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The ultra-quantum limit is achieved when a magnetic field confines an electron gas in its lowest
spin-polarised Landau level. Here we show that in this limit, electron doped ZrTe5 shows a metal-
insulator transition followed by a sign change of the Hall and Seebeck effects at low temperature. We
attribute this transition to a magnetic freeze-out of charge carriers on the ionised impurities. This
reduction of the charge carrier density gives way to an anomalous Hall response of the spin-polarised
electrons. This behaviour, at odds with the usual magnetic freeze-out scenario, occurs in this Dirac
metal because of its tiny Fermi energy, extremely narrow band gap and a large g-factor. We argue
that this anomalous Hall contribution could be either intrinsic or extrinsic.

Introduction

In the presence of a magnetic field, the electronic
spectrum of a three-dimensional electron gas (3DEGs)
is quantized into Landau levels. When all the charge
carriers are confined in the lowest Landau level—the
so-called quantum limit—the kinetic energy of electrons
is quenched. This favors the emergence of electronic
instabilities, either driven by the electron-electron or
electron-impurity interactions [1–4]. So far, the behav-
ior of 3DEGs beyond their quantum limit has been ex-
plored in a limited number of low carrier density systems.
Yet, different instabilities have been detected, such as a
thermodynamic phase transition in graphite [5–8], a val-
ley depopulation phase in bismuth [9, 10], and a metal-
insulator transition (MIT) in narrow-gap doped semi-
conductors InSb [11] and InAs [12, 13]. The latter oc-
curs when charge carriers are confined in the lowest spin-
polarised Landau level – the ultra-quantum limit. This
transition is generally attributed to the magnetic freeze-
out effect where electrons are frozen on ionized impurities
[4, 14].

Lately, low-doped Dirac and Weyl materials with re-
markable field-induced properties were discovered [15–
19]. Of particular interest is the case of ZrTe5. The en-
trance into its quantum limit regime is marked by quasi
quantized Hall (ρxy) [18] and thermoelectrical Hall con-
ductivity (αxy) [20], followed by a higher magnetic field
transition [18, 21]. This phase transition has initially
been attributed to the formation of a charge density
wave (CDW) [18, 21, 22]. Such interpretation has been

questioned because there is no thermodynamic evidence
[23, 24] as expected for a CDW transition. Furthermore,
ZrTe5 displays a large anomalous Hall effect (AHE), even
though it is a non-magnetic material [25–28].

Here we report electrical, thermo-electrical and optical
conductivity measurements over a large range of doping,
magnetic field, and temperature in electron-doped ZrTe5.
For the first time, we probe this system down to sub-
Kelvin temperatures. This allows us to track the Fermi
surface evolution of ZrTe5 and explain the nature of this
phase transition, as well as its links with the observed
AHE. We show that the onset of the field-induced tran-
sition can be ascribed to the magnetic freeze-out effect.
In contrast with usually reported results, we show that
the freeze-out regime of ZrTe5 is characterised by a sign
change of the Hall and thermoelectric effects, followed by
a saturating Hall conductivity. Our results show that the
magnetic freeze-out effect differs in this Dirac material as
a consequence of the tiny band gap and large g-factor of
ZrTe5, that favor both an extrinsic and an intrinsic AHE
of the spin-polarised charge carriers.

Field induced transition in the ultra-quantum limit
of ZrTe5

Fig. 1a) shows the temperature dependence of the re-
sistivity (ρxx) for four batches, labelled S1−4 respectively.
At room temperature, ρxx ≈ 0.7 mΩ.cm. With decreas-
ing temperature, ρxx peaks at a temperature around
which the Hall effect (ρxy) changes its sign, which is
around 150 K for S3b sample (see Fig. 1b)). Both shift to
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FIG. 1. Resistivity (ρxx) and Hall effect (ρxy) of ZrTe5:
a) Temperature dependence of ρxx for the four dif-
ferent batches studied, labelled respectively S1,2,3,4.
nSdH is the carrier density deduced from quantum os-
cillations (see [29]). b)

ρxy

B
vs B for S3b (nS3 = 6.7 ×

1017cm−3). In all the field sweeps the magnetic field
is parallel to the b-axis of the orthorhombic unit cell.
c) ρxy vs B for sample S1b for T = 2.5 K to 250 K.
Curves are shifted for clarity. d) ρxx vs B for S1b (nS1

= 0.8 × 1016cm−3). ρxy vs T for B = 2 T up to 30 T.

lower temperature as the carrier density decreases. These
effects have been tracked by laser angle-resolved photoe-
mission spectroscopy and attributed to a temperature-
induced phase transition where the Fermi energy shifts
from the top of the valence band to the bottom of the
conduction band as the temperature decreases [33].

Fig. 1c) and d) show the field dependence of ρxy and
ρxx up to 50 T for a magnetic field parallel to the b-axis
of the orthorhombic unit cell. The data is shown for S1b

whose Hall carrier density is nH = 9 × 1015 cm−3, and
Hall mobility, µH , is as large as 9.7 × 105 V.cm−2.s−1.
At low temperatures ρxx increases by more than two or-
ders of magnitude and saturates above ≈ 7 T. This large
magnetoresistance vanishes as the temperature increases.
Meanwhile, ρxy deviates from linearity above a few Tesla
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FIG. 2. Doping evolution of the Fermi surface of
ZrTe5: a)-c) Trace of the Shubnikov-de Haas quan-
tum oscillations measured in the three samples S1a,
S2a and S3b at T = 2 K for B ‖ b. d) Angular depen-
dence of the frequency of quantum oscillations (F)
in open circles as function of θ1,2, the angles between
the b-axis and the magnetic field rotating in the (b,a)
and (b,c) planes, respectively. The dotted lines are
the frequency, F , for an ellipsoid Fermi surface of

anisotropy Ai (F = F0(1+(1/A2
i −1)cos2(θ))

−1
2 ). For the

two planes of rotations, Ai is given by
kf,a
kf,b

and
kf,a
kf,c

,

labelled A1 and A2 respectively. Their doping evolu-
tion is shown in e) and agrees well with the literature
[18, 21, 23, 30–32].

and changes sign around 7 T at low temperatures rem-
iniscent of the sign change observed in temperature, see
Fig. 1e). This field induced sign change of the Hall effect
will be discussed in further details in the last section.

On top of this monotonic magnetoresistance, quan-
tum oscillations are detected. Figs. 2a)-c) show the
trace of these oscillations for samples from batches S1, S2

and S3. In good agreement with previous measurements
[30, 34] the Fermi surface of ZrTe5 can be described as
an anisotropic ellipsoid elongated along the b-axis, see
Fig. 2d) and e). Our doping study reveals that the mass
anisotropy ratio increases as the system is less doped and

reach
m∗

b

m∗
a
' 250 in our lowest doped samples, where m∗a,b

are the band mass along the a and b axis. This large
mass anisotropy ratio is comparable to the one of Dirac
electrons of bismuth [35]. The Fermi surface mapping
allows us to accurately determine the Fermi sea carrier
densities, nSdH , which agree well with nH [29]. Remark-
ably, the last quantum oscillation occurs in S1 samples
at a small field of BQL(S1) = 0.3 T. Above this field, for
B > BQL, all the carriers are in the lowest spin-polarised
(0,−) Landau level. The insulating behavior of ρxx and
the sign change of ρxy detected in Fig. 1d) and e), at low
temperature, are thus properties which occur deep in the
ultra-quantum regime.

Fig. 3 shows the doping evolution of ρxx and the sub-
sequent field scale identified. A close inspection of the
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constant ε for two samples from batch S4 (nSdH=3.6
× 1016cm−3) and S3 (nSdH=6.7 × 1017cm−3) for E ‖ a
and E ‖ c (red point) of ZrTe5.

low temperature behavior of ρxx reveals a light metallic

phase above BQL (see Fig.3a) and b)) which ends at a
crossing point at Bc = 3.2 T above which an insulating
state is observed up to 50 T. Following [18] we take this
crossing point as the onset of the metal-insulator transi-
tion. As the carrier density increases, both the position
of BQL and Bc increase (see Fig. 3b) and c)). At the
highest doping (samples S3) the amplitude of the mag-
netoresistance has decreased and the transition is only
marked by a modest increase by a factor of two of ρxx
at ' 30 T, indicating that the transition smears with
the doping increase (see Fig. 3d)). Fig. 3e) shows
the doping evolution of BQL and Bc which are in good
agreement with previous works [18, 21, 23]. The dashed
green line in Fig. 3e) is the carrier density dependence
of BQL for a 3D anisotropic Fermi surface with a Zee-
man energy equal to the cyclotron energy. It is given
by BQL = ~

e (
√

(2)π2A2
1A

2
2n)

2
3 , where A1 and A2 are the

anisotropic Fermi momentum ratios between the a and b-
axis, and between the c and b-axis. Plugging the doping
evolution of A1,2 shown in Fig 2e) provides an excellent
agreement of the detected BQL.
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0, 6 and 12 T. h) Temperature dependence of σxy and
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T
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Magnetic freeze-out in ZrTe5

The doping evolution of Bc is a clue to the nature of
this transition. So far it has been attributed to the forma-
tion of a charge density wave (CDW) along the magnetic
field [18, 21, 22]. Such an instability is favored by the
one-dimensional nature of the electronic spectrum along
the magnetic field, which provides a suitable (2kF ) nest-
ing vector in the (0,−) Landau level. In this picture,
predicted long ago [37], the transition is of second order
and is expected to vanish as the temperature increases.
The absence of temperature dependence of Bc and the
absence of thermodynamic signature [23, 24] invite us to
consider another interpretation.

In the CDW picture, the instability is driven by the
electron-electron [18, 21, 37] or electron-phonon interac-
tion [22] and the interaction between electrons and the
ionized impurities is neglected. However, in a doped
semiconductor, the conduction band electrons are de-
rived from uncompensated donors. Tellurium vacancies
have been identified as the main source of impurities in
ZrTe5 flux samples [38, 39]. According to the Mott cri-
terion [40, 41] a semiconductor becomes metallic when
the density of its carriers, n, exceeds a threshold set by
its effective Bohr radius, aB = 4πε~/m∗e2 (where m∗ is
the effective mass of the carrier, ε is the dielectric con-
stant of the semiconductor): n1/3aB ' 0.3. In presence
of a magnetic field the in-plane electronic wave extension
shrinks with increasing magnetic field. When B > BQL,

the in-plane Bohr radius is equal to aB,⊥ = 2`B with

`B =
√

( ~
eB ) [4, 42]. Along the magnetic field direc-

tion, the characteristic spatial extension is aB,‖ =
aB,z

log(γ) ,

where γ = (
aB,c

lB
)2 and aB,z,c=

ε
m∗

z,c
aB,0 with m∗z,c is the

mass along and perpendicular to the magnetic field, in
units of m0 and aB,0 is the bare Bohr radius. A MIT
transition is thus expected to occur when the overlap
between the wave functions of electrons is sufficiently re-
duced [11, 14] i.e. when:

n1/3(a2
B,⊥aB,‖)

1
3 ' 0.3 (1)

This MIT is thus a Mott transition assisted by the mag-
netic field where the metal is turned into an insulator due
to the freezing of electrons on the ionized donors by the
magnetic field, the so-called magnetic freeze-out effect.
According to Eq. 1 n ∝ Bc/ log(Bc) and Bc is slightly
sublinear in n and evolves almost parallel to BQL. In
order to test this scenario quantitatively, one has to de-
termine the threshold of the transition from Eq. 1, which
requires knowing ε and m∗z,c. Temperature dependence
of the quantum oscillations gives access to m∗z ≈ 2m0

and m∗c ≈ 0.02m0 for B ‖ b, while the optical reflectiv-
ity measurements give access to ε. Fig. 4 shows ε versus
temperature for two samples of batches S1 and S3. ε is as
large as 200-400ε0 in ZrTe5 (see [29] for further detail).
The deduced onset from Eq. 1 is shown in dashed black
lines in Fig. 3e) for ε = 200 and 400, capturing well the
doping evolution of Bc. We thus attribute the transition
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detected in the quantum limit of ZrTe5 to the magnetic
freeze-out effect.

It is worth noticing that a large contribution to ε comes
from interband electronic transitions resulting in ε∞ >
100, see [29]. This result also clarifies why one can detect
highly mobile carriers even down to densities as low as
1013 cm−3 [28]. Due to its light in-plane carrier mass
and large dielectric constant, one expects threshold of
the MIT at zero magnetic field to be below ≈ 1012 cm−3.

Anomalous Hall effect in ZrTe5

The electronic properties above Bc contrast with the
usual freeze-out scenario, such as observed in InSb (nH=
2-5×1015 cm−3) [11], where an activated insulating be-
havior accompanies the large drop in carrier density. In
ZrTe5 we found a saturating ρxx and, more surprisingly,
a sign change of ρxy, see Fig. 5a) and b). Study of the

Seebeck (Sxx= Ex

∆xT
) and Nernst effect (Sxy=-

Ey

∆xT
), fur-

ther confirm the emergence of a low temperature energy
scale above Bc.

Fig. 5c), d) and e) show the field dependence of Sxx/T ,
Sxy/T , and αxy/T the transverse component of the ther-
moelectric tensor of sample S1c (see [29] for similar result
on S1b sample). They all peak slightly above Bc revealing
a breakdown of the thermoelectric Hall plateau observed
above 5 K [20]. Above 7 T Sxx/T changes of sign as ρxy.
Temperature dependence of Sxx/T is shown on Fig. 5g)
forB = 0, 6 and 12 T. AtB = 0 T, Sxx/T =−5.5 µV.K−2

in quantitative agreement with the expected value for the
diffusive response of a degenerate semiconductor, which

predicts Sxx/T = −π2

2
kB
eTF

= −5 µV.K−2 for TF ≈ 80 K
deduced from quantum oscillation measurements. At B
= 12 T, the sign change of the Hall conductivity, σxy, at
3 K is accompanied by a peak in αxy/T (see Fig. 5h))
and a sign change in Sxx/T (see Fig. 5g)). At the lowest
temperature Sxx/T saturates to ' +20 µV.K−2, a value
four times larger than in zero magnetic field, pointing to
a reduction of the charge carrier density by a factor of
eight which should lead to an enhancement of ρxy. In
stead, deep in the the freeze-out regime (B >> Bc), ρxy
as well as σxy saturates as shown in Fig. 5f) reminiscent
of an AHE.

Indeed, several studies have reported an AHE in ZrTe5

[25–28]. In this case, the Hall conductivity is the sum of
two contributions: σxy = −neB + σAxy where the first and
second terms are the orbital conductivity and the anoma-
lous Hall conductivity, respectively. At high enough
magnetic field, when n decreases through the freeze-out
transition, σAxy becomes dominant, setting the amplitude

and the sign of ρxy. So far, σAxy has been attributed
to the presence of a non-zero Berry curvature—an in-
trinsic effect—either due to the Weyl nodes in the band
structure [25], or to the spin-split massive Dirac bands

with non zero Berry curvature [27, 28]. In the latter
case, σAxy scales with the carrier density, and its ampli-
tude is expected to be +1 (Ω.cm)−1 for nH=2 × 1016

cm−3 [27], which is of the same order of magnitude as
our results. Skew and side jump scattering are another
source of AHE in non magnetic semiconductors such as
InSb [43, 44]. Deep in the freeze-out regime of low doped
InSb (nH ≈ 1014 cm−3), a sign change of the Hall ef-
fect has been observed and attributed to skew scattering
[45]. In contrast with dilute ferromagnetic alloys, where
the asymmetric electron scattering is due to the spin-
orbit coupling at the impurity sites, here it caused by
the spin-polarised itinerant electron scattering off of ion-
ized impurities. Its amplitude is given by σSxy=NSe g

∗µB

E1
,

where E1= εG(εG+∆)
2εG+∆ with εG the band gap and ∆ the

spin-orbit splitting of the valence band. NS is the den-
sity of scattering centers [44, 45]. Note that it induces a
sign change of the Hall conductivity and it is only set by
intrinsic parameters to the exception of NS . Assuming
NS ≈ nH and taking g∗ ≈ 20 [21, 32] and E1= εG

2 = 5
meV [46] (εG << ∆), we find that σSxy ' +1(Ω.cm)−1,
which is similar to the intrinsic contribution. Remark-
ably, it is four orders of magnitude larger than what has
been observed in low doped InSb [45], due to the tiny
gap and a (relatively) larger carrier density in ZrTe5.

In summary, we show that the doping evolution of the
onset transition detected in the ultra-quantum limit of
ZrTe5 can be ascribed to the magnetic freeze-out where
electrons become bounded to donors. This MIT transi-
tion is marked by a peak in Sxx/T, Sxy/T and thus in
αxy/T , demonstrating the collapse of the thermoelectric
Hall plateau [20] at low temperature. Beyond this tran-
sition, the Hall conductivity changes its sign at low tem-
perature and becomes anomalous with a relatively large
amplitude for this low carrier density and non magnetic
material. Distinguishing and tuning both contributions
by doping, pressure or strain is an appealing perspec-
tive for future research. To date, the AHE of the spin-
polarised electrons in the ultra-quantum limit has been
detected in a limited number of cases. Many Dirac ma-
terials with small gaps and large g-factors remain to be
studied, in particular at higher doping where the intrinsic
and extrinsic AHE are both expected to be larger.

Data avaliability

All data supporting the findings of this study are avail-
able from the corresponding author B.F. upon request.
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Supplementary Material for : ”Magnetic freeze-out and anomalous Hall effect in
ZrTe5”

(Dated: January 21, 2022)

SAMPLES STUDIED

Two sets of samples have been used in this study. The first ones, grown by flux method where iodine served as
a transport agent for the constituents, have the lowest carrier density. The second ones, grown by Chemical Vapor
Transport (CVT), have the highest density. A samples list with their characteristic is shown in Tab. I. Samples from
batch S1, S2 and S4 have been grown by the flux method while samples from batch S3 have been grown by CVT
method.

Electrical and Hall resisitivity measurements have been measured using four point contacts. High magnetic field
measurement has been done at LNCMI-Toulouse. Contact resistance of a less 1 Ω has been achieved by an Argon
etching, follow by the deposit of 10 nm Ti buffer layer and of 150 nm Pd layer. Thermo-electrical and thermal
transport measurements has been done used a standard two-thermoemeters one-heater set up similar to one used in
[1].

Samples Name (Batch) Size (w × t/L) (mm) ρ(2K) (mΩ.cm) nH(B− >0) (cm−3) nSdH (cm−3) µH (V.cm−2.s−1)
S1a 0.44*0.17*3.9 1.76 1.2e16 0.8e16 3e5
S1b 0.4*0.15*3.2 0.8 0.9e16 0.8e16 7.8e5
S1c 0.55*0.14*2.8 0.44 1.6e16 0.8e16 9.7e5
S4a 0.04*0.16*0.92 0.4 2e16 3.6e16 4.3e5
S2b 0.03*0.14*1.0 0.31 1.2e17 8.1e16 1.6e5
S2c 0.4*0.17*3.9 0.22 8.0e16 8.1e16 3.5e5
S3a 0.14*0.028/1.0 0.091 1.4e18 6.1e17 4.9e4
S3b 0.015*0.111/0.479 0.056 1.2e18 6.4e17 9.3e4

TABLE I: Table of the ZrTe5 samples measured in our transport study. Hall mobilities at 2 K have been estimated according
to the Drude expression : µH= 1

enHρ
where nH and ρ are the low temperature Hall carrier densities and resistivities. nSdH is

the carrier density deduced from the quantum oscillations (see next section).

QUANTUM OSCILLATIONS AND FERMI SURFACE OF ZRTE5

The Fermi surface (FS) of ZrTe5 has been studied by several quantum oscillation studies [2–7]. However, its doping
evolution has not been discussed to our knowledge. We report in Tab. II the results of previous quantum oscillations
measurements (frequencies and masses) along the three crystallographic directions (a,b,c) of the orthorhombic unit
cell, as well as our results on three samples from batches S1, S2 and S3. As shown in Fig. 2 of the main manuscript,
the angular dependence of the frequency (F ) of quantum oscillations is well described by an anisotropic ellipsoid
(F = F0

(1+(1/A2−1)cos2(θ))
1
2

) with a Fermi momentum ratio between the long axis (b) with the a-axis equal to ≈ 12 and

≈ 8 with c-axis. The doping evolution of both anisotropies is shown in Fig. 2e) of the main manuscript and tends to
increase as the Fermi energy is decreasing.

We report as well in Tab. II the carrier density deduced from quantum oscillations (nSdH), the position of the
last observed peak in ρxx for B//b (BQL) and the position of the transition (Bc). Measurements of the frequency of

quantum oscillations along the three high axis of symmetry allow to determine nSdH=
kfakfbkfc

3π.2 . In the case where
only the frequency along the b-axis has been measured nSdH has been computed using the value of the anisotropy
deduced from Fig. 2e) of the main text. We note a good agreement between nSdH and nH . An accurate measurements
of nH is challenging for our thin samples.
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Ref Fa(T) Fb(T) Fc(T) ma(m0) mb(m0) mc(m0) nSdH (cm−3) BQL(T) Bc(T)
[3] 53 4.9 27 0.020 2.7 0.077 6.5e17 – –
[8] – 5.2 – 5.2e17 5.2 –
[4] 46.6 4.8 29.4 0.016 1.6 0.0422 4.6e17 8 25±5
[6] 30 4 24 3.0e17 5 –
[5] 33.4 3.76 25.12 0.011 0.58 0.0617 3.2e17 3.33 –
[9] – 0.82 – – – – 4.4e16 1.0 –

[10] (S0) 16.6 1.32 9.9 – – – 8.36e16 1.4 5.21
[10] (S1) – 1.09 – – – – 6.7e16 – 6.59
[10] (S2) 15.7 1.18 9.2 0.006 2.5 0.05 7.4e16 1.3 6.72
[10] (S4) – 1.29 – – – – 8.6e16 – 7.25

[7] 16.7 1.1 12.3 – – – 8.5e16 1.2 –
[7] 15.2 1.2 13.9 0.021 6.078 0.075 9e16 1.4 8.5
S1 5 0.33 3 0.0041 2.7 0.009 1.2e16 0.33 1.5
S4 – 0.73 – 3.6e16 0.8 4.1
S2 17.3 1.29 9.1 0.02 1.7 0.03 8.1e16 1.37 6.92
S3 56.5 5.8 35.7 0.01 2 0.05 6.14e17 11.57 31±5

TABLE II: Quantum oscillations measurements in ZrTe5. Fa,b,c are the frequencies of quantum oscillations along the three
crystallographic direction (a,b,c) in the orthorhombic notation. According to the Onsager relation Fi=

~Ai
2eπ

where Ai is the
extremal area of the Fermi surface perpendicular to the magnetic field. The value of Ai allows to determine ka, kb and kc.
Masses are deduced from the temperature dependence of the quantum oscillations. nSdH= kakbkb

3π2 . BQL corresponds to the
position of the last quantum oscillations maximum in ρxx. Bc corresponds to the position of the metal-insulator transition.

BQL IN AN ANISOTROPIC MATERIAL

In presence of a magnetic field along the z-direction, the electronic spectrum for a 3D Schŕ’odinger electrons is
quantized in Landau levels with the following dispersion:

ε(i, kz,±) = (i+
1

2
± M

2
)~ωc +

~2

2mz
k2z (1)

where ~ωc is the cyclotron energy, kz and mz are the Fermi momentum, the mass of the carrier along the z-axis,

respectively, and M is the ratio of the Zeeman and cyclotron energy M = gµBB
~ωc

=
gm∗

c

m0
with g being the g-factor, m∗C

the cyclotron energy, and µB the Bohr magneton. The carrier density is the sum over all the occupied states in each
Landau level. For each Landau level, the number of occupied states is the product of the in-plane degeneracy (linear in

field) and the 1D degeneracy along the magnetic field. n is given by: n = 1
2(πlB)2

∑imax,±
i=0 [ 2mz

~2 (εF − (i+ 1
2 ±

M
2 )~ωc)]

1
2

where imax,± is the index of the highest occupied Landau level with a spin polarisation along the z-direction equal to
± 1

2 . For B//b M≈1 according to angular quantum oscillations [6]. When 0 < M < 1, the last oscillation is observed
when the (0,+) Landau level occurs: εF = ε(i, kz,+). In the case of an anisotropic ellipsoid for a magnetic field B//b,
where mC=

√
(mamc) and mz=mb it occurs when B=BQL with :

BQL =
~
e

(A2
1A

2
2M)

1
3 (
√

2π2n)
2
3 (2)

where A1=
√

(ma

mb
) =

kf,a
kf,b

and A2=
√

(mc

mb
) =

kf,c
kf,b

. This equation applies as well to 3D Dirac materials where M = 1

[11]. We show in Fig. 3e) of the main manuscript the result of Eq. 2, assuming M = 1 and including the value and
doping dependence of A1 and A2 deduced from quantum oscillations shown in Fig. 2e) of the main manuscript.

THERMAL CONDUCTIVITY OF ZRTE5

We show in Fig. 1a) and b) the temperature dependence of the thermal conductivity (κxx) of S1b and S1c. For these
low doped samples κxx peaks at around 10 K at 100 W.K−1.m−1 significantly smaller than in other semiconductors
[12]. We note that the sample with the largest mobility (S1c) shows the largest peak suggesting that impurity scattering
affects the amplitude of the peak. The electronic contribution is estimated according to the Wiedemann–Franz law:
κelxx= L0

ρxx
=0.006W.K−2.m−1 where L0 = 2.44e-8 W.Ω.K−2. This is four times smaller than the phonon contribution at

the lowest temperature (T = 0.15 K). The thermal contribution is therefore purely phononic in the whole temperature
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FIG. 1: a) Temperature dependence of the thermal conductivity (κxx) for the samples S1b and S1c. b) Same
as a) in log-log scale. The dote line is a T3-dependence characteristic of the phonon ballistic contribution.
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range in these low doped samples. Below 0.8 K, κxx scales with T3 as expected in the phonon ballistic regime. This
is further confirmed by the estimation of the phonon mean free path `0. Extrapolating the T3 dependence of the
measured specific heat down to 6 K [13] to 0.2 K we estimate `0 to be 0.2 mm, comparable with the sample thickness.

SUPPLEMENTARY DATA ON THE ELECTRICAL AND THERMOELECTRICAL PROPERTIES OF
ZRTE5

We report in this section the full set of data of the electrical and thermoelectric properties of samples S1b (see Fig.
2) and S1c (see Fig. 3 for T = 2 K to 20 K and Fig. 4 for T = 0.15 K to 5.5 K) as well as the set of electrical transport
data for S2c (see Fig. 5).

In S1b, S1c and S2c we detect a saturation of the resistivity deep inside the magnetic freeze-out regime that it is
accompanied by a sign change in the Hall effect (see Fig.2b), Fig.3b), Fig.4b) and Fig.5b)). In S1b and S1c both Sxx
and Sxy peaks close the transition (see Fig.2e-f), Fig.3e-f) and Fig.4e-f)) as recently observed across the magnetic
freeze-out transition in InAs [1]. Above it Sxx change of sign at low temperature. The field dependence of Sxx is
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qualitatively well captured by the Mott relation [14](Sxx

T = −π
2

3
k2B
e
∂ ln(σ(ε))

∂ε ε=εF
): this is in the region where ρxx and

ρxy (and thus σxx) vary the most with both the magnetic field and temperature that Sxx is the largest. As a function
of the magnetic field, it happens close to Bc leading to a peak in the field dependence of Sxx and Sxy. In contrast
with InAs [1], where the amplitude of the peak becomes remarkably large at finite temperature (−Sxx reaches 11
mV.K−1 at T = 8 K), we find here that the amplitude of the peak in Sxx is rather modest (−Sxx

T ≈ 20 µV.K−2) and
decreases with temperature due, most likely, to the absence of phonon dragg contribution in our ZrTe5 samples. The
same trend is observed in the Nernst effect. We note that the amplitude of the peak in

Sxy

T is however significant

larger than in −Sxx

T .
Measurements of ρxx, ρxy, Sxx and Sxy allows to compute the conductivity and thermoelectrical tensor elements

σxx, σxy, αxx and αxy as function of the magnetic field (see on Fig.2, Fig.3, Fig.4 and and Fig.5) and as function of the
temperature (see Fig.6). σxx and −σxy both decreases by several order of magnitude. The entrance in the freeze-out
regime is marked by a crossing point in σxx. Above it σxx drops and σxy changes of sign and then saturates to a non
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zero value. Above 5 K
αxy

T first decreases and then saturates above 1 T to value of ≈ 0.02µV/K−2 in good agreement
with the ”universal plateau” found in [8]. Below 5 K, our measurements reveals however a profound change. Both
αxx

T and
αxy

T peak to a value much larger than the plateau value. As discussed in the previous paragraph we attribute
it to the magnetic freeze-out effect.

The saturating Hall conductivity point to an AHE contribution that can have an intrinsic or extrinsic origin. In the
case of a skew scattering (extrinsic origin) σAxy=NSe g

∗µB

E1
where E1= is the band gap, NS is the density of scattering

centers. In this framework a sign change of the Hall effect is expected when B=BH= n
NS

Eg

g∗µB
. As the temperature

is lower n is decreasing in the magnetic freeze-out regime and BH does so (see Fig. 5e)). We show on Fig. 5 the
low temperature values of BH and σxy for S1b and S2c. Assuming that NS ≈ n we found that σxy ≈1 (Ω.cm)−1 in
good agreement with the amplitude of the measured σxy. In the zero temperature limit we find in S1b that BH=6
T which would imply that n

NS
=0.3 comparable with the drop of charge carrier estimated from the thermopower (of

about 0.125) across the freeze-out.
According to these two estimations the freezing of the charge carrier is therefore not total which is further support

by the saturating behavior of ρxx. Similar effects have been observed in the freeze-out regime of InAs [1] and have
been attributed to potential fluctuations. In presence of large-scale potential fluctuations the tail of the (0,-) Landau

level has width, Γ, given by : Γ = 2
√

(π) e
2

εrs
(NSr

3
s)

1
2 where rs ∝

√
( aB
n 1

3

) is the screening radius and NS an estimate

of the impurity concentration. Assuming that n ≈ NS we found Γ ≈ 6 meV. In contrast with other narrow gap
semi-conductors where Γ << EF << ∆, in ZrTe5 the magnetic freeze-out occurs in the case where Γ ≈ EF ≈ ∆.
Across the transition electrons shift to the conduction band to a shallow band of width Γ comparable with the band
gap. The subsequent overlap bands implies that the carrier density is not vanishing, even at the lowest temperature,
inducing a saturation of nH and ρxx even deep in the freeze-out regime. As the doping increasing, Γ is increasing and
the transition becomes less and less defined.

DETERMINATION OF THE DIELECTRIC CONSTANT

As ZrTe5 is a conductor, its dielectric constant is strongly perturbed by the free carriers conductivity and it cannot
be directly measured with transport techniques. However, it can be determined from the optical response of the
material, once the free charge carrier contribution is isolated.

In the harmonic approximation, the frequency-dependent dielectric function ε(ω) of a material is described by the
Drude-Lorentz equation:

ε(ω) = ε∞ −
Ω2
p

ω2 + iω/τ
+
∑
j

(ph) ∆εj Ω2
j

Ω2
j − ω2 − iγjω

, (3)

where ε∞ is the contribution from electronic transitions; the second term is the Drude contribution characterized by a
plasma frequency (Ωp) and scattering rate (τ−1); and the last term is the summation over the dielectric susceptibility
of each phonon (j) having a resonance frequency Ωj , a linewidth γj and a dielectric strenght ∆εj . Subtracting the
Drude contribution out of Eq. 3, we get the dielectric constant simply by setting ω = 0:

εdc = ε(0) = ε∞ +
∑
j

∆εj . (4)

Therefore, to obtain the dielectric constant of a material we simply have to obtain the values for ε∞ and each ∆εj ,
not forgetting to isolate and eliminate the free carriers contribution in our way.

We calculated εdc using two different procedures. Our first method consists in fitting the reflectivity of the material
with the dielectric function of Eq. 3 and Snell-Descartes formula:

R =

∣∣∣∣n− 1

n+ 1

∣∣∣∣2 =

∣∣∣∣√ε− 1√
ε+ 1

∣∣∣∣2 . (5)

This method yield direct values for the quantities we are looking for but has the drawback of assuming that phonons
are harmonic and mobile carriers are described by the Drude formula. An example for the fitting of the reflectivity
is shown in the inset of the left panel in Fig. 7. The thin blue line in the main panel shows the dielectric function
extracted from this method. The Drude contribution is the thick cyan line, which when subtracted from the full
dielectric function produces the thin red line. The zero frequency extrapolation of this line is the dielectric function
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FIG. 7: Left-hand side: The inset shows the E ‖ a reflectivity for ZrTe5 at 75 K. The thin blue line is the data and the thick
gray line is a fit with the Drude-Lorentz dielectrict function. The thin blue line in the main panel is the thus obtained real part
of the dielectric function. The thick cyan line is the Drude contribution to ε. Once it is subtracted from the full response, we
obtain the red line composed of high frequency electronic transitions and phonons. The zero-frequency extrapolation of this
line gives the dielectric constant. Right-hand side: The inset shows the ZrTe5 reflectivity for a few temperatures. The thick
blue line represents a region where R is flat and from which we can safely extract a value for ε∞ ≈ 130. The main panel shows
the Kramers-Kronig obtained real part of the optical conductivity. The thick brown line is taken as an electronic background.
The shaded areas and the peak positions allows us to calculate each phonon contribution to the dielectric constant.

we are looking for. Of course, this whole graphic process is only illustrative. To obtain the dielectric function it
suffices to sum up the fit-determined values for the dielectric strengths of each phonon and ε∞.

Our second method is still based on Eq. 4 but does not assume that the phonon lineshapes are harmonic nor that
electrons follow the Drude response. It is based on the oscillator strength for a phonon, calculated from the real part
of the optical conductivity (σ1): ∫

ph

σ1(ω)dω =
π

2
ε0∆εΩ2 , (6)

where the integration limits correspond to each phonon frequency range. In this method, we first extract ε∞ from
the reflectivity data, as shown in the inset of the right-hand side panel in Fig. 7. Note that around 2000 cm−1 the
reflectivity is fairly flat (R∞ ≈ 0.7) as shown by the thick blue line. We are using R∞ to indicate that it is related
to ε∞. A flat reflectivity implies that the dielectric function is real and so is the refraction index. It then becomes
trivial to invert Eq. 5 to obtain ε∞.

In a second step, we calculate the optical conductivity from Kramers-Kronig relations, obtaining the data shown
in the main panel at the right-hand side of Fig. 7. We then subtract an arbitrary electronic background indicated by
the thick brown line and calculate the area for each phonon, shown by the shaded green areas. From this areas, we
extract each phonon dielectric strength using Eq. 6 and we have our dielectric constant.

For the example given in Fig. 7, we obtain εdc = 209 for the dielectric function method and εdc = 290 for the
spectral weight method. In addition to this difference, we also took into account fitting errors and different electronic
baselines in order to calculate our confidence range.
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