

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-TR-831628

A 6th Order Mehrstellen Finite Volume Discretization of Poisson's Equation in Three Dimensions

C. . Kavouklis

February 9, 2022

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

A 6th Order Mehrstellen Finite Volume Discretization of Poisson's Equation in Three Dimensions

Chris Kavouklis ^{*}

Lawrence Livermore National Laboratory
7000 East Avenue, Livermore, CA 94550, United States

February 9, 2022

Abstract

We discuss the derivation of a new, sixth-order finite volume scheme for Poisson's equation on 3D Cartesian equispaced grids. The scheme is based on a discretization of the Laplace operator with a compact (*Mehrstellen*) 27-point stencil. To achieve sixth order convergence the right hand side of the equation is replaced with a discrete operator that involves the discrete Laplace and Biharmonic operators and the sum of discrete fourth-order cross derivatives applied to the charge function. Numerical tests demonstrate the superiority of the proposed method compared to the well known schemes associated with the 7-point and 19-point discretizations of the Laplacian.

Introduction

We present a sixth-order compact finite volume scheme for Poisson's equation in a three-dimensional rectangular domain Ω

$$\Delta\phi = f \tag{1}$$

We consider a cell-centered discretization Ω^h of Ω as a union of size h cubic cells V_i centered at points \mathbf{i} in index space. The general form of a cell-centered stencil for discretizing the Laplace operator as applied to a function ϕ is given by

$$\Delta^h \phi_i^h = \sum_{s \in [-l, l]^3} a_s \phi_{i+s}^h$$

Here \mathbf{i} , the point of evaluation in index space, is the centroid of a mesh cell. The mesh size is denoted by h , l is the radius of the stencil and a_s are the stencil weights. With $l = 1$, $a_{(0,0,0)} = -\frac{6}{h^2}$ and $a_{(\pm 1,0,0)} = a_{(0,\pm 1,0)} = a_{(0,0,\pm 1)} = \frac{1}{h^2}$ we obtain the well known seven-point discrete Laplace operator L_7^h that is second-order accurate. To attain higher accuracy, a larger stencil radius is typically required. However, high order stencils can also be obtained using small values of l , the so called compact or Mehrstellen stencils [4]. A fourth-order compact finite volume scheme has been discussed in [3]. The associated stencil L_{19}^h has radius 1 and involves function evaluations at 19 cell centers. The stencil coefficients are given by

^{*}kavouklis1@llnl.gov, (925) 423-2152.

$$a_s = \begin{cases} -\frac{4}{h^2}, & \text{if } |s| = 0 \\ \frac{1}{3h^2}, & \text{if } |s| = 1 \\ \frac{1}{6h^2}, & \text{if } |s| = 2 \\ 0, & \text{if } |s| = 3 \end{cases}$$

where by $|s|$ we denote the number of non-zero components of multi-index s . To actually derive a fourth-order scheme for Poisson's equation, the forcing term f must be replaced by $f^* := f + \frac{h^2}{12} \Delta f$, otherwise the scheme is merely second-order accurate. This substitution is the so called Mehrstellen correction. In this work, we extend the approach discussed in [3] and show that a stencil of radius 1 is still sufficient for a sixth-order finite volume scheme.

Finite Volume scheme

The starting point in deriving a sixth-order stencil is the finite volume discrete formulation of Poisson's equation [3]:

$$\langle f \rangle_i = \frac{1}{h} \sum_{d=0}^2 \left(\left\langle \frac{\partial \phi}{\partial x_d} \right\rangle_{i+\frac{1}{2}\mathbf{e}^d} - \left\langle \frac{\partial \phi}{\partial x_d} \right\rangle_{i-\frac{1}{2}\mathbf{e}^d} \right) = \frac{1}{h} \sum_{d=0}^2 \left[\left\langle \frac{\partial \phi}{\partial x_d} \right\rangle \right]_{i-\frac{1}{2}\mathbf{e}^d}^{i+\frac{1}{2}\mathbf{e}^d} \quad (2)$$

which follows directly from integrating Poisson's equation (1) over a cell V_i and applying Gauss's theorem. Here we have defined $[\psi]_j^i := \psi_i - \psi_j$ as the value difference of a grid function ψ at points i and j in index space and by $\langle \cdot \rangle$ we denote the average value over a control volume or a face of a control volume.

We begin our discussion by considering the following estimates about finite difference stencils for partial derivatives of order up to 4

$$\delta_d^2 \psi_j := \frac{1}{h^2} (\psi_{j+\mathbf{e}^d} + \psi_{j-\mathbf{e}^d} - 2\psi_j) = \frac{\partial^2 \psi_j}{\partial x_d^2} + O(h^2) \quad (3)$$

$$\delta_d^3 \psi_{j+\frac{1}{2}\mathbf{e}^d} := \frac{1}{h^3} (-\psi_{j-\mathbf{e}^d} + 3\psi_j - 3\psi_{j+\mathbf{e}^d} + \psi_{j+2\mathbf{e}^d}) = \frac{\partial^3 \psi_{j+\frac{1}{2}\mathbf{e}^d}}{\partial x_d^3} + O(h^2) \quad (4)$$

$$\delta_d^4 \psi_j := \frac{1}{h^4} (\psi_{j-2\mathbf{e}^d} - 4\psi_{j-\mathbf{e}^d} + 6\psi_j - 4\psi_{j+\mathbf{e}^d} + \psi_{j+2\mathbf{e}^d}) = \frac{\partial^4 \psi_j}{\partial x_d^4} + O(h^2) \quad (5)$$

It is also noted that

$$[\delta_d^3 \psi]_{j-\frac{1}{2}\mathbf{e}^d}^{j+\frac{1}{2}\mathbf{e}^d} = h \delta_d^4 \psi_j \quad (6)$$

The following 6th order estimates for the average values of f and $\frac{\partial \phi}{\partial x_d}$ over V_i and face $A_{i+\frac{1}{2}\mathbf{e}^d}$, expressed in terms of point values, can be easily shown using Taylor expansions and integration over the respective domains

Lemma 1.

$$\begin{aligned} \langle \psi \rangle_i &= \psi_i + \frac{h^2}{24} \Delta \psi_i + \frac{h^4}{1920} B \psi_i + \frac{h^4}{1440} D \psi_i + O(h^6) \\ \langle \psi \rangle_{i+\frac{1}{2}\mathbf{e}^d} &= \psi_{i+\frac{1}{2}\mathbf{e}^d} + \frac{h^2}{24} \Delta^{\perp,d} \psi_{i+\frac{1}{2}\mathbf{e}^d} + \frac{h^4}{1920} B^{\perp,d} \psi_{i+\frac{1}{2}\mathbf{e}^d} + \frac{h^4}{1440} D^{\perp,d} \psi_{i+\frac{1}{2}\mathbf{e}^d} + O(h^6) \end{aligned}$$

where B is the 3D Biharmonic operator, $D = \sum_{d' \neq d''} \frac{\partial^4}{\partial^2 x_{d'} \partial^2 x_{d''}}$ is the sum of the fourth order cross derivatives and $\Delta^{\perp,d}$, $B^{\perp,d}$ and $D^{\perp,d}$ are the corresponding transverse operators (i.e. the 2D operators with respect to the directions d', d'' perpendicular to d). We also define $T := B - 2D = \sum_{d=0}^2 \frac{\partial^4}{\partial^4 x_d}$ as the sum of fourth-order derivatives in each coordinate direction. Because of Lemma 1 we infer

$$\langle f \rangle_{\mathbf{i}} = f_{\mathbf{i}} + \frac{h^2}{24} \Delta f_{\mathbf{i}} + \frac{h^4}{1920} B f_{\mathbf{i}} + \frac{h^4}{1440} D f_{\mathbf{i}} + O(h^6) \quad (7)$$

$$\left\langle \frac{\partial \phi}{\partial x_d} \right\rangle_{\mathbf{i} + \frac{1}{2}\mathbf{e}^d} = \frac{\partial \phi}{\partial x_d} + \frac{h^2}{24} \Delta^{\perp,d} \frac{\partial \phi}{\partial x_d} + \frac{h^4}{1920} B^{\perp,d} \frac{\partial \phi}{\partial x_d} + \frac{h^4}{1440} D^{\perp,d} \frac{\partial \phi}{\partial x_d} + O(h^6) \quad (8)$$

where the indices of the right hand side in (8) have been omitted to simplify notation. Using Taylor expansions we easily derive the following estimates

Lemma 2.

$$\frac{\partial \psi}{\partial x_d} \Big|_{\mathbf{i} + \frac{1}{2}\mathbf{e}^d} = \frac{1}{h} (\psi_{\mathbf{i} + \mathbf{e}^d} - \psi_{\mathbf{i}}) - \frac{h^2}{24} \frac{\partial^3 \psi}{\partial x_d^3} - \frac{h^4}{1920} \frac{\partial^5 \psi}{\partial x_d^5} + O(h^6) \quad (9)$$

$$\left[\frac{\partial \psi}{\partial x_d} \right]_{\mathbf{j} - \frac{1}{2}\mathbf{e}^d}^{\mathbf{j} + \frac{1}{2}\mathbf{e}^d} = h \delta_d^2 \psi_{\mathbf{j}} - \frac{h^2}{24} \left[\frac{\partial^3 \psi}{\partial x_d^3} \right]_{\mathbf{j} - \frac{1}{2}\mathbf{e}^d}^{\mathbf{j} + \frac{1}{2}\mathbf{e}^d} - \frac{h^4}{1920} \left[\frac{\partial^5 \psi}{\partial x_d^5} \right]_{\mathbf{j} - \frac{1}{2}\mathbf{e}^d}^{\mathbf{j} + \frac{1}{2}\mathbf{e}^d} + O(h^7) \quad (10)$$

From (8) and (9) we infer

$$\begin{aligned} \left\langle \frac{\partial \phi}{\partial x_d} \right\rangle_{\mathbf{i} + \frac{1}{2}\mathbf{e}^d} &= \frac{1}{h} (\phi_{\mathbf{i} + \mathbf{e}^d} - \phi_{\mathbf{i}}) - \frac{h^2}{24} \frac{\partial^3 \phi}{\partial x_d^3} - \frac{h^4}{1920} \frac{\partial^5 \phi}{\partial x_d^5} \\ &+ \frac{h^2}{24} \Delta^{\perp,d} \frac{\partial \phi}{\partial x_d} + \frac{h^4}{1920} B^{\perp,d} \frac{\partial \phi}{\partial x_d} + \frac{h^4}{1440} D^{\perp,d} \frac{\partial \phi}{\partial x_d} + O(h^6) \end{aligned} \quad (11)$$

and using Poisson's equation (1) to express the third and fifth order derivatives of ϕ in each direction d we obtain

$$\begin{aligned} \frac{\partial^3 \phi}{\partial x_d^3} &= \frac{\partial}{\partial x_d} (f - \Delta^{\perp,d} \phi) = \frac{\partial f}{\partial x_d} - \Delta^{\perp,d} \frac{\partial \phi}{\partial x_d} \\ \frac{\partial^5 \phi}{\partial x_d^5} &= \frac{\partial^3 f}{\partial x_d^3} - \Delta^{\perp,d} \frac{\partial f}{\partial x_d} + B^{\perp,d} \frac{\partial \phi}{\partial x_d} \end{aligned}$$

Substituting the latter algebraic relations in (11) we have

$$\begin{aligned} \left\langle \frac{\partial \phi}{\partial x_d} \right\rangle_{\mathbf{i} + \frac{1}{2}\mathbf{e}^d} &= \frac{1}{h} (\phi_{\mathbf{i} + \mathbf{e}^d} - \phi_{\mathbf{i}}) + \frac{h^2}{12} \Delta^{\perp,d} \frac{\partial \phi}{\partial x_d} + \frac{h^4}{1440} D^{\perp,d} \frac{\partial \phi}{\partial x_d} \\ &- \frac{h^2}{24} \frac{\partial f}{\partial x_d} - \frac{h^4}{1920} \frac{\partial^3 f}{\partial x_d^3} + \frac{h^4}{1920} \Delta^{\perp,d} \frac{\partial f}{\partial x_d} + O(h^6) \end{aligned} \quad (12)$$

and

$$\begin{aligned} \left[\left\langle \frac{\partial \phi}{\partial x_d} \right\rangle \right]_{\mathbf{i} - \frac{1}{2}\mathbf{e}^d}^{\mathbf{i} + \frac{1}{2}\mathbf{e}^d} &= h \delta_d^2 \phi_{\mathbf{i}} + \frac{h^2}{12} \left[\Delta^{\perp,d} \frac{\partial \phi}{\partial x_d} \right]_{\mathbf{i} - \frac{1}{2}\mathbf{e}^d}^{\mathbf{i} + \frac{1}{2}\mathbf{e}^d} + \frac{h^4}{1440} \left[D^{\perp,d} \frac{\partial \phi}{\partial x_d} \right]_{\mathbf{i} - \frac{1}{2}\mathbf{e}^d}^{\mathbf{i} + \frac{1}{2}\mathbf{e}^d} \\ &- \frac{h^2}{24} \left[\frac{\partial f}{\partial x_d} \right]_{\mathbf{i} - \frac{1}{2}\mathbf{e}^d}^{\mathbf{i} + \frac{1}{2}\mathbf{e}^d} - \frac{h^4}{1920} \left[\frac{\partial^3 f}{\partial x_d^3} \right]_{\mathbf{i} - \frac{1}{2}\mathbf{e}^d}^{\mathbf{i} + \frac{1}{2}\mathbf{e}^d} + \frac{h^4}{1920} \left[\Delta^{\perp,d} \frac{\partial f}{\partial x_d} \right]_{\mathbf{i} - \frac{1}{2}\mathbf{e}^d}^{\mathbf{i} + \frac{1}{2}\mathbf{e}^d} + O(h^7) \end{aligned} \quad (13)$$

We denote by S_h^d the sum of the first three terms in (13), that is

$$S_h^d \phi_{\mathbf{i}} = h \delta_d^2 \phi_{\mathbf{i}} + \frac{h^2}{12} \left[\Delta^{\perp,d} \frac{\partial \phi}{\partial x_d} \right]_{\mathbf{i}-\frac{1}{2}\mathbf{e}^d}^{i+\frac{1}{2}\mathbf{e}^d} + \frac{h^4}{1440} \left[D^{\perp,d} \frac{\partial \phi}{\partial x_d} \right]_{\mathbf{i}-\frac{1}{2}\mathbf{e}^d}^{i+\frac{1}{2}\mathbf{e}^d} \quad (14)$$

from which part of the 6th order operator stencil will be derived. The last three terms of (13) contribute to the Mehrstellen correction of the right hand side as we will discuss later. We proceed with approximating the second and third term of (14) in a compact fashion. At this point we recall the well known estimate for the 2D Laplacian as approximated with a 5-point stencil

$$\Delta^{\perp,d} \psi_{\mathbf{j}} = \sum_{s \neq d} \delta_s^2 \psi - \frac{h^2}{12} \sum_{s \neq d} \frac{\partial}{\partial x_s^4} \frac{\partial \phi}{\partial x_d} + O(h^4)$$

This estimate together with (10) (applied with $\mathbf{j} = \mathbf{i} \pm \mathbf{e}^d$) and $\delta_s^2 \psi_{\mathbf{j}} = \frac{\partial^2 \psi}{\partial x_s^2} + O(h^2)$ imply

$$\begin{aligned} \left[\Delta^{\perp,d} \frac{\partial \phi}{\partial x_d} \right]_{\mathbf{i}-\frac{1}{2}\mathbf{e}^d}^{i+\frac{1}{2}\mathbf{e}^d} &= \frac{1}{h} \sum_{s \neq d} (\delta_d^2 \phi_{\mathbf{i}+\mathbf{e}^s} + \delta_d^2 \phi_{\mathbf{i}-\mathbf{e}^s} - 2\delta_d^2 \phi_{\mathbf{i}}) \\ &- \frac{h^2}{24} \sum_{s \neq d} \left[\frac{\partial^2}{\partial x_s^2} \frac{\partial^3 \phi}{\partial x_d^3} \right]_{\mathbf{i}-\frac{1}{2}\mathbf{e}^d}^{i+\frac{1}{2}\mathbf{e}^d} \\ &- \frac{h^4}{1920} \sum_{s \neq d} \left[\frac{\partial^2}{\partial x_s^2} \frac{\partial^5 \phi}{\partial x_d^5} \right]_{\mathbf{i}-\frac{1}{2}\mathbf{e}^d}^{i+\frac{1}{2}\mathbf{e}^d} \\ &- \frac{h^2}{12} \sum_{s \neq d} \left[\frac{\partial^4}{\partial x_s^4} \frac{\partial \phi}{\partial x_d} \right]_{\mathbf{i}-\frac{1}{2}\mathbf{e}^d}^{i+\frac{1}{2}\mathbf{e}^d} + O(h^5) \end{aligned} \quad (15)$$

In the following, using (3), (4) and (6) we find

$$\left[\frac{\partial^2}{\partial x_s^2} \frac{\partial^3 \phi}{\partial x_d^3} \right]_{\mathbf{i}-\frac{1}{2}\mathbf{e}^d}^{i+\frac{1}{2}\mathbf{e}^d} = \left[\delta_d^3 \frac{\partial^2 \phi}{\partial x_s^2} \right]_{\mathbf{i}-\frac{1}{2}\mathbf{e}^d}^{i+\frac{1}{2}\mathbf{e}^d} + O(h^3) = h \delta_d^4 \delta_s^2 \phi_{\mathbf{i}} + O(h^3)$$

Furthermore, it is obvious that $\left[\frac{\partial^2}{\partial x_s^2} \frac{\partial^5 \phi}{\partial x_d^5} \right]_{\mathbf{i}-\frac{1}{2}\mathbf{e}^d}^{i+\frac{1}{2}\mathbf{e}^d} = O(h)$ and because of (10) we obtain

$$\left[\frac{\partial^4}{\partial x_s^4} \frac{\partial \phi}{\partial x_d} \right]_{\mathbf{i}-\frac{1}{2}\mathbf{e}^d}^{i+\frac{1}{2}\mathbf{e}^d} = h \delta_d^2 \delta_s^4 \phi + O(h^3)$$

so that finally (15) becomes

$$\begin{aligned} \left[\Delta^{\perp,d} \frac{\partial \phi}{\partial x_d} \right]_{\mathbf{i}-\frac{1}{2}\mathbf{e}^d}^{i+\frac{1}{2}\mathbf{e}^d} &= h \sum_{s \neq d} \delta_d^2 \delta_s^2 \phi_{\mathbf{i}} - \frac{h^3}{24} \sum_{s \neq d} \delta_d^4 \delta_s^2 \phi_{\mathbf{i}} \\ &- \frac{h^3}{12} \sum_{s \neq d} \delta_d^2 \delta_s^4 \phi_{\mathbf{i}} + O(h^5) \end{aligned} \quad (16)$$

Moreover, using (10) again, the third term of (14) is estimated as follows

$$\begin{aligned} \left[D^{\perp,d} \frac{\partial \phi}{\partial x_d} \right]_{\mathbf{i}-\frac{1}{2}\mathbf{e}^d}^{i+\frac{1}{2}\mathbf{e}^d} &= h \delta_d^2 D^{\perp,d} \phi_{\mathbf{i}} + O(h^3) \\ &= h \delta_d^2 \delta_{d'}^2 \delta_{d''}^2 \phi_{\mathbf{i}} + O(h^3) \end{aligned} \quad (17)$$

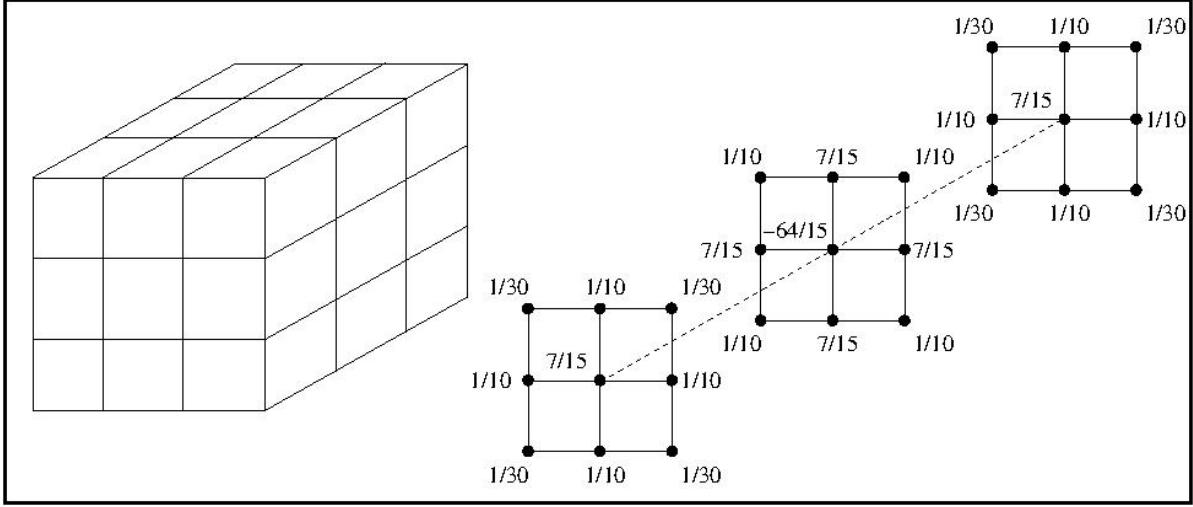


Figure 1: Stencil of the L_{27}^h Mehrstellen discrete Laplace operator. Function values are assigned at the cell centers and the actual stencil weights are the numbers depicted divided by h^2 .

In the following, using (16) and (17) we obtain

$$\begin{aligned}
 \frac{1}{h} \sum_{d=0}^2 S_h^d \phi_i &= \overbrace{\sum_{d=0}^2 \delta_d^2 \phi_i + \frac{h^2}{6} \sum_{s < d} \delta_d^2 \delta_s^2 \phi_i}^{L_{19}^h} \\
 &\quad - \frac{h^4}{96} \sum_{d=0}^2 \sum_{s \neq d} \delta_d^4 \delta_s^2 \phi_i + \frac{h^4}{480} \delta_x^2 \delta_y^2 \delta_z^2 \phi_i + O(h^6)
 \end{aligned} \tag{18}$$

Poisson's equation (1) implies that [8]

$$\frac{\partial^4 \phi}{\partial x_d^4} = \frac{\partial^2 f}{\partial x_d^2} - \frac{\partial^4 \phi}{\partial x_d^2 \partial x_{d'}^2} - \frac{\partial^4 \phi}{\partial x_d^2 \partial x_{d''}^2}$$

and hence [8]

$$\frac{\partial^6 \phi}{\partial x^2 \partial y^2 \partial z^2} = \frac{\partial^4 f}{\partial x_d^2 \partial x_{d''}^2} - \frac{\partial^6 \phi}{\partial x_d^4 \partial x_{d''}^2} - \frac{\partial^6 \phi}{\partial x_{d''}^4 \partial x_d^2}$$

As a result

$$3 \frac{\partial^6 \phi}{\partial x^2 \partial y^2 \partial z^2} = Df - \sum_{d=0}^2 \sum_{s \neq d} \frac{\partial^6 \phi}{\partial x_d^4 \partial x_s^2}$$

which is rewritten in discrete form as

$$- \sum_{d=0}^2 \sum_{s \neq d} \delta_d^4 \delta_s^2 \phi_i = -D^h f_i + 3 \delta_x^2 \delta_y^2 \delta_z^2 \phi_i + O(h^2) \tag{19}$$

where $D^h = \delta_x^2 \delta_y^2 + \delta_y^2 \delta_z^2 + \delta_z^2 \delta_x^2$ is the discrete sum of fourth-order cross derivatives which is second-order accurate. At this point we define the following stencil of radius 1

$$L_{27}^h \phi_i := L_{19}^h \phi_i + \frac{h^4}{30} \delta_x^2 \delta_y^2 \delta_z^2 \phi_i \tag{20}$$

that involves function evaluations at 27 points and is depicted in Figure 1. We will prove that it results in a sixth-order scheme for Poisson's equation. Indeed, (18) and the latter estimate (19) yield

$$\frac{1}{h} \sum_{d=0}^2 S_h^d \phi_i = L_{27}^h \phi_i - \frac{h^4}{96} D^h f_i + O(h^6) \quad (21)$$

In the sequel, we treat the last three terms of Equation (13) to derive the Mehrstellen correction of the scheme. Indeed, (4) and (6) imply

$$\sum_{d=0}^2 \left[\frac{\partial^3 f}{\partial x_d^3} \right]_{i-\frac{1}{2} \mathbf{e}^d}^{i+\frac{1}{2} \mathbf{e}^d} = h T^h f_i + O(h^3) \quad (22)$$

Using the latter and (10) we derive

$$\begin{aligned} \sum_{d=0}^2 \left[\frac{\partial f}{\partial x_d} \right]_{i-\frac{1}{2} \mathbf{e}^d}^{i+\frac{1}{2} \mathbf{e}^d} &= \sum_{d=0}^2 h \delta_d^2 f_i - \frac{h^2}{24} \sum_{d=0}^2 \left[\frac{\partial^3 f}{\partial x_d^3} \right]_{i-\frac{1}{2} \mathbf{e}^d}^{i+\frac{1}{2} \mathbf{e}^d} + O(h^5) \\ &= h L_7^h f_i - \frac{h^3}{24} T^h f_i + O(h^5) \end{aligned} \quad (23)$$

In addition, (10) implies that

$$\begin{aligned} \sum_{d=0}^2 \left[\Delta^{\perp,d} \frac{\partial f}{\partial x_d} \right]_{i-\frac{1}{2} \mathbf{e}^d}^{i+\frac{1}{2} \mathbf{e}^d} &= h \sum_{d=0}^2 \delta_d^2 \Delta^{\perp,d} f_i + O(h^3) \\ &= h \sum_{d=0}^2 \delta_d^2 (\delta_{d'}^2 + \delta_{d''}^2) f_i + O(h^3) \\ &= 2h D^h f_i + O(h^3) \end{aligned} \quad (24)$$

Equation (2) because of (7), (13) and (21)-(24) becomes

$$\begin{aligned} L_{27}^h \phi_i - \frac{h^4}{96} D^h f_i - \frac{h^2}{24} L_7^h f_i + \frac{h^4}{576} T^h f_i - \frac{h^4}{1920} T^h f_i + \frac{2h^4}{1920} D^h f_i = \\ f_i + \frac{h^2}{24} \Delta f_i + \frac{h^4}{1920} B f_i + \frac{h^4}{1440} D f_i + O(h^6) \end{aligned}$$

hence, considering second order approximations B^h, T^h, D^h of B, T, D , respectively, we obtain

$$L_{27}^h \phi_i = f_i + \frac{h^2}{24} \Delta f_i + \frac{h^2}{24} L_7^h f_i - \frac{h^4}{1440} T^h f_i + \frac{h^4}{90} D^h f_i + O(h^6) \quad (25)$$

Next, using the truncation error of the L_7^h Laplacian we have

$$\Delta f_i + L_7^h f_i = -\frac{h^2}{12} T^h f_i + 2L_7^h f_i + O(h^4)$$

so that (25) becomes

$$L_{27}^h \phi_i = f_i + \frac{h^2}{12} L_7^h f_i - \frac{h^4}{240} B^h f_i + \frac{7h^4}{360} D^h f_i + O(h^6) \quad (26)$$

or since $L_{19}^h = L_7^h + \frac{h^2}{6} D^h$

$$L_{27}^h \phi_i = f_i + \frac{h^2}{12} L_{19}^h f_i - \frac{h^4}{240} B^h f_i + \frac{h^4}{180} D^h f_i + O(h^6) \quad (27)$$

As is evident from equation (27), a sixth order discretization of Poisson's equation can be derived by employing the L_{27}^h discrete Laplacian and a Mehrstellen correction of the right hand side given by

$$f_i^* = f_i + \frac{h^2}{12} L_{19}^h f_i - \frac{h^4}{240} B^h f_i + \frac{h^4}{180} D^h f_i$$

It is noted that using the original charge function results in a second order scheme.

Numerical Results

As a representative test case we consider Poisson's equation in the unit cube $\Omega = [0, 1]^3$ with the following charge

$$f(\mathbf{x}) = -12\pi^2 \cos(2\pi x) \cos(2\pi y) \cos(2\pi z)$$

and periodic boundary conditions. The compatibility condition $\int_{\Omega} f d\mathbf{x} = 0$ is satisfied for this problem and hence the solution which is given by

$$\phi(\mathbf{x}) = \cos(2\pi x) \cos(2\pi y) \cos(2\pi z)$$

is unique up to a constant. We solve this boundary problem numerically with Martin's relaxation method [6] and employ the L_7^h , L_{19}^h and L_{27}^h discretizations of the Laplacian for a comparison. The associated max-norm errors are presented in Table 1 and as is evident the 6th order compact scheme outperforms the other two. A log-log plot of the max-norm error against mesh size for the new scheme demonstrates its 6th order convergence rate (Figure 2).

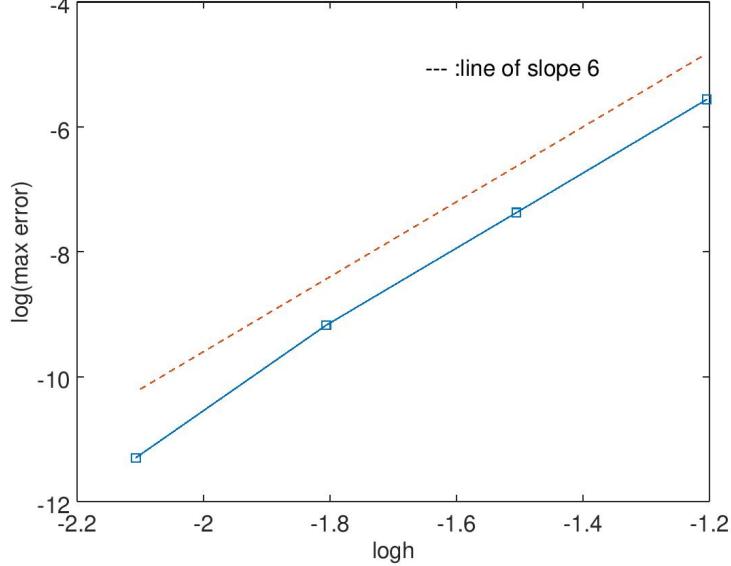


Figure 2: Convergence plot using the L_{27}^h discrete compact Laplace operator.

N	L_7^h	L_{19}^h	L_{27}^h
16	1.29507e-02	2.34866e-04	2.75100e-06
32	3.21896e-03	1.45076e-05	4.23717e-08
64	8.03577e-04	9.04328e-07	6.65203e-10
128	2.00820e-04	5.75698e-08	5.01377e-12

Table 1: Max-norm errors $\max_{\mathbf{i}} \|\phi_{\mathbf{i}}^h - \phi\|_{\infty}$ with periodic boundary conditions using the L_7^h , L_{19}^h and L_{27}^h discrete Laplacians.

Conclusions

We have introduced a provably sixth-order finite volume discretization of Poisson's equation based on a compact Laplace stencil and a suitable modification of the charge function. Compact stencils for the Laplace operator are essential to a new class of fast adaptive Poisson solvers [2, 7, 5] that are based on Anderson's Method of Local Corrections (MLC) [1]. Future work will include the application of the present scheme to the MLC method for Poisson's equation. Of interest is the extension of the MLC method to other equations of Mathematical Physics via the derivation of compact stencils for the associated differential operators.

Acknowledgments

The author is greatly indebted to Professor Phillip Colella of UC Berkeley for many fruitful discussions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded by the LDRD Program at LLNL under project tracking code 17-ERD-081.

References

- [1] C.R. Anderson, A method of local corrections for computing the velocity field due to a distribution of vortex blobs, *Journal of Computational Physics*, Vol.62(1), pp. 111-123, 1986.
- [2] G.T. Balls, P. Colella, A finite difference domain decomposition method using local corrections for the solution of Poissons equation, *Journal of Computational Physics*, Vol.180(1), pp. 2553, 2002.
- [3] M. Barad, P. Colella, A fourth-order accurate local refinement method for Poisson's equation, *Journal of Computational Physics*, Vol.209, pp. 1-18, 2005.
- [4] L. Collatz, *The numerical treatment of differential equations*, Springer-Verlag, Berlin-Heidelberg-New York, 1966.
- [5] C. Kavouklis, P. Colella, Computation of volume potentials on structured grids with the method of local corrections, *Communications in Applied Mathematics and Computational Science*, Vol.14(1), pp. 1-32, 2019.
- [6] D.F. Martin, K.L. Cartwright, Solving Poisson's equation using adaptive mesh refinement, *Technical Report UCB/ERL M96/66*, University of California, Berkeley, 1996.
- [7] P. McCorquodale, P. Colella, G.T. Balls, S.B. Baden, A local corrections algorithm for solving Poisson's equation in three dimensions, *Communications in Applied Mathematics and Computational Science*, Vol.2(1), pp. 57-81, 2006.
- [8] W.F. Spotz, G.F. Carey, A high-order compact formulation for the 3D Poisson equation, *Numerical Methods for Partial Differential Equations*, Vol.12, 1996.