',
ares.deterministic_pars|['shalelThickness'])
ms.add_par_linked_to_par('shale2Thickness",
ares.deterministic_pars|['shale2Thickness'])
ms.add_par_linked_to_par('shale3Thickness",
ares.deterministic_pars|['shale3Thickness'])
ms.add_par_linked_to_par('aquiferlThickness"',
ares.deterministic_pars['aquiferlThickness'])
ms.add_par_linked_to_par('aquifer2Thickness"',
ares.deterministic_pars['aquifer2Thickness'])
ms.add_par_linked_to_par('reservoirThickness"',
ares.default_pars|['reservoirThickness'])
ms.add_par_linked_to_par('datumPressure’,
ares.default_pars['datumPressure'])

Add keyword arguments linked to the output provided by reservoir model
ms.add_kwarg_linked_to_obs('pressure', ares.linkobs['pressure'])
ms.add_kwarg_linked_to_obs('C02saturation’,

ares. linkobs['CO2saturation'])

Add observations of multisegmented wellbore component model
ms.add_obs_to_be_linked('C02_aquiferl')
ms.add_obs_to_be_linked('C02_aquifer2')
ms.add_obs_to_be_linked('brine_aquiferl")
ms.add_obs_to_be_linked('brine_aquifer2")
ms.add_obs_to_be_linked('mass_C02_aquiferl')
ms.add_obs_to_be_linked('mass_C02_aquifer2')
ms.add_obs_to_be_linked('brine_atm')
ms.add_obs_to_be_linked('C02_atm')
ms.add_obs('brine_aquiferl"')
ms.add_obs('C02_aquiferl')

Add adapter that transforms leakage rates to accumulated mass
adapt =
sm.add_component_model_object(RateToMassAdapter(name="'adapt"',parent=sm))
adapt.add_kwarg_linked_to_collection('C02_aquiferl',
[ms.linkobs['C02 aquiferl'], ms.linkobs['C02 aquifer2']])
adapt.add_kwarg_linked_to_collection('C02_aquifer2',

Appendix B B.2

PNNL-32590

[ms. linkobs['C02 aquifer2'], ms.linkobs['C02 atm']])
adapt.add_kwarg_linked_to_collection('brine_aquiferl',

[ms.linkobs['brine_aquiferl'], ms.linkobs['brine_aquifer2']])
adapt.add_kwarg_linked_to_collection('brine_aquifer2',

[ms.linkobs['brine_aquifer2'], ms.linkobs['brine_atm']])
adapt.add_obs_to_be_linked('mass_C02_aquiferl")
adapt.add_obs_to_be_linked('mass_C02_aquifer2")
adapt.add_obs_to_be_linked('mass_brine_aquiferl")
adapt.add_obs_to_be_linked('mass_brine_aquifer2")
adapt.add_obs('mass_C02_aquiferl')
adapt.add_obs('mass_brine_aquiferl')
adapt.add_obs('mass_C02_aquifer2')
adapt.add_obs('mass_brine_aquifer2')

Add generic aquifer model object and define parameters

ga = sm.add_component_model_object(GenericAquifer(name='ga',parent=sm))

ga.add_par_linked_to_par('aqu_thick"',
ares.deterministic_pars['aquiferlThickness'])

ga.add_composite_par('depth',

expr="ares.shale2Thickness + ares.shale3Thickness' +

'+ ares.aquifer2Thickness')

ga.add_composite_par('depth’',
expr=ares.deterministic_pars['shale2Thickness'].name+

'+'+ares.deterministic_pars['shale3Thickness'].name+
'+'+ares.deterministic_pars['aquifer2Thickness'].name)

ga.add_par('por', value=1.965259282453879763e-01, vary=False)

ga.add_par('log_permh', value=-1.191464515905165555e+01, vary=False)

ga.add_par('log_aniso', value=8.046003470121247947e-01, vary=False)

ga.add_par('aquifer_salinity', value=1.267995018132549341e-02,
vary=False)

ga.add_par('reservoir_salinity', value=4.159677791928499679¢e-02,
vary=False)

ga.add_par('dissolved_salt_threshold', value=0.015, vary=False)

ga.add_par('dissolved_co2_threshold', value=0.001, vary=False)

ga.add_kwarg_linked_to_obs('co2_mass',
adapt. linkobs['mass_C02_aquiferl1'])

ga.add_kwarg_linked_to_obs('brine_mass"',
adapt. linkobs['mass_brine_aquiferl'])

Add observations (output) from the generic aquifer model
ga.add_obs('dissolved_salt_volume')
ga.add_obs('dissolved_co2_volume')

Define output folder to keep data files with gridded observations
output_dir = 'dream_data’

Add gridded observations of the aquifer component

ga.add_grid_obs('r_coordinate', constr_type='matrix',
output_dir=output_dir)

ga.add_grid_obs('z_coordinate', constr_type='matrix',
output_dir=output_dir)

ga.add_grid_obs('dissolved_co2_mass_fraction', constr_type='matrix',
output_dir=output_dir)

ga.add_grid_obs('dissolved_salt_mass_fraction', constr_type='matrix',

Appendix B B.3

PNNL-32590

output_dir=output_dir)

print("
")

print(" UQ illustration ')

print("

")

import random

num_samples = 25

ncpus = 1

Draw Latin hypercube samples of parameter values

s = sm. Lhs(siz=num_samples, sced=random. randint(500,1100))

Run model using values in samples for parameter values
results = s.run(cpus=ncpus,verbose=False)

print("
")

print(" Write DREAM File ')

print("

")

set boundaries of site grid

top = ares.deterministic_pars['aquifer2Thickness'].value +
ares.deterministic_pars|['shale2Thickness'].value +
ares.deterministic_pars(['shale3Thickness'].value

bottom = top + ares.deterministic_pars['aquiferlThickness'].value

grid = en.Grid(xmin=0, xmax=1000, ymin=0, ymax=1000, zmin=top,
zmax=bottom)

set constant grid spacing for vertical axis
grid.get_axis('z').add_zone(min=grid.zmin,
max=grid.zmax).add_ticks(min_spacing=10., mul=0)

add wells
grid.add_well(x=xloc, y=yloc, name='Well 1')

refine grid around wells
grid.refine_grid_around_wells(min_x_spacing=5, min_y_spacing=5,
x_mul=1.5, y_mul=1.5)

get 3D mesh with radial distance from well

XX,YY,zz = grid.get_vertices()

cx,cy,cz = grid.get_centroids()

cr = grid.get_radial_distance(xloc, yloc, cx, cy)
positions = np.vstack(list(zip(cr.ravel(), cz.ravel())))

Read Gridded Observation Coordinates
rcoord =

np. load(os.path.join(output_dir, 'ga_r_coordinate_sim_1_time_0.npz'))['data']
zcoord =

np. load(os.path.join(output_dir, 'ga_z_coordinate_sim_1_time_0.npz'))['data']
r_coord = rcoordl[:,0]
z_coord = np.flip(zcoord[®,:])

Appendix B B.4

PNNL-32590

start simulation loop
for sim in np.arange(l, num_samples+1):

years
steps

= time_array/365.25
= years.astype(int)
Open DREAM file
hdf5 =
hSpy.File(os.path.join(output_dir, 'ga_sim_'+str(sim)+'.h5"'),'w")

write grid and geologic data
gl=hdf5.create_group('data')
gl.create_dataset('porosity’,
data=ga.deterministic_pars['por'].valuexnp.ones_like(cx),dtype="'float32")
gl.create_dataset('steps', data=steps,dtype="'float32"')
gl.create_dataset('times', data=time_array,dtype="'float32')
gl.create_dataset('vertex—x',
data=np.array(xx)[:,0,0],dtype="'float32")
gl.create_dataset('vertex-y',
data=np.array(yy)[0,:,0],dtype="'float32")
gl.create_dataset('vertex-z',
data=np.array(zz)[0,0,:],dtype="'float32")
gl.create_dataset('x',
data=np.array(cx)[:,0,0],dtype="'float32")
gl.create_dataset('y',
data=np.array(cy) [0,:,0],dtype="float32")
gl.create_dataset('z',
data=np.array(cz) [0,0,:],dtype="'float32")
gll'x'].attrs['units'] 'm'
gll'y']l.attrs['units']
gll'z'].attrs['units']
gl['vertex—x'l.attrs['units']
gll'vertex-y'l.attrs['units']
gll'vertex-z']l.attrs['units']
gll'z'].attrs['positive'] = 'down
gll'vertex-z'l.attrs['positive'] = 'down'

-3 3 3

write gridded observations
def write_obs(name, unit, positions, shape):

def snake_to_camel(name):
temp = name.split('_ ")
res = ''.join(ele.title() for ele in temp)
return res

snake_to_camel(name)
snake_to_camel(unit)

]

name2
unit2

—_— e —

means
mins
maxs

[
[

for step in steps:

Appendix B B.5

PNNL-32590

read gridded observation files
obs =

np. load(os.path.join(output_dir, 'ga_"'+name+'_'+unit+'_sim_'+str(sim)+'_time_'
+str(step)+'.npz'))['data'l

obs,

Interpolate Gridded Observations to Site Grid
interpolator = RegularGridInterpolator((r_coord, z_coord),
=False)

interpolated = interpolator(positions)

reshaped = interpolated. reshape(shape)

means.append(np.mean(reshaped))
mins.append(np.min(reshaped))
maxs.append(np.max(reshaped))

g2=hdf5.require_group('plot%i'%step)
g2.create_dataset(name2, =reshaped, ='float32")
g2[name2].attrs['unit'] = unit2

calculate min,mean,max over all time steps

g3=hdf5.require_group('statistics')
g3.create_dataset(name2, =np.array([

np.min(np.array(mins)),np.mean(np.array(means)),np.max(np.array(maxs))

1),

Appendix B

='float32"')

write_obs('dissolved_co2', 'mass_fraction',positions,cx.shape)
write_obs('dissolved_salt', 'mass_fraction',positions,cx.shape)

hdf5.close()

end sim loop

B.6

Pacific Northwest
National Laboratory

902 Battelle Boulevard
P.O. Box 999

Richland, WA 99354
1-888-375-PNNL (7665)

www.pnnl.gov

