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Abstract

Strong stability preserving (SSP) Runge—Kutta methods are desirable when evolving in time
problems that have discontinuities or sharp gradients and require nonlinear non-inner-product
stability properties to be satisfied. Unlike the case for Lo linear stability, implicit methods
do not significantly alleviate the time-step restriction when the SSP property is needed. For
this reason, when handling problems with a linear component that is stiff and a nonlinear
component that is not, SSP integrating factor Runge-Kutta methods may offer an attractive
alternative to traditional time-stepping methods. The strong stability properties of integrating
factor Runge-Kutta methods where the transformed problem is evolved with an explicit SSP
Runge—Kutta method with non-decreasing abscissas was recently established. However, these
methods typically have smaller SSP coefficients (and therefore a smaller allowable time-step)
than the optimal SSP Runge-Kutta methods, which often have some decreasing abscissas. In
this work, we consider the use of downwinded spatial operators to preserve the strong stability
properties of integrating factor Runge-Kutta methods where the Runge-Kutta method has
some decreasing abscissas. We present the SSP theory for this approach and present numerical
evidence to show that such an approach is feasible and performs as expected. However, we
also show that in some cases the integrating factor approach with explicit SSP Runge-Kutta
methods with non-decreasing abscissas performs nearly as well, if not better, than with explicit
SSP Runge-Kutta methods with downwinding. In conclusion, while the downwinding approach
can be rigorously shown to guarantee the SSP property for a larger time-step, in practice using
the integrating factor approach by including downwinding as needed with optimal explicit SSP
Runge-Kutta methods does not necessarily provide significant benefit over using explicit SSP
Runge-Kutta methods with non-decreasing abscissas.
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1 Introduction
When numerically solving a hyperbolic conservation law of the form

specially designed spatial discretizations are used to handle the discontinuities in the solution that
sometimes arise. These spatial discretizations typically satisfy some nonlinear non-inner-product
strong stability properties when coupled with forward Euler time-stepping [3|. However, in practice
we wish to use higher order time discretizations, which preserve the strong stability properties of
the spatial discretization coupled with forward Euler.

Explicit strong stability preserving (SSP) Runge-Kutta methods were first developed in [13, 14]
to evolve the semi-discretization

U = F(U), (2)

resulting from approximating f(u), with a total variation diminishing (TVD) spatial discretization.
TVD spatial discretizations are specially designed to ensure that the forward Euler time-step is
strongly stable

lu™ ) = Jlu" + AtF )] < [Ju”]| (3)
under some step size restriction
0 < At < Alpg. (4)
We wish to guarantee that the same type of strong stability property
lu™ ] < Jlu”] (5)

is still satisfied when the TVD spatial discretization is coupled with a higher order time-stepping
method. To do this, we use the fact that many higher order time discretization can be written as a
convex combination of forward Euler steps.



It is simple to show that if we can re-write a higher order time discretization as a convex com-
bination of forward Euler steps, then we can ensure that any convex functional property (5) that is
satisfied by the forward Euler method will still be satisfied by the higher order time discretization,
perhaps under a different time-step. For example, an s-stage explicit Runge-Kutta method can be

written as:
W =
i—1
MO Z (aiju? + AtB ;F(u)), i=1,...s (6)
§=0
un—i-l — u(S)

Each stage can be written as

i—1
u(l) = Z 7% (u(]) + Atfj’] F( ))
j=0 "

provided that a given «; ; is zero only if its corresponding f3; ; is zero. Recall that for consistency, we
must have Z = OaZ ; = 1, so that as long as the coefficients «; ; and 3; ; are all non-negative, each
stage can be rearranged into a convex combination of forward Euler steps. Thus we have

Bi

[ = )+ At ’]F( ’)

7.7

\ < [,

i1
Z a”u ‘l'Atﬁw (u )))
=0

(where the final inequality follows from (3) and (4)), for any time-step that satisfies
Vi At (7)

,J 1,7

If any of the s are equal to zero, we consider the corresponding ratio to be infinite.

In the case where a particular 3;; < 0, the SSP property can still be guaranteed provided that
we modify the spatial discretization for these instances [14]. When f;; is negative, 8;;F(u®) is
replaced by ﬁmﬁ’ (u®)), where F approximates the same spatial derivative(s) as F, but the strong
stability property [|[u"™|| < ||u”| holds for the first order Euler scheme, solved backward in time,
ie.,

"t = — AtF(um) (8)

This can be achieved, for hyperbolic conservation laws, by solving the negative in time version of
(1),
Ui — f (U):c = 0.
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Numerically, the only difference is the change of the upwind direction. Thus, if a;; > 0, all the
intermediate stages v in (6) are convex combinations of backward in time Euler and forward Euler
operators, with At replaced by %At. Following the same reasoning as above, any strong stability
bound satisfied by the backward in time and forward in time Euler methods will then be preserved
by the Runge—Kutta method (6) where F is replaced by F whenever the corresponding 3 is negative.

Clearly then, if we can re-write an explicit Runge-Kutta method as a convex combination of
forward Euler steps (or, in the downwinded case, of forward Euler and backward in time Euler
steps), the monotonicity condition (3) will be preserved by the higher-order time discretizations,
under a modified time-step restriction At < CAtpg where C = min, {;Z—j‘ As long as C > 0, the
method is called strong stability preserving (SSP) with SSP coefficient C [13]. Methods that use
the downwinded operator F as well as the operator F' are called downwinded methods [3].

In the original papers, the term || - || in Equation (3) above represented the total variation semi-
norm, and these methods were known as TVD time-stepping methods [13, 14]. However, the strong
stability preservation property holds for any semi-norm, norm, or convex functional, as determined
by the design of the spatial discretization, provided only that the forward Euler condition (3) holds,
and that the time-discretization can be decomposed into a convex combination of forward Euler and
backward in time Euler steps with C > 0.

The convex combination condition is not only a sufficient condition for strong stability preser-
vation, it is also necessary for strong stability preservation [3, 10, 15]. This means that if a method
cannot be decomposed into a convex combination of forward Euler steps, then we can always find
some ODE with some initial condition such that the forward Euler condition is satisfied but the
method does not satisfy the strong stability condition for any positive time-step [3].

Not every method can be decomposed into convex combinations of forward Euler steps with
C > 0. For this reason, explicit SSP Runge-Kutta methods cannot exist for order p > 4 [10, 12].
Furthermore, the SSP requirement is quite restrictive, so that all explicit s-stage Runge-Kutta
methods have an SSP bound C < s [3]. Moreover, this upper bound cannot usually be attained.
Nevertheless, many efficient explicit SSP Runge-Kutta methods exist and are discussed in Section 3.
Implicit SSP Runge-Kutta methods have been an active area of investigation as well; these methods
have an order barrier of p < 6, and seem to exhibit an SSP bound C < 2s [3]. This disappointing
result limits the interest in implicit SSP Runge-Kutta methods, as well as in implicit-explicit SSP
Runge-Kutta methods, studied in [1].

Given a semi-discretized problem of the form

uy = Lu + N(u)

where L is a linear operator that significantly restricts the time-step, we typically turn to implicit-
explicit methods to alleviate the time-step restriction. However, when the time-step is restricted due
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to nonlinear non-inner-product stability considerations, SSP methods are necessary, but implicit-
explicit SSP Runge-Kutta methods do not significantly alleviate the time-step restriction [1|. This
motivated our initial investigation into integrating factor methods [7], where the linear component
Lu is handled exactly, and then the allowable time-step depends only upon the nonlinear component
N(w). In [7] we discussed the conditions under which this process guarantees that the strong stability
property (5) is preserved. In that work, we showed that if we step the transformed problem forward
using an SSP Runge-Kutta method where the abscissas (i.e. the time-levels approximated by each
stage) are non-decreasing, we obtain a method that preserves the desired strong stability property.
These non-decreasing abscissa SSP Runge-Kutta methods usually have smaller SSP coefficients than
the optimal explicit SSP Runge—Kutta methods. However, there is an alternative approach inspired
by classical SSP theory: for the stages where the abscissas are decreasing, we can replace the operator
L in the exponential with the downwind operator L, and the resulting method will be SSP with the
original SSP time-step.

In the current work we discuss the downwinding approach in the context of integrating factor
Runge-Kutta methods. In our case, the Runge-Kutta method does not have negative coefficients,
but some stages the difference of abscissas is negative (i.e. some of the abscissas are decreasing).
To preserve the SSP property we can replace the operator L with the downwind operator L for
cases where the abscissas are decreasing. The extra cost of computing the exponential for L can be
significant if needed at each time-step; however, if the exponential operators for both L and L are pre-
computed, the additional cost is negligible. In this paper we rigorously prove this approach to be SSP
and show how it works on simple test cases. Our conclusions are that while this approach is viable,
it is not necessarily more efficient than the integrating factor approach using the non-descreasing
abscissa Runge-Kutta methods described in [7], particularly if the exponential operators are not
pre-computed.

In Section 2 we provide the SSP theory for integrating factor Runge-Kutta methods. In Section
3 we review the optimal explicit SSP Runge-Kutta methods that serve as a basis for the SSP
integrating factor Runge-Kutta methods, and provide their SSP coefficients. Next, in Section 4 we
demonstrate through numerical examples the need for downwinding in the case where the explicit
Runge-Kutta method has some decreasing abscissas, and compare the use of downwinding to the
non-decreasing abscissa approach. We also show that although including downwinding changes the
ODE, so that time-refinement alone will not show convergence, refinement in both space and time
will show convergence to the solution of the PDE. We conclude that downwinding is a numerically
viable approach that can be rigorously shown to preserve the strong stability properties when used
with an integrating factor Runge-Kutta approach, but may not be more beneficial than using the
integrating factor approach with Runge-Kutta methods that have only non-decreasing abscissas.



2 SSP theory for explicit integrating factor Runge—Kutta meth-
ods

We consider a hyperbolic PDE whose semi-discretization results in an ODE system of the form

u = Lu + N(u) 9)
with a nonlinear component N(u) that satisfies
|u™ + AN (u™)|| < ||u”| for At < Atpg (10)
and a linear constant coefficient component Lu that satisfies
Ju™ + AtLu®|| < |lu®||  for At < Atgg (11)
for some convex functional || - ||. In this case, the allowable time-step for the linear component

is significantly smaller than the one for the nonlinear component, ANtFE << Atpg. In such cases,
stepping forward using an explicit SSP Runge-Kutta method, or even an implicit-explicit (IMEX)
SSP Runge-Kutta method will result in severe constraints on the allowable time-step. We seck a
time-stepping approach that alleviates the time-step restriction while preserving the monotonicity
property [lu" || < [lu"]].

As in [7] we wish to treat the linear part exactly using an integrating factor approach

e My —e M Lu=e"N(u) — (e_Ltu)t =e “N(u).
Defining w = e~ *u gives the ODE system
w; = e N (eMw) = G(w), (12)

which we then evolve in time using an explicit Runge-Kutta method of the form (6). This approach
is known as a Lawson-type method [11].
Each stage u® of (6) becomes

[y

71—

e_Ltiu(i) = (O{ihje_Ltju(j) + Atﬂz,je_LtJN(u(]))) ’
j=0
or
i—1
u» = (ameL(ti—tj)u(j) + Atﬁi7jeL(ti—tj)N(u(j))) (13)
j=0
i—1
_ (0 j€ XA 0) | ALB; e A N (4 0))) (14)
j=0



This stage corresponds to the solution at time ¢; = t" + ¢;At, where each ¢; is the abscissa of the
method at the ith stage.

In our prior work, we used the two properties (10) and (11) to establish the SSP properties of an
integrating factor Runge-Kutta method in the case where the abscissas are non-decreasing. In this
work, we wish to allow decreasing abscissas in order to enlarge the SSP coefficient. For this purpose,
we also define the downwinded operator L which approximates the same term in the PDE as L, but
satisfies the strong stability condition:

Ju™ — AtLu®|| < |lu®||  for At < Atpg. (15)

For hyperbolic partial differential equations, this is accomplished by using the spatial discretization
that is stable for a downwind problem. This approach is similar to the one employed in the classical
SSP literature, where negative coefficients f3; ; may be allowed if the corresponding operator is
replaced by a downwinded operator. However, in our case all the coefficients of the Runge-Kutta
methods are nonnegative, and the negative terms appear only in the exponential, due to decreasing
abscissas.

Theorem 1. (From [7]) If a linear operator L satisfies (11) for some value of Atgg > 0, then
le™ u™|| < [l ¥ 7> 0. (16)

This theorem was proved in [7]. Clearly, if we simply replace L with —L, and the corresponding
condition (11) with (15) we obtain a similar result for the downwinded operator:

Corollary 1. If a linear operator L satisfies (15) for some value of Atpr, > 0, then
e~ | < Ju"ll ¥ 2 0. (17)

Lemma 1. (From [7]) Given a linear operator L that satisfies (16) and a (possibly nonlinear)
operator N(u) that satisfies (10) for some value of Atpgp > 0, we have

le™ (u™ + AtN (u™))|| < ||u"]| VAt < Atpg, provided that T > 0. (18)

This Lemma was also proved in [7]. Once again, simply replacing L with —L, and the corre-
sponding condition (16) with (17) we obtain a similar result for the downwinded operator:

Corollary 2. Given a linear operator L that satisfies (17) and a (possibly nonlinear) operator N (u)
that satisfies (10) for some value of Atpgp > 0, we have

e 7 " + AN ()| < [lu”| - VA< Atrg,  provided that 7> 0. 19)
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The following theorem establishes the conditions under which an integrating factor Runge-Kutta
method which incorporates the downwinded operator L is strong stability preserving:

Theorem 2. Given linear operators L and L that satisfy (16) and (17), respectively, a (possibly non-
linear) operator N(u) that satisfies (10) for some value of Atpg > 0, and a Runge—Kutta integrating
factor method of the form

u® =
i—1

uld = Yy el B (0 ) 4 AL N (WY)), i=1,.s (20)
§=0

un+1 — u(s)

where Lj; = L when ¢; > ¢;, and Lj; = L when ¢; < ¢;, then u™*' obtained from (20) satisfies

|u™ Y| < ||u™|| VAt < CAtpg. (21)
where .
C = min -
7.7 /617‘7

Proof. We observe that for each stage of (20)

|u®| = Ly;(ci—cj)At am-u(j) + Atﬁi,jN(u(j))) H

IN

ZH“*"J“ i u + At N ()|

< Za”

where the last inequality follows from Lemma 1 and Corrolary 2. O

oLijlei—e)at (u(j) +Atﬁ“ N( )) H

Qi j

The following example demonstrates the need for using the downwind operator when the abscissas
are decreasing.
Motivating Example: To demonstrate the practical importance of this theorem, consider the
partial differential equation

1, f0<z<1/2

1
U, +aU, + (—Uz) =0 u(0,2) = '
2 0, ifx>1/2

T
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Figure 1: Total variation behavior of
the evolution over 25 time-steps evolving
the integrating factor methods with the
eSSPRK(3,3) Shu-Osher Runge-Kutta
method, (23) (red) and with the cor-
responding method with downwinding
(24) (blue). On the x-axis is the value
of A = %, on the y-axis is logig of the
maximal rise in TV.

on the domain [0, 1] with periodic boundary conditions. We discretize the spatial grid with 400
points and use a first-order upwind difference Lu =~ —au, for a > 0 defined by

(Lu); = —a <

Uj — Uj—1

) (2

to semi-discretize the linear term. This operator satisfies the TVD condition

1
||u” + AtLUHTV S Hu"||TV for At S —-Az.
a

In this example, we use a = 10.

For the nonlinear terms, we use a fifth order WENO finite difference method |[§]

N(u) = WENO (

1
—=u

2

Although the WENO method is not guaranteed to preserve the total variation behavior, in practice

we observe that WENO seems to satisfy

1
||u” + AtN(u)HTV S Hu"||TV for At S iAfL’

for this problem.



For the time discretization, we use the integrating factor method based on the explicit eS-

SPRK(3,3) Shu-Osher method (26):

u) = eEAym 4 LAALN (u™)
ul? = §€%Lmu" + ie_%LAt (u(l) + AtN(u(l)))
1 2
un—l—l — geLAtun + ge%LAt (u(z) -+ AtN(u(z))) . (23)

The appearance of negative exponents is due to the fact that the optimal explicit eSSPRK(3,3) Shu-
Osher method (26) has decreasing abscissas. These terms threaten to destroy the TVD property.

To correct for these negative values, we use the integrating factor method based on the same
explicit eSSPRK(3,3) Shu-Osher method (26),

ut) = LAy 4 LAALN (uM)
u® = ZeéLAtun + ie_%im (u(l) + AtN(U(l)))
1 2
un+1 _ geLAtu" + ge%LAt (U(2) + AtN(U(2))) ) (24)

but here, whenever the abscissas are decreasing we use a downwinded operator L &~ 10u, defined by

Lu = — ot S ) ) 25
u—a () (25)
Note that in this case, L = —L”. This operator satisfies the TVD condition
= 1
Hu" — AtLuHTV S ||u”HTV for At S —Az.
a

(Again, a = 10 in our case).

We selected different values of At and used each one to evolve the solution 25 time steps using the
integrating factor Runge-Kutta methods (23) without downwinding and (24) with downwinding. At
each stage we calculated the maximal rise in total variation for 25 time steps. In Figure 1 we show
the logig of the maximal rise in total variation vs. the value of A = % of the evolution using the
standard integrating factor Runge-Kutta method (23) (in red) and the method with downwinding
(24) (in blue). We observe that when downwinding is not used there is a large maximal rise in total
variation even for very small values of \. However, if we correct for the decreasing abscissas by using
the downwinded operator L, as in (24), the numerical solution maintains a small maximal rise in

total variation up to A ~ 0.65.
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P, 5 A ) Pl 3 4
S

11 - - 1| - -

> | 10000 - ] 2 | 1.0000 - ;

3 12.0000 1.0000 - 3| 2:0000 0.7500 -

4 130000 2.0000 - 4 |3.0000 1.8182 -

© 10000 2.6506 15082 5 |4.0000 2.6351 1.3466
6 |5.0000 3.5184 2.2045 6 |5.0000 3.5184 2.2738
> 160000 49870 3.3200 7 16.0000 4.2857 3.0404
8 |7.0000 5.1071 4.1459 8 | 7.0000 5.1071 3.8926
o 180000 60000 45142 9 |8.0000 6.0000 4.6048
10 10,0000 67853 6.0000 10 9.0000 6.7853 5.2997

Table 2: SSP coefficients of the optimal eS-
SPRK+(s,p) methods with non-decreasing ab-
scissas.

Table 1: SSP coefficients of the optimal eS-
SPRK(s,p) methods.

3 Explicit SSP Runge—Kutta methods

In this section, we present some popular and efficient explicit SSP Runge-Kutta methods. SSP
Runge-Kutta methods of various stages and order were reported in [3]. The SSP coefficients of
optimal explicit SSP Runge—Kutta methods of up to s = 10 stages and order p = 4 are in Table 1.
Many of these methods do not feature only non-decreasing abscissas (the second order methods are
an exception). In Table 2 we present the corresponding SSP coefficients of the explicit Runge-Kutta
methods with non-decreasing abscissas. Unfortunately, no methods of order p > 5 with positive SSP
coefficients can exist [10, 12].

We use the notation eSSPRK(s,p) to denote an explicit SSP Runge-Kutta method with s stages
and of order p. As in [7] we use the notation eSSPRK+(s,p) to denote the corresponding method
with non-decreasing abscissas. In this paper we consider the Shu-Osher method eSSPRK(3,3) as well
as the eSSPRK(4,3), eSSPRK(5,4), and eSSPRK(10,4). We selected these methods by examining
the SSP coefficients in Tables 1 and 2 above and selecting the two methods for third order and fourth
order for which the SSP coefficient of the eSSPRK+(s,p) method is significantly smaller than the
corresponding eSSPRK(s,p) method. In fact, these are good methods to explore as the eSSPRK(3,3)
and eSSPRK(10,4) are widely used methods. These methods are given below:

11



eSSPRK(3,3):

u = w4+ AtF(u")

u? = §u" + 1u(l) + 1AtF(u(l))
4 4 4

w1 L 2@ 2 2

This method has C = 1. The abscissas are

(Cl,CQ,Cg) = (0, 1, 1/2)

eSSPRK(4,3):

1
R T §AtF(u")
u? = o4 %AtF(u(l))
2 1 1
1
utt = u® 4 §AtF(u(3)) (27)

This method has C = 2. The abscissas are
(Cl, Co, C3, C4) = (0, 1/2, 1, 1/2)

No four stage fourth order explicit Runge-Kutta methods exist with a positive SSP coefficient
[4, 12]. However, fourth order methods with more than four stages (s > p) do exist. A five stage
fourth order method found by Spiteri and Ruuth [16] is
eSSPRK(5,4):

1

IS

M =y 4 0.391752226571890AtF (u™)

@ = 0.444370493651235u" + 0.555629506348765uY) + 0.368410593050371ALF (uV)
3)

(4)

<

IS

3 0.620101851488403u" + 0.379898148511597u® + 0.251891774271694AL F (u

= 0.178079954393132u" 4 0.821920045606868u'>) 4- 0.544974750228521 At F (u

u"tt = 0.517231671970585u® + 0.096059710526147u® + 0.063692468666290At F (u®)
+0.386708617503268u") 4 0.226007483236906 At F (u™) |

(2))
4 (3))
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The abscissas are

(c1,¢2,c3,c4,05) = (0,0.391752226571889, 0.586079689311541, 0.474542363121399, 0.935010630967652).

A notable example of a fourth order methods with more than four stages is Ketcheson’s eS-
SPRK(10,4) that has C = 6 and an attractive low storage formulation [9]:

eSSPRK(10,4):

1
w4 S ALF(u”)

) 1 )
u + ~AtF(uY) i=1,2,3

6
3 2 1

Zam a2 4) 4 = (4)
“u +5(u A ))

) 1 )
ul® + 6AtF(u“)) i=5,6,7,8

L2 (u(4> + %AtF(u“))) + g (u(g) + éAtF(u(g))) :

has C = 6. The abscissas are

(01, Cg, C3, C4, Cs, Cg, C7, Cg, Cy, 010) = (07 1/67 1/37 1/27 2/37 1/37 1/27 2/37 5/67 1)-

These four eSSPRK(s,p) methods have an SSP coefficient that is significantly larger than the
corresponding methods with only non-decreasing abscissas, eSSPRK(s,p), as we can see in Tables
1 and 2. This leads us to expect that for these (s, p) combinations, using the downwinding operator
L to salvage the SSP property of the eSSPRK methods would be more efficient than using the
corresponding eSSPRK+ method with only non-decreasing coefficients. In the following section, we

use these methods in numerical tests and compare their performance.

4 Numerical Results

4.1 Sharpness of SSP time-step

As in the motivating example, we consider Burgers’ equation with a linear advection term

1
Us + 10U, + <§U2) -0 U(0,z) = {

1, if1/4<z<3/4

x 0, else

13



on the domain x € [0, 1] with periodic boundary conditions. We discretize the spatial grid with 1000
points and use a first-order upwind difference Lu ~ —10u, defined by (22) to semi-discretize the
linear term. As mentioned above, this operator satisfies the TVD condition

1
Hu" + AtLUHTV < ||u”HTV for At < I—OASL’

When the abscissas decrease, the downwind operator is used instead, as in (20). This downwind
operator is defined by (25) and satisfies the TVD condition

~ 1
|u™ — AtLu|lry < ||u"||rv  for At < EAm.

For the nonlinear terms, we use a fifth order WENO finite difference method [8]

1 1
N(u) = §WENO (—u?) ~ — <§u2)x
. Although the WENO method is not guaranteed to preserve the total variation behavior, in practice
we observe that WENO seems to satisfy

1
||u" + AtN(u)HTV S Hu"||TV for At S §ASL’

for this problem.

We measure the total variation of the numerical solution at each stage, and compare it to the
total variation at the previous stage. We are interested in the size of time-step At at which the
total variation begins to rise. We refer to this value as the observed TVD time-step. We are
interested in comparing this value with the expected TVD time-step dictated by the theory. We
call the SSP coefficient corresponding to the value of the observed TVD time-step the observed SSP
coefficient Cps. In Figure 2 we show the logig of the maximal rise in total variation versus the ratio
A= %, for methods with (s,p) = (3,3),(4,3),(5,4), and (10,4). In each graph, we compare the
integrating factor Runge-Kutta using the eSSPRK(s,p) method with and without downwinding, to
the integrating factor Runge-Kutta using the eSSPRK+(s,p) method.

The green lines in Figure 2 show that if we do not correct for the decreasing abscissas, the total
variation is usually not well-controlled. This is true for the methods with (s,p) = (3,3),(4,3),
and (10,4). However, the eSSPRK(5,4) method works well without downwinding, and in fact its
performance is identical to that of the eSSPRK+(5,4) method. On the other hand, downwinding
negatively impacts the size of the time-step for which the total variation begins to rise. Although the
integrating factor approach with eSSPRK(5,4) and downwinding behaves even better than predicted
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Figure 2: Total variation behavior of the evolution over 25 time-steps evolving the integrating factor

methods with the eSSPRK(s,p) Shu-Osher Runge-Kutta method, (green) and with the corresponding

method with downwinding (blue), as well as a comparison with the eSSPRK+(s,p) method with

non-decreasing abscissas (red). The methods selected are (s,p) = (3,3), (4, 3), (5,4), (10,4). On the
At

x-axis is the value of A = X, on the y-axis is logio of the maximal rise in TV.
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by the theory, the eSSPRK+(5,4) method out-performs the theoretical bound by more [7] . This
highlights the fact that while downwinding guarantees that the strong stability property will be
preserved when the abscissas decrease, the lack of this guarantee does not always mean that the
strong stability property will be violated.

Comparing the blue and red lines in Figure 2 we note that for the (s,p) = (3,3) method, the
eSSPRK+(3,3) method with non-decreasing abscissas (red) out-performs the eSSPRK+(3,3) method
with downwinding (blue). This may be explained by the fact that this methods performed better
than expected: the solution was TVD for larger time-step than predicted by the SSP coefficient (see
[7] for a discussion of this behavior).

For the methods with (s,p) = (4,3) and (s,p) = (10,4) we observe in practice the behavior
predicted by the theory: when the eSSPRK(s,p) method is not corrected with downwinding (green
line), we observe a rise in total variation for any value of \. When the integrating factor eSSPRK(s,p)
method is corrected with downwinding when the abscissas decrease (blue) the allowable time-step for
SSP is larger than for the eSSPIFRK+(s,p) method (red) as predicted by the theory. As we noted
in [7], the SSP coefficients of the eSSPRK+ (s,p) methods are approximately 10% smaller than those
of the eSSPRK(s,p) methods, so the advantage of using downwind over using a method with non-
decreasing abscissas is relatively modest. In the case of (s,p) = (4, 3) the increase is from Ay = 0.9
for the method with non-decreasing abscissas to Ary = 1 for the methods with downwinding, and
for (s,p) = (10, 4) the increase is from Apy = 2.65 to Apy = 3.

4.2 Accuracy studies

Consider the problem

Ui+ U, + (%Uz) =0 U(0,z) = = (1 4+ sin(z)) (28)

1
N 2
on the domain 0 < z < 27. We use the fifth order WENO for the nonlinear term, and upwind finite
difference methods to spatially discretize the linear advection term. For the time-discretization we
step to final time 7y = 1.0 using an integrating factor Runge-Kutta approach with eSSPRK(3,3)
and eSSPRK(10,4) with and without downwinding.

To compute the highly accurate reference solution to the PDE we used 24,000 points in space
and a spectral differentiation operator for the linear advection term with a fifth order WENO for
the nonlinear Burgers’ term; for the time evolution we used MATLAB’s embedded ODE45 routine
with AbsTol = 107 and RelTol = 5 x 107, In this accuracy test, we have a smooth solution
(for the time interval selected), and so the spectral differentiation operator, which does not have the
nonlinear stability properties needed for the solution of a problem with discontinuities, will be stable
for this smooth problem.
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Figure 3: Test 1: Log-log plot of the Lo errors vs. the timestep using the integrating factor Runge-Kutta
method eSSPRK(s,p) with downwinding (with * markers) and the integrating factor Runge-Kutta method
with non-decreasing abscissas eSSPRK+(s,p) (with o markers). The blue line is for the first order spatial
operator L1y, , the red line is for the second order spatial operator L2y, , and the green line for the spectral
spatial operator Lspecy,. Left: (s,p) = (3,3). Right: (s,p) = (10,4).

Note that the markers look like solid circles because the * markers overlap with the o markers.

Test 1: space-time co-refinement study.

In our first test, we use N, = [100, 200, 300, 400, 500, 600, 800] points in space and a time-step of
At = %. For the spatial discretization we use a first order upwind operator Lly,, the second
order upwind operator L2y , and the spectral operator Lspecy, . For each value of N, we com-
pute the error vector and calculate its L, norm. In Figure 3 we compare the convergence of the
integrating factor Runge-Kutta method eSSPRK(3,3) with downwinding to the integrating factor
Runge-Kutta method with non-decreasing abscissas eSSPRK+(3,3). We observe that when using
a low-order spatial discretization L1y, and L2y, for the linear advection term the spatial error is
clearly dominating, and the order of convergence is first and second order respectively. The results
are the same when we use eSSPRK(10,4) with downwinding and eSSPRK+(10,4). When using the
spectral discretization Lspecy, for the linear advection term, we see convergence of order 3.5. This
order is the same for all the methods, whether using the third or fourth order time discretization, so
we conclude that here, too, the spatial error dominated.

This first test shows that the integrating factor approach using the optimal SSP Runge-Kutta
method while incorporating downwinding converges properly, and its errors are close to identical to
the non-decreasing abscissa approach described in [7]. This establishes that, as expected, downwind-
ing is an appropriate technique to employ when dealing with a PDE.
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Figure 4: Test 2: log-log plot of the Lo errors vs. the timestep using the integrating factor Runge-Kutta
method eSSPRK(s,p) with downwinding (with * markers) and the integrating factor Runge-Kutta method
with non-decreasing abscissas eSSPRK+(s,p) (with o markers). The blue line is for the first order spatial
operator Llsg, the red line is for the second order spatial operator L2s5p, and the green line for the spectral
spatial operator Lspecsy. Left: (s,p) = (3,3). Right: (s,p) = (10,4). Note that the markers look like solid

circles because the * markers overlap with the o markers.

It is important to keep in mind that while the PDE is being approximated equally well whether
downwinding is employed or not, this is not the case for convergence to the ODE. This is due to the
fact that while the ODE resulting from discretizing (28) with L is

u; = Lu + N(u) (29)
the ODE that results from discretizing (28) with L is
u = Lu + N(u), (30)

which is a different ODE, with a correspondingly different solution. We perform the following

numerical test to see how downwinding impacts the solution to the ODE.
Test 2: ODE convergence study.
We chose N, = 50 points and discretize the linear advection term using Llsy, L2509, and Lspecsy. The
nonlinear term is computed as above using WENO, but with N, = 50 points. The reference solution
is found by evolving the ODE resulting from this semi-discretization using MATLAB’s embedded
ODE45 routine with AbsTol = 107'* and RelTol =5 x 1074,

We evolve this semi-discrete ODE using the integrating factor approach based on the eSSPRK(s,p)
methods with downwinding for the cases when the abscissas decrease, and using the integrat-
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ing factor Runge-Kutta methods based on the eSSPRK+(s,p) methods, for At = AAz where
A= 1111 L L For each value of At we compute the error vector and calculate its Lo
norm. We compare the convergence of the integrating factor Runge-Kutta method eSSPRK(s,p)
with downwinding to the integrating factor Runge-Kutta method with non-decreasing abscissas eS-
SPRK+(s,p), for (s,p) = (3,3),(10,4). In Figure 4 we observe that when the number of points in
space is fixed and only the time-step is refined, the integrating factor Runge-Kutta method with
downwinding has a large error which the solution hangs at about 3.8 x 1073 (blue). We repeat this
test with a second order upwind operator L25q for the linear advection operator and observe that
the solution hangs at about 1.5 x 10™* (red). In contrast, the methods without downwinding exhibit
the expected order of convergence in time, regardless of the order of the spatial operator. For the
spectral operator, L = L, so as expected, there is no difference when downwinding is used. (Note
that the accuracy results when we use eSSPRK(s,p) without downwinding are similar to those of eS-
SPRK+(s,p)). This behavior is well-known in problems with downwinding and discussed extensively
in [6].

5 Conclusions

In [7] we first considered the strong stability properties of integrating factor Runge-Kutta methods.
In that work we presented sufficient conditions for preservation of strong stability for integrating
factor Runge-Kutta methods, which required the use of explicit SSP Runge-Kutta methods with
non-decreasing abscissas, denoted eSSPRK+ methods. When considering methods of order p = 3,4
many of the eSSPRK+(s,p) methods have smaller SSP coefficients (and therefore smaller allowable
time-step) than the optimal eSSPRK(s,p) methods, which often have some decreasing abscissas.

In this work, we consider a different approach to preserving the strong stability properties of
integrating factor Runge-Kutta methods. In this case, when the abscissas of the eSSPRK methods
are decreasing, we replace the spatial operator L with a downwinded spatial operator L to preserve
the strong stability properties of integrating factor Runge-Kutta method. We presented a complete
SSP theory for this approach. However, our numerical examples show that the downwinded spatial
operators introduce some errors that may adversely affect the accuracy of the methods, and that
in most cases the integrating factor approach with explicit SSP Runge-Kutta methods with non-
decreasing abscissas performs nearly as well, if not better, than with explicit SSP Runge-Kutta
methods with downwinding. These results lead us to conclude that the downwinding approach
may not, in practice, provide much benefit over using explicit SSP Runge-Kutta methods with
non-decreasing abscissas, as described in [7].
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