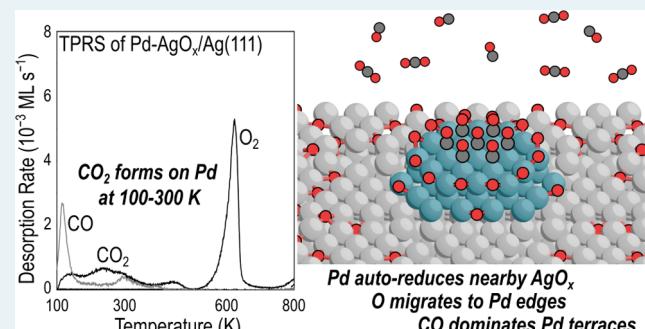


1 Oxophilicity Drives Oxygen Transfer at a Palladium–Silver Interface 2 for Increased CO Oxidation Activity

3 Vikram Mehar,¹ Abdulrahman Almithn,¹ Tobias Egle, Ming-Hung Yu, Christopher R. O'Connor,
4 Mustafa Karatok, Robert J. Madix, David Hibbitts, and Jason F. Weaver*

Cite This: <https://dx.doi.org/10.1021/acscatal.0c03885>

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

5 **ABSTRACT:** A single-layer AgO_x phase grown on $\text{Ag}(111)$
6 efficiently transfers oxygen to Pd domains at room temperature,
7 rendering the Pd-decorated surface highly reactive toward CO
8 oxidation. Oxygen transfer from AgO_x to Pd and the surface
9 reactivity toward CO were investigated as a function of the Pd
10 coverage using X-ray photoelectron spectroscopy, surface infrared
11 spectroscopy of adsorbed CO, temperature-programmed reaction
12 spectroscopy, and density functional theory (DFT) calculations.
13 Our results show that all of the oxygen from the AgO_x layer
14 (~0.375 monolayer) migrates to the surface of Pd during
15 formation of a nearly complete Pd bilayer at 300 K and that the
16 oxygen coverages generated on Pd increase as the Pd cluster size
17 decreases, reaching values that exceed the oxygen concentration in the AgO_x layer by as much as a factor of 2. Experimental
18 measurements and DFT calculations show that preferential binding of oxygen on the edges of the Pd clusters enhances the oxygen
19 coverage on Pd clusters of decreasing size and produces a heterogeneous spatial distribution of oxygen. CO adsorbs in high
20 coverages at 100 K by binding on both the terraces and O-rich edges of the Pd clusters. During subsequent heating, oxidation of the
21 adsorbed CO consumes nearly all of the oxygen that transferred from AgO_x to the Pd domains; in contrast, the pure AgO_x layer
22 exhibits limited reactivity toward CO adsorbed at 100 K. These results demonstrate that differences in oxophilicity drive facile
23 oxygen transfer from Ag to the edges of Pd nanoclusters and thereby give rise to an efficient pathway for CO oxidation on bimetallic
24 PdAg surfaces. The cooperation between the Pd and Ag domains results in near-interfacial chemistry that may be broadly important
25 in catalysis by bimetallic alloys.

26 **KEYWORDS:** PdAg alloy, alloy catalyst, metal/oxide interfaces, CO oxidation, bifunctional catalysis, PdAg oxidation, CO RAIRS,
27 edge sites

28 ■ INTRODUCTION

29 When used as catalysts for oxidation chemistry, alloys of Pd
30 with Ag (or other coinage metals) can form oxides with
31 relatively low thermodynamic stability, indicating that
32 transitions between the metal and oxide phases can readily
33 occur, even at relatively mild catalysis conditions. In these
34 transitions, transport of oxygen or other species between the
35 various coexisting surface phases can significantly influence the
36 kinetics of heterogeneous catalytic reactions, especially because
37 both Pd and Ag oxides can actively promote catalytic
38 chemistry. Palladium oxide (PdO) is highly active in
39 promoting the dehydrogenation and oxidation of alkanes and
40 other organic species,¹ while O-covered Ag readily promotes
41 complete oxidation reactions as well as partial oxidative
42 transformations of organic species to value-added oxygen-
43 ates,^{2–5} owing to the mobility of O on Ag and electron transfer
44 between O and Ag, leading to a nucleophilic O.⁶ The
45 possibility of achieving low-temperature alkane activation on
46 PdO, followed by partial alkyl oxidation on a coexisting Ag

phase, provides motivation for exploring PdAg catalysts for 47 potential applications in selective alkane oxidation. In such 48 applications, the exchange of oxygen between the coexisting Pd 49 and Ag phases and the spatial arrangement of adsorbates on 50 these domains may play a central role in determining the 51 catalytic performance and is thus important to understand. 52

Oxygen atoms are highly mobile during oxidation chemistry 53 on PdO(101) and AgO_x surfaces at mild temperatures. For 54 example, subsurface O-atoms efficiently heal surface O- 55 vacancies created on PdO(101) during CO oxidation and 56 also readily migrate to metallic Pd domains that are generated 57 after more extensive PdO reduction by CO at temperatures 58

Received: September 6, 2020

Revised: October 26, 2020

59 between ~400 and 500 K.^{7–10} Also, CO oxidation on an 60 oxidized Ag(111) surface occurs by a similar autocatalytic 61 mechanism wherein the AgO_x phase supplies oxygen to 62 metallic areas that promote CO oxidation at 300 K.⁵ These 63 prior studies establish that O-atoms in Pd and Ag oxides 64 migrate rapidly in response to gradients in oxygen chemical 65 potential at moderate temperatures and act to sustain the 66 catalytic oxidation processes that created such gradients.

67 Oxygen exchange between coexisting Pd and Ag phases may 68 also play an important role in mediating oxidation chemistry 69 on PdAg bimetallic catalysts under oxidizing conditions. 70 Indeed, prior investigations demonstrate that the reduction 71 of oxidized Pd/Ag(111) by H_2 is mediated by H and possibly 72 O transfer between the coexisting Pd and Ag phases.^{11,12} A 73 recent study also shows that a single-layer AgO_x structure on 74 Ag(111) efficiently transfers oxygen to Pd during deposition at 75 300 K,¹³ suggesting the possibility that oxygen migration from 76 Ag to Pd provides a pathway for oxygen to participate in 77 catalytic oxidation reactions on PdAg bimetallic surfaces. 78 Overall, the fundamental understanding of oxygen-exchange 79 processes in PdAg bimetallics and their influence on surface 80 reactivity is generally lacking, due in large part to challenges in 81 preparing well-defined oxide structures on PdAg surfaces for 82 controlled investigations.

83 In the present study, we investigated oxygen transfer from 84 AgO_x to Pd and the CO oxidation activity of surfaces prepared 85 by depositing Pd on a well-ordered single-layer $\text{AgO}_x/\text{Ag}(111)$ 86 surface. A key aim of this work is to investigate how the Pd 87 cluster size influences the oxygen-transfer process and the 88 subsequent surface reactivity. Our results demonstrate that 89 differences in oxophilicity promote facile O transfer from AgO_x 90 to Pd and efficient oxidation of adsorbed CO. Significantly 91 more efficient oxygen transfer and higher CO oxidation activity 92 (per Pd) are identified for Pd bilayer clusters of decreasing size 93 and are shown to originate from optimal accessibility to oxygen 94 from the surrounding AgO_x as well as enhanced stabilization of 95 oxygen at edge sites of the Pd clusters.

96 ■ EXPERIMENTAL DETAILS

97 Temperature-programmed reaction spectroscopy (TPRS) and 98 reflection–absorption infrared spectroscopy (RAIRS) meas- 99 urements were performed in an ultrahigh vacuum (UHV) 100 system that has been described previously.⁸ The UHV 101 chamber is equipped with a scanning tunneling microscope 102 (RHK), a four-grid retarding field analyzer (SPECS) for low- 103 energy electron diffraction (LEED) and Auger electron 104 spectroscopy (AES), a quadrupole mass spectrometer 105 (QMS) (Hiden) used for TPD and TPRS experiments, a 106 Fourier transform infrared spectroscopy system for RAIRS 107 measurements, an ion sputter gun, and an electron beam metal 108 evaporator (McAllister Technical Services) for vapor deposi- 109 tion of Pd. A single-stage differentially pumped chamber¹⁴ is 110 also attached to the main UHV chamber, which houses an 111 inductively coupled RF plasma source that is used to generate 112 atomic oxygen beams. Details of the sample support structure 113 and cleaning methods are given in the Supporting Information 114 and have been reported previously.¹³

115 A single-layer AgO_x film containing 0.38 ML (monolayer) of 116 oxygen was grown by exposing the Ag(111) surface to an O¹¹⁷ atom beam at a surface temperature of 515 K, followed by 118 heating to 535 K in UHV. The O_2 TPD spectrum obtained 119 from the single-layer $\text{AgO}_x/\text{Ag}(111)$ surface exhibits a sharp 120 peak at 570 K (Figure S1). As shown previously,¹³ the

121 oxidation procedure employed produces a well-ordered AgO_x ¹²² single layer composed of three crystalline structures with 123 distinct long-range arrangements but similar local structural 124 motifs; the models of these crystal structures are shown in 125 Figure S2. Each structure has an oxygen density between 0.375¹²⁵ and 0.40 ML, where 1 ML is equal to the surface atom density¹²⁶ of Ag(111). Films of varying Pd thickness were grown on the¹²⁷ $\text{AgO}_x/\text{Ag}(111)$ surface at 300 K by vapor depositing Pd (Alfa¹²⁸ Aesar, 99.9%) using an electron beam evaporator. The Pd¹²⁹ coverage was calibrated by collecting the AES spectra as a¹³⁰ function of Pd exposure to clean Ag(111) at 300 K and relating¹³¹ the attenuation of the Ag MNN peak at 351 eV to the¹³² thickness of the Pd layer, assuming an inelastic mean free path¹³³ (IMFP) of the Auger electrons through Pd of 7.05 Å as¹³⁴ estimated by the Gries equation.¹⁵ Coverages of Pd are¹³⁵ reported in units of ML by dividing the thickness estimated¹³⁶ from the AES measurements with the monatomic step height¹³⁷ on Pd(111) of 2.2 Å. The average Pd deposition rate was 0.075¹³⁸ ML/min for our measurements.¹³⁹

140 After depositing Pd on the single-layer AgO_x film, the¹⁴¹ sample was cooled to 100 K and saturated with CO using¹⁴² background dosing for 15 min at a CO partial pressure of¹⁴³ 5×10^{-9} Torr, which corresponds to a CO exposure of¹⁴⁴ 4.5 Langmuir (L). TPRS and CO RAIRS measurements show that¹⁴⁵ CO saturation coverages are obtained on the clean and Pd-¹⁴⁶ covered AgO_x surfaces at 100 K for CO exposures above about¹⁴⁷ 3 L. TPRS measurements were performed with the sample¹⁴⁸ positioned ~5 mm from the entrance aperture to the QMS,¹⁴⁹ and the partial pressures of CO, O_2 , and CO_2 ($m/z = 28, 32,$ ¹⁴⁹ and 44) were monitored while heating at a constant rate of¹⁵⁰ 1 K/s until the sample temperature reached 800 K. Fragmenta-¹⁵¹ tion of CO_2 in the QMS produces a 28 amu signal that is only¹⁵² about 10% of the 44 amu signal and is taken into account in¹⁵³ our quantitative analysis. The O_2 TPD yields obtained from¹⁵⁴ Pd– $\text{AgO}_x/\text{Ag}(111)$ surfaces were calibrated by assuming that¹⁵⁵ growth of the pure, single-layer $\text{AgO}_x/\text{Ag}(111)$ structure at¹⁵⁶ 500 K saturates at an oxygen coverage of 0.38 ML.^{16–18} An¹⁵⁷ optimal scaling factor for converting integrated CO_2 TPRS¹⁵⁸ spectra to units of ML of CO_2 was determined by assuming¹⁵⁹ that all of the initial 0.38 ML of oxygen desorbs from the¹⁶⁰ surface as either O_2 or CO_2 during TPRS at Pd coverages¹⁶¹ below 2 ML. Last, CO TPRS yields were computed using the¹⁶² CO_2 scaling factor divided by 1.3, where the proportionality¹⁶³ between the CO and CO_2 TPRS scaling factors was¹⁶⁴ determined in recent experiments performed in our¹⁶⁵ apparatus.¹⁹

166 Scanning tunneling microscopy (STM) measurements were¹⁶⁷ performed at a sample temperature of ~300 K, and the¹⁶⁸ tunneling interaction was set to the constant current feedback¹⁶⁹ mode. Images were collected at typical scan settings in the¹⁷⁰ range of +0.2 to +0.5 V sample bias and a tunneling current of¹⁷¹ 0.5–1.2 nA. RAIRS measurements were performed at a sample¹⁷² temperature of 100 K, and a nonpolarized IR beam was¹⁷³ reflected from the sample at an incident angle of ~80° from¹⁷⁴ the surface normal. All of the reported RAIRS spectra are an¹⁷⁵ average of 512 scans and were collected at a 4 cm^{–1} resolution.¹⁷⁶

177 ■ COMPUTATIONAL METHODS

178 Periodic plane wave density functional theory (DFT)¹⁷⁹ calculations were performed using the Vienna *Ab Initio*¹⁷⁹ simulation package (VASP)^{20–23} as implemented in the¹⁸⁰ Computational Catalysis Interface (CCI).²⁴ Plane waves¹⁸¹ were constructed using projector augmented wave potentials¹⁸²

183 with an energy cutoff of 396 eV.^{25,26} The revised Perdew–
184 Burke–Ernzerhof form of the generalized gradient approxi-
185 mation was used to describe the exchange and correlation
186 energies.^{27–29} Wave functions were converged until the
187 electronic energies varied less than 10^{-6} eV. Forces on all
188 atoms were determined using a fast Fourier transform grid with
189 a cutoff equal to twice the plane wave cutoff and structures
190 were geometrically optimized until the forces on all atoms were
191 less than 0.05 eV \AA^{-1} .

192 Prior work^{13,16–18,30,31} has shown that single-layer AgO_x
193 films on the $\text{Ag}(111)$ surface can have three different structures
194 with a stoichiometry close to Ag_2O : hexagonal $p(4 \times 4)$
195 structure (Figure 1a), rectangular $c(3 \times 5\sqrt{3})$ structure, and

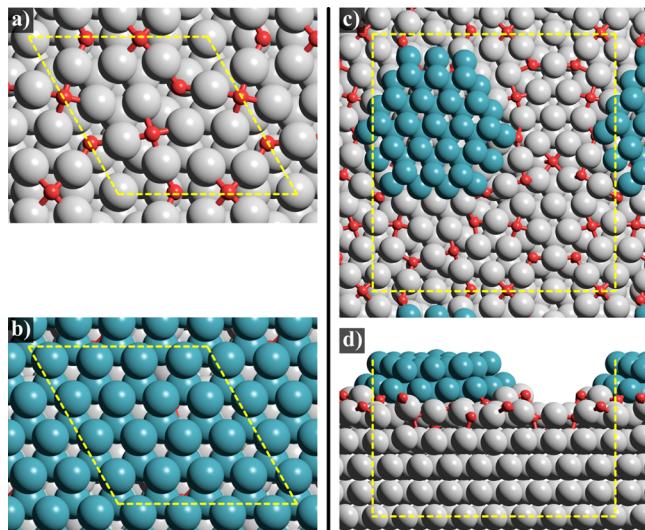


Figure 1. (a) Top view of $\text{Ag}_2\text{O}-p(4 \times 4)-\text{Ag}(111)$ without Pd, (b) 4×4 bilayer Pd overlayer on $\text{Ag}_2\text{O}-p(4 \times 4)-\text{Ag}(111)$, and (c,d) top and side views of the bilayer Pd_{46} hemispherical particle on $\text{Ag}_2\text{O}-p(4 \times 5\sqrt{3})-\text{Ag}(111)$. Color code: O (red), Ag (gray), and Pd (dark cyan). A supercell of 2×1 was used for the $\text{Ag}_2\text{O}-p(4 \times 5\sqrt{3})$ phase to accommodate the Pd_{46} particle. Yellow dashed lines show the unit cell for each model. All atoms except the adsorbed CO were constrained during frequency calculations.

196 rectangular $p(4 \times 5\sqrt{3})$ structure as shown in Figure S2.
197 These models were constructed with four-layer thick $\text{Ag}(111)$
198 slabs. The conformal Pd bilayer (Figure 1b) was modeled by a
199 4×4 $\text{Ag}(111)$ surface with four layers orthogonal to the
200 surface, the $p(4 \times 4)$ Ag_2O structure, and then two layers of Pd
201 above that with 20 \AA of vacuum separating slabs. The lattice
202 parameter for the 4×4 $\text{Ag}(111)$ surface is 11.553 \AA compared
203 to 11.005 \AA for 4×4 $\text{Pd}(111)$, resulting in a lattice mismatch
204 of $\sim 5\%$. Previous studies have shown that the lattice strain can
205 modify the electronic properties of metal surfaces.³² However,
206 here, we also used a Pd cluster model (described next) where
207 Pd clusters and AgO_x surface are completely unconstrained,
208 eliminating any unnatural strains. Similar conclusions were
209 obtained from both models, suggesting that the effects of the
210 lattice mismatch in the conformal Pd bilayer model used here
211 is minimal. For the bilayer Pd clusters, a 2×1 super cell of the
212 $p(4 \times 5\sqrt{3})$ structure was used above four layers of
213 rectangular 8×10 $\text{Ag}(111)$ surface ($23 \times 25 \text{ \AA}$) with 15 \AA
214 of vacuum. A bilayer hemispherical Pd_{46} particle (1.38 nm in
215 diameter), which predominantly exposes a $\text{Pd}(111)$ surface
216 and is truncated by alternating (111) and (100) facets, was
217 then placed on top of the Ag_2O layer (Figure 1c,d). The

218 bottom two $\text{Ag}(111)$ layers were fixed in their bulk positions in
219 both models and all other atoms were relaxed during geometric
220 convergence.

221 A $3 \times 3 \times 1$ Monkhorst–Pack sampling of the first Brillouin
222 zone (k -point mesh)^{33,34} was used during the geometric
223 convergence for the conformal Pd bilayer model and a $1 \times 1 \times 1$
224 k -point mesh was used for the bilayer Pd cluster model. After
225 geometric convergence, single-point calculations with $6 \times 6 \times 1$
226 and $2 \times 2 \times 1$ k -point meshes for the conformal and cluster
227 models, respectively, were performed to determine the
228 electronic energy. Frequency calculations were performed to
229 determine the C–O stretch frequency using the harmonic
230 oscillator approximation; all atoms except the adsorbed CO
231 were constrained during these calculations.

RESULTS AND DISCUSSION

232 **Morphology and Auto-Oxidation of Pd Deposited on**
233 $\text{AgO}_x/\text{Ag}(111)$. Knowledge of the growth, morphology, auto-
234 oxidation, and fractional coverage of Pd deposited onto $\text{AgO}_x/$
235 $\text{Ag}(111)$ is required for interpreting the CO adsorption and
236 oxidation behavior on the Pd– $\text{AgO}_x/\text{Ag}(111)$ surfaces, with
237 AgO_x containing 0.38 ML O. For relatively low amounts of
238 deposited Pd, uniformly dispersed Pd clusters (~ 2.5 – 3 nm)
239 form across the AgO_x surface (Figure 2a), whereas a well-
240 f2

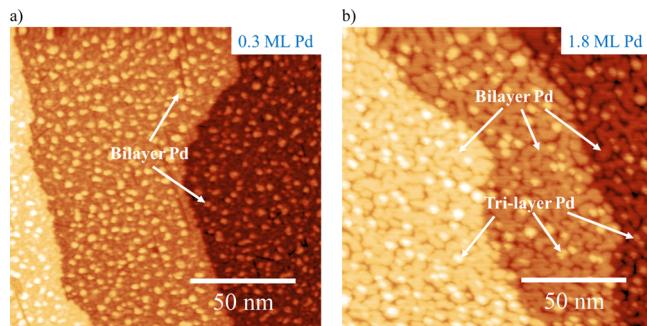
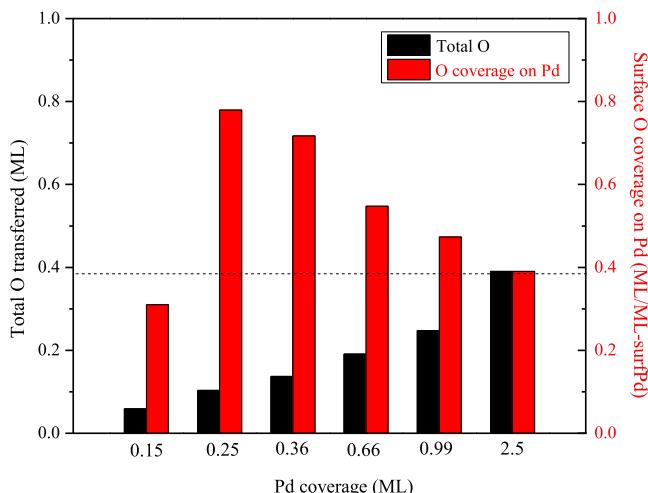


Figure 2. STM images ($150 \times 150 \text{ nm}$) obtained after depositing Pd on the single-layer $\text{AgO}_x/\text{Ag}(111)$ surface at 300 K to generate Pd coverages of (a) 0.30 ML (444 mV, 0.83 nA) and (b) 1.8 ML (241 mV, 0.69 nA). In image (a), the small, bright features (arrows) correspond to bilayer Pd clusters that are dispersed on top of the AgO_x layer. A well-connected Pd bilayer is the dominant structure in image (b) and the bright features on each terrace correspond to a minority amount of Pd trilayer domains. Three monatomic step edges of the $\text{Ag}(111)$ surface are evident in both images.

241 connected bilayer Pd film forms at higher Pd loading (Figure
242 2b).¹³ Approximately 10% of the higher coverage structure
243 consists of domains that are three layers high (Figure 2b, bright
244 spots).

245 STM images demonstrate a transition from single to bilayer
246 Pd cluster growth as the Pd coverage is increased above ~ 0.15
247 ML as well as the dominance of bilayer growth between ~ 0.3
248 and 2 ML.¹³ As reported previously, quantitative analysis of
249 STM images shows that the fraction of the surface covered by
250 Pd increases in approximately 1:1 proportion with increasing
251 Pd coverage to 0.15 ML but increases in about 1:2 proportion
252 with increasing Pd coverage from 0.3 to 1.8 ML.¹³ To illustrate
253 this relationship, Table 1 lists the total Pd coverage (ML), the
254 fraction of the surface covered by Pd, and the average
255 diameters of the Pd domains (determined previously from
256 STM) for each of the surfaces studied here.¹³ Hereafter, the

Table 1. Total Coverage of Pd (ML) Deposited on the $\text{AgO}_x/\text{Ag}(111)$ Surface, Surface Coverage of Pd (ML-surfPd), and the Average Diameters of Pd Domains for Surfaces Investigated in This Work^a


Pd (ML)	0.15	0.30	0.45	0.90	1.35	1.8
Pd (ML-surfPd)	0.19	0.18	0.21	0.49	0.71	0.95
D_{avg} (nm)	1.4	2.7	2.8	6.4		32.8

^aThe surface Pd coverages and average diameters were determined from statistical analysis of STM images as reported previously.¹³ The total coverage represents the total amount of Pd projected onto a unit area of the $\text{Ag}(111)$ substrate, while the surface coverage represents the coverage of Pd located at the vacuum–solid interface or the Pd– AgO_x interface. Units of ML and ML-surfPd are both scaled to the surface atom density of the $\text{Ag}(111)$ surface.

fraction of the surface covered by Pd is referred to as the surface Pd coverage because this fraction is proportional to both the number of Pd atoms at the vacuum–solid interface and the number of Pd atoms in direct contact with the Ag substrate. The surface Pd coverage is expressed in units of ML-surfPd, where 1 ML-surfPd corresponds to a single layer of Pd atoms with the same areal density as $\text{Ag}(111)$ covering the entire $\text{Ag}(111)$ substrate. For 0.15 ML of Pd, the total and surface Pd coverages are approximately equal because single-layer clusters are dominant, whereas the surface Pd coverage is approximately half of the total Pd coverage at higher coverage (Table 1) because bilayer clusters are dominant in this regime.¹³ It is important to note that units of ML-surfPd underestimate the number of Pd atoms at the vacuum–solid interface because this scale is based on the total area of the $\text{Ag}(111)$ surface covered by Pd and neglects Pd atoms at the edges of clusters. Relationships between the coverages of Pd edge and terrace sites for bilayer clusters of varying size are given in the Supporting Information (Section S4, Table S1) and discussed further below. Distinguishing the total and surface Pd coverages is important for understanding the auto-oxidation and reactivity of Pd on AgO_x .

Recently published work using X-ray photoelectron spectroscopy (XPS) demonstrates that the AgO_x layer efficiently transfers oxygen to the Pd at 300 K and that the amount of Pd affected by oxygen varies with the Pd coverage.¹³ In the present study, the amount of oxygen transferred to Pd was estimated by analyzing differences between O 1s spectra obtained before and after Pd deposition onto the AgO_x layer (Section S5; Table S3). The analysis assumes that diminution of the O 1s peak from the AgO_x phase is caused solely by oxygen transfer from the AgO_x to Pd. In support of this assumption, we estimate that inelastic scattering of photoelectrons by the deposited Pd could account for only about 20% of the observed decrease in the O 1s peak from AgO_x (see Section S5). Additionally, analysis of the Pd 3d spectra shows that the amount of Pd that is oxidized agrees well with the amount of oxygen depletion from the AgO_x phase determined from the O 1s difference spectra (Table S3).

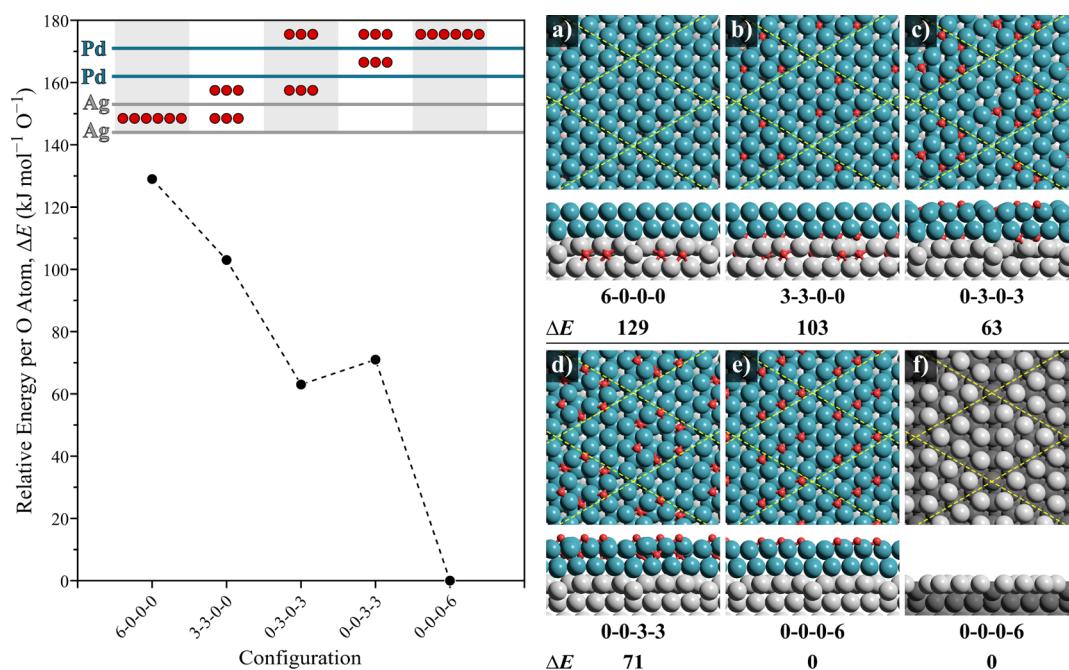
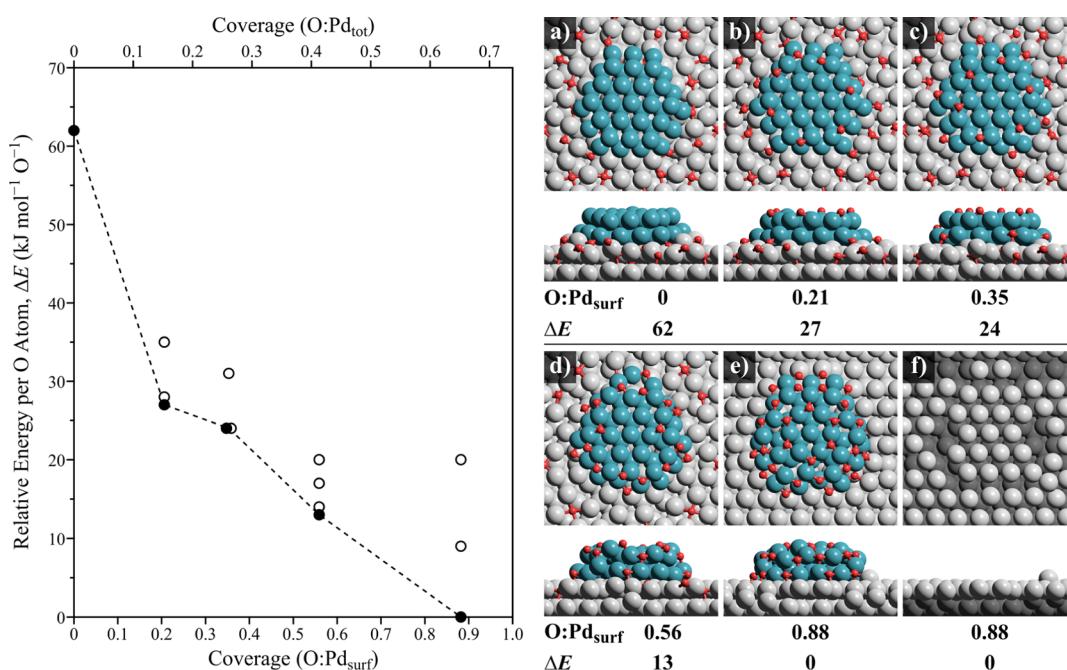

The XPS analysis shows that the total amount of oxygen transferred to Pd increases as the Pd coverage is increased to ~ 2 ML, at which point the Pd bilayer nearly completely covers the surface (Table 1) and all of the oxygen from the AgO_x layer has migrated to Pd (Figure 3, black). The analysis further shows that the surface O coverage on Pd single-layer clusters ($[\text{Pd}] < 0.15$ ML) is less than the oxygen coverage in the underlying AgO_x layer (dashed line) but increases by more than a factor of 2 as the Pd coverage is increased to ~ 0.25 ML

Figure 3. Total amount of oxygen (black) transferred from the AgO_x layer to Pd and the resulting surface coverage of oxygen on Pd (red) as a function of the total Pd coverage (ML) deposited onto AgO_x at 300 K. The dashed line represents the initial oxygen coverage in the AgO_x layer (~ 0.38 ML). The total amount of oxygen transferred (ML) was estimated from an analysis (section S5) of XPS Pd 3d and O 1s spectra reported previously.¹³ The oxygen coverage on the Pd clusters was then estimated by dividing the total amount of O transferred by the surface coverage of Pd, where the latter was estimated from analysis of STM images reported previously (e.g., Table 1).¹³ Single-layer Pd clusters form at total Pd coverages below ~ 0.15 ML, and bilayer clusters become dominant at higher Pd coverages, until a conformal bilayer is completed at a total Pd coverage of ~ 2 ML. The Pd surface coverage is approximately equal to 100 and 50% of the total Pd coverage for single and bilayer clusters (Table 1), respectively.

and small bilayer Pd clusters become dominant (Figure 3, red). The amount of oxygen transferred to the small Pd bilayer clusters (~ 0.75 ML O/ML-surfPd) is also approximately 2 times larger than the amount of oxygen available in the portion of the AgO_x layer that makes direct contact with the Pd, demonstrating that at least half of the oxygen migrated to Pd from uncovered areas of the AgO_x layer.¹³ In this case, even though $\sim 13\%$ of the surface is covered by Pd, oxygen transfer to the Pd completely reduces the equivalent of 25% of the AgO_x . Based on the total amount of oxygen in the AgO_x layer, oxygen transfer to Pd could maintain an O coverage of 0.75 ML/ML-surfPd for total Pd coverages up to 1 ML, for example, $[\text{O}]_{\text{max}}$ on 1 ML Pd $\sim (0.38 \text{ ML O}) / (0.5 \text{ ML-surfPd})$. Instead, however, the O coverage on surface Pd begins to decrease as the Pd coverage is increased from ~ 0.4 to 1 ML (Figure 3, red), suggesting that the O transfer becomes less effective as the Pd domains grow in size. Overall, these results demonstrate that the O transfer from AgO_x to Pd is highly facile. All of the oxygen from the AgO_x layer migrates to Pd during the formation of a nearly complete bilayer at $[\text{Pd}] \sim 2$ ML, and oxygen transfer to smaller bilayer domains ($[\text{Pd}] < 2$ ML) produces O coverages on the Pd which exceed that in the underlying AgO_x layer by as much as a factor of 2, indicating that Pd reduces a greater proportion of the AgO_x layer than it covers.

Energetics of Oxygen Transfer from AgO_x to Pd and Preferred Binding Sites. DFT-calculated energies predict a strong thermodynamic driving force for O atoms to move from a $p(4 \times 4)$ AgO_x surface (Figure 1a) to the top of a conformal Pd bilayer surface (Figure 4). Six O atoms exist in the $p(4 \times 4)$


Figure 4. (Left) DFT-predicted relative energies, normalized per O atom, for O configurations on the 4×4 bilayer Pd overlayer on the AgO_x surface. (Right) Optimized structures shown for each O configuration (a–e). The image in (f) shows the arrangement of Ag atoms beneath the Pd bilayer after all oxygen atoms moved to the first Pd layer as shown in (e). Color code: O (red), Ag (gray), and Pd (dark Cyan).

335 AgO_x surface, and five different configurations of these O
 336 atoms in the Pd bilayer model (Figure 1b) were examined by
 337 moving the O atoms from the AgO_x layer into the Pd region of
 338 the conformal Pd bilayer. Relative energies demonstrate that
 339 having the six O on top of the Pd bilayer is $129 \text{ kJ mol}^{-1} \text{ O}^{-1}$
 340 more stable than their original location within the surface Ag
 341 layer (as Ag_2O , Figure 1a without Pd, Figure 1b with a Pd
 342 bilayer). A similar thermodynamic driving force promotes O
 343 migration to the surface of the conformal Pd single-layer
 344 models, as shown in Figure S5 (Section S6). The energy per
 345 oxygen atom decreases in a nearly monotonic fashion as the
 346 oxygen atoms beneath the AgO_x layer move to the surface of
 347 the Pd bilayer. This relative energy decreases from 129 kJ
 348 mol^{-1} in the "6-0-0-0" configuration (where this notation
 349 indicates that all six O atoms are in the Ag layer, Figure 4a) to
 350 103 kJ mol^{-1} when half of the oxygen atoms are between the
 351 AgO_x layer and the bottom Pd layer (3-3-0-0; Figure 4b) and
 352 decreases further to 63 kJ mol^{-1} for the 0-3-0-3
 353 configuration (Figure 4c). The 0-3-3-0 configuration was
 354 attempted, but it spontaneously changes to the 0-3-0-3
 355 configuration during structural relaxation, demonstrating the
 356 instability of O atoms in the interstitial regions between two
 357 close-packed Pd layers. In contrast, the AgO_x layer has a lower
 358 density of Ag atoms compared with the Pd, enabling the
 359 oxygen atoms to reside between the AgO_x layer and the
 360 bottom Pd layer. This is also evident by the slightly higher
 361 energy of 0-0-3-3 relative to the 0-3-0-3 configuration
 362 (Figure 4c,d) before the significant decrease ($71 \text{ kJ mol}^{-1} \text{ O}^{-1}$)
 363 upon moving the remaining three, subsurface oxygen atoms to
 364 the surface of the Pd bilayer (Figure 4e).

365 When all six oxygen are on the surface, in the same positions
 366 that they reside in the surface of AgO_x , the relative energy (per
 367 oxygen atom) is $61 \text{ kJ mol}^{-1} \text{ O}^{-1}$ lower than that of the "0-0-
 368 3-3" structure and $118 \text{ kJ mol}^{-1} \text{ O}^{-1}$ lower than that of the
 369 "6-0-0-0" structure (where O resides in the AgO_x layer).
 370 This demonstrates that a strong thermodynamic driving force

371 stimulates the migration of O atoms to the Pd surface; 372 however, it neglects the ability of the O atoms to rearrange in 373 such a process. To determine the most stable configuration of 374 six O atoms on the Pd surface, we examined a total of 434 374 unique configurations (out of a total of 1,626), with this 375 sampling prioritizing structures with large average O–O 376 distances. Figure S6 shows the relative energies of these 377 unique configurations as a function of the average O–O 378 distance; the energy decreased by $\sim 160 \text{ kJ mol}^{-1}$ with 379 increasing the average O–O distance from 3.84 \AA to 5.86 \AA . 380 The energy also varies significantly at a given average O–O 381 distance, showing a strong preference for fcc sites compared to 382 hcp sites. For example, at an average O–O distance of $\sim 5.86 \text{ \AA}$, 383 placing all six oxygen atoms on 3-fold fcc sites is 41 kJ mol^{-1} 384 more favorable than distributing the oxygen atoms evenly on 385 both fcc and hcp sites. The most stable configuration of the 386 "0-0-0-6" arrangement with an average O–O distance of 387 5.86 \AA is shown in Figure 4e. 388

389 In addition to the five different O configurations shown in 389 Figure 4, we tested two additional configurations, 0-1-0-5 390 and 0-0-1-5 to examine the effects of O–O repulsion on the 391 Pd surface on O migration as shown in Figure S7 (Section S7; 392 Supporting Information). The 0-1-0-5 configuration is 14 kJ 393 $\text{mol}^{-1} \text{ O}^{-1}$ less favorable than the 0-0-0-6 configuration, 394 while the difference between 0-0-1-5 and 0-0-0-6 is 395 insignificant ($\sim 3 \text{ kJ mol}^{-1} \text{ O}^{-1}$ in favor to 0-0-1-5). This 396 suggests that O may reside in subsurface positions to alleviate 397 O–O repulsive interactions at high O coverages on the Pd 398 surface. However, the slight preference of a single O atom to 399 reside within the Pd bilayer could be artificially induced by the 400 5% stretch of the Pd(111) lattice present in this model as 401 discussed in the Computational Methods section. Overall, 402 DFT demonstrates that oxygen migration from the AgO_x 403 surface to a conformal Pd bilayer is thermodynamically favored 404 by $129 \text{ kJ mol}^{-1} \text{ O}^{-1}$ (774 kJ mol^{-1} total) and that the oxygen 405

Figure 5. (Left) DFT-predicted relative energies, normalized per O-atom, for O configurations on the bilayer Pd₄₆ hemispherical particle on the AgO_x surface as a function of O coverage on the surface of the Pd particle, shown per surface Pd (bottom axis) and total Pd atom (top axis). Multiple O configurations were examined at each coverage, and the most stable configurations at each coverage are shown in closed symbols while all other configurations are shown in open symbols. (Right) Optimized structures shown for the most stable O configurations at each O coverage on Pd (a–e). The image in (f) shows the arrangement of Ag atoms beneath the Pd₄₆ particle after all oxygen atoms moved to Pd as shown in (e). Color code: O (red), Ag (gray), and Pd (dark cyan). Structures for the other configurations are shown in Figure S8 in the [Supporting Information](#).

406 strongly prefers to reside on the surface of the Pd within
407 spatially distributed fcc sites.

408 These large thermodynamic driving forces suggest that
409 oxidation of the Pd domains and concurrent reduction of the
410 AgO_x located directly below the Pd is exothermic. XPS results,
411 however, demonstrate that the oxygen coverages on Pd pass
412 through a maximum as the Pd coverage increases (Figure 3),
413 suggesting that Pd clusters reduce the AgO_x surface directly
414 beneath them and some of the surrounding AgO_x. For
415 example, Pd clusters covering about 25% of the AgO_x surface
416 will reduce 50% of the AgO_x. Furthermore, conformal bilayers
417 are only present at a total Pd coverage of ~2 ML (Figure 2); at
418 lower Pd coverages, bilayer Pd clusters exist, which expose a
419 significant amount of undercoordinated Pd edge and corner
420 atoms that may stabilize O beyond the Pd(111) surfaces
421 modeled in the conformal structure.

422 DFT predicts that oxygen atoms transferred from AgO_x
423 preferentially bind on the edges of bilayer Pd clusters and
424 indeed suggests that a fractional coverage of Pd bilayer clusters
425 can thermodynamically induce complete reduction of the
426 AgO_x layer. Oxygen transfer to bilayer Pd clusters was
427 examined using a model of a Pd₄₆ bilayer cluster on a 2 × 1
428 super cell of the p(4 × 5√3) AgO_x surface (Ag₆₄O₃₀ surface)
429 (Figure 1c,d); this Pd₄₆ cluster covers 35% of the underlying
430 AgO_x surface. Multiple configurations of oxygen on the Pd₄₆
431 cluster were examined for several extents of O migration, that
432 is, at different O/Pd_{surf} coverages, where Pd_{surf} is equal to the
433 number of Pd atoms at the top surface and edges. Notably,
434 oxygen coverages given in units of ML/ML-surfPd (such as
435 Figure 3) are greater than the O/Pd_{surf} ratios shown here
436 because the latter account for Pd atoms at both terrace and
437 edge sites (Section S4; Table S2). The DFT-calculated
438 energies decrease by 35 kJ mol⁻¹ O⁻¹ (normalized per total

439 oxygen atom) as the seven oxygen atoms beneath the Pd 439
440 cluster (Figure 5a) diffuse to the Pd surface (Figure 5b), 440 fs
representing a coverage of 0.21 O/Pd_{surf} (Figure 5). For an 441 oxygen coverage of 0.21 O/Pd_{surf} DFT predicts that the 442 bridging sites along the edges in the top layer of the Pd cluster 443 (Figure 5b) are slightly more favorable for binding oxygen than 444 the terrace hollow sites and much more favorable than the 445 bridging sites on the edges of the bottom Pd layer (Figure S8; 446 [Supporting Information](#)). 447

Moving oxygen atoms from uncovered areas of the AgO_x 448 layer to Pd continues to be thermodynamically favored up to 449 an oxygen coverage of at least 0.88 O/Pd_{surf} (Figure 5, left), at 450 which point, all 30 O atoms have migrated from the AgO_x layer 451 to the surface of the Pd (Figure 5e). Notably, the Ag atoms in 452 the underlying AgO_x layer spontaneously rearranged during 453 structural optimization into a structure resembling close- 454 packed Ag(111) and lose their original triangular-shaped Ag₆ 455 and Ag₁₀ arrangements upon the migration of all oxygen atoms 456 to Pd (Figure 5f compared to Figure S2, [Supporting](#) 457 [Information](#)); this same rearrangement of Ag does not happen 458 in the conformal bilayer model (Figure 4f). Bridging sites at 459 the edges of the cluster remain more favorable for binding 460 oxygen than terrace sites between 0.35 and 0.88 O/Pd_{surf} 461 coverages (Figure 5b–d) until these sites become saturated 462 and the remaining oxygen atoms move to terrace sites. 463 Preferential binding on edge sites has also been reported for H 464 and CO on similar Ir, Pt, and Ru nanoparticles^{35,36} and is 465 expected to occur in many adsorbate/metal combinations 466 because the greater degree of coordinative undersaturation at 467 edge sites tends to strengthen the adsorbate–metal bonding. 468

The experimental data shows that O coverages on Pd fail to 469 reach 0.9 O/Pd_{surf} and instead increase to a maximum of ~0.5 470 O/Pd_{surf} (S4, Table S2), suggesting that kinetic and/or spatial 471

472 limitations prevent the complete migration of all O in the
 473 AgO_x domain to the Pd clusters at 300 K. The structure shown
 474 in Figure 5d has O preferentially decorating the edges of Pd
 475 and a coverage of 0.56 O/Pd_{surf} close to the measured
 476 maximum; this O-covered structure may thus be representative
 477 of the small bilayer clusters investigated experimentally. These
 478 results, taken alongside the experimental data, suggest that O
 479 atoms in AgO_x directly beneath or nearby Pd clusters will
 480 migrate to corner and edge atoms of these small Pd clusters,
 481 resulting in reduction of the Ag surface and partial surface
 482 oxidation of the Pd clusters.

483 Preferential binding of oxygen on Pd edge sites is expected
 484 to cause the O coverage on Pd to increase with decreasing Pd
 485 coverage on AgO_x in a manner that closely resembles the
 486 behavior observed experimentally (Figure 3). The origin for
 487 such behavior is that the actual number of surface Pd sites that
 488 project onto a unit area of the Ag(111) substrate increases
 489 markedly as the Pd cluster size is decreased because of the
 490 contribution of edge sites (S4; Table S1), and as Pd clusters
 491 grow, the fraction of Pd at edges decrease and becomes zero
 492 for conformal bilayers. The fraction of Pd edge sites can be
 493 approximated for clusters of varying size investigated
 494 experimentally, thus enabling a more direct comparison
 495 between the oxygen coverages on Pd determined from
 496 experiment and DFT. From STM data,¹³ the average diameters
 497 of the bilayer clusters are ~3 and 6 nm at total Pd coverages of
 498 0.30 and 0.90 ML, respectively (Table 1). Assuming that these
 499 clusters have the same shape as that modeled using DFT, we
 500 estimate that 50 and 30% of the surface Pd atoms are located
 501 on the edges of the ~3 versus 6 nm clusters (S4; Table S1);
 502 the fraction of Pd edge atoms is about 1.7 times higher for the
 503 small versus large clusters in this case. Experimental estimates
 504 show that the oxygen coverage on Pd is also higher on the
 505 smaller of these clusters by a factor of ~1.7, which is
 506 approximately equal to the ratio of the Pd edge site fractions
 507 for these clusters. Thus, the oxygen coverage on Pd increases
 508 in proportion to the fraction of Pd edge sites for the cluster
 509 sizes considered here. Further, after accounting for Pd edge
 510 sites for the model cluster geometry (S4; Table S2), the
 511 oxygen coverages are estimated to be ~0.49 and 0.33 O/Pd_{surf}
 512 on the 3 and 6 nm clusters, respectively, very close in value to
 513 the Pd edge site fractions. These quantitative comparisons
 514 support the idea that enhanced stabilization of oxygen at edge
 515 sites is partly responsible for the enhanced uptake of oxygen by
 516 Pd clusters of decreasing size on AgO_x .

517 **Examination of Pd Sites Using CO Adsorption and**
 518 **Infrared Spectroscopy.** Reflection absorption IR spectroscopy
 519 further demonstrates that the adsorbed oxygen is present
 520 on the surfaces of the Pd clusters on AgO_x and provides strong
 521 evidence of preferential oxygen binding to the edge sites of the
 522 clusters. IR spectra were acquired after adsorbing CO to
 523 saturation on Pd-covered AgO_x surfaces at 100 K. As shown
 524 below, high CO saturation coverages were generated on the
 525 Pd; the CO coverages decrease from ~0.75 to 0.5 CO/Pd_{surf} as
 526 the Pd coverage is increased from 0.3 to 1.8 ML. The IR
 527 spectra obtained from CO-saturated surfaces exhibit two main
 528 C–O stretch bands; the band at 2057–2088 cm^{−1} originates
 529 from CO adsorbed in an atop configuration on a Pd atom
 530 (CO–Pd species)^{37,38} and the band at 2104–2128 cm^{−1}
 531 originates from an atop CO–Pd–O species in which the CO
 532 is bound to a Pd atom that is also bound to adsorbed O
 533 (Figure 6).^{10,39,40} DFT calculations performed here predict
 534 that the C–O stretch frequency for CO–Pd–O species is

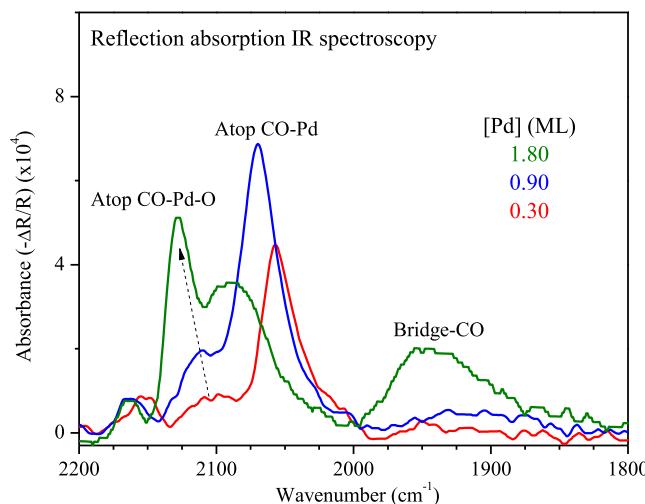
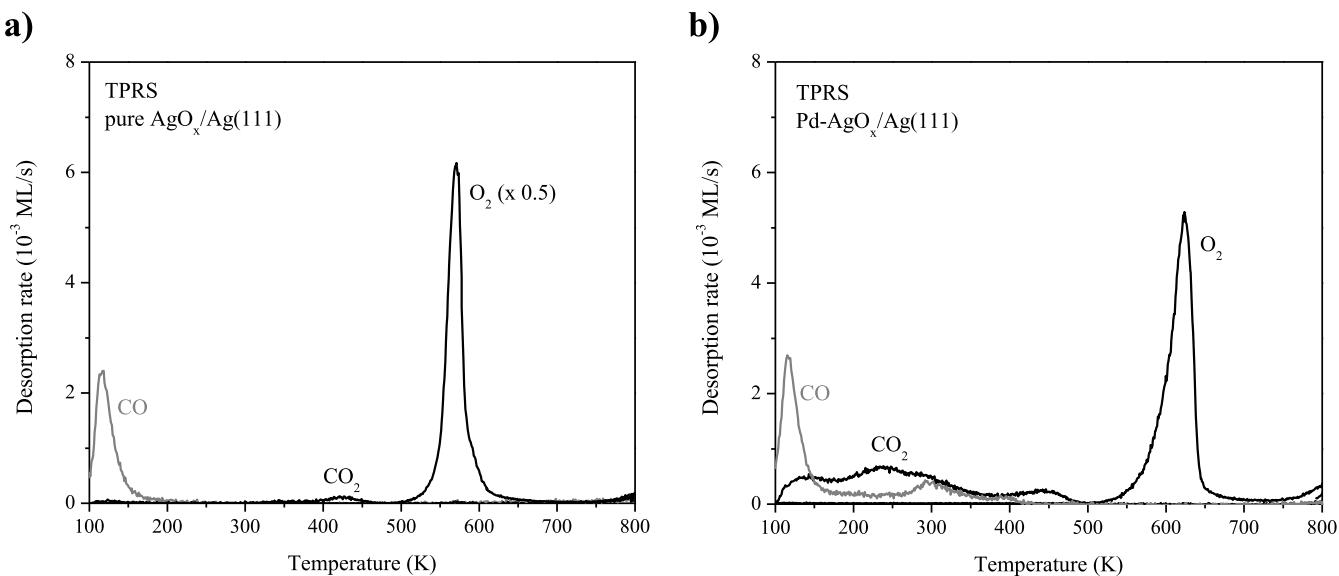



Figure 6. Reflection absorption IR spectra obtained after adsorbing CO to saturation at 100 K on a Pd– AgO_x /Ag(111) surface with 0.3, 0.9, and 1.8 ML of Pd. Figure S10 in the Supporting Information shows IR spectra obtained from other Pd coverages.

535 similarly blue-shifted relative to the CO–Pd species (Figure 535
 536 S9; Supporting Information). The band at 2160 cm^{−1} is 536 attributed to weakly bound CO on Ag sites,^{41–43} and the low 537 intensity below 2000 cm^{−1} for Pd coverages less than ~1 ML 538 demonstrates that CO adsorbs negligibly on the bridge and 539 hollow sites of the small Pd clusters; the emergence of the 540 broad band centered at 1945 cm^{−1} indicates that a fraction of 541 the adsorbed CO binds on the bridge sites of the nearly 542 completed Pd bilayer. The appearance of a C–O stretch band 543 for the CO–Pd–O species indeed confirms that adsorbed 544 oxygen is present on Pd prior to CO adsorption, while the 545 appearance of the band for CO–Pd species demonstrates that 546 a fraction of the adsorbed CO is unaffected by the coadsorbed 547 oxygen. The simultaneous appearance of both C–O stretch 548 bands thus suggests that the Pd clusters are initially covered by 549 separate oxygen-rich and oxygen-depleted regions, consistent 550 with heterogeneity in the oxygen adlayer resulting from 551 preferential accumulation of oxygen on Pd edge sites.⁵⁵²

553 The variation in the relative intensities of the CO–Pd and 553 CO–Pd–O bands with increasing Pd coverage further 554 supports the interpretation that oxygen binds preferentially 555 on the edges of small Pd clusters, leaving the terraces depleted 556 of oxygen. As seen in Figure 6, the relative intensity of the 557 CO–Pd–O band (compared with the CO–Pd band) is quite 558 small for Pd coverages below ~1 ML but increases sharply at 559 higher Pd coverages. This trend is intriguing considering that 560 the oxygen coverage on Pd is highest for the small bilayer Pd 561 clusters and decreases with increasing Pd coverage (Figure 3).⁵⁶² Preferential binding of oxygen on the Pd edge sites and a shift 563 of oxygen to the terrace sites as the Pd domain size is increased 564 can account for the variation in the CO–Pd–O band intensity.⁵⁶⁵ Assuming that oxygen binds selectively on the edges of the 566 smallest Pd clusters, nearly all of the CO–Pd–O species would 567 be located on edge sites while the CO–Pd species would 568 mainly be present on the terraces. In this case, any CO 569 adsorbates associated with oxygen (CO–Pd–O) would tend 570 to tilt significantly away from the surface normal, and IR 571 absorption by these CO molecules would be weak compared 572 with the more upright standing CO adsorbed on the O- 573 depleted terraces due to the surface selection rule.⁴⁴ As a result,⁵⁷⁴

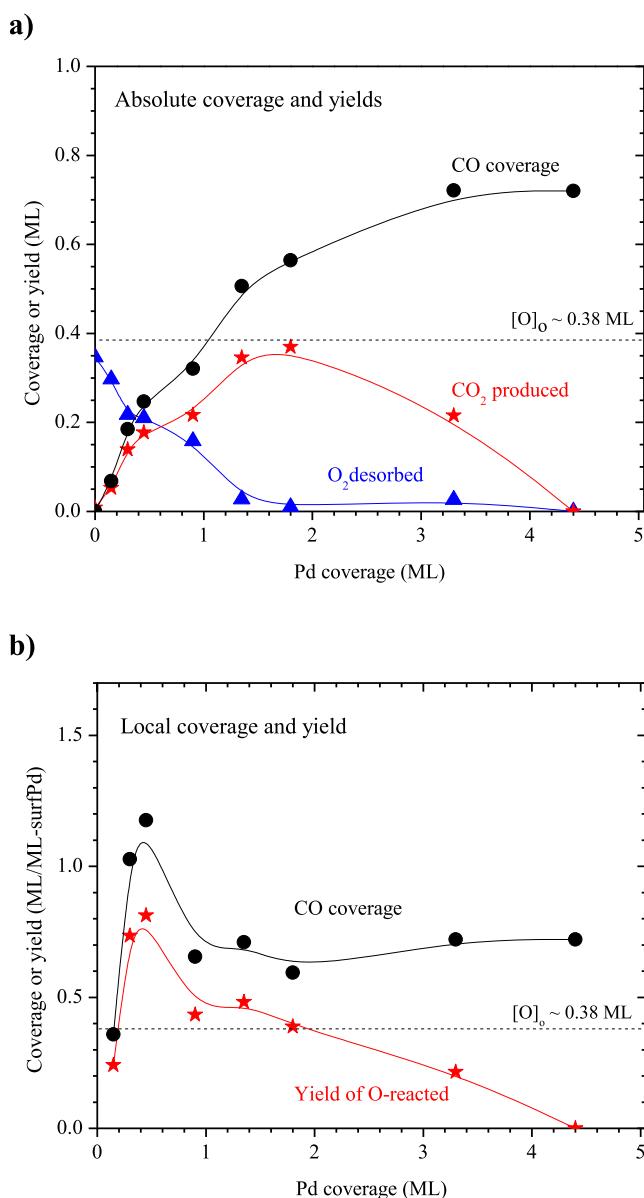
Figure 7. Temperature-programmed reaction of CO on (a) pure AgO_x/Ag(111) and (b) Pd-covered AgO_x/Ag(111) illustrates the change in kinetics and product distribution when Pd is present. The Pd-covered surface was prepared by depositing 0.30 ML of Pd at 300 K and each surface was exposed to CO at 100 K until reaching CO saturation.

575 the intensity of the CO–Pd–O band relative to the CO–Pd
 576 band would be low even when the majority of the adsorbed
 577 CO is bound as CO–Pd–O. The preference of O to bind to
 578 the edges of Pd particles at <1.8 ML is also demonstrated by
 579 the absence of CO absorption bands below 2000 cm⁻¹,
 580 indicating an absence of bridge-bound CO, as these sites are
 581 blocked by O. Clearly, O atoms shift toward terrace sites as the
 582 Pd clusters develop into a contiguous layer and eliminate edge
 583 sites. As a result, O and CO are forced to interact on the
 584 resulting surface, leading to an increasing fraction of the CO–
 585 Pd–O species on the terraces. This also corresponds to an
 586 appearance of bridge-bound CO (band near 1950 cm⁻¹),
 587 which are likely present to reduce coadsorbate repulsions at
 588 these relatively high adsorbate coverages. The variation of the
 589 CO–Pd–O and CO–Pd intensities with increasing Pd
 590 coverage provides compelling evidence that oxygen preferen-
 591 tially binds on the edges of Pd clusters during oxygen transfer
 592 from the AgO_x surface.

593 **Surface Reactivity toward CO.** A pristine AgO_x layer
 594 shows very little reactivity with CO adsorbed at 100 K. Heating
 595 the surface to 800 K reveals about 0.01 ML production of CO₂
 596 near 425 K and the desorption of approximately 92% of the
 597 surface oxygen in a sharp O₂ peak at 570 K (Figure 7a). The
 598 O₂ TPD yield is only slightly less than that obtained from the
 599 pure AgO_x single layer without adsorbed CO (Supporting
 600 Information, Figure S1).^{16,45,46} The desorption of CO at 115 K
 601 is indicative of weakly bound CO to Ag, apparently originating
 602 mainly from the edges of the sample (Supporting Informa-
 603 tion). These results are consistent with previous work showing
 604 that the *p*(4 × 4)–AgO_x structure on Ag(111) is reduced by
 605 CO in an autocatalytic mechanism in which CO adsorbs on
 606 clean silver and reacts at the interfacial boundaries between the
 607 surface oxide and the clean Ag; that is, the oxide itself is
 608 unreactive.⁵ Overall, the pure AgO_x single layer exhibits
 609 negligible CO oxidation activity for the conditions studied
 610 here.

611 In contrast, the AgO_x surface covered with 0.30 ML of Pd
 612 reacts readily with CO, evolving 0.14 ML of CO₂ in a broad
 613 band between 100 and 500 K after adsorption of CO at 100 K

(Figure 7b). After scaling the CO₂ yield by the Pd surface 614
 coverage (0.18 ML-surfPd, Table 1), the amount of oxygen 615
 consumed by CO oxidation is estimated to be 0.74 ML/ML- 616
 surfPd. This value is nearly identical to the amount of oxygen 617
 that transferred to Pd after depositing a comparable amount of 618
 Pd onto AgO_x (Figure 3), demonstrating that CO oxidation is 619
 highly effective on these small Pd clusters and that only the 620
 oxygen that was initially associated with the Pd reacts with CO 621
 during TPRS. Unreacted CO is also evolved from the surface 622
 near 300 and 395 K, consistent with stronger binding of CO 623
 on Pd compared with AgO_x.⁴⁷ Based on the CO and CO₂ 624
 desorption yields, the initial CO coverage is about 3.5 times 625
 higher on the Pd-decorated versus pure AgO_x surface (0.28 vs 626
 0.08 ML), indicating that the Pd enhances CO adsorption at 627
 100 K. Only about 57% of the oxygen initially associated with 628
 the AgO_x layer desorbs as O₂ from the 0.3 ML Pd/AgO_x 629
 surface. The decrease in the amount of O₂ evolved (Figure 7 630
 a,b) is commensurate with the increased amount of CO₂ 631
 formed. The O₂ and CO₂ yields with and without Pd 632
 demonstrate clearly that CO consumes a significant fraction 633
 of the oxygen originally associated with the AgO_x phase prior 634
 to Pd deposition. 635


The enhanced CO oxidation activity of Pd-covered versus 636
 pure AgO_x is attributed to the large fraction of Pd on the 637
 surface that oxidizes due to oxygen transfer from the AgO_x 638
 layer.¹³ The O₂ TPD peak is also centered at a higher 639
 temperature (625 vs 570 K) on the 0.3 ML Pd-covered versus 640
 clean AgO_x surface, indicating that Pd stabilizes O atoms from 641
 the AgO_x phase. This finding is consistent with the stronger 642
 bonding of oxygen with Pd versus Ag that provides a 643
 thermodynamic driving force for the auto-oxidation of Pd by 644
 the AgO_x phase. A key finding is that CO oxidation occurs 645
 efficiently on Pd-covered AgO_x/Ag(111), even though the 646
 AgO_x phase is the only oxidant source. 647

The production of CO₂ at temperatures as low as 100 K 648
 further supports the conclusion that the oxygen transferred 649
 from AgO_x resides on the surfaces of the Pd clusters and that 650
 the combined coverage of adsorbed O and CO on the Pd is 651
 high (≥ 0.5 ML) after exposure to CO. Prior studies report that 652

653 CO oxidation on oxygen-covered Pd surfaces occurs in three
 654 regions of temperature and coverage; reaction at combined CO
 655 and O coverages greater than 0.5 ML produces CO_2 between
 656 about 100 and 300 K, reaction at lower CO + O coverages
 657 produces CO_2 near 360 K, and reaction between isolated CO
 658 and O produces CO_2 near 420 K.^{39,40,48} Analogous to the
 659 behavior reported for single-crystal Pd surfaces, the evolution
 660 of CO_2 from the Pd-covered $\text{AgO}_x/\text{Ag}(111)$ surfaces also
 661 occurs approximately in three distinct temperature regimes
 662 (Figures 7b and S11a), with a significant amount of CO_2
 663 produced below 300 K. The fact that CO_2 is produced on the
 664 Pd- $\text{AgO}_x/\text{Ag}(111)$ surfaces at temperatures just above 100 K
 665 strongly suggests that O atoms are initially present on the Pd
 666 surfaces and thus available to react with adsorbed CO at low
 667 temperature.

668 **Effect of Pd Coverage on CO Adsorption and**
 669 **Oxidation.** The CO coverage resulting from saturation
 670 exposure to CO at 100 K increases with increasing Pd
 671 coverage on AgO_x until reaching a steady value of 0.72 ML on
 672 the surface fully covered by Pd (Figure 8a), in good agreement
 673 with the saturation coverage of CO on clean Pd(111) at 100
 674 K.⁴⁷ The fact that the CO coverage at 2 ML Pd coverage is
 675 lower is attributed to site blocking by O atoms that migrated
 676 from the AgO_x layer to the surface of the Pd bilayer. The fact
 677 that the CO coverage increases in proportion to the fractional
 678 area of the surface covered by Pd (Table 1) is consistent with
 679 CO adsorbing at 100 K only on the Pd domains. The yield of
 680 CO_2 produced initially increases with Pd coverage and reaches
 681 a maximum as the Pd bilayer is nearly completed, the
 682 maximum CO_2 yield being approximately equal to the initial
 683 oxygen coverage (~ 0.38 ML) in the AgO_x layer. Concurrently,
 684 the yield of unreacted O_2 decreases to a negligible value
 685 (Figure 8a). These results show that nearly all of the oxygen
 686 atoms (>97%) from the AgO_x layer are consumed by CO
 687 oxidation when the Pd bilayer nearly completely covers the
 688 surface (2 ML Pd) and thus reveal that oxygen atoms from the
 689 buried Pd- AgO_x interface efficiently migrate through the Pd
 690 bilayer and react with CO adsorbed at the Pd surface. The CO
 691 IR spectra indicate that prior to CO adsorption, the oxygen
 692 migrates to the surface of the Pd bilayer during Pd deposition
 693 onto AgO_x at 300 K, which is consistent with the minimum
 694 energy structures predicted by DFT (Figures 4 and 5).

695 After Pd bilayer formation, however, the CO_2 yield decreases
 696 and becomes negligible at a Pd coverage near 4 ML, while the
 697 yield of desorbed O_2 continues to remain close to zero (Figure
 698 8a). These observations indicate that O atoms originally
 699 associated with the AgO_x phase become increasingly unable to
 700 react with adsorbed CO or recombinatively desorb from the
 701 surface as the Pd layer thickens beyond 2 ML. Such behavior
 702 suggests that the oxygen remains trapped in the subsurface
 703 region as the temperature is increased to 800 K during TPRS.
 704 In support of this interpretation, surface IR spectra obtained
 705 after adsorbing CO at 100 K show that the surface oxygen
 706 coverage becomes negligible as the Pd coverage is increased to
 707 about 4.4 ML. As may be seen in Figure S10, bands from
 708 bridge-bound CO on metallic Pd intensify as the Pd coverage
 709 is increased above 2 ML and the CO-Pd-O band near 2140
 710 cm^{-1} is absent in the spectrum obtained at a Pd coverage of
 711 ~ 4.4 ML, the spectrum closely resembling that obtained from
 712 pure Pd(111) after saturation with CO at 100 K. The lack of
 713 O_2 desorption is also consistent with prior studies, which show
 714 that temperatures above about 900 K are required to observe
 715 appreciable desorption of oxygen from the subsurface of

Figure 8. (a) Absolute initial CO coverage and the CO_2 and O_2 desorption yields (ML) and (b) local CO coverage and yield of O consumed by reaction (ML/ML-surfPd) as a function of the Pd coverage following CO saturation at 100 K. The initial CO coverage in (a) is given by the sum of the CO_2 and CO TPRS yields. CO, O_2 , and CO_2 TPRS traces for all Pd coverages studied are shown in Figure S11, **Supporting Information**. Local coverages and yields are given in units of ML/ML-surfPd and determined by dividing the total yield or coverage by the surface Pd coverage (Table 1), after subtracting small contributions made from species desorption from uncovered AgO_x .

Pd(111) during TPD.^{49,50} A key finding is that oxygen migration to the surface of Pd domains is a highly facile process by which the AgO_x phase supplies O atoms to Pd, provided that the Pd domains are sufficiently thin (≤ 2 ML).⁷¹⁹

The oxygen consumed by CO oxidation clearly exceeds the amount of oxygen covered by the Pd bilayer domains for Pd coverages between 0.3 and 1.8 ML (Figure 8b) and exhibits a similar dependence on the Pd coverage as observed for the amount of oxygen transferred to the Pd prior to CO adsorption (Figure 3). An approximate comparison suggests that the oxygen consumed by CO oxidation is close to the

727 initial oxygen coverage on the Pd; a comparison at each Pd
728 coverage is not possible because of the differences in the Pd
729 coverages examined with XPS versus CO TPRS. This result
730 shows that CO oxidation is highly effective in removing oxygen
731 from the Pd clusters but suggests that additional oxygen
732 transfer from the AgO_x layer contributes negligibly to the
733 oxidation of CO adsorbed at 100 K. An implication is that
734 residual oxygen on the AgO_x surface is far removed from the
735 Pd clusters and unable to diffuse rapidly enough to the Pd to
736 react with CO on the timescale of the TPRS measurement.
737 The larger quantities of CO_2 produced on small bilayer Pd
738 clusters are clearly attributable to the higher initial coverages of
739 oxygen on these clusters, which result from preferential
740 binding of oxygen on edge sites of the Pd clusters and facile
741 oxygen transfer from the AgO_x surface. Overall, the Pd– AgO_x /
742 Ag(111) surfaces are highly active in CO oxidation because the
743 AgO_x phase efficiently supplies oxygen to the Pd.

744 The ability of the small Pd bilayer clusters to accommodate
745 large quantities of adsorbed CO also contributes to the
746 enhanced production of CO_2 at low Pd coverages. The CO
747 coverage and the amount of O consumed per ML of surface Pd
748 track one another as the Pd coverage increases to 2 ML
749 (Figure 8b), the CO coverage on small bilayer clusters
750 increasing to greater than 1 ML/ML-surfPd when the amount
751 of O consumed reaches a maximum. Prior studies show that
752 supported metal nanoparticles can accommodate large CO
753 coverages because the finite terrace widths allow the CO
754 molecules to tilt away from one another, which greatly reduces
755 oxygen–oxygen and dipole–dipole repulsions.^{36,51,52} Prefer-
756 ential binding on edge sites can also enhance the CO coverage
757 on metal nanoparticles of decreasing size. Accounting for Pd
758 edge atoms, CO coverages at 100 K are estimated to be
759 between ~0.7 and 0.8 CO/Pd_{surf} for the ~3 nm clusters at Pd
760 coverages of 0.3 and 0.45 ML and decrease to 0.5 to 0.6 CO/
761 Pd_{surf} for the larger domains that form as the Pd bilayer
762 approaches completion (Section S4; Table S2). These CO
763 coverages are larger than the fraction of edge sites estimated
764 for 3 and 6 nm Pd clusters (0.50 vs 0.30 Pd_{edge}/Pd_{surf}),
765 suggesting that CO adsorbs on both edge sites and terrace sites
766 of the Pd clusters, in agreement with the results from surface
767 IR spectroscopy (Figure 6). The ability of the small bilayer
768 clusters to accommodate high coverages of CO is attributed to
769 enhanced binding on Pd edge sites and, together with the
770 higher oxygen coverages on the Pd, enables these clusters to
771 produce CO_2 more effectively than large Pd domains.

772 **Summary.** The results of this study establish that coexisting
773 Pd and AgO_x phases act cooperatively via a mechanism in
774 which the AgO_x layer supplies O atoms to Pd domains and the
775 O atoms oxidize CO adsorbed on the Pd. Oxygen migration
776 from AgO_x to the Pd surface occurs facilely by two processes,
777 namely, oxygen transfer to Pd at the buried Pd– AgO_x interface
778 and diffusion of O atoms across the AgO_x surface to the Pd
779 domains. Smaller bilayer clusters of Pd affect a higher efficiency
780 of oxygen transfer from the AgO_x surface, as they can optimally
781 incorporate interfacial oxygen as well as oxygen from the
782 surrounding AgO_x . Enhanced stabilization of the oxygen causes
783 the edges of Pd clusters to become enriched in oxygen and
784 further promotes oxygen transfer to clusters of decreasing size.
785 The oxygen coverage per Pd atom increases significantly as the
786 Pd cluster size is decreased, reaching values that exceed the
787 oxygen concentration in the AgO_x layer by as much as a factor
788 2. The preference for the transferred oxygen to bind on the
789 edges of the Pd clusters was confirmed using several

790 complementary methods, including quantitative analysis of
791 XPS spectra, surface IR spectroscopy of adsorbed CO and
792 DFT calculations of a Pd cluster supported on a AgO_x single
793 layer, as well as quantitative estimates of the Pd morphology
794 obtained from previously reported STM measurements.¹³

795 Quantification of the reactivity of adsorbed CO with the
796 oxidized surface confirms that these oxygen transfer mecha-
797 nisms are operative and demonstrates that the partially
798 oxidized Pd bilayer domains are highly reactive toward CO.
799 Nearly all of the oxygen atoms on AgO_x that associate with Pd
800 during its deposition at 300 K are consumed by reaction with
801 CO subsequently adsorbed onto the Pd at 100 K. The results
802 of this study demonstrate that the higher oxophilicity of Pd
803 versus Ag induces efficient oxygen transfer from AgO_x to Pd
804 that renders the Pd highly active toward the oxidation of CO.
805 Enhanced oxygen transfer to small Pd clusters and their
806 subsequent higher CO oxidation activity further reveal that
807 undercoordinated edge sites of the Pd clusters have higher
808 oxygen concentrations and thus result in higher CO oxidation
809 rates near the Pd and AgO_x interface. These findings clarify
810 oxygen-exchange processes that may be broadly applicable in
811 applications of oxidation chemistry promoted by bimetallic
812 catalysts.

■ ASSOCIATED CONTENT

SI Supporting Information

The Supporting Information is available free of charge at
<https://pubs.acs.org/doi/10.1021/acscatal.0c03885>.

Sample mounting and cleaning; O_2 TPD spectrum from
single-layer AgO_x /Ag(111); structural models of single-
layer AgO_x /Ag(111) phases; relationships between edge
and terrace sites of bilayer Pd clusters; analysis of O 1s
and Pd 3d spectra acquired from Pd deposited on AgO_x /
Ag(111); DFT-computed energies of oxygen transfer to
a Pd single layer; DFT-computed energies of O
configurations on the Pd bilayer; additional O
configurations on the Pd_{46} cluster on AgO_x ; C–O
stretch frequencies of CO on the Pd bilayer on AgO_x ;
influence of adsorbed O; CO RAIRS as a function of Pd
coverage on AgO_x ; and TPRS traces as a function of Pd
coverage on AgO_x (PDF)

■ AUTHOR INFORMATION

Corresponding Author

Jason F. Weaver – Department of Chemical Engineering,
University of Florida, Gainesville, Florida 32611, United
States; orcid.org/0000-0002-6777-4727; Phone: 352-
392-0869; Email: weaver@che.ufl.edu; Fax: 352-392-9513

Authors

Vikram Mehar – Department of Chemical Engineering,
University of Florida, Gainesville, Florida 32611, United
States

Abdulrahman Almithn – Department of Chemical
Engineering, University of Florida, Gainesville, Florida
32611, United States; Department of Chemical Engineering,
King Faisal University, Al-Ahsa 31982, Saudi Arabia

Tobias Egle – Department of Chemistry and Chemical Biology
and School of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States;
orcid.org/0000-0003-1670-9754

848 Ming-Hung Yu – Department of Chemical Engineering,
849 University of Florida, Gainesville, Florida 32611, United
850 States
851 Christopher R. O'Connor – Department of Chemistry and
852 Chemical Biology, Harvard University, Cambridge,
853 Massachusetts 02138, United States
854 Mustafa Karatok – Department of Chemistry and Chemical
855 Biology, Harvard University, Cambridge, Massachusetts
856 02138, United States
857 Robert J. Madix – School of Engineering and Applied Sciences,
858 Harvard University, Cambridge, Massachusetts 02138,
859 United States; orcid.org/0000-0002-3132-2382
860 David Hibbitts – Department of Chemical Engineering,
861 University of Florida, Gainesville, Florida 32611, United
862 States; orcid.org/0000-0001-8606-7000

863 Complete contact information is available at:
864 <https://pubs.acs.org/10.1021/acscatal.0c03885>

865 Author Contributions

866 ¹V.M. and A.A. contributed equally to this work.

867 Notes

868 The authors declare no competing financial interest.

869 ■ ACKNOWLEDGMENTS

870 The authors thank Cynthia Friend for helpful technical
871 discussions and Jeffrey Miller for editorial assistance. This
872 work was supported as part of the Integrated Mesoscale
873 Architectures for Sustainable Catalysis, an Energy Frontier
874 Research Center funded by the U.S. Department of Energy,
875 Office of Science, Basic Energy Sciences, under award no. DE-
876 SC0012573. A.A. acknowledges Saudi Arabian Cultural
877 Mission (SACM) and King Faisal University, Saudi Arabia,
878 for funding his graduate studies and research. Computational
879 resources were provided by the University of Florida Research
880 Computing and the Extreme Science and Engineering
881 Discovery Environment (XSEDE; CTS160041).

882 ■ REFERENCES

- (1) Weaver, J. F. Surface chemistry of late transition metal oxides. *Chem. Rev.* **2013**, *113*, 4164–4215.
- (2) Wachs, I. E.; Madix, R. J. Oxidation of methanol on a silver (110) catalyst. *Surf. Sci.* **1978**, *76*, 531–558.
- (3) Jones, G. S.; Barreau, M. A.; Vohs, J. M. Mechanism of diethyl ether formation on Ag(110) and its dependence on coadsorbed oxygen species. *J. Phys. Chem. B* **1999**, *103*, 1144–1151.
- (4) Jones, G. S.; Barreau, M. A.; Vohs, J. M. The formation of diethyl ether via the reaction of iodoethane with atomic oxygen on the Ag(110) surface. *Surf. Sci.* **1999**, *420*, 65–80.
- (5) Klust, A.; Madix, R. J. Mesoscopic restructuring and mass transport of metal atoms during reduction of the Ag(111)-p(4x4)-O surface with CO. *J. Chem. Phys.* **2007**, *126*, 084707.
- (6) Hibbitts, D.; Neurock, M. Promotional effects of chemisorbed oxygen and hydroxide in the activation of C-H and O-H bonds over transition metal surfaces. *Surf. Sci.* **2016**, *650*, 210–220.
- (7) Zhang, F.; Li, T.; Pan, L.; Asthagiri, A.; Weaver, J. F. CO oxidation on single and multilayer Pd oxides on Pd(111): mechanistic insights from RAIRS. *Catal. Sci. Tech.* **2014**, *4*, 3826–3834.
- (8) Zhang, F.; Pan, L.; Li, T.; Diulus, J. T.; Asthagiri, A.; Weaver, J. F. CO oxidation on PdO(101) during temperature programmed reaction spectroscopy: Role of oxygen vacancies. *J. Phys. Chem. C* **2014**, *118*, 28647–28661.
- (9) Weaver, J. F.; Zhang, F.; Pan, L.; Li, T.; Asthagiri, A. Vacancy-mediated processes in the oxidation of CO on PdO(101). *Acc. Chem. Res.* **2015**, *48*, 1515–1523.

- (10) Weaver, J. F.; Choi, J.; Mehar, V.; Wu, C. Kinetic Coupling among Metal and Oxide Phases during CO Oxidation on Partially Reduced PdO(101): Influence of Gas-Phase Composition. *ACS Catal.* **2017**, *7*, 7319–7331.
- (11) O'Connor, C. R.; Van Spronsen, M. A.; Egle, T.; Xu, F.; Kersell, H.; Oliver-Meseguer, J.; Karatok, M.; Salmeron, M.; Madix, R. J.; Friend, C. M. Hydrogen migration at restructuring palladium–silver oxide boundaries dramatically enhances reduction rate of silver oxide. *Nat. Commun.* **2020**, *11*, 1844.
- (12) Karatok, M.; Egle, T.; Mehar, V.; O'Connor, C. R.; Yu, M.-H.; Friend, C. M.; Weaver, J. F. Reduction of Oxidized Pd/Ag(111) Surfaces by H₂: Sensitivity to PdO Island Size and Dispersion. *ACS Catal.* **2020**, *10*, 10117–10124.
- (13) Mehar, V.; O'Connor, C. R.; Egle, T.; Karatok, M.; Madix, R. J.; Friend, C. M.; Weaver, J. F. Growth and auto-oxidation of Pd on single-layer AgO_x/Ag(111). *Phys. Chem. Chem. Phys.* **2020**, *22*, 6202–6209.
- (14) Devarajan, S. P.; Hinojosa, J. A.; Weaver, J. F. STM study of high-coverage structures of atomic oxygen on Pt(111): p(2 x 1) and Pt oxide chain structures. *Surf. Sci.* **2008**, *602*, 3116–3124.
- (15) Powell, C. J.; Jablonski, A. *NIST Electron Inelastic-Mean-Free-Path Database*. National Institute of Standards and Technology: Gaithersburg, Maryland 20899, 2010.
- (16) Derouin, J.; Farber, R. G.; Turano, M. E.; Iski, E. V.; Killelea, D. R. Thermally Selective Formation of Subsurface Oxygen in Ag(111) and Consequent Surface Structure. *ACS Catal.* **2016**, *6*, 4640–4646.
- (17) Schnadt, J.; Knudsen, J.; Hu, X. L.; Michaelides, A.; Vang, R. T.; Reuter, K.; Li, Z. S.; Laegsgaard, E.; Scheffler, M.; Besenbacher, F. Experimental and theoretical study of oxygen adsorption structures on Ag(111). *Phys. Rev. B: Condens. Matter Mater. Phys.* **2009**, *80*, 075424.
- (18) Schnadt, J.; Michaelides, A.; Knudsen, J.; Vang, R. T.; Reuter, K.; Laegsgaard, E.; Scheffler, M.; Besenbacher, F. Revisiting the structure of the p(4x4) surface oxide on Ag(111). *Phys. Rev. Lett.* **2006**, *96*, 146101.
- (19) Mehar, V.; Kim, M.; Shipilin, M.; Van den Bossche, M.; Gustafson, J.; Merte, L. R.; Hejral, U.; Grönbeck, H.; Lundgren, E.; Asthagiri, A.; Weaver, J. F. Understanding the intrinsic surface reactivity of single-layer and multilayer PdO(101) on Pd(100). *ACS Catal.* **2018**, *8*, 8553–8567.
- (20) Kresse, G.; Hafner, J. Ab initio Hellmann-Feynman molecular-dynamics for liquid-metals. *J. Non-Cryst. Solids* **1993**, *156–158*, 956–960.
- (21) Kresse, G.; Hafner, J. Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1994**, *49*, 14251–14269.
- (22) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1996**, *54*, 11169–11186.
- (23) Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.* **1996**, *6*, 15–50.
- (24) Kravchenko, P.; Plaisance, C.; Hibbitts, D. *A New Computational Interface for Catalysis*. 2019.
- (25) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1999**, *59*, 1758–1775.
- (26) Blöchl, P. E. Projector augmented-wave method. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1994**, *50*, 17953–17979.
- (27) Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1999**, *59*, 7413–7421.
- (28) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996**, *77*, 3865–3868.
- (29) Zhang, Y.; Yang, W. Comment on “Generalized gradient approximation made simple”. *Phys. Rev. Lett.* **1998**, *80*, 890.
- (30) Schmid, M.; Reicho, A.; Stierle, A.; Costina, I.; Klikovits, J.; Kostelnik, P.; Dubay, O.; Kresse, G.; Gustafson, J.; Lundgren, E.;

978 Andersen, J. N.; Dosch, H.; Varga, P. Structure of Ag(111)-p(4x4)-O: 979 No silver oxide. *Phys. Rev. Lett.* **2006**, *96*, 146102.

980 (31) Martin, N. M.; Klacar, S.; Grönbeck, H.; Knudsen, J.; Schnadt, 981 J.; Blomberg, S.; Gustafson, J.; Lundgren, E. High-Coverage Oxygen- 982 Induced Surface Structures on Ag(111). *J. Phys. Chem. C* **2014**, *118*, 983 15324–15331.

984 (32) Wang, L.; Zeng, Z.; Gao, W.; Maxson, T.; Raciti, D.; Giroux, 985 M.; Pan, X.; Wang, C.; Greeley, J. Tunable intrinsic strain in two- 986 dimensional transition metal electrocatalysts. *Science* **2019**, *363*, 870– 987 874.

988 (33) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone 989 Integrations. *Phys. Rev. B: Solid State* **1976**, *13*, 5188–5192.

990 (34) Pack, J. D.; Monkhorst, H. J. “Special points for Brillouin-zone 991 integrations”-a reply. *Phys. Rev. B: Solid State* **1977**, *16*, 1748–1749.

992 (35) Almithn, A. S.; Hibbitts, D. D. Supra-Monolayer Coverages on 993 Small Metal Clusters and Their Effects on H-2 Chemisorption 994 Particle Size Estimates. *AIChE J.* **2018**, *64*, 3109–3120.

995 (36) Liu, J.; Hibbitts, D.; Iglesia, E. Dense CO Adlayers as Enablers 996 of CO Hydrogenation Turnovers on Ru Surfaces. *J. Am. Chem. Soc.* 997 **2017**, *139*, 11789–11802.

998 (37) Wolter, K.; Seiferth, O.; Libuda, J.; Kuhlenbeck, H.; Bäumer, 999 M.; Freund, H.-J. Infrared study of CO adsorption on alumina 1000 supported palladium particles. *Surf. Sci.* **1998**, *402–404*, 428–432.

1001 (38) Frank, M.; Kühnemuth, R.; Bäumer, M.; Freund, H.-J. 1002 Vibrational spectroscopy of CO adsorbed on supported ultra-small 1003 transition metal particles and single metal atoms. *Surf. Sci.* **2000**, *454–* 1004 *456*, 968–973.

1005 (39) Stuve, E. M.; Madix, R. J.; Brundle, C. R. Co Oxidation on 1006 Pd(100) - a Study of the Coadsorption of Oxygen and Carbon- 1007 Monoxide. *Surf. Sci.* **1984**, *146*, 155–178.

1008 (40) Fukui, K.-i.; Miyachi, H.; Iwasawa, Y. CO adsorption and 1009 oxidation on Pd(110)-c(2x4)-O by reflection-absorption infrared 1010 spectroscopy. *J. Phys. Chem.* **1996**, *100*, 18795–18801.

1011 (41) Ma, Y.; Diermant, T.; Bansmann, J.; Behm, R. J. The interaction 1012 of CO with PdAg/Pd(111) surface alloys-A case study of ensemble 1013 effects on a bimetallic surface. *Phys. Chem. Chem. Phys.* **2011**, *13*, 1014 10741–10754.

1015 (42) Ma, Y.; Bansmann, J.; Diermant, T.; Behm, R. J. Formation, 1016 stability and CO adsorption properties of PdAg/Pd(111) surface 1017 alloys. *Surf. Sci.* **2009**, *603*, 1046–1054.

1018 (43) Khan, N. A.; Uhl, A.; Shaikhutdinov, S.; Freund, H.-J. Alumina 1019 supported model Pd-Ag catalysts: A combined STM, XPS, TPD and 1020 IRAS study. *Surf. Sci.* **2006**, *600*, 1849–1853.

1021 (44) Hoffmann, F. Infrared reflection-absorption spectroscopy of 1022 adsorbed molecules. *Surf. Sci. Rep.* **1983**, *3*, 107–192.

1023 (45) Derouin, J.; Farber, R. G.; Heslop, S. L.; Killelea, D. R. 1024 Formation of surface oxides and Ag2O thin films with atomic oxygen 1025 on Ag(111). *Surf. Sci.* **2015**, *641*, L1–L4.

1026 (46) Campbell, C. T. Atomic and Molecular-Oxygen Adsorption on 1027 Ag(111). *Surf. Sci.* **1985**, *157*, 43–60.

1028 (47) Guo, X.; Yates, J. T. Dependence of Effective Desorption 1029 Kinetic-Parameters on Surface Coverage and Adsorption Temper- 1030 ature - Co on Pd(111). *J. Chem. Phys.* **1989**, *90*, 6761–6766.

1031 (48) Conrad, H.; Ertl, G.; Küppers, J. Interactions between Oxygen 1032 and Carbon-Monoxide on a Pd(111) Surface. *Surf. Sci.* **1978**, *76*, 1033 323–342.

1034 (49) Kan, H. H.; Weaver, J. F. Mechanism of PdO thin film 1035 formation during the oxidation of Pd(111). *Surf. Sci.* **2009**, *603*, 1036 2671–2682.

1037 (50) Leisenberger, F. P.; Koller, G.; Sock, M.; Surnev, S.; Ramsey, 1038 M. G.; Netzer, F. P.; Klötzer, B.; Hayek, K. Surface and subsurface 1039 oxygen on Pd(111). *Surf. Sci.* **2000**, *445*, 380–393.

1040 (51) Allian, A. D.; Takanabe, K.; Fujdala, K. L.; Hao, X.; Truex, T. J.; 1041 Cai, J.; Buda, C.; Neurock, M.; Iglesia, E. Chemisorption of CO and 1042 Mechanism of CO Oxidation on Supported Platinum Nanoclusters. *J.* 1043 *Am. Chem. Soc.* **2011**, *133*, 4498–4517.

1044 (52) Loveless, B. T.; Buda, C.; Neurock, M.; Iglesia, E. CO 1045 Chemisorption and Dissociation at High Coverages during CO

Hydrogenation on Ru Catalysts. *J. Am. Chem. Soc.* **2013**, *135*, 6107– 1046 6121.

1047