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Abstract

Strong stability preserving (SSP) Runge–Kutta methods are desirable when evolving in time

problems that have discontinuities or sharp gradients and require nonlinear non-inner-product

stability properties to be satisfied. Unlike the case for L2 linear stability, implicit methods

do not significantly alleviate the time-step restriction when the SSP property is needed. For

this reason, when handling problems with a linear component that is stiff and a nonlinear

component that is not, SSP integrating factor Runge–Kutta methods may offer an attractive

alternative to traditional time-stepping methods. The strong stability properties of integrating

factor Runge–Kutta methods where the transformed problem is evolved with an explicit SSP

Runge–Kutta method with non-decreasing abscissas was recently established. However, these

methods typically have smaller SSP coefficients (and therefore a smaller allowable time-step)

than the optimal SSP Runge–Kutta methods, which often have some decreasing abscissas. In

this work, we consider the use of downwinded spatial operators to preserve the strong stability

properties of integrating factor Runge–Kutta methods where the Runge–Kutta method has

some decreasing abscissas. We present the SSP theory for this approach and present numerical

evidence to show that such an approach is feasible and performs as expected. However, we

also show that in some cases the integrating factor approach with explicit SSP Runge–Kutta

methods with non-decreasing abscissas performs nearly as well, if not better, than with explicit

SSP Runge–Kutta methods with downwinding. In conclusion, while the downwinding approach

can be rigorously shown to guarantee the SSP property for a larger time-step, in practice using

the integrating factor approach by including downwinding as needed with optimal explicit SSP

Runge–Kutta methods does not necessarily provide significant benefit over using explicit SSP

Runge–Kutta methods with non-decreasing abscissas.
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MA 02747.
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This paper is in honor of Prof. Chi-Wang Shu’s sixtieth birthday.

His pioneering work on SSP methods and his observations on downwinding inspired

this paper. We wish him many many more productive, happy, and healthy years to

inspire many mathematicians.

1 Introduction

When numerically solving a hyperbolic conservation law of the form

Ut + f(U)x = 0, (1)

specially designed spatial discretizations are used to handle the discontinuities in the solution that

sometimes arise. These spatial discretizations typically satisfy some nonlinear non-inner-product

strong stability properties when coupled with forward Euler time-stepping [3]. However, in practice

we wish to use higher order time discretizations, which preserve the strong stability properties of

the spatial discretization coupled with forward Euler.

Explicit strong stability preserving (SSP) Runge–Kutta methods were first developed in [13, 14]

to evolve the semi-discretization

ut = F (u), (2)

resulting from approximating f(u)x with a total variation diminishing (TVD) spatial discretization.

TVD spatial discretizations are specially designed to ensure that the forward Euler time-step is

strongly stable

‖un+1‖ = ‖un +∆tF (un)‖ ≤ ‖un‖ (3)

under some step size restriction

0 ≤ ∆t ≤ ∆tFE. (4)

We wish to guarantee that the same type of strong stability property

‖un+1‖ ≤ ‖un‖ (5)

is still satisfied when the TVD spatial discretization is coupled with a higher order time-stepping

method. To do this, we use the fact that many higher order time discretization can be written as a

convex combination of forward Euler steps.
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It is simple to show that if we can re-write a higher order time discretization as a convex com-

bination of forward Euler steps, then we can ensure that any convex functional property (5) that is

satisfied by the forward Euler method will still be satisfied by the higher order time discretization,

perhaps under a different time-step. For example, an s-stage explicit Runge–Kutta method can be

written as:

u(0) = un,

u(i) =
i−1
∑

j=0

(

αi,ju
(j) +∆tβi,jF (u(j))

)

, i = 1, ..., s (6)

un+1 = u(s).

Each stage can be written as

u(i) =

i−1
∑

j=0

αi,j

(

u(j) +∆t
βi,j

αi,j

F (u(j))

)

provided that a given αi,j is zero only if its corresponding βi,j is zero. Recall that for consistency, we

must have
∑i−1

j=0 αi,j = 1, so that as long as the coefficients αi,j and βi,j are all non-negative, each

stage can be rearranged into a convex combination of forward Euler steps. Thus we have

‖u(i)‖ =

∥

∥

∥

∥

∥

i−1
∑

j=0

(

αi,ju
(j) +∆tβi,jF (u(j))

)

∥

∥

∥

∥

∥

≤

i−1
∑

j=0

αi,j

∥

∥

∥

∥

u(j) +∆t
βi,j

αi,j

F (u(j)

∥

∥

∥

∥

≤ ‖un‖,

(where the final inequality follows from (3) and (4)), for any time-step that satisfies

∆t ≤ min
i,j

αi,j

βi,j

∆tFE. (7)

If any of the β’s are equal to zero, we consider the corresponding ratio to be infinite.

In the case where a particular βi,j < 0, the SSP property can still be guaranteed provided that

we modify the spatial discretization for these instances [14]. When βi,j is negative, βi,jF (u(k)) is

replaced by βi,jF̃ (u(k)), where F̃ approximates the same spatial derivative(s) as F , but the strong

stability property ‖un+1‖ ≤ ‖un‖ holds for the first order Euler scheme, solved backward in time,

i.e.,

un+1 = un −∆tF̃ (un) (8)

This can be achieved, for hyperbolic conservation laws, by solving the negative in time version of

(1),

Ut − f(U)x = 0.
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Numerically, the only difference is the change of the upwind direction. Thus, if αi,j ≥ 0, all the

intermediate stages u(i) in (6) are convex combinations of backward in time Euler and forward Euler

operators, with ∆t replaced by
|βi,j |

αi,j
∆t. Following the same reasoning as above, any strong stability

bound satisfied by the backward in time and forward in time Euler methods will then be preserved

by the Runge–Kutta method (6) where F is replaced by F̃ whenever the corresponding β is negative.

Clearly then, if we can re-write an explicit Runge–Kutta method as a convex combination of

forward Euler steps (or, in the downwinded case, of forward Euler and backward in time Euler

steps), the monotonicity condition (3) will be preserved by the higher-order time discretizations,

under a modified time-step restriction ∆t ≤ C∆tFE where C = mini,j
αi,j

|βi,j |
. As long as C > 0, the

method is called strong stability preserving (SSP) with SSP coefficient C [13]. Methods that use

the downwinded operator F̃ as well as the operator F are called downwinded methods [3].

In the original papers, the term ‖ · ‖ in Equation (3) above represented the total variation semi-

norm, and these methods were known as TVD time-stepping methods [13, 14]. However, the strong

stability preservation property holds for any semi-norm, norm, or convex functional, as determined

by the design of the spatial discretization, provided only that the forward Euler condition (3) holds,

and that the time-discretization can be decomposed into a convex combination of forward Euler and

backward in time Euler steps with C > 0.

The convex combination condition is not only a sufficient condition for strong stability preser-

vation, it is also necessary for strong stability preservation [3, 10, 15]. This means that if a method

cannot be decomposed into a convex combination of forward Euler steps, then we can always find

some ODE with some initial condition such that the forward Euler condition is satisfied but the

method does not satisfy the strong stability condition for any positive time-step [3].

Not every method can be decomposed into convex combinations of forward Euler steps with

C > 0. For this reason, explicit SSP Runge–Kutta methods cannot exist for order p > 4 [10, 12].

Furthermore, the SSP requirement is quite restrictive, so that all explicit s-stage Runge–Kutta

methods have an SSP bound C ≤ s [3]. Moreover, this upper bound cannot usually be attained.

Nevertheless, many efficient explicit SSP Runge–Kutta methods exist and are discussed in Section 3.

Implicit SSP Runge–Kutta methods have been an active area of investigation as well; these methods

have an order barrier of p ≤ 6, and seem to exhibit an SSP bound C ≤ 2s [3]. This disappointing

result limits the interest in implicit SSP Runge–Kutta methods, as well as in implicit-explicit SSP

Runge–Kutta methods, studied in [1].

Given a semi-discretized problem of the form

ut = Lu+N(u)

where L is a linear operator that significantly restricts the time-step, we typically turn to implicit-

explicit methods to alleviate the time-step restriction. However, when the time-step is restricted due
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to nonlinear non-inner-product stability considerations, SSP methods are necessary, but implicit-

explicit SSP Runge–Kutta methods do not significantly alleviate the time-step restriction [1]. This

motivated our initial investigation into integrating factor methods [7], where the linear component

Lu is handled exactly, and then the allowable time-step depends only upon the nonlinear component

N(u). In [7] we discussed the conditions under which this process guarantees that the strong stability

property (5) is preserved. In that work, we showed that if we step the transformed problem forward

using an SSP Runge–Kutta method where the abscissas (i.e. the time-levels approximated by each

stage) are non-decreasing, we obtain a method that preserves the desired strong stability property.

These non-decreasing abscissa SSP Runge–Kutta methods usually have smaller SSP coefficients than

the optimal explicit SSP Runge–Kutta methods. However, there is an alternative approach inspired

by classical SSP theory: for the stages where the abscissas are decreasing, we can replace the operator

L in the exponential with the downwind operator L̃, and the resulting method will be SSP with the

original SSP time-step.

In the current work we discuss the downwinding approach in the context of integrating factor

Runge–Kutta methods. In our case, the Runge–Kutta method does not have negative coefficients,

but some stages the difference of abscissas is negative (i.e. some of the abscissas are decreasing).

To preserve the SSP property we can replace the operator L with the downwind operator L̃ for

cases where the abscissas are decreasing. The extra cost of computing the exponential for L̃ can be

significant if needed at each time-step; however, if the exponential operators for both L and L̃ are pre-

computed, the additional cost is negligible. In this paper we rigorously prove this approach to be SSP

and show how it works on simple test cases. Our conclusions are that while this approach is viable,

it is not necessarily more efficient than the integrating factor approach using the non-descreasing

abscissa Runge–Kutta methods described in [7], particularly if the exponential operators are not

pre-computed.

In Section 2 we provide the SSP theory for integrating factor Runge–Kutta methods. In Section

3 we review the optimal explicit SSP Runge–Kutta methods that serve as a basis for the SSP

integrating factor Runge–Kutta methods, and provide their SSP coefficients. Next, in Section 4 we

demonstrate through numerical examples the need for downwinding in the case where the explicit

Runge–Kutta method has some decreasing abscissas, and compare the use of downwinding to the

non-decreasing abscissa approach. We also show that although including downwinding changes the

ODE, so that time-refinement alone will not show convergence, refinement in both space and time

will show convergence to the solution of the PDE. We conclude that downwinding is a numerically

viable approach that can be rigorously shown to preserve the strong stability properties when used

with an integrating factor Runge–Kutta approach, but may not be more beneficial than using the

integrating factor approach with Runge–Kutta methods that have only non-decreasing abscissas.
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2 SSP theory for explicit integrating factor Runge–Kutta meth-

ods

We consider a hyperbolic PDE whose semi-discretization results in an ODE system of the form

ut = Lu+N(u) (9)

with a nonlinear component N(u) that satisfies

‖un +∆tN(un)‖ ≤ ‖un‖ for ∆t ≤ ∆tFE (10)

and a linear constant coefficient component Lu that satisfies

‖un +∆tLun‖ ≤ ‖un‖ for ∆t ≤ ∆̃tFE (11)

for some convex functional ‖ · ‖. In this case, the allowable time-step for the linear component

is significantly smaller than the one for the nonlinear component, ∆̃tFE << ∆tFE. In such cases,

stepping forward using an explicit SSP Runge–Kutta method, or even an implicit-explicit (IMEX)

SSP Runge–Kutta method will result in severe constraints on the allowable time-step. We seek a

time-stepping approach that alleviates the time-step restriction while preserving the monotonicity

property ‖un+1‖ ≤ ‖un‖.

As in [7] we wish to treat the linear part exactly using an integrating factor approach

e−Ltut − e−LtLu = e−LtN(u) −→
(

e−Ltu
)

t
= e−LtN(u).

Defining w = e−Ltu gives the ODE system

wt = e−LtN(eLtw) = G(w), (12)

which we then evolve in time using an explicit Runge–Kutta method of the form (6). This approach

is known as a Lawson-type method [11].

Each stage u(i) of (6) becomes

e−Ltiu(i) =
i−1
∑

j=0

(

αi,je
−Ltju(j) +∆tβi,je

−LtjN(u(j))
)

,

or

u(i) =

i−1
∑

j=0

(

αi,je
L(ti−tj)u(j) +∆tβi,je

L(ti−tj)N(u(j))
)

(13)

=

i−1
∑

j=0

(

αi,je
L(ci−cj)∆tu(j) +∆tβi,je

L(ci−cj)∆tN(u(j))
)

. (14)
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This stage corresponds to the solution at time ti = tn + ci∆t, where each ci is the abscissa of the

method at the ith stage.

In our prior work, we used the two properties (10) and (11) to establish the SSP properties of an

integrating factor Runge–Kutta method in the case where the abscissas are non-decreasing. In this

work, we wish to allow decreasing abscissas in order to enlarge the SSP coefficient. For this purpose,

we also define the downwinded operator L̃ which approximates the same term in the PDE as L, but

satisfies the strong stability condition:

‖un −∆tL̃un‖ ≤ ‖un‖ for ∆t ≤ ∆̃tFE. (15)

For hyperbolic partial differential equations, this is accomplished by using the spatial discretization

that is stable for a downwind problem. This approach is similar to the one employed in the classical

SSP literature, where negative coefficients βi,j may be allowed if the corresponding operator is

replaced by a downwinded operator. However, in our case all the coefficients of the Runge–Kutta

methods are nonnegative, and the negative terms appear only in the exponential, due to decreasing

abscissas.

Theorem 1. (From [7]) If a linear operator L satisfies (11) for some value of ∆̃tFE > 0, then

‖eτLun‖ ≤ ‖un‖ ∀ τ ≥ 0. (16)

This theorem was proved in [7]. Clearly, if we simply replace L with −L̃, and the corresponding

condition (11) with (15) we obtain a similar result for the downwinded operator:

Corollary 1. If a linear operator L̃ satisfies (15) for some value of ∆̃tFE > 0, then

‖e−τL̃un‖ ≤ ‖un‖ ∀ τ ≥ 0. (17)

Lemma 1. (From [7]) Given a linear operator L that satisfies (16) and a (possibly nonlinear)

operator N(u) that satisfies (10) for some value of ∆tFE ≥ 0, we have

‖eτL(un +∆tN(un))‖ ≤ ‖un‖ ∀∆t ≤ ∆tFE, provided that τ ≥ 0. (18)

This Lemma was also proved in [7]. Once again, simply replacing L with −L̃, and the corre-

sponding condition (16) with (17) we obtain a similar result for the downwinded operator:

Corollary 2. Given a linear operator L̃ that satisfies (17) and a (possibly nonlinear) operator N(u)

that satisfies (10) for some value of ∆tFE ≥ 0, we have

‖e−τL̃(un +∆tN(un))‖ ≤ ‖un‖ ∀∆t ≤ ∆tFE, provided that τ ≥ 0. (19)
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The following theorem establishes the conditions under which an integrating factor Runge–Kutta

method which incorporates the downwinded operator L̃ is strong stability preserving:

Theorem 2. Given linear operators L and L̃ that satisfy (16) and (17), respectively, a (possibly non-

linear) operator N(u) that satisfies (10) for some value of ∆tFE > 0, and a Runge–Kutta integrating

factor method of the form

u(0) = un,

u(i) =

i−1
∑

j=0

eL
∗

ij(ci−cj)∆t
(

αi,ju
(j) +∆tβi,jN(u(j))

)

, i = 1, ..., s (20)

un+1 = u(s)

where L∗
ij = L when ci ≥ cj, and L∗

ij = L̃ when ci < cj, then un+1 obtained from (20) satisfies

‖un+1‖ ≤ ‖un‖ ∀∆t ≤ C∆tFE. (21)

where

C = min
i,j

αi,j

βi,j

.

Proof. We observe that for each stage of (20)

‖u(i)‖ =

∥

∥

∥

∥

∥

i−1
∑

j=0

eL
∗

ij(ci−cj)∆t
(

αi,ju
(j) +∆tβi,jN(u(j))

)

∥

∥

∥

∥

∥

≤

i−1
∑

j=0

∥

∥

∥
eL

∗

ij(ci−cj)∆t
(

αi,ju
(j) +∆tβi,jN(u(j))

)

∥

∥

∥

≤
i−1
∑

j=0

αi,j

∥

∥

∥

∥

eL
∗

ij
(ci−cj)∆t

(

u(j) +∆t
βi,j

αi,j

N(u(j))

)
∥

∥

∥

∥

where the last inequality follows from Lemma 1 and Corrolary 2.

The following example demonstrates the need for using the downwind operator when the abscissas

are decreasing.

Motivating Example: To demonstrate the practical importance of this theorem, consider the

partial differential equation

Ut + aUx +

(

1

2
U2

)

x

= 0 u(0, x) =

{

1, if 0 ≤ x ≤ 1/2

0, if x > 1/2
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Figure 1: Total variation behavior of

the evolution over 25 time-steps evolving

the integrating factor methods with the

eSSPRK(3,3) Shu-Osher Runge–Kutta

method, (23) (red) and with the cor-

responding method with downwinding

(24) (blue). On the x-axis is the value

of λ = ∆t
∆x

, on the y-axis is log10 of the

maximal rise in TV.

on the domain [0, 1] with periodic boundary conditions. We discretize the spatial grid with 400

points and use a first-order upwind difference Lu ≈ −aux for a > 0 defined by

(Lu)j = −a

(

uj − uj−1

∆x

)

(22)

to semi-discretize the linear term. This operator satisfies the TVD condition

‖un +∆tLu‖TV ≤ ‖un‖TV for ∆t ≤
1

a
∆x.

In this example, we use a = 10.

For the nonlinear terms, we use a fifth order WENO finite difference method [8]

N(u) = WENO

(

−
1

2
u2

)

≈ −

(

1

2
u2

)

x

.

Although the WENO method is not guaranteed to preserve the total variation behavior, in practice

we observe that WENO seems to satisfy

‖un +∆tN(u)‖TV ≤ ‖un‖TV for ∆t ≤
1

2
∆x

for this problem.
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For the time discretization, we use the integrating factor method based on the explicit eS-

SPRK(3,3) Shu-Osher method (26):

u(1) = eL∆tun + eL∆t∆tN(un)

u(2) =
3

4
e

1

2
L∆tun +

1

4
e−

1

2
L∆t

(

u(1) +∆tN(u(1))
)

un+1 =
1

3
eL∆tun +

2

3
e

1

2
L∆t

(

u(2) +∆tN(u(2))
)

. (23)

The appearance of negative exponents is due to the fact that the optimal explicit eSSPRK(3,3) Shu-

Osher method (26) has decreasing abscissas. These terms threaten to destroy the TVD property.

To correct for these negative values, we use the integrating factor method based on the same

explicit eSSPRK(3,3) Shu-Osher method (26),

u(1) = eL∆tun + eL∆t∆tN(un)

u(2) =
3

4
e

1

2
L∆tun +

1

4
e−

1

2
L̃∆t

(

u(1) +∆tN(u(1))
)

un+1 =
1

3
eL∆tun +

2

3
e

1

2
L∆t

(

u(2) +∆tN(u(2))
)

. (24)

but here, whenever the abscissas are decreasing we use a downwinded operator L̃ ≈ 10ux defined by

L̃u = −a

(

uj+1 − uj

∆x

)

. (25)

Note that in this case, L̃ = −LT . This operator satisfies the TVD condition

‖un −∆tL̃u‖TV ≤ ‖un‖TV for ∆t ≤
1

a
∆x.

(Again, a = 10 in our case).

We selected different values of ∆t and used each one to evolve the solution 25 time steps using the

integrating factor Runge–Kutta methods (23) without downwinding and (24) with downwinding. At

each stage we calculated the maximal rise in total variation for 25 time steps. In Figure 1 we show

the log10 of the maximal rise in total variation vs. the value of λ = ∆t
∆x

of the evolution using the

standard integrating factor Runge–Kutta method (23) (in red) and the method with downwinding

(24) (in blue). We observe that when downwinding is not used there is a large maximal rise in total

variation even for very small values of λ. However, if we correct for the decreasing abscissas by using

the downwinded operator L̃, as in (24), the numerical solution maintains a small maximal rise in

total variation up to λ ≈ 0.65.
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s

p
2 3 4

1 - - -

2 1.0000 - -

3 2.0000 1.0000 -

4 3.0000 2.0000 -

5 4.0000 2.6506 1.5082

6 5.0000 3.5184 2.2945

7 6.0000 4.2879 3.3209

8 7.0000 5.1071 4.1459

9 8.0000 6.0000 4.9142

10 9.0000 6.7853 6.0000

Table 1: SSP coefficients of the optimal eS-

SPRK(s,p) methods.

s

p
2 3 4

1 - - -

2 1.0000 - -

3 2.0000 0.7500 -

4 3.0000 1.8182 -

5 4.0000 2.6351 1.3466

6 5.0000 3.5184 2.2738

7 6.0000 4.2857 3.0404

8 7.0000 5.1071 3.8926

9 8.0000 6.0000 4.6048

10 9.0000 6.7853 5.2997

Table 2: SSP coefficients of the optimal eS-

SPRK+(s,p) methods with non-decreasing ab-

scissas.

3 Explicit SSP Runge–Kutta methods

In this section, we present some popular and efficient explicit SSP Runge–Kutta methods. SSP

Runge–Kutta methods of various stages and order were reported in [3]. The SSP coefficients of

optimal explicit SSP Runge–Kutta methods of up to s = 10 stages and order p = 4 are in Table 1.

Many of these methods do not feature only non-decreasing abscissas (the second order methods are

an exception). In Table 2 we present the corresponding SSP coefficients of the explicit Runge–Kutta

methods with non-decreasing abscissas. Unfortunately, no methods of order p ≥ 5 with positive SSP

coefficients can exist [10, 12].

We use the notation eSSPRK(s,p) to denote an explicit SSP Runge–Kutta method with s stages

and of order p. As in [7] we use the notation eSSPRK+(s,p) to denote the corresponding method

with non-decreasing abscissas. In this paper we consider the Shu-Osher method eSSPRK(3,3) as well

as the eSSPRK(4,3), eSSPRK(5,4), and eSSPRK(10,4). We selected these methods by examining

the SSP coefficients in Tables 1 and 2 above and selecting the two methods for third order and fourth

order for which the SSP coefficient of the eSSPRK+(s,p) method is significantly smaller than the

corresponding eSSPRK(s,p) method. In fact, these are good methods to explore as the eSSPRK(3,3)

and eSSPRK(10,4) are widely used methods. These methods are given below:
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eSSPRK(3,3):

u(1) = un +∆tF (un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tF (u(1))

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tF (u(2)). (26)

This method has C = 1. The abscissas are

(c1, c2, c3) = (0, 1, 1/2).

eSSPRK(4,3):

u(1) = un +
1

2
∆tF (un)

u(2) = u(1) +
1

2
∆tF (u(1))

u(3) =
2

3
un +

1

3

(

u(2) +
1

2
∆tF (u(2))

)

un+1 = u(3) +
1

2
∆tF (u(3)) (27)

This method has C = 2. The abscissas are

(c1, c2, c3, c4) = (0, 1/2, 1, 1/2).

No four stage fourth order explicit Runge–Kutta methods exist with a positive SSP coefficient

[4, 12]. However, fourth order methods with more than four stages (s > p) do exist. A five stage

fourth order method found by Spiteri and Ruuth [16] is

eSSPRK(5,4):

u(1) = un + 0.391752226571890∆tF (un)

u(2) = 0.444370493651235un + 0.555629506348765u(1) + 0.368410593050371∆tF (u(1))

u(3) = 0.620101851488403un + 0.379898148511597u(2) + 0.251891774271694∆tF (u(2))

u(4) = 0.178079954393132un + 0.821920045606868u(3) + 0.544974750228521∆tF (u(3))

un+1 = 0.517231671970585u(2) + 0.096059710526147u(3) + 0.063692468666290∆tF (u(3))

+0.386708617503268u(4) + 0.226007483236906∆tF (u(4)) ,
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The abscissas are

(c1, c2, c3, c4, c5) = (0, 0.391752226571889, 0.586079689311541, 0.474542363121399, 0.935010630967652).

A notable example of a fourth order methods with more than four stages is Ketcheson’s eS-

SPRK(10,4) that has C = 6 and an attractive low storage formulation [9]:

eSSPRK(10,4):

u(1) = un +
1

6
∆tF (un)

u(i+1) = u(i) +
1

6
∆tF (u(i)) i = 1, 2, 3

u(5) =
3

5
un +

2

5

(

u(4) +
1

6
∆tF (u(4))

)

u(i+1) = u(i) +
1

6
∆tF (u(i)) i = 5, 6, 7, 8

un+1 =
1

25
un +

9

25

(

u(4) +
1

6
∆tF (u(4))

)

+
3

5

(

u(9) +
1

6
∆tF (u(9))

)

,

has C = 6. The abscissas are

(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10) = (0, 1/6, 1/3, 1/2, 2/3, 1/3, 1/2, 2/3, 5/6, 1).

These four eSSPRK(s,p) methods have an SSP coefficient that is significantly larger than the

corresponding methods with only non-decreasing abscissas, eSSPRK+(s,p), as we can see in Tables

1 and 2. This leads us to expect that for these (s, p) combinations, using the downwinding operator

L̃ to salvage the SSP property of the eSSPRK methods would be more efficient than using the

corresponding eSSPRK+ method with only non-decreasing coefficients. In the following section, we

use these methods in numerical tests and compare their performance.

4 Numerical Results

4.1 Sharpness of SSP time-step

As in the motivating example, we consider Burgers’ equation with a linear advection term

Ut + 10Ux +

(

1

2
U2

)

x

= 0 U(0, x) =

{

1, if 1/4 ≤ x ≤ 3/4

0, else

13



on the domain x ∈ [0, 1] with periodic boundary conditions. We discretize the spatial grid with 1000

points and use a first-order upwind difference Lu ≈ −10ux defined by (22) to semi-discretize the

linear term. As mentioned above, this operator satisfies the TVD condition

‖un +∆tLu‖TV ≤ ‖un‖TV for ∆t ≤
1

10
∆x.

When the abscissas decrease, the downwind operator is used instead, as in (20). This downwind

operator is defined by (25) and satisfies the TVD condition

‖un −∆tL̃u‖TV ≤ ‖un‖TV for ∆t ≤
1

10
∆x.

For the nonlinear terms, we use a fifth order WENO finite difference method [8]

N(u) =
1

2
WENO

(

−u2
)

≈ −

(

1

2
u2

)

x

. Although the WENO method is not guaranteed to preserve the total variation behavior, in practice

we observe that WENO seems to satisfy

‖un +∆tN(u)‖TV ≤ ‖un‖TV for ∆t ≤
1

2
∆x

for this problem.

We measure the total variation of the numerical solution at each stage, and compare it to the

total variation at the previous stage. We are interested in the size of time-step ∆t at which the

total variation begins to rise. We refer to this value as the observed TVD time-step. We are

interested in comparing this value with the expected TVD time-step dictated by the theory. We

call the SSP coefficient corresponding to the value of the observed TVD time-step the observed SSP

coefficient Cobs. In Figure 2 we show the log10 of the maximal rise in total variation versus the ratio

λ = ∆t
∆x

, for methods with (s, p) = (3, 3), (4, 3), (5, 4), and (10, 4). In each graph, we compare the

integrating factor Runge–Kutta using the eSSPRK(s,p) method with and without downwinding, to

the integrating factor Runge–Kutta using the eSSPRK+(s,p) method.

The green lines in Figure 2 show that if we do not correct for the decreasing abscissas, the total

variation is usually not well-controlled. This is true for the methods with (s, p) = (3, 3), (4, 3),

and (10, 4). However, the eSSPRK(5,4) method works well without downwinding, and in fact its

performance is identical to that of the eSSPRK+(5,4) method. On the other hand, downwinding

negatively impacts the size of the time-step for which the total variation begins to rise. Although the

integrating factor approach with eSSPRK(5,4) and downwinding behaves even better than predicted

14
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Figure 2: Total variation behavior of the evolution over 25 time-steps evolving the integrating factor

methods with the eSSPRK(s,p) Shu-Osher Runge–Kutta method, (green) and with the corresponding

method with downwinding (blue), as well as a comparison with the eSSPRK+(s,p) method with

non-decreasing abscissas (red). The methods selected are (s, p) = (3, 3), (4, 3), (5, 4), (10, 4). On the

x-axis is the value of λ = ∆t
∆x

, on the y-axis is log10 of the maximal rise in TV.
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by the theory, the eSSPRK+(5,4) method out-performs the theoretical bound by more [7] . This

highlights the fact that while downwinding guarantees that the strong stability property will be

preserved when the abscissas decrease, the lack of this guarantee does not always mean that the

strong stability property will be violated.

Comparing the blue and red lines in Figure 2 we note that for the (s, p) = (3, 3) method, the

eSSPRK+(3,3) method with non-decreasing abscissas (red) out-performs the eSSPRK+(3,3) method

with downwinding (blue). This may be explained by the fact that this methods performed better

than expected: the solution was TVD for larger time-step than predicted by the SSP coefficient (see

[7] for a discussion of this behavior).

For the methods with (s, p) = (4, 3) and (s, p) = (10, 4) we observe in practice the behavior

predicted by the theory: when the eSSPRK(s,p) method is not corrected with downwinding (green

line), we observe a rise in total variation for any value of λ. When the integrating factor eSSPRK(s,p)

method is corrected with downwinding when the abscissas decrease (blue) the allowable time-step for

SSP is larger than for the eSSPIFRK+(s,p) method (red) as predicted by the theory. As we noted

in [7], the SSP coefficients of the eSSPRK+(s,p) methods are approximately 10% smaller than those

of the eSSPRK(s,p) methods, so the advantage of using downwind over using a method with non-

decreasing abscissas is relatively modest. In the case of (s, p) = (4, 3) the increase is from λTV = 0.9

for the method with non-decreasing abscissas to λTV = 1 for the methods with downwinding, and

for (s, p) = (10, 4) the increase is from λTV = 2.65 to λTV = 3.

4.2 Accuracy studies

Consider the problem

Ut + Ux +

(

1

2
U2

)

x

= 0 U(0, x) =
1

2
(1 + sin(x)) (28)

on the domain 0 ≤ x ≤ 2π. We use the fifth order WENO for the nonlinear term, and upwind finite

difference methods to spatially discretize the linear advection term. For the time-discretization we

step to final time Tf = 1.0 using an integrating factor Runge–Kutta approach with eSSPRK(3,3)

and eSSPRK(10,4) with and without downwinding.

To compute the highly accurate reference solution to the PDE we used 24, 000 points in space

and a spectral differentiation operator for the linear advection term with a fifth order WENO for

the nonlinear Burgers’ term; for the time evolution we used MATLAB’s embedded ODE45 routine

with AbsTol = 10−14 and RelTol = 5 × 10−14. In this accuracy test, we have a smooth solution

(for the time interval selected), and so the spectral differentiation operator, which does not have the

nonlinear stability properties needed for the solution of a problem with discontinuities, will be stable

for this smooth problem.
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Figure 3: Test 1: Log-log plot of the L2 errors vs. the timestep using the integrating factor Runge–Kutta

method eSSPRK(s,p) with downwinding (with * markers) and the integrating factor Runge–Kutta method

with non-decreasing abscissas eSSPRK+(s,p) (with o markers). The blue line is for the first order spatial

operator L1Nx
, the red line is for the second order spatial operator L2Nx

, and the green line for the spectral

spatial operator LspecNx
. Left: (s, p) = (3, 3). Right: (s, p) = (10, 4).

Note that the markers look like solid circles because the * markers overlap with the o markers.

Test 1: space-time co-refinement study.

In our first test, we use Nx = [100, 200, 300, 400, 500, 600, 800] points in space and a time-step of

∆t = ∆x
4

. For the spatial discretization we use a first order upwind operator L1Nx
, the second

order upwind operator L2Nx
, and the spectral operator LspecNx

. For each value of Nx we com-

pute the error vector and calculate its L2 norm. In Figure 3 we compare the convergence of the

integrating factor Runge–Kutta method eSSPRK(3,3) with downwinding to the integrating factor

Runge–Kutta method with non-decreasing abscissas eSSPRK+(3,3). We observe that when using

a low-order spatial discretization L1Nx
and L2Nx

for the linear advection term the spatial error is

clearly dominating, and the order of convergence is first and second order respectively. The results

are the same when we use eSSPRK(10,4) with downwinding and eSSPRK+(10,4). When using the

spectral discretization LspecNx
for the linear advection term, we see convergence of order 3.5. This

order is the same for all the methods, whether using the third or fourth order time discretization, so

we conclude that here, too, the spatial error dominated.

This first test shows that the integrating factor approach using the optimal SSP Runge–Kutta

method while incorporating downwinding converges properly, and its errors are close to identical to

the non-decreasing abscissa approach described in [7]. This establishes that, as expected, downwind-

ing is an appropriate technique to employ when dealing with a PDE.
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Figure 4: Test 2: log-log plot of the L2 errors vs. the timestep using the integrating factor Runge–Kutta

method eSSPRK(s,p) with downwinding (with * markers) and the integrating factor Runge–Kutta method

with non-decreasing abscissas eSSPRK+(s,p) (with o markers). The blue line is for the first order spatial

operator L150, the red line is for the second order spatial operator L250, and the green line for the spectral

spatial operator Lspec50. Left: (s, p) = (3, 3). Right: (s, p) = (10, 4). Note that the markers look like solid

circles because the * markers overlap with the o markers.

It is important to keep in mind that while the PDE is being approximated equally well whether

downwinding is employed or not, this is not the case for convergence to the ODE. This is due to the

fact that while the ODE resulting from discretizing (28) with L is

ut = Lu+N(u) (29)

the ODE that results from discretizing (28) with L̃ is

ut = L̃u+N(u), (30)

which is a different ODE, with a correspondingly different solution. We perform the following

numerical test to see how downwinding impacts the solution to the ODE.

Test 2: ODE convergence study.

We chose Nx = 50 points and discretize the linear advection term using L150, L250, and Lspec50. The

nonlinear term is computed as above using WENO, but with Nx = 50 points. The reference solution

is found by evolving the ODE resulting from this semi-discretization using MATLAB’s embedded

ODE45 routine with AbsTol = 10−14 and RelTol = 5× 10−14.

We evolve this semi-discrete ODE using the integrating factor approach based on the eSSPRK(s,p)

methods with downwinding for the cases when the abscissas decrease, and using the integrat-
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ing factor Runge–Kutta methods based on the eSSPRK+(s,p) methods, for ∆t = λ∆x where

λ = 1
2
, 1
4
, 1
8
, 1
16
, 1
32
, 1
64
. For each value of ∆t we compute the error vector and calculate its L2

norm. We compare the convergence of the integrating factor Runge–Kutta method eSSPRK(s,p)

with downwinding to the integrating factor Runge–Kutta method with non-decreasing abscissas eS-

SPRK+(s,p), for (s, p) = (3, 3), (10, 4). In Figure 4 we observe that when the number of points in

space is fixed and only the time-step is refined, the integrating factor Runge–Kutta method with

downwinding has a large error which the solution hangs at about 3.8× 10−3 (blue). We repeat this

test with a second order upwind operator L250 for the linear advection operator and observe that

the solution hangs at about 1.5×10−4 (red). In contrast, the methods without downwinding exhibit

the expected order of convergence in time, regardless of the order of the spatial operator. For the

spectral operator, L = L̃, so as expected, there is no difference when downwinding is used. (Note

that the accuracy results when we use eSSPRK(s,p) without downwinding are similar to those of eS-

SPRK+(s,p)). This behavior is well-known in problems with downwinding and discussed extensively

in [6].

5 Conclusions

In [7] we first considered the strong stability properties of integrating factor Runge–Kutta methods.

In that work we presented sufficient conditions for preservation of strong stability for integrating

factor Runge–Kutta methods, which required the use of explicit SSP Runge–Kutta methods with

non-decreasing abscissas, denoted eSSPRK+ methods. When considering methods of order p = 3, 4

many of the eSSPRK+(s,p) methods have smaller SSP coefficients (and therefore smaller allowable

time-step) than the optimal eSSPRK(s,p) methods, which often have some decreasing abscissas.

In this work, we consider a different approach to preserving the strong stability properties of

integrating factor Runge–Kutta methods. In this case, when the abscissas of the eSSPRK methods

are decreasing, we replace the spatial operator L with a downwinded spatial operator L̃ to preserve

the strong stability properties of integrating factor Runge–Kutta method. We presented a complete

SSP theory for this approach. However, our numerical examples show that the downwinded spatial

operators introduce some errors that may adversely affect the accuracy of the methods, and that

in most cases the integrating factor approach with explicit SSP Runge–Kutta methods with non-

decreasing abscissas performs nearly as well, if not better, than with explicit SSP Runge–Kutta

methods with downwinding. These results lead us to conclude that the downwinding approach

may not, in practice, provide much benefit over using explicit SSP Runge–Kutta methods with

non-decreasing abscissas, as described in [7].
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