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Abstract. Spectral line-shape models are an important part of understanding
high-energy-density (HED) plasmas. Models are needed for calculating opacity of
materials and can serve as diagnostics for astrophysical and laboratory plasmas.
However, much of the literature on line shapes is directed toward specialists. This
perspective makes it difficult for non-specialists to enter the field. We have two
broad goals with this topical review. First, we aim to give information so that
others in HED physics may better understand the current field. This first goal
may help guide future experiments to test different aspects of the theory. Second,
we provide an introduction for those who might be interested in line-shape theory,
and enough materials to be able to navigate the field and the literature. We give a
high-level overview of line broadening process, as well as dive into the formalism,
available methods, and approximations.
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1. Introduction

Spectroscopy is one of the best tools that we have to study the properties of laboratory
plasmas and astrophysical objects such as stars. From the analysis of spectra, one can
determine the velocity or rotation of an object, as well as that object’s temperature,
density, composition, or if it has magnetic fields. The shapes of spectral lines are
sensitive to the density and temperature of the plasma. A dense plasma will cause
spectral lines to shift and broaden. To understand spectra coming from dense plasmas,
we need to model how the line shape changes as because of its plasma environment.

Line-shape models are essential for many high-energy-density (HED) physics
applications, including plasma diagnostics and opacity calculations. Least-squares
fitting of line-shape models to data can help determine the conditions in the plasma.
Flawed models can lead to inaccurate determination of plasma conditions. Another
use for line-shape models is to calculate opacities, which are essential for radiation-
hydrostatic/hydrodynamic simulations needed for modeling stellar structure and
designing HED experiments. The broadening of spectral lines affects how radiation
propagates through material. Broader spectral lines can increase the Rosseland mean
opacity [1] and inhibit radiation transport.

Due to the wide range of applications, inaccuracies in line-shape models can have
far-reaching consequences. For example, inaccurate models of hydrogen broadening
can lead to incorrect mass determination of white dwarfs, which ultimately can affect
the determination of stellar ages, and by extension, constraints on the age of the
galaxy and the universe [2]. Also, uncertainties in Mg K-shell spectra obscure true
data-model discrepancies in the Fe-opacity experiment [3, 4]. Additionally, opacities
in stellar atmospheres and interiors may be underestimated due to inaccuracies
in the broadening of the Ly« lines of hydrogen [5] and oxygen [6], respectively.
Underestimates of the opacities can impact the accuracy of model spectra of stars
and the location of the solar convection zone [7].

Spectral lines arise from bound-bound atomic transitions. They are shifted and
broadened due to the perturbation of the plasma environment; this phenomenon is
referred to as spectral line shape formation. When an atom in a plasma is absorbing
or emitting a photon, it will simultaneously be perturbed by the plasma particles
surrounding it. The broadening of spectral lines is the result of the ensemble average
of all these perturbations. This broadening can modify the spectra in a non-trivial
way, and these changes are sensitive to the plasma environment. Line-shape models
can be useful for a number of applications, including diagnostics [61] and opacity
modeling.
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Atomic transitions are divided into bound-bound and bound-free transitions.
The corresponding spectral features change depending on plasma conditions, and the
changes become more severe as density increases. Changes in a spectrum are less
sensitive to the temperature of the plasma. In low-density conditions, the atomic
spectra will not deviate much from an isolated-atom description. But in high-
density cases, spectral lines broaden so much that they have non-trivial line shapes.
Additionally, the lines will become so broad that they merge into a continuum, thus
shifting the bound-free continuum edge to lower energies. This effect is known as
continuum lowering or ionization potential depression. These changes in the spectrum
from low to high density are demonstrated in figure 1.
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Figure 1. Measured spectra from Wiese et al. [8] data for low-density and high-
density hydrogen. These spectra demonstrate empirically how the lines broaden
with changing plasma conditions as well as merge into the continuum.

Unfortunately, accuracy of line-shape calculations is not known, as different
models have different predicted shapes [9] and validating experiments [e.g., 8] are
few and far between. Omne reason for this is that line shapes combine multiple
fields of complex physics: atomic physics, plasma physics, statistical mechanics, and
collisions. This leads to multiple approaches to the line shape problem, each using
different approximations. Due to the different approaches, approximations, jargons,
and notation, the literature is often inaccessible to non-specialists. This can create a
barrier to entry into the field and make it difficult for non-specialists to understand
the current state of line-shape calculations.

There are two goals of this paper. The first is to provide a broad overview of
the theory of spectral line shapes for non-specialists. The second is to provide some
introductory material for those who are wholly new to the field and wish to study
line shapes. This paper approaches the line-shape problem from the point of view
of fundamental physics, building conceptual understanding. We will also discuss the
challenges associated with these calculations, and what approximations are commonly
used to keep calculations tractable. Having a clear understanding of the field of line-
shape theory allows us to more clearly understand the advantages and limitations of
current calculations. We then take a critical look at the current status and recent
progress in line-shape calculations and explore possible future directions.
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One of the challenges faced by those new to spectral line-shape theory is
navigating the wealth of literature. To aid in this task, we have presented the different
theories using the same notation, so it is easier to see the true differences between them.
Additionally, when trying to learn analytic line-shape theory, one needs to navigate
not only the line-shape literature, but also the collision/scattering literature. We have,
therefore, included an appendix giving a summary of scattering theory as it applies
to spectral line shapes. While many of these details can be found in the literature,
collating this information can be useful for those who are new to line shapes.

The rest of the paper is organized as follows. Section 2 gives a conceptual
picture of line broadening. In Section 3, we discuss the key ingredients needed for
line-broadening calculations. This discussion is intended to help the reader build a
physical picture for the mechanisms behind line broadening, as well as illuminate
the inter-disciplinary aspects and some of the challenges associated with line-shape
calculations. Section 4 shows the fundamental equations for line shapes, and outline
how the different approaches (simulation and semi-analytic) are used to tackle the
problem. Section 5 contains a brief summary of the approximations commonly used in
line-shape calculations. We end the paper by sharing recent progress in the field of line
shapes and outline potential directions for the future. In the equations throughout we
will use Hartree atomic units, and when we explore specific examples, the temperature
of the plasmas we are exploring will be given in Kelvin or eV (1leV = 11,605K) and
the densities will be given in 1/cm3. In this paper, we will not consider the effect of
magnetic fields or the application to molecules in this document.

2. Conceptual Picture for Spectral Lines and Broadening

Spectral lines are the result of an atom transitioning between two bound states as a
result of absorbing or emitting a photon. In a plasma, each radiator’s energy levels
are shifted—and they are shifted differently based on the surrounding environment.
Since each radiator’s energy levels are shifted differently, the average of all the spectra
results in a broadening of the line as well as a net shift in energy or wavelength. In
figure 2, we demonstrate this behavior with the LyS line of hydrogen. In the top
panel, we have a schematic of a plasma, where the red, magenta, orange, and green
points are radiators, and the blue points are perturbers. The spectrum produced by
each of those radiators is plotted in the bottom panel, each with a different level of
perturbation. Also shown in black is the ensemble average of all radiators; this is the
observed spectrum.

In the rest of this section, we build intuition of line broadening. We briefly
introduce what bound-bound transitions are, and how there is broadening of a line
even in the absence of a plasma environment. We next build on this to introduce
plasma line broadening.

2.1. Bound-Bound Transitions

The structure and spectra of atoms without a plasma perturbation is fairly well
understood. Atoms consist of a heavy positively charged nucleus with negatively
charged electrons orbiting around it. How the electrons orbit around the nucleus
depends on their energy. Those electrons with low energy will be bound to the atom,
trapped in the attractive Coulomb well of the nucleus. And because the electrons
are quantum particles, which behave as standing waves, the energies of the bound
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Figure 2. Top Panel: Cartoon of a plasma with red, magenta, orange, and
green points indicating radiators, and blue dots representing perturbing plasma
particles. Bottom Panel: The spectra of the H Ly line coming from perturbed
radiators from the top panel. The color of each spectrum matches the color of each
radiator in the top panel. Also shown is the observed line shape (black) which is
a thermal/ensemble average of all perturbations. Here, I(w) is the intensity in
the spectra, and w is the frequency of radiation.

electrons are discrete, meaning they can only occupy specific energies. The energy-level
structure of electrons in atoms is explored extensively in textbooks such as [10, 11, 12].

The electrons bound to an atom interact with electro-magnetic radiation, i.e.,
photons, which can change the state of these electrons. If the energy of a photon is
equal to the energy difference between two bound levels, then a transition can occur.
Additionally, an electron can spontaneously decay from an upper state to a lower state
and will emit a photon that has the energy of that transition. Transitions between two
bound levels are referred to as bound-bound transitions. A schematic of the emission
of radiation from an upper state, labelled i, to a lower state, labeled j, is shown in
figure 3. There are other radiative processes, (e.g., bound-free), but because we are
concerned with line broadening, we will not discuss them here.

2.2. Natural Broadening

When an electron radiatively decays from an upper state, 7, to a lower state, j, it will
emit radiation at a frequency that is equal to the energy difference between the two



CONTENTS 7

0
Awij

Figure 3. Cartoon of radiative decay from state ¢ to state j, and the
corresponding Lorentzian line shape as a result of the natural decay rate of the
radiation. Here, w;; is the frequency of radiation and I' is the width the spectral
profile.

levels, w;; = E; — E;. However, this spectral feature is not infinitely sharp, it has some
width. There is a characteristic timescale for the electron to spontaneously decay from
state ¢ to state j. This spontaneous decay is the result of vacuum fluctuations. The
characteristic timescale for the decay from state ¢ to state j is given by the Einstein
A coefficient (given in units of per second).

In a classical description of natural broadening, Heitler [13] demonstrates that
if electrons from an excited state spontaneously decay, then that state has a finite
lifetime. That finite lifetime translates to an uncertainty in the energy of the upper
level (Heisenberg uncertainty principle)

AEAt> h. (2.1)

The uncertainty in energy, which we denote as I, is equal to the radiative decay rate
(equal to A). This uncertainty in energy means that spectral lines are not infinitely
sharp but have some finite width. The resulting spectral shape is a Lorentzian,
1 5T

Lw)ys—-——-*>———. 2.2
( ) W(w—wij)2+if2 ( )
Demonstration of this line shape due to the spontaneous radiation process is shown
in figure 3.

2.3. Plasma Broadening

In a plasma, the atomic wavefunctions are perturbed and the energy levels are shifted
due to perturbations from the nearby plasma particles, resulting in shifted lines during
the emission and absorption processes. Neutral atoms, ionized atoms, plasma electrons
can all perturb the radiating atom. For our purposes, we will focus on the charged
particles, i.e., electrons and ions. Throughout this paper, we refer to the plasma ions
and electrons as plasma particles or perturbers.

In low-density plasmas, the perturbation from the plasma is weak, meaning that
energy-level shifts are small. In this limit, the plasma particles collide with the
radiator, shortening the lifetimes of states ¢ and j. Therefore, the line shapes still
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have a Lorentzian shape, but with a width that is a combination of the natural and
collisional broadening. The atomic spectrum will then closely resemble that produced
in the absence of a plasma.

However, as the density increases, the perturbation from the plasma becomes
stronger, and the shifts in the atomic energy levels are larger. The larger shifts in
energies mean that the line positions and widths will start to deviate from those
produced for isolated atoms. The resulting line shapes become more complex than in
the low-density limit.

While the broadening is an ensemble average of atomic structure under different
perturbations, calculating atomic structure with an average perturbation will not
result in broadening. There are some atomic-structure calculations that include the
influence of the plasma in an average way such as average atom [14] or ion sphere
[15, 16] models. These models produce bound-bound spectra that do not include
any plasma broadening. Broadening of bound-bound transitions can only be achieved
by averaging the spectra under the influence of individual perturbations and not by
calculating the atomic structure with an average plasma potential.

3. Key Ingredients for Line-Shape Calculations

Line broadening is a multi-disciplinary field, requiring a combination of atomic physics,
plasma physics, and statistical mechanics to perform calculations. Calculations of
atomic structure and the perturbation requires knowledge of basic quantum mechanics,
specifically atomic physics. The motion of the plasma particles around the atom affects
the perturbations. Therefore, we need an understanding of plasma physics. Lastly, we
need to perform an ensemble average, which requires an understanding of statistical
mechanics. Each category (atomic physics, plasma physics, and statistical mechanics)
has its own challenges. Taking elements of each and combining them adds additional
complexity.

At their core, line-shape calculations perform a statistical average of perturbed
atomic wavefunctions. Line-shape theory is based on performing a statistical average
of solutions of the time-dependent Schrédinger equation,

%\Il(t) = [H + HP v ()]0(1) (3.1)

where Hy and Hép ) are the Hamiltonians that describe the atom and plasma systems,
respectively, and V (¢) is the interaction between atom and plasma. The 15 ingredient
is an accurate description of the interaction between the atom and plasma particles,
V(t). The 2" ingredient is a solution for the atomic wavefunctions and energies
in the absence of plasma perturbation. The 3" ingredient is a description of the
wavefunctions/trajectories of the plasma particles. The last ingredient is how one
performs the statistical/ensemble average of the ¥(¢) solutions.

3.1. Ingredient 1: Interaction Between Atom and Plasma

The first essential component is to accurately describe the interaction between the
atom and the plasma particles. The components of the radiator—the nucleus and
electrons—are charged particles, as are the plasma electrons and ions. Therefore,
the interaction between the atom and plasma systems consists of a sum of Coulomb



CONTENTS 9

interactions between particles,

Z N1
V= qi %— “]

; ’ |ri_7ﬂnuc| az::1|ra_7"i|
Znuc N 1

|776 - 77nuC| a=1 |7Za - 7:€|

+qu[ , (3.2)
e

where ¢; and ¢. are the charge of the ions and electrons, respectively, and Z,,. is
the nuclear charge. Here, the first term in brackets is the interaction of the radiator
with the ions and the second term is the interaction of the radiator with the plasma
electrons. In quantum mechanics, the interaction between identical particles, such
as two electrons or two protons, becomes more complicated due to an inability to
distinguish them. Therefore, a more complete picture of the interaction between
atomic and plasma particles includes what is called exchange terms, which accounts for
the indistinguishability of identical particles [11]. This concept of indistinguishability
is also tied to the Pauli exclusion principle, or Pauli repulsion.

In the line-shape problem, we are most concerned with the atom-plasma
interaction. The plasma particles will also interact with each other. However,
accounting for this interaction is complicated, and it is common to approximately
account for the plasma particle-particle interactions by screening the atom-plasma
interaction. A basic model for screening involves including an exponential damping
factor to equation (3.2),

Vscr = ZQZ

Znuce_lfi_Fxlucl/)\sc'r' N o=IFa=Til/Aser
7 |Ti - Tnuc| a=1

|Fa _fi|

7o e TemTanel Aser e a=TelAser

3u 2

|Fe - FnuC| a=1 |Fa - 7:e|

(3.3)

The use of screened interaction potentials was mathematically derived by Hussey et
al. [17]. Screening V has the effect of reducing the ability of more distant plasma
particles to perturb the radiator.

3.2. Ingredient 2: Atomic Structure for Isolated Atom

In order to use the form in equation (3.1), we first need to solve for the wavefunctions
and energies of Héa). We need to solve the Schrodinger equation,

H{y = B (3.4)

where Héa) is the Hamiltonian of the atomic system, E® is the energy of a given atomic
state, and v is the eigenvector /wavefunction solution associated with the energy E.
Here, the Hamiltonian is given for an N-electron atom as

1 NT 1 Zne 1
H(ga):_iviuc+z _7V¢21_
2 Zl o2

(3.5)

— — — — b)
| a~ rnuC| a<a’ |Ta - ra’|

where the respective terms are the kinetic energy of the nucleus (—%mec), the
kinetic energy of the electrons (-, %Vi), the electron-nuclear potential energy
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(-, |FGZ_‘;;‘:UC‘), and the electron-electron Coulomb repulsion (3, Zam,m_il?,l) I.
Here, we have used the label a to denote that these are atomic electrons. Due to
the additional mass of the nucleus, the nucleus does not move much relative to the
electrons. The most important contribution to the atomic structure is the relative
motion of the electron to the nucleus,

1 o Znue 1

(@) . <
H® & S [ 22 - 2
0 4|V

— |, (3.6)
a| a<a’ |Ta - Ta'|

where the nucleus is now taken to be the approximate center of mass frame.

As we can see from the form of equation (3.5), solving for atomic wavefunctions
and energy levels is a complicated enough task all on its own. There are many
codes that are devoted to solving the eigenvalue problem associated with equation
(3.5), including Cowan’s atomic structure code [12] (and its variant CATS [18]) the
relativistic Dirac-Fock-Slater code RATS [19, 20], and the Flexible Atomic-structure
Code (FAC) [21]. Cowan’s code will usually produce adequate results using the
Schrédinger equation with relativistic corrections, while RATS and FAC provide
solutions of the Dirac equation.

3.8. Ingredient 3: Plasma Particle Motion In the Vicinity of the Radiator

Next, we need to accurately describe the plasma behavior, by solving for the
Hamiltonian of the plasma, Hép ). The form is very similar to that of Héa),

Z;

|’Fe _fz'|

1
N ) BB +

1 ZZZl/

— — — — b)
e<e’ |r€ - re’| i<’ ‘Ti - Ti’|

(3.7)

where i and e denote ions and electrons, respectively, in the plasma.

As before, a simplified version is often used rather than equation (3.7). It is
rare that all of the interaction terms (Coulomb potentials) between plasma particles
are included in their solutions. Rather, only non-interaction terms (kinetic energy
operators) between plasma particles are included in Hép ), and the interacting terms
are passed into V'(¢) in the form of screening. The interactions between the atom and
plasma particles become screened as already shown in equation (3.3).

It is common practice that the long-range potential of the atom is included in
the solution for Hép ). Here, “long-range” means outside the atomic orbitals. If the
radiator is ionized, then we want to model the plasma particles being either attracted
to, or repelled by, any bare nuclear charge (Z,u,.—/N). This goal is achieved by splitting
V(t) into its long-range and short-range components,

V(t) = Ulong(r) + ‘/short(t)- (38)

then use the long-range part Usong(7) to alter the trajectories of the plasma particles
in the vicinity of the atom,

1 1
H(()p) N = Z §V12 + ZiUlong(fi) + Z _ivg - Ulong(Fe)a (39)

1 Here, we only show the non-relativistic version of the Schrodinger equation, relativistic corrections
can be included [12], or one can solve the Dirac equation.
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where Ujopng usually takes the form of a Coulomb potential,

Ulong () = Zﬁ“T;|‘A[. (3.10)

The long-range atomic potential is important to describe the behavior of plasma
particles near the radiator. If the radiator is neutral, meaning Ujo,4(r) is zero, then
the particles move along plane-wave or straight-path trajectories. If the radiator
has lost some electrons, then it has a net charge that will attract and accelerate
electrons towards the radiator. Their behavior can be described by Coulomb waves
(or hyperbolic trajectories). Additionally, with an attractive potential, the electrons
may become (temporarily) bound when interacting with the radiator [22]. Because of

the opposite charge, ions will be repelled from a positively-charged radiator.

3.4. Ingredient 4: Ensemble Average of Random Perturbations

The last component we need is to perform a statistical average over atomic and plasma
states, which requires a calculation of the probability that states of the atom and
plasma are occupied. A derivation of the statistical average of quantum mechanical
operators can be found in Fano [23], which we repeat that here.

Fano begins with a pure state, v, that is the only state available to the quantum
system. The state 1 is defined as a linear combination of states, .,

Y= Cnlin. (3.11)

where u,, is some arbitrary set of wavefunctions and c,, are the coefficients. A quantum-
mechanical expectation value of an arbitrary operator, O, is given by

(0) = (¥[0]4). (3.12)

Insertion of equation (3.11) into this definition for the expectation value gives a double
sum over the u,, states,

(0)=>cren (n']0|n). (3.13)

nn’

Let us now expand this concept where the wavefunction ¢ is made up of an
ensemble of (). Each 1) is associated with an ensemble statistical weight, W,
where the sum of all weights equals unity,

YWi=1. (3.14)

Here, the weight W; is the probability that ¢(*) is occupied in the ensemble. The
expectation value becomes a sum over expectation values of (")

(0)=>(0), W;. (3.15)

(0),; = (¥ 1]0]4D). (3.16)

We can then use the notation in equation (3.13) to describe this non-pure state average,

(0) =3 5 e oW (' [0]n). (3.17)

7 nn’
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We can therefore put all of the information on the statistical average into a single
operator, which we call p,

(nloln') = ¥ Wiel)"elD. (3.18)

The operator p is what is known as the density matrix. The density matrix gives us
the probability that states are occupied in the ensemble. We can re-write the average
in terms of the density matrix,

(0) = Z (n'|O[n) (nlpln') = Z (n"|0p|n) = Tr{Op}. (3.19)

Here, we now have the general result that the statistical average of an operator is the
trace of the product of that operator with the density matrix. The density matrix has
to be properly normalized such that the trace is 1,

Tr{p} =1. (3.20)

In line-broadening theory, the form of the density matrix is often taken to
correspond to a plasma that is in thermal equilibrium. Therefore, the density matrix
is taken to be a Boltzmann distribution,

e PH
= 3.21
P= o oEH (3.21)
where H is the Hamiltonian of the total atom and plasma system,
H=H"+H" +V (3.22)

4. Line-Shape Formula and Various Approaches

Now that we have set up a conceptual picture for line broadening, we will now discuss
methods of calculation. We begin with the rate for spontaneous emission,

3 —
Ay = o5l |D) P (4.1)

where D is the electric dipole moment of the transition, and ¢ and f indicate the
initial and final states, respectively, of the transition. From this, we can derive the
fundamental line-shape equation (see appendix A), given by [24, 25, 26, 27],

I(w) = ?fooodt ' Ty {D - D(t)p} | (4.2)

where PR means to take the real part. The line shape is then defined as the
Laplace transform of the thermal-averaged dipole autocorrelation function. The dipole
autocorrelation function (often denoted as C(t)),

C(t)=Tr{D-D(t)p} (4.3)

is a measure of the loss of coherence of the radiation due to the plasma environment.
C(t) decays to zero at long times. Calculation of the time evolution of the electric
dipole moment is critical. There are two fundamental methods to evaluate equation
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(4.2): analytic and simulation. We will expand on these two methods later in the
section.

The time evolution of the dipole moment is evaluated in terms of time-evolution
operators. According to the Heisenberg picture§, the time evolution of operators is
written generally as

D(t) =U'(t)DU(t), (4.4)

where U(t) is a time-evolution operator. U(t) is a unitary operator, meaning that
Ulu(t) = 1. (4.5)

This condition guarantees that the sum of all probabilities is one, and particle number
is conserved. The U(t) operator can be obtained by integrating the time-dependent
Schrédinger equation,

LU = ~H U ), (4.6)

with the initial condition U(0) = 1. The time evolution of the dipole moment can
equivalently be expressed in terms of Heisenberg’s time evolution,

d - . .
S D(1) = ~ilH (D), D(0)] (@7)
%D(t) L) D), (4.8)

where the second equation is written with the compact Liouville representation (see
appendix B). The Liouville representation is a compact way to write this commutation
and lends itself to easy algebraic manipulation.

We demonstrate a few examples of the autocorrelation function and their
corresponding line shapes in figure 4. In these plots, we have normalized the
autocorrelation function so that C'(0) = 1. The autocorrelation function has real
and imaginary parts. The imaginary part is an indication of shifts or asymmetries.
The autocorrelation function decays to zero at long times. Transitions such as Ha
(n = 3 - 2)have a strong unshifted central component, with their autocorrelations
decaying (roughly) exponentially. Transitions such as HS (n = 4 - 2) do not have
a central component, and we see that the change of the real part from positive to
negative leads to multiple peaks in the line profile.

We also need to discuss the relationship between frequency in the line shape
and time in the autocorrelation function. This relationship is important because the
time dependence of certain phenomena will impact different parts of the line shape.
Time and frequency have inverse dimensions, with time usually defined in seconds,
while frequency is defined inverse seconds. Therefore, processes that happen within a
certain time At will appear on the spectrum within a frequency range of Aw = 1/At.
One example is the “static” limit in the wings of the lines: large Aw corresponds to
short At. At short At, the plasma particles do not move appreciably. Therefore, the
particles are static within that given At or Aw. Conversely, because small Aw samples
large At, the cores of lines are in the “dynamic” limit because plasma particles move
appreciably within a large At.

§ There are three distinct pictures for time evolution in quantum mechanics. In the Schrodinger
picture, the wavefunctions carry the time dependence, and operators are time independent. In
the Heisenberg picture, the operators carry the time dependence, and the wavefunctions are time
independent. In the interaction picture, time evolution is shared between wavefunctions and
operators.



CONTENTS 14

1.0 20

0.8 Ho

0.6 |
Real

o4 b Imaginary ]

0.2 1

% 0.0 perenesmensa -

s L0010 20 30 40 50 6

0.8 HB ]

0.6 B

04 ¢ Real
Imaginary

0.0 prevy;

1 1 1 1 1 0
0.0 0.5 1.0 1.5 -0.10 0.00 0.10

t (107135) Aw (eV)

Figure 4. Examples of average D - D(¢t) and the corresponding line shapes for
Ha and HB. The blue lines indicate the real part of (D - D(t))4,, and dotted red
indicates the imaginary part.

Line-broadening calculations are divided up into two broad categories: simulation
and analytic methods. The simulation calculations simulate the plasma particles
moving around the radiator to generate a perturbing potential, then numerically
solve the time-dependent Schrédinger equation. The thermal average in simulations
is usually done by simulating D - D(t) for many different radiators (i.e. Monte-Carlo
sampling). Analytic methods involve the manipulation of equation (4.2) into a form
that is convenient for computation. Simulations and analytic calculations approach
the line-shape problem in different ways, and these methods are complementary. We
now describe the details of each method.

4.1. Simulation Method

Simulations are particularly convenient since they offer good insight into the line
broadening problem. Plasma particles are simulated inside of a box, moving on
classical trajectories. The classical particles are used to generate a time-dependent
Coulomb potential V' (¢). This time-dependent potential is used to solve for the time
evolution of the radiator, which is then used to generate a spectrum. This procedure
is outlined in figure 5, where this process is repeated for many different simulations
with different initial conditions representing different radiators.

4.1.1. Simulation Details

The simulations vary in the details of their particle simulation. Generally,
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Figure 5. Conceptual outline of the simulation method of line broadening.

simulations will generate classical particles that move around in a finite-sized box. It
is rare that a simulation will take into account all N-body interactions; Stambulchik
et al. [28] and Gigosos et al [29] are exceptions. Rather, the simulation will
generate particles that move on straight-path (neutral radiator) or hyperbolic (charged
radiator) trajectories inside a finite-sized box. The lack of N-body dynamics can be
mimicked by screening the atom-plasma interactions, equation (3.3).

The distribution of particle velocities and positions in the box are sampled
from Maxwellian distributions. This generally involves random number sampling.
One advantage of the non-interacting simulation is that the distribution of velocities
remains Maxwellian. Therefore, for fully interacting simulations, care must be taken
to avoid numerical heating or cooling [29].

To preserve particle numbers in the box, the simulation particles need to be
re-injected back into the box. The re-injected particles need to preserve both
the velocity distribution and the impact parameter distribution. Methods include
periodic boundary conditions, mirrored walls [28], random sampling within an impact
parameter bin [30], or completely re-sampling impact parameters and velocities [31].

4.1.2. Integration of Time-Dependent Schrodinger Equation

Simulation methods will then take the time-dependent potential and solve for the
time-evolution operator by numerically integrating the time-dependent Schrédinger
equation. The challenge is to integrate

%U(t) = —i[Hy+ V()]U (1), (4.9)

where, as before Hy contains the non-interacting terms, and V(t) contains all the
interacting terms. Because simulations approximate the plasma particles as classical,
the Hy in equation (4.9) spans only the atomic system, and V' (¢) connects that atomic
system to the plasma.

All simulation line-shape calculations are based on integrating equation (4.9),
where the only variation would be in the simulation itself. At one of the Spectral
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Line Shape in Plasma (SLSP) code-comparison workshops [32], all simulation codes
were given the same V(t) history, and the resulting U(t) matrices were identical,
independent of the integration method. Integration methods include implicit midpoint
[33], explicit classic Runge-Kutta (RK4) with adaptive time steps [34], matrix
exponential [35, 36], and Euler-Rodriguez parameters [30].

4.1.8. Spectrum Generation

The time-evolution operator that was obtained in equation (4.9) is then used to
solve for the time evolution of the dipole moment:

D(t) =UT(t)DU(t).

This result is then used to calculate a spectrum in one of two ways. The first is by
performing the Laplace transform of

T?"{D-D(t)p}7 (4.10)

then averaging the various results. The second is to Laplace transform D(t) first (i.e.
D(w)), square it, then evaluate the thermal average,

Tr{D(w) - D(w)p} (4.11)
D(w):fowdtei“tD(t), (4.12)

and then average.

Analytically, these two methods are identical, but they have very different
numerical robustness. Rosato et al. [37] showed that the power-spectrum method
in equation (4.11) has substantially better noise properties than calculating the
autocorrelation function in equation (4.10). The better noise properties of the power-
spectrum method allow for much faster calculations because it will require fewer
simulations. The noise of the two methods is demonstrated in figure 6 for the Hf
transition of neutral hydrogen.

4.2. Semi-Analytic Methods

Semi-analytic methods are used to solve equation (4.2) by relying on mathematical
manipulation of equation (4.2), but still require a computer to perform the calculation
of the line shape. Semi-analytic methods are advantageous over simulations because
the computation time to calculate a line shape is generally much shorter and are
without numerical noise. Additionally, since the derivations for analytic methods are
different than the simulations, they can include different physics, but may also miss
some physics that simulations include.

Since the work of Griem et al. [38], the contribution of the ions and electrons have
been solved separately. Such a separation can be done because the ions and electrons
have two drastically different velocities in the vicinity of the atom due to their masses.
To account for the broadening due to the ions, the analytic method reduces the ion
contribution to an integration over a plasma electric microfield. The method begins
by assuming that the ions do not move appreciably over the decay time of (B . D(t))7
i.e. are static; see Section 5.5. The Hamiltonian used in the time evolution is modified
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Figure 6. Demonstration of noise properties between equations (4.2) (blue) and
(4.11) (red) for simulation calculations. Each calculation was performed with only
500 simulations. For the autocorrelation method to achieve the same level of noise
as the power-spectrum method, the number of simulations needed would be in
the tens of thousands.

accordingly,

H = Héa) + Hée) +Héi) + V(ea) " V(z’a)
v H + v+ B 4 o)
v H  (4.13)

where the superscripts e and i denote the plasma electrons and ions, respectively, and
V7 is the electric potential of the ions felt by the atom a. The atomic Hamiltonian
now contains an external microfield (due to the ions) felt by the radiator atom a; we
denote this simplified atom and plasma electron Hamiltonian as H(*), which contains
the potential due to the ions. The line-broadening equation is simplified to

R oo
I(w):—[ dt e™"x
T JO
(rr{D- eiH‘“”De—iH(“)tpHa . (4.14)

where (), indicates an average of radiators, with each feeling different ion potentials;
see figure 2.

To more conveniently average over different radiators feeling different ion
potentials, the ion potential is approximated using the dipole interaction. Under the
dipole approximation, the ion potential is defined to be the inner product of the dipole
moment of the atom, D, and the electric field of the ion, €, which is often referred
to as the ion “microfield”; Section 5.1 gives more detail on the dipole approximation.
The dipole approximation allows the average over radiators to be evaluated as an
integral over ion electric fields, weighted by the microfield probability distribution.
The microfield probability distribution gives the fraction of radiators that feel a given
microfield. Calculation of microfield probability distributions is an entire area of
research unto itself. The first calculations were performed by Griem et al. [38] and
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were subsequently developed by Baranger & Mozer [39], Hooper [40], and Tighe &
Hooper[41]. The most commonly-used calculation today is the APEX model [42],
but can also be calculated by Monte-Carlo or molecular dynamics methods. The ion
contribution is taken into account by integrating over the ion microfield probability
distribution, P(e). The line-shape equation is subsequently modified to be [38],

I(w) - fo ~ deP(e)J (e, w), (4.15)

where J(e,w) now contains the broadening due to the electrons. Ion-dynamics
corrections are possible through models such as BID [43].

Next, we need to calculate the electron-broadening contribution. A convenient
form for J(€,w) involves algebraic manipulation of the time-evolution operators. First,
the time evolution is written in terms of Liouville operators,

Tr {DeiH(s)tbeiH(e)tp} - Tr {De—iH(e)tpDeiH(e)t}
=Tr{De” L (pD)}, (4.16)

where the order of the operators can be permuted due to the cyclic invariance of the
trace; for compactness, we have dropped the superscript (ae) from the Hamiltonians.
The Liouville operators are convenient because they help to eliminate the plasma
electron variables [26]. The electron-broadening function,

1 o L .
J(ew) = -0 fo dt ' Tr { De O (p D)}, (4.17)

is manipulated so that all of the effects of the plasma electrons on the radiator are
contained within a single operator,

J(e,w) = ;T)’Tra {D (4.18)

1 R
o L@ (o) - <M(w>>f“D}’

where J denotes taking the imaginary part, L(“)(e) is the Liouville operator of the
atom, p, is the density matrix of the atom, and (M (w)), is the electron-broadening
operator. The trace in equation (4.18) acts only on atomic variables, whereas the
trace in equation (4.17) acts on both atomic and plasma electron variables. In the
literature, there are multiple different representations of (M (w)),, including i¢, I,
(M. (w)), M(w), and H(w). There are three primary derivations for (M (w)),: impact,
relaxation, and kinetic. We discuss these theories later in this section.

In summary, analytic theory involves separate calculation of electron and ion
broadening. At a given ion microfield, we need to calculate the electron broadening at
that field value, which is used to calculate a spectrum, then average over the microfields
felt by different radiators. This process is outlined in figure 7.

4.2.1. The Impact, Relaxation and Kinetic Theories

The impact theories of Baranger [44] and Kolb & Griem [45] were the first broadly
used models for plasma physics and astrophysical applications. The impact-theory
results require multiple approximations, including using a simplified density matrix
and the impact approximation. Additionally, it was Baranger’s insight to interpret
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Figure 7. Conceptual outline of the analytic method of line broadening.

the broadening due to electrons with the same mathematical language as natural
broadening.

The most important approximation to consider is the impact approximation,
which allows for a significant simplification of Baranger’s [44] results. Here, Baranger
was only concerned with time evolution longer than some characteristic collision time
scale, 7. By looking at long times, the resulting (M (w)) will be independent of w and
the line shape will have a Lorentzian shape. This approximation is only valid as long
as

J(M), 7«1 (4.19)
R(M), 1«1 (4.20)

Fano [26] sought to re-derive Baranger’s results with more generality using the
Liouville representation; this became the basis of the relaxation theory. The Liouville
representation lent itself to easier mathematical manipulation and allowed Fano to
remove the plasma electron variables more easily. With the Liouville representation,
Fano [26] was able to include previously neglected terms in the broadening, specifically
the time-/frequency-dependence of the electron collisions. Fano’s result provided
an extension of Lippmann & Schwinger’s [46] collision theory into the Liouville
representation. An overview of collision physics is presented in Appendix C. Lastly,
Fano showed that his results reduced to Baranger’s in the appropriate limit.

Fano’s derivation, however, still relied on a simplified density matrix, and the
formalism did not lend itself to easy inclusion of N-body physics. Fano (and Baranger)
justified the use of the simplified density matrix by showing that the neglected parts
would only be important in the far line wings. Additionally, Fano showed how (M (w))
might include N-body effects with a gas-density expansion, with even the n? term
being complicated. It had been realized quickly that some of these N-body effects have
a significant impact on the line shape [47]. So, while screening must be included for
accurate line shapes (see Section 5.3), the screening prescriptions are ad hoc inclusions
into the theory based on intuition rather than any rigorous derivation [38, 48].

Due to the calculational challenges associated with line-shape theory, Hussey et
al. [17] sought to simplify the N-body problem into a few-body problem using non-
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equilibrium statistical mechanics. Hussey et al. [17] used the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) [49, 50, 51, 52] hierarchy of kinetic equations to derive
(M(w)). Within this formalism, Hussey et al. [17] were able to derive a line shape
that includes a more general treatment of the density matrix and includes a formal
treatment of screening. The kinetic theory formally includes terms that contain 3- or
4-body interactions, but this form is still challenging. These terms are too difficult to
implement in current line-shape calculations.

4.2.2. Expressions for (M (w)),

Here, we will give the expressions for (M(w)), as derived by the impact,
relaxation, and kinetic theories. This comparison will put all of the theories in the same
notation so that their differences can be more clearly discerned. Both the relaxation
and kinetic theories have terms that include N-body contributions, but for the purpose
of this comparison we will not include them explicitly, but merely allude to them. We
begin by comparing the relaxation and kinetic results and discuss the impact theory
results last.

In the relaxation theory, Fano derived an expression for (M (w)), that is expanded
in powers of electron density, n.. The first term contains all interactions with a single
plasma electron, then multiplied by the electron density. The second term contains
all 3-body interactions (two plasma electrons + atom), etc. The expression for the
relaxation theory is then (showing only the first-order density term),

1
(Mye1(w)) = neTﬁ{L(al) pl}
I 1 _ (w _ Léal))_1L§a1)

+0(n?) (4.21)

where Lgal) is the Liouville representation of the interaction between the atom, a, and

one plasma electron, 1, L(()al) contains non-interacting Hamiltonian terms of the atom
and one electron, and p; is the density matrix of a single free plasma electron. In
equation (4.3) of Hussey et al. [17], (M (w)), is given by

e

(Mygn(w)) = neTn{LYL” Pa1X

1
L= (w=- L™ - Ca () 1 ef™

}, (4.22)

where Cy1(w) contains additional terms including those that contain the effects of 3-
or 4-body collisions.

The impact-theory results can be obtained from the relaxation theory by selecting
a specific frequency. The formula for the impact-theory width is given by

(@B [(Mimp)| &'B') = (aB|(Mrer(wap)) o B)
= (aB|(Mre(warpr)) o' B7)  (4.23)

where wq g and wy s are the frequencies of the @ — S and o — B’ transitions,
respectively.
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4.2.8. Additional Comments about the Impact, Relaxation, and Kinetic Theories

The reader can see that the line width is related to the function
1

M(w) = Li*V :
I 1 _ (OJ _ L(()al))_ngal)

(4.24)

which is the Liouville-equivalent of the collision T-matrix; see appendix D. The T-
matrix is formally a collision amplitude. M (w) consists of elastic T-matrices of the
upper state and lower state, plus various interference terms between them.

One incredible insight by Baranger [44] was the relationship between of the width
and the lifetime of the state. Baranger used the optical theorem, which converts an
elastic T-matrix into a sum over inelastic and elastic cross sections. This way, Baranger
was able to relate the width/lifetime of the state to the collision cross sections and
amplitudes,

%nev[a

inel inel

T (Mimp) = w o+

[ d9iru (@) - @) . (425)

Av

where v is the velocity of the colliding particles, the first two terms are total inelastic
cross sections, the last term contains elastic collision amplitudes, and the subscripts
u and [ denote the upper and lower states, respectively. This form is particularly
convenient because all that one needs to calculate a line shape is a set of collision
cross sections and amplitudes. However, caution must be taken with this formulation
because it does not translate to overlapping lines [25]. Additionally because this is
the impact theory, this form does not capture any time/frequency dependence of the
collisions.

The form in equation (4.25) helps to illustrate that the broadening contains upper-
state broadening, lower-state broadening, and some interference between them. The
inelastic parts in Baranger’s formula will constructively add, and the remaining elastic
part in the third term will cancel if f,(Q) and f;(Q2) are equal. Fano offered more
insight, stating that collision events in the upper and lower states are not mutually
exclusive events, but rather interfere with each other.

The kinetic theory employs a more general density matrix, rather than factorizing
it. Hussey et al. [17], therefore took advantage of commutation properties to derive
the expression in the kinetic theory. We make this point because the density matrix
is “inside” of M (w),

1

Mkin(w) = L(al)pal . (426)

b - LY - Ca(w)) L

This result is only possible when the following condition is satisfied:
[H,p] =0, (4.27)

which means that the kinetic theory may only applicable when equation (4.27) is true.
Gomez et al. [53] re-derived an expression for (M (w)), within the relaxation theory
with a more general density matrix treatment.
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4.2.4. Properties of the (M (w)),

First, (M (w)) is a complex-valued operator, where the real part gives the shift
parameter and the imaginary part gives the width parameter. This can be seen by
taking a simple form of (M (w)), where we consider only the diagonal elements and
make them independent of w,

(M(w)) = (M)g +i(M),.
If we use this definition for the broadening, then the electron profile becomes

-1 1
—7J
T w-L—-(M),+i(M),

(M), 1

. (4.28)
T w-L-(M)p]"+(M);

where, in this limit, the electron-broadening profile is a Lorentzian. One can easily see
how in this representation, electron broadening can be thought of as simply decreasing
the lifetime of the transition, harkening back to natural broadening.

More generally, (M(w)) has a frequency dependence and has off-diagonal
elements, which have substantial impact on the spectra. The frequency dependence
indicates that the shift and width parameters in equation (4.28) are now a function
of frequency,

(M(w)); 1
T [w- L= (M(w)p) + (M(w))]

The consequences of including/neglecting the frequency dependence is shown in
figure 8. Lastly, off-diagonal elements make the final line shape a superposition of
Lorentzians [25] with frequency-dependent widths and shifts. The differences between
the frequency-dependent width and shift parameters are measurable [8].

5. Common Approximations and their Validity

Performing all of the physics that was described in Section 3 exactly is challenging,
and approximations have to be made to keep the calculations tractable. However,
many approximations are used without sufficient justification. Without rigorously
studying the validity of these approximations, both mathematically and comparing
line shapes with different levels of approximation, the true validity/uncertainties
of calculations is unknown. Quantifying uncertainties in a given model is difficult
because different models employ different approximations. In this section we will
discuss the following approximations: the dipole approximation, the factorization
of the density matrix, classical approximation, static-ion approximation, second-
order approximation, binary-collision approximation, impact approximation, and the
approximations in screening treatments.

Line shapes can be calculated using simulation or analytic methods, and each
method requires its own set of approximations. Some approximations—dipole,
factorization of density matrix, screening, and classical approximations—are used by
both simulation and analytic calculations. The remaining approximations—static-ion,
second-order, binary-collision, and impact approximations—are only used in analytic
calculations.
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Figure 8. Bottom panel: frequency dependence of the M operator. Dot-dashed
green line is the imaginary part of (M(w)), and the dotted blue is the real
part. Top panel: comparison of line shapes with frequency-dependent (red) and
frequency-independent (dotted black) width and shift parameters. The frequency
dependence puts the peak of the line shape in a different place, gives additional
structure to the line shape, and depresses the wings of the lines.

5.1. The FElectric Dipole Approrimation

The calculation of the Coulomb interaction between the radiator and the perturbers
is fairly involved, and it is therefore desirable to simplify this interaction. Expanding
the Coulomb interaction into its multipole components and retaining only the
dipole component greatly simplifies the computational effort, and line shapes can
be calculated using only electric fields. However, the dipole approximation is only
valid when long-range interactions are the dominant type of interaction.

Since atomic electrons move in spherically symmetric potentials, the radial and
angular wavefunctions are separated [54]. Therefore, it is advantageous to write
the interaction in a spherical representation. The electron-electron repulsion term
of equation (3.2) can be written in terms of spherical harmonics,

o .k
dabe  _ Z "< Py (cosYae) (5.1)

|Fa = Tl k=0 rh+l

_ i rk Zk: iy* C )Yig (8o, 00) (5.2)
B k=0 T§+1 q=—Fk 2k +1 kq asPa)lkq\Ve; Pe); .

where r. and 7. are the minimum and maximum, respectively, of r, and r.; this
expression is exact. The index k can be thought of as the order of the multipole
expansion, with k£ = 0 being the monopole interaction, k =1 dipole, k& = 2 quadrupole,
and k = 3 octupole, etc.

Under the dipole approximation, we assume that the atomic electrons are always
at the smaller radius, and the plasma electrons are always outside the wavefunction
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of the atom. We therefore set
T« =Tq and s =Te (53)

and use the Taylor expansion only up to the k =1 dipole term. Under equation (5.3),
the monopole, k = 0, electron-electron term cancels with the electron-nuclear term.
The atom-plasma interaction is approximated as

T < 4T,
Vatom-plasma ® ZQiﬁ Z ? 1q(9a7 @a)qu(gi, <Pi) +
i i q=—1
Ta < 4T,
quﬁ Zl gqu(aaa@a)qu(ee,soe)
e e q=—
N 7. 2
~ ;ra 4 22: |F;|3 e ). |ﬁ:|3 (5.4)
N
v LT (5.5)
N _DG'EZN (5.6)

where €, is the electric field due to the plasma, and D, is the dipole moment of the
atom.

The dipole approximation is particularly convenient because the plasma
perturbation can be approximated as a fluctuating electric field, and atomic dipole
moments of the atom can be obtained from any atomic structure code. As a result,
this approximation is broadly used. Evaluation of the exact interaction (Eq 5.2) is
more involved, requiring integrals over atomic wavefunctions, rather than just reading
in a table of already calculated D, values. Additionally, because plasma electrons and
atomic electrons are identical, the Pauli exclusion principle should be applied to take
into account their indistinguishability, which results in inclusion of exchange terms;
the dipole approximation does not include this physics.

The dipole approximation gives rise to the term “Stark broadening”. Equation
(5.6) is the potential for the Stark effect. In most line-broadening scenarios, the
dominant source of broadening will be through Stark interactions. Therefore, we
can consider Stark broadening as a 1%°-order effect of line broadening. There are
other contributions to the broadening beyond the Stark effect, and exactly when it is
important to include those other interactions depends on the element, transition, and
the plasma conditions.

The dipole approximation is valid when the plasma particles are far away from the
atom, because, even for k = 1, the true potential, equation 5.2, goes to some finite value
rather than infinity as is the case in equation (5.4). This has already been explored
by Woltz & Hooper [55], and we demonstrate it in figure 9. Due to this unphysical
divergence, it is common practice (when using the dipole approximation) to employ
some kind of cutoff, though not all calculations that use the dipole approximations
have cutoffs [56]. The validity of these cutoffs has not been sufficiently studied, despite
their having substantial impact on the line shape [9].

There have been a few studies that examined the consequences of not including
the exact Coulomb interaction on the line shape. Expanding the dipole approximation
to include quadrupole interactions may affect line asymmetries [35]. Not including the
proper penetrative physics can lead to an overestimate of the true width [55]. And
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Figure 9. Comparison of the dipole approximation (dotted blue) with the exact
k =1 potential of equation (5.2), shown in red.

finally, when using the exact Coulomb interaction in equation (5.2), the monopole
term, k = 0, does not cancel entirely with the nuclear term. The exact treatment of
the k& = 0 term leads to additional shifts not seen in the dipole approximation [57].
This shift occurs because the plasma electrons build up charge around the nucleus
and screen it, thus lowering the energy of the atomic levels.

The redshift in the transition energies has been observed in experiments [58, 59,
60]. Additionally, this redshift has been recently used as an electron density diagnostic
in a laser-heated solid-density Ti experiment [61]. In their work, including the redshift
in the line-shape model allowed them to determine that the ions and electrons were
not in equilibrium.

In figure 10, we show how accurate the dipole approximation is for two examples:
neutral hydrogen, and He-like magnesium. For hydrogen Ly (n =3 — 1), the dipole
approximation is sufficient to get the correct width of the line, but as supported by
Gomez et al. [35], may be insufficient to capture the proper asymmetries. In Mg X1
Hevy (n =4 - 1), the dipole approximation is not a good approximation. Here, the
full-Coulomb treatment results in a smaller width as well as an additional redshift
[57].

5.2. Factorization of the Density Matrix

When the interaction between the atom and plasma is weak, the form of the density
matrix in equation (3.21) can be simplified. The density matrix under Boltzmann
statistics is given by

e PH
= 5.7
P Tr e PH (5.7)
where the Hamiltonian is that of the total atom+plasma system, given by
H= Hatom + leasma + Vatom—plasma- (58)

If we assume that Viiom-plasma is small, then we can neglect it in the evaluation
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Figure 10. Comparison of the dipole approximation and full Coulomb

interactions for neutral hydrogen and highly-ionized magnesium. In neutral
hydrogen Lyg, the dipole approximation seems to be valid to get the correct width,
but may be insufficient to get the proper asymmetry. In Mg X1 He~, the dipole
approximation is not a valid approximation. The full Coulomb treatment results
in smaller width. Additionally, the monopole term of the Coulomb interaction
results in a redshift not captured by the dipole approximation.

of the density matrix. The density matrix can then be approximated as

e_B(Hatom+leasma+vatnm—plasmn.)

- 5.9
p Tre_B(Hatom,+leas'ma+Vato7n—pla5'ma) ( )

e—B(Hatom"'sza,sma,)

N TreBHarom Hyama) (5.10)

Under this approximation, we can go further and factorize the density matrix into

p= patompplasma (511)
e_ﬁHat,om e‘ﬁleasma
. Tre—BHatom Tre—BHplasma |’ (512)

Factorization of the density matrix is possible because Hytom and Hpjqsma Operate on
separate variables and therefore commute. When two operators commute, they satisfy
the following relationship:

[Hatmrm leasma] = Hatomelasma - leasmaHatom =0. (513)

The interaction term, Vaiom—piasma does not commute with either Hoiom or Hpjgsma-

Omitting Vatom-plasma from the density matrix ignores the possibility that the
atom and plasma interaction can alter the distribution of states. In other words, the
presence of the atom can alter the distribution of perturber states and vice versa.
This effect is sometimes called a “back reaction”. Neglecting the back reaction
(i.e., neglecting Vgaiom—plasme) means that the atom and plasma are statistically
independent, and has the advantage of using atomic energies and free plasma states
to construct the density matrix.

The factorized-density-matrix approximation is valid in most cases. This
approximation is justified analytically by Baranger [44] and Smith et al. [62], and
numerically by Gomez et al. [53]. Baranger [44] and Smith et al. [62] showed that
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the factorized density matrix, equation (5.11), gives an accurate line shape at the line
center, but is erroneous in the wings. Differences between the factorized density matrix
and a more complete density matrix treatment is indistinguishable at detunings (i.e.
distance from line center) which are less than the temperature,

|hAw| < kpT. (5.14)

In Gomez et al. [53], using equation (5.9) resulted in a slight asymmetry not present
in calculations using a factorized density matrix, and barely detectable except in the
far line wings. Additionally, Griem et al. [63] showed analytically that calculations
with a factorized density matrix [44] and a more complete density matrix [64] give the
same shift. Therefore, if one is interested in line shapes at detunings less than the
kT,

|Aw| < kpT,

then the factorized density matrix is a good approximation, but if one is concerned
with far-wing behavior, then one must consider the complete density matrix.

5.8. Screening Approximations

In a plasma, the particles interact with each other, which causes the particles to re-
arrange themselves and can alter their motion in the plasma. Line-shape calculations
can account for this behavior by using screened interactions. Solving for the full N-
body dynamics is computationally expensive, and, to our knowledge, only Stambulchik
et al. [28] and Gigosos et al. [29] have performed a line-shape calculation that fully
considers the full N-body dynamics of a plasma with classical particles. It is much
simpler to treat the plasma particles as non-interacting and make up for the missing
correlations between them by screening the interactions between the atom and plasma
particles. It is important to note that there has not been a rigorous formal derivation
of screening in line-shape theory except within the kinetic theory [17]. Therefore, in
all other instances where screening was used, it is out of intuition, and sometimes with
an ad hoc treatment.

Even though the treatment of screening is often without derivation and ad hoc,
it is still necessary to include it. Screening the atom-plasma interaction will reduce
the strength of that interaction, making the line widths narrower than the unscreened
case. This result has been well documented and is a critical part of calculating line
shapes [38, 48]. Figure 11 shows how important screening can be to the line shape.

To include screening, one must modify equation (3.2) to include a screening factor,

7 G
—|7i=Tnucl/Aser
Vatom-plasma = ZQZ[ - = el V -
7

N
> L el Aer
a=1 |’Fa - le
Z
+ Z qe[ - ef‘rﬁ”“nucvkscr
€ | e ~ Tnuc

N 1 o s
S L e | (5.15)
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Figure 11. Comparison of Lyp calculations with (dot-dashed black) and without
(dotted blue) screening. Because screening weakens the interaction between atom
and plasma, the line shape is narrowed.

The multipole expansion would likewise have to be modified. Equation (5.1) is
modified accordingly:

B L
[Fa = 7]
1

i(2k+1)jk(;T< )h,(j)( o> )Pk(cos'y), (5.16)

)\scr k=0 ser )\scr

where j and h,(cl) are spherical Bessel functions, and spherical Hankel functions of the
first kind, respectively. Under the dipole approximation, the screening modifies the
formula for the atom-plasma interaction. The screened dipole interaction, equation
(5.4), is then modified to be

& ri Fil \ —irat/aver
Vatom—plasma ~ Z Ta|qi Z ~ 3 1+ — e MiliAsery
a=1 i |rz| Ascr
ge Y.
e

Iglesias [65] explores how the screening modifies the other multipole terms.
Line-shape calculations often use the Debye length,

(1 + AV) e“’el/kscr], (5.17)

Te
[7el®

ekBT
)\Debye = )
Ne

which is limited in accuracy; here ¢ is the vacuum permittivity. Debye screening is
only valid for weakly coupled plasmas, and will break down at high density. The
origin of Debye screening relies on a linearization of the Poisson-Boltzmann equation,
meaning that it is only valid as long as the linearization approximation holds. Using
a more accurate screening prescription would be highly desirable for calculating line
shapes of strongly coupled plasmas.
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5.4. Classical Approximation

It is common to approximate the plasma particles as classical point particles inducing
fields around the radiator. This significantly reduces the size of the problem because
N-body classical mechanics is a lot easier to solve than N-body quantum systems.
The classical approximation therefore reduces the solution of a plane-wave state to a
point-particle description with a definite position moving with a definite momentum,

e RTHBL 5 (4) = fo + ot (5.18)

This classical approximation is only applied to the plasma particles, the radiator is
still treated quantum mechanically.

With this simplification, instead of trying to solve for the total Hamiltonian as
defined in equation (5.8), we can solve for the motion in pieces. We can solve for
the motion of the classical particles using the laws of classical mechanics, and the
perturbation of the radiator is obtained by integrating the time-dependent Schrodinger
equation,

%U(t) =i [Hatom + Vatom—plasma (t)] U(t) (519)

The Schrédinger equation solved in the quantum version is different than the classical
version. In the quantum version, U(t) contains both radiator and plasma time
evolution, whereas in the classical case U(t) contains only the radiator time evolution.
In order to include the time-dependent behavior of the plasma in the time evolution
of the atom, the interaction becomes a time-dependent operator. Viiom-piasma(t) is
now a time-dependent field that affects the atom.

This approximation ends up ignoring any potential quantum effects, such as
the radiator and plasma electrons being indistinguishable (also known as exchange
[11, 12]). It also ignores any changes in the shape due to the plasma electrons changing
states, which includes the plasma electrons recombining during the radiation process
[22].

The correspondence principle [66] can help determine the validity of the classical
approximation. The correspondence principle states that, as the quantum numbers
increase, the system will behave more like a classical system. For the plasma particles,
the quantum numbers that define them are the momentum, both linear and angular.
One indicator for the validity of the classical approximation is whether the thermal

de Broglie wavelength,
A =+/27/mT, (5.20)

which is inversely dependent on the mass of the perturbing particle, m, and
temperature, is small compared to the relevant length scales. Therefore, the higher the
mass and the higher the temperature, the smaller the thermal de Broglie wavelength
is and the more classical the plasma is. However, there is not a clear criterion for
how small the thermal de Broglie wavelength has to be before we are in a classical or
quantum regime. Smith et al. [62] outline some criteria for the validity of the classical
approximation: 1) the wavepacket does not overlap with other wavepackets, 2) the
wavepacket does not disperse or spread out over the course of the interactions, and 3)
the atom-plasma potential does vary appreciably over the width of the wavepacket.
One fairly strict condition that they give is that the thermal de Broglie wavelength
must be much smaller than the typical particle spacing,

Ap < n;t3 (5.21)
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where n, is the electron density. If we insert equation (5.20) into equation (5.21),
then the classical approximation is valid when mT < n2/®. Smith et al. [62] also state
that strong collisions may be a scenario where the classical approximation breaks
down (more on this later). Whether to assume a classical or quantum mechanical
description of electrons is not always clear, but ions, due to their increased mass, will
always be in the classical regime.

In figure 12, we compare classical and quantum calculations for Ly« and LyfS of
hydrogen. At the lowest temperature, the quantum calculation gives a larger width
than the classical calculation. We can only speculate for now that this is largely
because the thermal de Broglie wavelength at T.=10,000K is the roughly the same
size as the n = 2 wavefunction. At the lowest temperature, Ay = 14ag, and the average
distance between the electron and nucleus [equation (3.20) in 11],

1
Fe = 7nlav = ﬁ[i’mQ -1(l+1)].

is 6 ag for n = 2 of hydrogen. At 80,000K, the thermal de Broglie wavelength has
shrunk to 4.98ag, which is smaller than the average electron extent. At this higher
temperature, the plasma electrons are more classical, i.e., behaving more like a point
particle, and we would expect the two calculations to come into agreement, which
they do. If the hypothesis that

Ar/|Fe = Tnlay S 1 (5.22)

must be satisfied in order for the classical approximation to be valid is correct, then
we can test it by examining a different transition at the same temperature to see if this
condition holds. In Lyf, the n = 3 wavefunction extent is 13.5ag, and at T, = 10, 000K
it is on the cusp of satisfying equation (5.22), and we would expect that the discrepancy
between classical and quantum to be less severe. In fact, the right panel of figure 12
shows that at T, = 10,000K, the classical and quantum calculations predict nearly the
same profile.

12 ‘ ‘ | |
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Lr Classical =s=ms=» + e > E
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o8 L 3
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Figure 12. Comparison of quantum and classical calculations of the Lya and
Lyp line. At 10,000K, Ar is larger than the average extent of the n = 2 (Ly«)
wavefunction. As temperature increases, Ar decreases and the electrons become
more classical, and the two calculations come into agreement. Ar is of similar
size as the n = 3 wavefunction, so we expect the difference between quantum and
classical calculations to be much less. And indeed, that is what is seen for LygS.

There is another aspect of electron collisions that is not well captured by classical
calculations: electron capture. Electron capture is the phenomenon that occurs during
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a collision with an atom when the plasma electron becomes temporarily bound to the
atom. This phenomenon is also known as dielectronic capture and is the first step
in the process of dielectronic recombination, which involves emission of a photon.
Electron capture does not involve the emission of a photon.

Including electron capture has largely been neglected. Griem [27] predicted that
this process should not contribute much to the line shape, and Alexiou & Ralchenko
[67] showed that it was negligible for the application they studied. However, these
studies did not explore the full parameter space. Our recent work [22] showed that for
some transitions, the electron capture contribution could result in as much as a 100%
increase in the line width. We found that electron capture was more important for
lower-n lines, and had more impact on the width when the atomic structure was highly
non-degenerate, i.e., when s and p states had largely different energies for the same
n. Our 2"-order calculation showed that electron capture resolved the long-standing
(factor of two) discrepancy between theory and experiment [68, 69, 70] for the B 111
2s-2p transition.

5.5. Static-Ion Approximation

We now begin the discussion of approximations that only apply to analytic
calculations. In analytic calculations, the ion perturbers are assumed to be static over
the relevant timescales. Because ions have substantially more mass than electrons,
they travel through the plasma much more slowly than electrons. The motion of
plasma ions is so slow that they can be considered not moving at all in the time
that it takes <D . ﬁ(t)) to decay. The big advantage of this assumption is that the ion
perturbation can be simplified to an integration over a microfield distribution, and the
focus then turns toward the details of electron broadening. The heavier the ion is, and
the lower the temperature, the better this approximation is. And the converse is true,
the static-ion approximation is worse with higher temperatures and lighter ions. For
example, if a hydrogen radiator is in a hydrogen plasma, the ion dynamics corrections
will be substantial, while if it were a trace element in, say, an argon plasma, then the
corrections would be negligible.

The consequences of using this approximation are more pronounced in the core
of the line rather than the wings. This behavior can be understood by thinking of
different frequencies as sampling different timescales. Using a dimensional analysis
argument, the detuning of the line, Aw, is inversely related to the time step At,

Aw = 1/At. (5.23)

Therefore, we see that processes that take a long time to happen—such as the time
it takes for ions to move appreciably—will affect the line at small Aw. And processes
that happen on short timescales occur in the line wings. The wings are often referred
to as the static limit because large Aw corresponds to small At, where the ions do not
move appreciably. The differences between static ion and dynamic ion treatments are
shown in figure 13

5.6. Second-Order Approximation

The second-order approximation is commonly used in analytic calculations. In analytic
calculations, the derived formulae for line-broadening may be too complex/intractable,
and simplifications can be made by Taylor expanding the formulae. Analytic theory
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Figure 13. Demonstration of the validity range of the static ion approximation.
The importance of ion dynamics decreases with increasing principal quantum
number.

uses the M (w) operator in equation (4.24) to define the width. For convenience, we
repeat that formula here,

1
M = L.
) 1-Li(w-Lo) ™"

The inverse operator is difficult to evaluate, so it is Taylor expanded, using the
expansion formula,
1
=1tz ta s (5.24)
1-=z
This expansion formula is truncated at the second term, resulting in the approximate
expression,

M(w) ~ [1 +Li- _1L0]L1. (5.25)

The second-order approximation will break down when Lj(w - Ly)~! becomes large.

Fano [26] gives a physical interpretation of the validity condition for the 279-
order approximation, relating it to memory effects. In irreversible thermodynamics,
the notion of memory is that the behavior of the atom-plasma dynamics depends on
its past behavior. When evaluating the product of

[Li(w=Lo)"|Ls
one has to sum over a set of intermediate states,

[Li(w-Lo)"|Ls =

S [Li(w-Lo) "] |ak) (ak| L;. (5.26)
ak

The operator [L[(w —Lo)_l] will be small if the range of energies spanned by ak
needed for the line shape is large. Large AF translates to large Aw, which, as we’ve
discussed before, corresponds to short At. Fano states that this large span in frequency
can be interpreted as the plasma having a short memory. Therefore, under this short-
memory approximation, the broadening arises from the cumulation of weak and short
collisions. Conversely, the breakdown of the 2"?-order approximation indicates that
not only are the interactions stronger, but the collisions have a longer memory.
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It is common to introduce strong-collision corrections when using the 2"%-order
approximation, these corrections include cutoffs and adding constants. Strong collision
cutoffs will omit certain processes from the broadening. For example, Griem et al. [38],
rather than considering all plasma electron positions, only included plasma electron
trajectories that were outside of a certain radius. Lee [71], instead of cutting off
electron positions, cut off the momentum transfer, meaning that plasma electrons can
only impart a maximum amount of momentum to the radiator. A constant was added
back to account for the missing processes due to the cutoff procedure. Lastly, O’Brien
& Hooper [56] used no cutoff whatsoever [9].

These strong collision cutoffs are not checked for validity. The strong-collision
cutoffs are either theoretically motivated [38], ignored [56], or tailored to match other
calculations [72]. The current procedures seem to do well when comparing against
other calculations for hydrogen calculations [48]. For other scenarios, though, strong
collision procedures need to be adjusted to match more accurate calculations [72].

The 2"%-order approximation could not be removed from analytic line-shape
calculations until recently [73]. We were able to implement an all-order calculation
for M(w) by borrowing a technique from collision theory; the relationship between
M (w) and the collision T-matrix is given in appendix D. The T-matrix—formally a
collision amplitude—is defined as (see appendix C)

1

TE) =42 V[E - Hy] v,

where the parallels with M (w) can be easily seen. The T-matrix solution can be
obtained by re-arranging the problem, i.e.

[1-V(E-Hy) ' T(E)=V. (5.27)

If we write this expression with state vectors, then the T-matrix can be obtained as
the solution of a set of linear equations,

I fakll - vz - ) )
(a"K"|T(E)| 'K = (ak|V]a'K'). (5.28)

Here, yfa,,k,, indicates a sum/integral over the atomic and plasma electron states. If this
expression is discretized into a quadrature rule (where W, represents an integration
weight),

Z [5aa”5kk” — Vak,a”k”Wa”k”]x

o'k’

Tallkll,alkl (E) = Vak,a'k’a (529)

then we can use linear-algebra Ax = b solvers to obtain the T-matrix.

The impact of using all-order vs 2"%order is not uniform across transitions
and elements. Using all-order is more important for neutrals than it is for highly-
ionized radiators. For highly-ionized radiators, the exposed nucleus accelerates plasma
electrons in its vicinity, and their interactions with the bound electrons are therefore
inherently weaker than for the neutral case. Additionally, highly-ionized radiators are
more tightly bound to the radiator and are less polarizable, and their interactions with
the plasma are ultimately weaker. In figure 14, we compare 2"%order calculations to
all-order calculations for Ly of neutral hydrogen and Hey of Mg!!*.



CONTENTS 34

1.1
1 E
0.9
0.8 ¢
0.7 ¢
0.6
0.5
0.4 .
0.3
0.2 £,
01 F

All Order
2nd-0rder ........

I(Aw)

0
—0.1-0.05 0 0.05 0.1 0.15-15 —10 =5 O 5 10 15
Aw (eV)

Figure 14. Comparison of all-order vs 2"%-order for neutral hydrogen and
highly-ionized magnesium. 2"%-order method overestimates the line width of
neutral hydrogen by at least a factor of two, while it closely approximates
the all-order result for a highly-ionized radiator. The plasma conditions are
Te = 0.9eV and ne = 10186/cm3 for the hydrogen plasma, and are T = 180eV
and ne = 3 x 1022¢/cm? for the magnesium plasma in a 50/50 mixture with iron.

5.7. Binary-Collision Approximation

The binary collision approximation only considers two-body interactions between
the atom and plasma electrons, and applies only to analytic calculations of electron
broadening. In this approximation, the calculation focuses on the details of how the
atom is perturbed by a single plasma electron, then multiplying that by the electron
density. It is assumed that electron collisions are well separated in time and occur only
one at a time. Since three-body and higher-order interactions are ignored, a screening
prescription (Sec 5.3) is needed to keep the calculations accurate.

We observe that all of the usable expressions for the analytic theory, equations
(4.23), (4.21), and (4.22) contain a factor of electron density. This means that
they consider only the effect of a single electron in the plasma and multiply their
expression by the electron density. It is worth noting that the more general expressions
in the relaxation and kinetic theories do contain prescriptions for including multi-
electron collisions. But these expressions are generally complicated and have not been
implemented yet within analytic calculations.

The validity of this approximation breaks down when three-body or four-body
interactions start becoming important. This breakdown occurs when density and,
probably more importantly, plasma coupling goes up. This is one of the major
advantages of simulation calculations because this effect is included implicitly in the
construction of the particle simulations. Figure 15 shows differences in Ly« profiles
between simulation (which includes N-body collisions automatically), and VCS [48]
(which uses a binary-collision approximation).

5.8. Impact Approximation

The impact approximation takes the binary-collision approximation one step further.
The electron collisions are assumed to be weak, short, and well separated in time,
which results in an autocorrelation function, C(¢) in equation (4.3), that decays
exponentially. This results in the impact-theory line shapes being Lorentzian. This
approximation ignores the transient effects of the collisions and focuses only on the
electron broadening at line center.
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Figure 15. Comparison of VCS (which uses the binary-collision approximation)
and simulation (which does not) for the Ly« line. VCS and simulation are shown
in black and green, respectively. The binary-collision approximation is valid at
all temperatures considered here except for the Te = 5,000K.

The impact approximation is the basis of the line-shape theory of Griem
[38, 74, 75, 72| and Baranger [76, 25, 44]. Electron-broadened line shapes closely
approximate Lorentzians at line center but deviate significantly in the line wing.
Figure 16 demonstrates the differences in the profile as a result of using the impact
approximation vs fully accounting for the time dependence of the collisions.
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Figure 16. Comparison of neutral hydrogen Lya line shapes with and without
using the impact approximation (blue and red respectively). Using the impact
approximation results in incorrect wing behavior. The left panel shows the
similarities in the core (and is shown in a linear scale), while the right panel
shows that the two calculations diverge in the wings (in log scale).

5.9. The Approzimations used by Different Methods

We have so far listed approximations used by a variety of line-shape calculations,
and the impact that they might have on the line shape. It is clear from the above
discussion that each approximation has its own range of validity, and there will be
some transition, temperature, or density where that approximation breaks down.

We therefore choose to list which codes employ which approximations in table 1.
It is important to note that, so far, no calculation has removed all these approximations
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and that some codes will do better at capturing certain physics than others. In this
table, we have color-coded the cells, indicating how each code treats a particular type
of physics. Calculations that use the approximate form are colored in orange. Those
that use the approximate form, but with a correction, are yellow. And those that treat
the physics without approximation are in teal. Some of the cells do not contain any
text; these indicate that a calculation automatically takes into account the relevant
effect without approximation. For example, the 2"%-order approximation is irrelevant
to simulations, so those cells are colored teal without text.
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6. Future Outlook

There are a couple of aspects that are clear paths forward for simulations and analytic
calculations. Simulations are currently limited to the dipole approximation. This
means that they are unable to include the red shift from monopole interactions.
Therefore, expanding the simulations capability to include a full-Coulomb interaction
would be a priority. This is especially important as it has recently been demonstrated
that the shift can be a powerful plasma diagnostic [61]. In analytic calculations, now
that all-order capabilities have finally been realized, the next step would be to include
the effects of 3-or-4-body interactions. Additionally, future analytic calculations might
include a more detailed treatment of the nearest neighboring ion on the spectra. In
hydrogen, collisions with the nearest ion gives rise to quasi-molecular satellites [See e.g.
86]. Fortunately, the method for doing this is available through the work of Zammit
et al. [87]

Given the recent impact of quantum electrons shown by Refs [22, 73], quantum
effects may need to be included into simulations. One possibility is that the non-
locality of plasma electrons could be mocked up using a Gaussian wavepacket. How
simulations would include the impact of electron capture [22] is unclear, though
three-body recombination is something that can be included in the fully interacting
simulations [29].

One aspect that all calculations could look to improve on—except for Gigosos et
al. [29] and Stambulchik et al. [28]—would be a better prescription of screening. At
the moment, nearly all line-shape calculations use screening to approximately account
for N-body interactions that they are neglecting. It is clear from Stambulchik et al.
[28] that line-shape models that use simple screening approximations do not reproduce
line shapes generated with full N-body dynamics. Debye screening is the most
commonly used screening prescription but is only valid in weakly-coupled plasmas.
In strongly coupled plasmas, a different screening prescription would be required to
preserve accuracy. Additionally, it is typical to calculate the screening length using
only the electrons, ignoring the contribution to the ions. Exactly how to include the
ions in the screening is an open debate. Therefore, it is highly desirable to improve
screening prescriptions for broader range of plasma conditions.

We mentioned in section 1 that plasma effect also have an effect on the continuum,
advancing it to lower energies. For this document, we ignored any discussion about
the continuum, but it is modified due to density effects. Models of how the continuum
is modified due to the plasma, such as occupation probability [88, 89], extend the
continuum to lower energies, and often use a statistical mechanics approach rather
than rigorous atomic physics. Treating plasma effects on the continuum is a complex
problem that has been largely neglected. Continuum problems are not without their
challenges, how to perturb continuum states being one of the principal obstacles.
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A. Derivation of the Fundamental Line-Shape Formula

This section is devoted to deriving the fundamental formula for line shapes, beginning
with the formula for the spontaneous radiative decay rate. The rate for spontaneous
emission of a photon from an initial state, 7, to a final state, f, is given by the Einstein
A coefficient,

1D 1) P Al
11D 1) (A1)
where w is the angular frequency of radiation, which for simplicity we call frequency.
Using the absorption coefficient is an equally valid approach and will result in the
same expression for the line shape. The emitted power is proportional to the sum of
all Einstein A coeflicients that contribute to that frequency of radiation,

Ay =

4te? = 9
25(W—wz‘f)|(l|D|f>| Piiy (A.2)

P(w) =
3c3 o7

where the delta function ensures that only transitions are at the frequency w contribute
to the power, and p;; is the probability that state i is occupied. It is common to
separate out the “line-shape” part of the emitted power [27],

1) = 338G (101} P (A.3)

We can express the line-shape formula in terms of an average dipole
autocorrelation function, which is the starting point for many line-shape papers. To
accomplish this task, we need to re-write this expression as a Laplace transform,

2 0(w=wip)l (| D] £) P pis =
if
Iy [T et e D] ) o (A4)
7 Jo 7
Recognizing that w;y = E; — Ey, we can write equation (A.4) as
2 0(w —wip)| (i D] ) pii =
if
“or [T 3 (| £) B (£ |Bli)e g, (A5)
if

If we define the states i and f to be eigenstates of the Hamiltonian, H, then we can
replace the energies with H. Additionally, we can also write the summation as a trace,

1 o L e
I(w) = 7%‘[ dt e’“tTT{DeZHtDe_’Htp}. (A.6)
m  Jo
We recognize that the quantity et De *H! is simply the time evolution of the dipole
moment, D(t), according to the Heisenberg picture. Due to the cyclical invariance of

the trace, we can also write this equation as

1 oo . L S
I(UJ) _ 7%[ dt elthT {De—thpDelHt} , (A?)
s 0
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which now includes the density matrix in the time evolution. This latter form is
convenient for certain types of calculation.

In equation (A.6), we have defined the line shape as being the Laplace transform
of the average D - D(t)7 which is the dipole autocorrelation function, often referred to
as C(t). The average dipole autocorrelation function is

C(t)=Tr{D-D(t)p}. (A.8)

This result indicates that the line shape is a measure of how much the atom deviates
from the dipole moment at the initial time. We expect that the average of fluctuations
at long times to average out and this quantity to be zero. At shorter times, however,
C(t) is non-zero and describes the radiative behavior of the atom [26].

B. On the Liouville Notation

We can use the Liouville notation to write the time evolution of the dipole moment in a
compact way. The Liouville operator can be used to calculate equations of motion and
master equations [90, 91, 92]. The Liouville operator is a superoperator, meaning that
it operates on other operators rather than operating on state vectors. The Liouville
operator is a shorthand notation for a commutation of an operator—say the dipole
moment—with the Hamiltonian,

LD=[H,D]=HD-DH. (B.1)

We can see how the Liouville operator can simplify the notation describing time
evolution by differentiating D(t),

%[a’HtDe—th] :Z-HethDe—th_iethDe—thH
%D(t) =iHD(t) -iD(t)H
%ﬁ(t) =iLD(t). (B.2)

This means that we can write the time evolution equivalently as a function of the
Liouville operator, _ ' o
D(t) = et De ™t = ¢t D, (B.3)

This means that the Liouville provides a compact way of writing the fundamental
equations, and lends itself to easy algebraic manipulation. For example, performing a
Laplace transform becomes quite simple,

o i

dt e“tet'D = ——D. B.4

[0 w+ L (B4)

A matrix element of the Liouville operator will be a function of four state variables

rather than the usual two state variables. Ordinarily, an operator is a function of two
states, a bra and a ket,

(i|D| f), (B.5)

where i and f are states. According to equation (B.1), the quantity LD is also a
regular operator that is a function of two states. A given matrix element of LD is
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defined as
(i|LD[f) = (i[HD|f) - (i|DH|f)
= 2 {i|H|m) (m |D[ £) = 32 (i[D|n) {n|H]| £)
= > [i|H|m) 0 = 6im (n|H| f)] (m|D|n)
= Y (if [L|mn) (m|D|n)
(if |[LImn) = (i|H|m)Spn = dim (n|H]| f). (B.6)

Representing the Liouville operator as a matrix results in matrices that are much larger
than ordinary operators. In an ordinary operator—i.e., non-tetradic—then each state

vector is an element in the matrix,

D11 D12 Dis
D21 D2y Dos
D= B.7
D31 D3z Dss (B.7)
However, in the tetradic notation, the D matrix is turned into a vector,
"Dyy
D1
D3
D=| |, B.8
Doy (B.8)
Doy
Dos
and the Liouville super-operator is defined as a tetradic matrix,
(LD)11
(LD)12
LD = E =
(LD)ay
(LD)22
D
Litgr Liae L1121 L1 DE
Lio11 L1212 Lis21 L1z .
: D
L1 Loiae Loi21 Loi22 Dz;
Loo11 Loo o Loo o1 Loo oo :

C. The T-matrix and the Lippmann-Schwinger Equation

Formally, the T-matrix is related to a collision amplitude.

the total scattering wavefunction at large

It is typical to define
distances as an incoming plane wave (with

momentum 76) plus an outgoing scattered wave

R

r—00

v(7)

ikw €
T4 (0, 0)—,

ikr

(C.1)
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where f(0, ¢) is the scattering amplitude. This simple picture of scattering is ignoring
the wavefunction of the radiator atom. The T-matrix is formally related to the
scattering amplitude by

(a0 [T(B)]ac') = =2 foroar (0,), (©2)

where a and a’ denote atomic states, and « and o’ denote perturbing electron states.
Due to this relationship, we can therefore use T-matrices to directly calculate cross
sections.

We can derive a more formal definition for the T-matrix; this is through the
Lippmann-Schwinger equation. We first define

Holo) = E|o) (C.3)
(Ho+V)|¢) = El). (C4)

We can re-arrange equation (C.4) so that
(E - Ho)[¢) =V ]¢). (C.5)

Now, in the limit that V vanishes, we wish that [¢)) — |¢), we can modify this
expression that gives us an initial condition,

(E=Ho)[¢) = (E-Ho)lg)+V[¥) (C.6)

Then dividing through by (E - Hy), we arrive at the Lippmann-Schwinger equation,

9)=19) + =———V10). ()

— Hy

It is clear that this form is analogous to equation (C.1), though more formally derived.
From this Lippmann-Schwinger equation, we can derive the T-matrix. Repeated

application of the integral equation in equation (C.7) gives for the second-term on the

right-hand side

1
E-H,

V) =

[V+VE_ +] 16). (C.8)

E-H,

The quantity in the square brackets can be written as a Taylor series in one of two
equivalent ways

o N ,
z" [E H ] Vi E-H) W (C.9)
S 1

2::[ E- HO] V_l_V(E_HO)_lV (C.10)

Therefore, we can write the Lippmann-Schwinger equation as a function of the T-
matrix

9) = 10)+ = T(E)10), (C11)

thus establishing the relationship between the T-matrix and the scattering amplitude.
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There are a few more relationships that we would like to spell out here, including
an integral form of the T-matrix. In the above, we can compare equations (C.11) and
(C.7), and show that

T(E)|¢) =V i) (C.12)

From this relationship, we can obtain an integral definition of the T-matrix, where

1
E-H,

Vi) =Vig)+V VIv). (C.13)

Then application of equation (C.12), gives us the following integral relationship,

1
E - Hy

T(E)|9)=VI]p)+V T(E)|$)- (C.14)

We can write the T-matrix in another form without the use of integral functions. We
can achieve this by manipulating equation (C.7),

1
[0 =10} + g V 1)
(E - Ho)[y) = (E - Ho)|g)+V i)
(E-Ho-V))=(E-Ho-V+V)|p)
1
) = |o) + mv ) - (C.15)

Combining equation (C.15) with equation (C.12), we can write the T-matrix as

T(E) = V+V;V. (C.16)
E-Hy-V

The relationships derived here can be derived by other methods, but we hope

that this gives some insight into the related quantities. There are a few more things to

discuss here about the T-matrix, namely how to evaluate the function (E - Hy)™!, the

relationship between the T-matrix and other relevant matrices, and the relationship

of E to the state vectors the T-matrix is applied to. Each of these will need its own
subsection.

C.1. The Green’s function

The operator (E - Hy)™! is often known as the Green’s function, the propagator, and
the resolvent operator. This operator has a singularity in it, therefore what is often
done is to introduce a small imaginary part in the denominator, then take the limit
as that small imaginary part goes to zero. In this limit, we obtain real and imaginary
parts of the Green’s function,

. p-v.
lim - =
7]—>0E+Z77—H0 E - Hy

—ir8(E - Hy), (C.17)

where p.v. stands for Cauchy principal value and §() is a Dirac delta function.
Handling of the Dirac delta function is trivial and there is universal consensus on
how to handle it. The real part, the principal value, is more challenging, and there
are several different methods for how to treat it.



CONTENTS 45

For the purposes of this section, we assume that the perturber wavefunction
can be described with spherical harmonics. We will also work in the momentum
representation of the wavefunction.

The evaluation of the principal value and delta function only make sense in the
context of an integral. The Green’s functions are usually sandwiched between other
operators, and resolution of identity will mean that Green’s functions will be evaluated
with an integral. For example, one way to evaluate a product of operators is to
introduce a complete set of states

1
V= /dkak2V
V=Y [ iV laa)

1
E-E, -2 k2

2m o

174 (ac| V; (C.18)

we can do this because states |aa) are eigenstates of the Hy operator,
Hylaa) = (E, + Ey) |aa) (C.19)

where for free states of the perturbing electron, the energy is defined by the square of
its momentum, F, = ﬁki If we insert equation (C.17) into our example, then the
evaluation of V[E - Hy| ™'V becomes

1

1%
E-H,

V=

p.v.
dk K2V B S 1%
;/ AV la0) g iy ol

2m o

1
—mzfdkakgwaa)&(E—Ea—%ki)maw (C.20)

The second term becomes trivial. If we define a quantity ¢ such that

1
—¢*=FE-E,. (C.21)
2m

Then the integral vanishes except when k, = q. The second term on the right-hand-
side of equation (C.20) therefore reduces to

—iT Z qV |aq){aq|V; q=+/2m(E - E,). (C.22)

C.1.1. Adding a Term to Remowve the Singularity

This method is used by O’Brien & Hooper [56] and McCarthy & Stelbovics [93],
where the property that

oo 1

means that the right-hand side can be subtracted from Eq (C.20). The resulting
expression for Vp.v.[E - Hy] "'V becomes

2 p.v.
za: / dkakav |aO&> m (aa| \%
p.v.
- Za: [ dkakiv |aq) m (aq| Vq2 (024)

2m



CONTENTS 46

The advantage here is that the numerator and denominator go to zero at the same
order,

2 _ 2
a 3 (0° —K2)

which means the singularity vanishes and the principal value is no longer needed.

C.1.2. Strategic Placement of Quadrature Points

A quadrature is simply the transformation of an integral into a summation. If
we define J = [ dkf(k), then we can approximate it as J ~ ¥; w; f(k;), where the set
of i are points in k chosen to accurately represent the integral, and the w; are the
summation weights, usually closely related to some Ak;. Therefore, in our example
above, we can represent the integral as a summation with weights,

p.v.
Z f dkakiV|aa) m (aa| V =
a a 2m "V
> Viaa)w(k;) (ac| V. (C.26)
a,ki

A very simple method of integration would be to choose weights

-
E-E, -~k

2m

w(k;) = ki Ak; (C.27)

where Ak; is some integration step in the k, integral. Careful selection of the set of
k;, one could use this method to avoid having to integrate over the singularity; this is
roughly the method used by Bray & Stelbovics [94].

C.1.3. Performing the p.v. integral inside a Quadrature rule

In this method, which is the one used by Gomez et al. [22] and Gomez et al.
[73], we use a quadrature rule. The weights are determined by assuming that the V'
operator is constant over some Ak. We then define

(k7‘,+k7‘,+1)/2
(ki+ki-1)/2. 2m

for which analytic solutions exist. For the results, we will use a shorthand, where we
assign a to be the lower limit of integration and b to be the upper limit of integration.
The resulting weight values are

IHZ%Z_IHZ%Z ifg>b
2 In %4 —In 224 ifg<a

w(k;) = ﬁ IH%—IHZ%; ifa<qg<b (C.29)
a[3-2] ifg=0

2[arctan(a/|q|) — arctan(b/|q|)] if ¢* < 0.
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C.1.4. Bilinear form of Green’s function

This is an expression of the Green’s function in terms of position [95],
( 1
r
This is done by inserting a complete set of states that are solutions of Hy,

<r 1 r/>:fdkdk'(r|k><k’E—lHo

This expression is then written in terms of eigenstates of Hy,
!
( > [ an RAGLAGI) (C.32)

E-E,+in’
This has the advantage of removing the singularity, no longer needing to evaluate the
principal value [96].

ﬂ) . (C.30)

k’> (], (C.31)

C.2. Some useful Relationships: “Reactance” K-matriz and “Scattering” S-matrix

Now that we have seen that the Green’s function has a real and imaginary part, we
can take the expression in equation (C.14) and derive the K-matrix. We begin with
the integral expression for the T-matrix,

T(E) =V +V [RG(E) + IG(E)] T(E)

where we have abbreviated the Green’s function as G(E). Then, we manipulate the
equation as so,

T(E) =V +V [RG(E) + IG(E)]| T(E)
[1-VRG(E)]T(E) =V + VIG(E)T(E)
T(E) = K(E) + K(E)JG(E)T(E)

where the K-matrix is equal to

1
KO v
—11o
1
E-Hy

Further manipulation of the T-matrix equation gives us the following relationship
between the T-matrix and the K-matrix

T(E) - !

1+irK (E)(E - Hy)

K(E). (C.33)
We can then, with some algebraic manipulations using the K-matrix, separate out the
real and imaginary parts of the T-matrix,

1
1+ [m6(F - Hy)K(E)]?

T(E) = K(E)

—inTT(E)S(E - Hy)T(E). (C.34)
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The expression for the imaginary part is known as the optical theorem. We write the
optical theorem explicitly as

IT(E) = -nTT(E)§(E - Hy)T(E). (C.35)

The optical theorem can also be derived from the S-matrix and its unitarity condition
[46].

The last relationship we want to show is the scattering “S”-matrix, which is
defined in terms of a T-matrix,

S=1-2ixé(FE - Hy)T(FE) (C.36)
or equivalently in terms of the K-matrix

1 - ind(E - Hy) K (E)

T 1+ind(E - Ho)K(E) (C.37)

It is not difficult to see that S~! = ST. Therefore, this means that the S-matrix is
unitary operator, meaning that SST = 1.

C.3. Relationship of E to the state vectors: On-Shell and Off-Shell T-matrices

When one takes a matrix element of the T-matrix,
(ak|T(E)|a'K),

we can see that the resulting matrix element is a function of E. How that energy, F,
relates to the states ak and o'k’ will dictate whether the T-matrix is on the energy
shell or off the energy shell (or half-on shell). What this means is the when the
matrix element is fully on shell, the in and out energies are the same, as is the energy
parameter, E. For half-on-shell T-matrices, the energy is equal to only one of the
in or out energies. And for off-shell, E' equals neither the in or out energies. These
relationships are given here,

on shell E=FE\ = E (C.38)
E = Ea * Ear ’
half on shell k K (C.39)
E= Ea’k’ ¥ Eak
Eak
fully off shell FE + (C.40)
a'k’ -

The physical interpretation of the half-off shell or fully off shell scenarios is that
a non-energy conserving virtual photon is involved to change the energy of either
the incoming or outgoing states. However, in the line-shape problem, this can be
interpreted as a real (instead of virtual) photon.

D. The M-operator and the Collision T-matrix

In the relaxation theory above, Fano [26] expressed the width in terms of Liouville
operators, in what he called the (memory) “M”-operator. The M-operator is defined

as 1
M) = T oy o (B
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Calculating matrix elements of M (w) is complex because of the enormous size of the
matrix, it is therefore more convenient to calculate M (w) in smaller, more manageable,
chunks. This particular task can be done by expressing M (w) in terms of T-matrices.
Fano did this, and we will quote the results here. However, the expression for
M (w) is complicated, and we need to establish some definitions. We have already
introduced the Hy operator, which is the non-interacting Hamiltonian that operates
on both the atom and perturbing electron; in this section we will use the subscript “0r”
or “00” to denote whether Hy is operating from the right or left side. Additionally, any
variables that have a * superscript denotes a lower state interaction, which is complex
conjugated. M (w) is therefore defined in terms of non-tetradic operators

1
M) = ooyl (D.2)

= T(UJ + HST)(ngrngz - T*(HOT - w)éHOT’HOL
+imd(w— Ho + H )T (Ho)T* (H{,)
+imd(w — Hor + Hyy )T (Hor )T (HY;)

1
+ §Mtran5ient(w)- (D3)
The first term is the upper-state broadening, the second term is the lower-state
broadening, terms 3 and 4 are interference terms, and My, qnsient(w) are additional
terms which represent the transient effects of the collision. My,qpnsient(w) is defined
as

o )T (Ho ~ ) = T(Ho )T (Hy )

Miransient = P

Hy -w-Hj,
oy L(Hg +w)T" (Ho) ~ T'(Hg, + w)T" (Hg, )
w—Hor+ H,
T(Hgy +w)T™ (Ho) - T(H, +w)T™ (H,)
Hg, — Hg,
T(Hy)T*(Hy - w) - T(Ho)T* (Hor —w)
- Ho, - Ho,
+9(Hoz) - g9(Hoy) . g(Hy, +w) = g(H;, +w)
Hy, — Hy, Hj, - Hg
_9(Ho) - g(Hor +w) _Q(H&“LW)—Q(HOT)’ (D.4)
Hoy —w— H, HE +w- H,
where 1 - by,
9(E) = 5~ [m 4B PET (BT (B - w). (D.5)

The transient broadening term, My qnsient(w), 1s zero if the T-matrices are
independent of the energy argument. This means that in a large portion of cases,
Miransient(w) is likely to be negligible, but this has never been tested/verified.
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