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Introduction

* Chemical looping combustion (CLC) is an
alternative concept for energy generation while
enabling the high efficiency capture of CO, as a
process byproduct.

e Various oxygen carrier materials are currently
researched at NETL for CLC applications.

* Motivation

Oxygen carriers experience microstructural
degradation during CLC redox exchange, leading to
physical and chemical attrition. Materials
improvement is needed.

* Objective of this work

In-situ microstructural characterization of oxygen
carriers during oxidation/reduction cycles to
benchmark materials performance.
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Oxygen carrier - high
temperaturetransition
metal oxides.
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Materials (Oxygen Carriers) Studied in this Work  [N=[MTW
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 NETL’s Gen 2.0 (Cu/Fe spinel particles, supported on alumina)
 NETL’s Gen 3.0 (Cu/Fe/Mn/Alspinel particles)
* Natural hematite (External material supplied from Canada)

NETLs Gen 2.0 NETLs Gen 3.0 Natural hematite

Scale. mm
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SEM: surface and cross-section morphology

Chemical composition (XRF, mass%)

and dense (b)

NETEGengD: ;: | "CPWalkdYs of
CLC material mmmm

NETL Gen 2.0 33.9 342 319 -
e NETL Gen 3.0 17.8 29.6 26.2 3.6 22.9

barie ) Natural hematite

(Canada) = - 86.3 10.2 3.5

300 pumet

Crystalline phases (XRD)

CLC material Identified crystal structures

NETL Gen 2.0 Spinel (Al rich), alumina
NETL Gen 3.0 Spinel (Cu, Mn rich)
Natural hematite Hematite, silica
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High temperature environmental confocal scanning laser microscope
(CSLM)

e Operation conditions standardized for benchmarking
* 10isothermal redox cycles (20 gas switches) at 800°C

* Exposurelengths per cycle: 7.5 minutes in airand 10 min in 10
vol.% CO-Ar

* 3D laser particle scans at end of each exposure throughout
entire cycles. (5 minutes each, 20 times per run)

&
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scanning laser mlcroscope
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Results: NETL Gen 2.0

SEM analysis
After 10 redox cycles

CSLM movie: Reduction (16x playback)

discontinuous

continuous layer
N
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Particles maintained structure well during present
redox cycles.

As redox cycles progressed, particles densified while
porosityininnergrainsincreased.

Elemental segregation of Fe and Cu led to outer layer
formation around particlesand inner grains.

3D laserscans indicated particles increased in volume
over redox cycles.

3D CSLM high temperature maps: 800°C

Cycle 1: air Cvcle 3: air Cycle 5: air Cycle 8: air

Cyc!g 10: air

Volume change with cycles
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* Insome particles, cracks were noted during oxidation
uter .
e after five redox cycles.

SEM analysis (Gen 3.0)

10 redox cycles in CSLM

CSLM movie: Cycle 6 (20x playback)

-— As-recgived

-

Porous £

e * Ingeneral, particles maintained their structure well

200 nm

during present redox cycles.

* Asredoxcycles progressed, particles densified while
porosityininnergrainsincreased.

* Elemental segregation of Cu led to outer layer formation
around particlesandinnergrains.

* 3D laserscans indicated particlesincreased in volume
over redox cycles.

As-received ‘rough’ outer surface particle 10 redox cycles in CSLM

00pm

Cu -map

As-received ‘smooth’ outer surface particle

Cu -map 100pm Cu -map
Cycle 1: air  Cycle 4:air  Cycle 7: air  Cycle 10: air .
' Volume change with cycles .
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Results: Natural Hematite

CSLM movie: Reduction (16x playback)
Directional surfacereduction

After10r

SEM analysis
edox cycles

Grains inside the particle

Outer layer:
hematite

Inner grains:
magnetite

* Agglomeration
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Under redox cycling, directional surface
reduction/oxidation resultedin a continuous product
layerimpactingradial diffusion kinetics.

Interaction with neighboring particles, caused
agglomeration by sintering.

Sintering of inner grainsinside the particle and outer
layer formation around individual inner grains after 10
redox cycles.

3D laserscans indicated particlesincreased in volume
over redox cycles.

Cycle 0: air Cycle 1: air Cycle 4: air Cycle 7: air Cycle 10: air
B Y ki kA kA N
3DCSLM et *
high temperature
maps: 800 °C
Color map
(height)

Total volume change

Volume change with cycles

Empty markers — CO/Ar
Solid markers — Air

Zig-zag trend:
decreases from
reduction to oxidation,
increases from
oxidation to reduction.
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NETL's Gen 2.0 and Gen 3.0 vs. Hematite

Volume change with cycles
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Surface area change with cycles

|l @ Gen3.0

Empty markers — CO/Ar
Solid markers — Air

Hematie

123456 7 8 9101112131415161718192021

Gas switch#

* Volume after 10 redox cycles: NETL’s G2.0 expanded by 28% compared to 50% for NETL’s G3.0 and 100% for Hematite.

* Surface roughness after 10 redox cycles : decreased in NETL’s Gen 2.0 by about 32% and in NETL’s G3.0 ‘rough’ and ‘smooth’
particles by 25% and 30% respectively, while that of Hematite increased over 360%.

e Surface area after 10 redox cycles : increasedin NETL’s Gen 2.0 by 7% compared to 26% for Hematite, while that of NETL's G3.0
‘rough’ and ‘smooth’ particles decreased by 22% and 5% respectively.
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Cross-Sectional Porosity (SEM-Imagel): Bulk  [N=[MIoA
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NETL's Gen 2.0 NETL's Gen 3.0 Hematite
Bulk particle porosity
100 Blue — as-received; Orange —redox
T 90 i
A ved ?;_ 0. Hematite
S-receive = A
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Cross-Sectional Porosity (SEM-Imagel): Grain [N=[nena
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NETL's Gen 2.0 NETL's Gen 3.0
Ar Medium* Grain porosity
As-received 100 Blue— as-received; Orange —redox
907
> 801 Gen2.0
E 70- f_JH
2 607 l
® 501
After 2 40 ,
10 redox E 0. Gen 3.0 Hematite
cycles § 20 A A
S 107 » ‘ = ‘
ol s & R .
Spinel Bright
Hematite Alumina Medium
after redox
*Gen 3.0: ‘Bright’ — Cu-rich spinel; ‘Medium’ — Al-rich spinel
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e Real time evolutions in microstructure, particle volume, surface area, and roughness obtained from the 3D laser
scans were used as parameters to benchmark NETLUs Gen 2.0, Gen 3.0 and natural hematite oxygen carrier
materials performance under simulated redox cycles using CSLM.

e Particle volume expansion was noted over redox exposures for all materials. Particle surface area increased over
redox exposures in Gen 2.0 and Hematite, while that in Gen 3.0 decreased.

e Particle surface roughness decreased over redox exposures in Gen 2.0 and Gen 3.0 due to sintering and surface
morphology modifications, while that in hematite significantly increased. Roughness can be interpreted as an
index of materials degradation.

* Continuous/discontinuous product outer layer formation around particles and inner grains impacted radial
diffusion kinetics.

* NETLs Gen 2.0 and Gen 3.0 particles densified while porosity in inner grains increased. Major increase in bulk
and grain porosity for hematite. Higher porosity created more internal passage for oxygen exchange.

* Hematite particle agglomeration was noted as early as the third redox gas cycle.

e Structuraldamageon the Gen 2.0 and Gen 3.0 particles after the redox exposures was minimal.
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