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Abstract. Asynchronous evolutionary algorithms are becoming increas-
ingly popular as a means of making full use of many processors while solv-
ing computationally expensive search and optimization problems. These
algorithms excel at keeping large clusters fully utilized, but may some-
times inefficiently sample an excess of fast-evaluating solutions at the
expense of higher-quality, slow-evaluating ones. We introduce a steady-
state parent selection strategy, SWEET (“Selection whilE EvaluaTing”),
that sometimes selects individuals that are still being evaluated and al-
lows them to reproduce early. This gives slow-evaluating individuals that
have higher fitnesses an increased ability to multiply in the population.
We find that SWEET appears effective in simulated take-over time anal-
ysis, but that its benefit is confined mostly to early in the run, and our
preliminary study on an autonomous vehicle controller problem that in-
volves tuning a spiking neural network proves inconclusive.

Keywords: optimization, evolutionary algorithms, parallel computa-
tion, asynchronous algorithms

1 Introduction

Evolutionary algorithms (EAs) offer a remarkably general approach to search
and optimization problems in a diversity of fields and are widely known for the
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ease with which they can be parallelized to take advantage of distributed high-
performance computing (HPC) resources [8]. Many computationally expensive
applications have benefited from the parallelism offered by EAs and related
methods like particle-swarm optimization [1].

In recent years, however, concern has grown around a fundamental ineffi-
ciency that plagues traditional generational EAs: the most popular distribution
strategy for EAs is to follow a synchronous controller-worker scheme, where each
iteration sends off a population of solutions to be evaluated on worker nodes. In
this scheme, the controller waits for the entire population to complete evaluating
before evolution continues. When individual evaluation-times vary, however, this
means that many processors are left idle as the algorithm waits for the longest-
evaluating solution to finish processing. The problem of idle time in synchronous
EAs is most severe when a large number of processors are used, as just one
long-running job can bring a large system to a halt, and network connections,
processor heterogeneity, or scheduling concerns introduce additional sources of
evalution-time variance [22]. With the advent of widely available super-compute
clusters, this situation has become the norm rather than the exception.

Many researchers have turned to asynchronous fitness evaluation schemes as
an alternative to traditional generational (that is, synchronous) algorithms [14,
22]. In particular, asynchronous steady-state evolutionary algorithms (ASSEAs)
can often reach near-perfect resource utilization throughout an experiment (see
Figure 1), particularly when the algorithm’s computational cost is dominated
by fitness evaluation on the workers (as is often the case when, say, tuning the
parameters or behaviors of an expensive simulation [7, 11]). Asynchronous EAs
are growing in popularity, and have most recently been applied to a variety com-
putationally challenging problems such as deep neural network hyperparameter
tuning [13, 5], evolutionary reinforcement learning [15], and simulation problems
in air traffic management [19].

While ASSEAs succeed in recovering idle processing resources, their dynam-
ical behavior is impacted by interactions between fitness and evaluation time in
a way that more traditional algorithms are not—particularly when evaluation
time is a heritable trait that is passed from parents to offspring. ASSEAs may
sometimes be biased toward fast-evaluating regions of the search space, for ex-
ample, which may either help or hinder optimization depending on the problem
being solved [26, 21].

This paper focuses on a concern that arises when there is a correlation be-
tween evaluation time and fitness. Many problems of interest to EAs exhibit
just such a correlation: either negatively (as when longer-evaluating solutions
tend to have poor fitness values) or positively (i.e., longer-evaluating solutions
tend to have good fitness values). Take the case of evolving a controller for a
task such as a cart-pole or vehicle control problem, for example. Here, better-
performing individuals may “survive” longer (i.e., don’t drop the pole or don’t
crash) and thus take longer to evaluate, resulting in fitness evaluation times be-
ing positively correlated with fitness scores. As shown anecdotally in Figure 1,
though the asynchronous algorithm reduces the idle time incurred by a cluster
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Fig.1. Example runs of a synchronous (left) and asynchronous (right) EA applied
to the same vehicle control problem, each visualized as a heatmap of the processor
workloads. The synchronous algorithm exhibits a great deal of idle processor time
(white gaps). The asynchronous algorithm eliminates idle time, but does not necessarily
use the recovered computational resources effectively. In both plots, each block of color
indicates a fitness evaluation of a particular duration, and each job is colored according
the resulting fitness value.

of processors, it is clear that it is also dominated by faster-evaluating individ-
uals, even though there is a high performing (but slower-evaluating) individual
that has been evaluated. Whereas in the synchronous approach, most of the in-
dividuals being evaluated trend upward as the evolution goes on, even though
there is significant idle time. In this case, the processors are kept busy under
the asynchronous scheme, but the work that they are performing in evaluating
low-performing individuals is not necessarily “useful” work for this particular
application.

We propose to mitigate this problem of excess work in asynchronous evolu-
tion with a simple mechanism: we allow parents to be selected randomly from not
just the population, but also from among individuals that have begun evaluation
on a processor but have not yet completed. This gives long-evaluating individ-
uals a change to reproduce before their fitness has been evaluated, potentially
accelerating the propagation of the genetic material that they encode.

For convenience, we refer to this method as Selection whileE Evaluating
(SWEET). Our core research question asks whether SWEET improves the con-
vergence behavior of ASSEAs in the positive-correlation case:

Research Question: Does including processing individuals in selection
reduce “excess work” in ASSEAs when evaluation time is positively cor-
related with fitness (longer individuals are better)? i.e. does it lead to an
improvement in performance?
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2 Background

The problem of idle resources during synchronous data collection affects a wide
class of distributed algorithms. In a machine learning context, for instance, main-
stream approaches to federated learning across edge devices typically impose a
synchronous synthesis step [16]. But this leads to the so-called “straggler prob-
lem,” in which the system must wait for the slowest learner in its network to
complete training [25]. This has recently motivated a family of asynchronous
federated learning algorithms that avoid idle time, but which potentially raise
other issues—such as biasing the global learner toward information provided
by faster-running local learners [3, 2]. Though the details differ, this situation is
closely analogous to similar behavior that occurs with asynchronous evolutionary
algorithms.

Evolutionary algorithms are particularly well-known for the ease with which
they can be parallelized and distributed across large clusters of processors. Paral-
lel implementations of EAs have been deeply studied, and can be broadly divided
into 1) panmictic models, in which variation and selection operators are applied
to a single monolithic population, and 2) structured population models (includ-
ing both island models and spatial EAs), in which multiple sub-populations
are evolved separately with some degree of loosely-coupled communication [1].
Panmictic controller-worker methods are among the simplest and most-widely
applied of these architectures, and yield significant speedup when applied to
problems where the computational cost of fitness evaluation dwarfs other costs.

Asynchronous steady-state evolutionary algorithms first appeared in the 1990’s
for both single- and multi-objective problems [14, 23], and have steadily gained
importance as HPC paradigms have changed across science and engineering [10].
ASSEAs arise naturally as a parallel generalization of (panmictic) steady-state
EAs (SSEAs) [24], in that both algorithm families generate offspring solutions
on a controller node one-at-a-time which compete for a place in a fixed-size pop-
ulation after their fitness is evaluated. ASSEAs, however, use multiple worker
processors to evaluate several solutions simultaneously, integrating them into the
population in the order in which they finish. This order-shuffling effect (which
Depolli et al. term selection lag [9]) introduces considerable complexity into
ASSEA behavior whenever some solutions take longer to evaluate than others,
which remains an obstacle to fully understanding the strengths and weaknesses
of ASSEAs as an optimization strategy [20].

Most theoretical work on ASSEAs, has focused on two main threads of in-
quiry, rooted in the fact that almost all ASSEA applications are motivated as
a means to avoid the idle time incurred by synchronous controller-worker al-
gorithms. First, researchers have sought to quantify the increase in resource
efficiency that asynchrony provides—by reporting empirical performance im-
provements [4], and by analytically deriving lower bounds on expected speedup
[27, 22]. Second, a common concern is that the selection lag effect in ASSEAs
will cause the algorithm to be biased toward regions of the solution space that
are cheap to evaluate—making optimization w.r.t. fitness more difficult on some
applications. This evaluation-time bias effect was first empirically reported by
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Yagoubi et al. [26]. In a more detailed analysis, Scott and De Jong found no
evidence of eval-time bias on flat fitness landscapes [22], but demonstrated that
it occurs as an interaction between fitness and evaluation-time gradients, and
that it sometimes occurs most strongly during the initialization phase of the
algorithm [21]. In addition, Harada has recently introduced a new theoretical
model for analyzing evaluation-time bias [12].

In this paper, we observe that in the case where better solutions tend to
evaluate more slowly, asynchronously filling processors with additional (rela-
tively fast-evaluating) computation may not always yield benefit. In some cases
the additional evaluations may assist with beneficial exploration of the space;
but in others they may consume resources that would be better used in ex-
ploitation. In these scenarios, we hypothesize that it would be beneficial not
just to minimize idle time or evaluation-time variance, but to use the available
processors to rapidly promote new genetic material. The distinction that steady-
state algorithms draw between parent selection and survival selection offers us
an opportunity to implement this idea: steady-state algorithms often use ran-
dom selection for one of these selection operators. Random selection does not
require fitness information, however—which means that we are able to propose
a method that selects parents before they have completed evaluating.

3 Methodology

We use a combination of simulation and an autonomous vehicle application to
evaluate our research question. In this section we describe the asynchronous
algorithm under study, and the specific hypotheses that we will test in terms
of takeover times and performance. All of our algorithms and simulations were
implemented atop the Library for Evolutionary Algorithms in Python (LEAP),
which has built-in support for distributed ASSEAs [6].°

3.1 The Asynchronous Steady-State EA

Asynchronous steady-state EAs seek to reduce the overall idle time of a dis-
tributed synchronous EA by ensuring that when a processor has completed an
evaluation, a new individual is immediately produced to take its place. With a
steady-state approach, individuals are integrated into the population one-at-a-
time. Algorithm 1 gives the pseudo-code for the ASSEA approach that we use
in this work. In particular, an initial population is created and immediately in-
serted into a queue to be evaluated across the workers. As their evaluations are
completed, they are automatically inserted into the population until the popula-
tion is full. Once the population is full, a newly evaluated individual is compared
with a randomly selected member of the population; if the newly evaluated in-
dividual’s fitness is higher, it replaces the randomly selected individual within

® The code for most of our methodology is published at https://github.com/SigmaX/
Avoiding-Excess- Computation-UKCI2021 under the Academic Free License 3.0.
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the population. In all of our experiments, we fix the number of total births to
allow as the birth budget. If the total number of births is less than the birth
budget, we generate a new individual by selecting a parent from the population
and then performing reproduction operations to produce a child to be evaluated
(incrementing the number of births).

Algorithm 1 ASSAE design. This shows details on how we asynchronously
update a population of individuals of posed solutions.

1: Py + init__pop() > Initial population
2: b <+ size(P,) > Initial number of births
3 P+ 0 > Initialize an empty pool
4: async_eval(Py) > Fan out population to workers
5: while I. < evaluated() do > Next evaluated individual
6: if is_full(Pp) then I. < select_ competitor(Pp) > Choose a competitor
T if I. > I. then > Replace only if better
8: remove(Pp, I.)

9: insert(Pp, Ie)

10: else > Pool not full yet, so just insert
11: insert(Pp, I¢)

12: if b < birth_budget then

13: I, < select_parent(Pp) > Select parent
14: I, + reproduce(Ip) > Create offspring
15: async_submit(I,) > Send to worker for evaluation
16: b+—b+1 > Increment births
17: return P, > Return best individuals

We compare two variations of Algorithm 1: A) the basic asynchronous se-
lection strategy implements the select_parent () operator by randomly choos-
ing and individual from the pool P,, whereas B) the SWEET strategy applies
random selection to the union P, 4+ E of the pool and currently evaluating indi-
viduals.

3.2 Discrete-Event Simulation

We begin our study of asynchronous EAs by imposing artificial evaluation times
over fitness landscapes that are otherwise easy to compute. This allows us to
perform many experimental runs quickly while we test specific hypotheses in a
controlled environment.

For this set of experiments, we follow the example of [21] in using a discrete-
event simulation (DES) to simulate the behavior of a cluster of processors under
artificial evaluation times while the ASSEA runs. In the simulation, each indi-
vidual x is assigned an evaluation time from the function ¢(x), which is defined
as part of the experiment. During evolution, the “cluster” uses a priority queue
to instantly step to the next completed evaluation event at each iteration of the
algorithm.
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The cluster DES assumes that the run time of the algorithm is entirely de-
fined by fitness evaluation costs, and that other aspects of the algorithm—such
as the overhead of selection and variation operators, or of scheduling and net-
work communication among a large number of processors—is negligible. This
assumption generally holds in a great many applications, but may be challenged
in scenarios that involve very high-dimensional genomes (in which case variation
operators can be expensive to apply) or evaluation on very large clusters (where
scheduling and network effects among thousands of CPUs can pose significant
overhead).

Takeover times are a traditional methodology for evaluating the degree to
which selection operators increase the frequency of high-performing genotypes
in an evolutionary population [8]. Here we use takeover times to measure the
impact of asynchronous selection strategies on the frequency of a good-fitness,
slow-evaluating genotype.

Hypothesis 1: Given an initial population that contains a single good-
fitness, slow-evaluating individual that evolves under cloning and se-
lection alone, the SWEET strategy will lead to significantly faster takeover
times than the basic asynchronous selection strategy.

We run an ASSEA using the cluster DES, using an initial population con-
figured to contain exactly one individual of HIGH genotype (good-fitness, slow-
evaluating). The rest of the population is initialized to have LOW genotype (poor-
fitness, fast-evaluating). We fix the evaluation-time differential between the two
genotypes to a ratio of 100 to 1 (i.e. a fast individual evaluates 100x faster than
slow ones).

Because our insertion operator uses tournament competition with zero chance
of keeping the poorer individual, the initial high-fitness individual will always
successfully complete for a place in the population, and the fraction of HIGH-type
individuals will grow monotonically under selection and cloning. To formally test
Hypothesis 1, we report the simulated time required for each of 50 runs to
converge to a population of 100% HIGH genotype (i.e. the takeover time).

3.3 F1TENTH: An Autonomous Vehicle Problem

Our example of a problem with a positive correlation between evaluation time
and fitness is a spiking neural network (SNN) learning problem: we aim to
learn an SNN controller to drive a simulated vehicle that corresponds to the
FITENTH autonomous racing platform [18].5 The fitness evaluation for the
F1TENTH example computes the mean of how far (in units of distance) the
car is able to drive, using the simulated SNN as a controller, before crashing
across six training tracks. We use the EA to determine the weights, thresholds,
and synaptic delays of an SNN with 20 input neurons (for 10 LIDAR inputs
that use a spike-encoding scheme that requires 2 neurons per input), 10 hidden

S https://fltenth.org/



8 Eric Scott et al.

neurons, and 40 output neurons. The 20 input neurons are fully connected to
the 10 hidden neurons, and the 10 hidden neurons are fully connected to the 40
output neurons (as in a typical feed-forward neural network). We also include
all-to-all connectivity among the hidden neurons, resulting in a recurrent neural
network. The 40 output nodes correspond to 11 speed values and 29 possible
steering angles.

We train an SNN for neuromorphic hardware deployment to a platform called
puCaspian [17], which requires integer weights, thresholds, and delays. Thus, we
use an integer representation in the genome. The genome includes a total of
3,050 genes (i.e., 1,490 for the weights, 1,490 for the synaptic delays, and 70
for the thresholds). The synaptic weights are bounded between -255 and 255
(inclusive), the synaptic delays are bounded between 0 and 15 (inclusive), and
the neuron thresholds are bounded between 0 and 255 (inclusive). In all cases,
we used random integer mutations with the expected number of mutations set
to 1.

Hypothesis 2: On the FITENTH problem, the SWEET strategy will lead
to significantly higher-quality solutions and/or require fewer evaluations
compared to the basic asynchronous strategy.

4 Results

4.1 Simulated Takeover Times

The results of our DES experiment with takeover times are shown in Figure 2.
The SWEET strategy exhibits a considerably shorter (and statistically signif-
icant via Wilcoxon rank-sum at p ~ 107Y) median takeover time (505.5 vs.
621.5, where the units of time are arbitrary in the simulation). Plotting the in-
dividual takeover curves shows that the behavior of the two algorithms differs
qualitatively, with SWEET assuming a sort of pseudo-generational trajectory,
as groups of HIGH-type individuals repeatedly complete evaluating at nearly the
same time. Overall, these results confirm Hypothesis 1 and suggest that the
SWEET strategy allows high-fitness genetic material from long-running indi-
viduals to more rapidly increase its frequency within a population—though we
observe that the majority of the benefit occurs at the beginning of the run.

4.2 F1TENTH

In Figure 3 the left figure depicts the difference between the best fitnesses for each
run between two sets of runs. One run was an ASSEA that used uniform random
selection from the single population that is asynchronously updated with freshly
evaluated individuals. The other run similarly selected parents from the same
population, but also selected with equally uniform chance individuals that were
still being evaluated. Though the median values and distributions were similar
(Wilcoxon rank-sum test p = 0.8), the “SWEET” approach was able to find
a better solution. The best for the “basic async” out of 10 runs was 0.069066,
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Fig.3. The left figure compares the best fitnesses between the runs where parents
were selected just from the population vs. selecting from the population and the
set of currently evaluating individuals. These are respectively labeled “basic async”
and “SWEET”. Higher-fitnesses are better and reflect the quality of the simulated
F1TENTH race car on various race tracks. The figure on the right shows the distribu-
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and for the “SWEET” 0.131565. The right figure compares the times it took
to find the best solution for each run by run type. Though the “basic async”
runs do appear to have taken less time, they are not significantly so (Wilcoxon
rank-sum p = 0.38). However, we would expect that it would take longer to find
the best fitnesses since that approach intentionally is also potentially selecting
longer-evaluating individuals.

Figure 4 shows the average best-
so-far fitnesses between the two sets _ _

Means of best-so-far fitnesses between basic async and SWEET

of runs with the sample points taken oo
every 250 births for simplification o e
and with a 95% confidence inter-
val. Though the confidence intervals
show significant overlap between the
“basic async” and “SWEET” results,
nonetheless it is promising that the
“SWEET” results found better mod- M
els and with fewer births than with T ew e smo wbo w0 oo
the “basic async” approach. Over- e
all, Hypothesis 2 remains uncon-

firmed. Fig. 4. This shows the means of the best-
so-far fitnesses aggregated by run and run
type with the shaded areas showing the 95%
confidence intervals. Though there is signif-
icant overlap between the two sets of run,

We have proposed a simple steady- the SWEET runs did find better solutions.
state parent selection strategy, SWEET

(“Selection WhilE EvaluaTing”), which

is intended to offset the tendency that

asynchronous steady-state EAs have to inefficiently sample an excess of fast-
evaluating solutions at the expense of higher-quality, slow-evaluating ones. Sim-
ulated experiments with takeover times suggest that our method is able to more
quickly increase the frequency of high-performing, slow-evaluating alleles. But
our results on the FITENTH autonomous vehicle problem are inconclusive, and
more study will be needed to evaluate the potential of the SWEET strategy on
real-world problems.

Mean of best-so-far fitnesses

5 Conclusions
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