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The absence of a reliable formulation of kinetic energy density functional has hindered the development of orbital
free density functional theory. Using the data-aided learning paradigm, we propose a simple prescription to accurately
model the kinetic energy density of any system. Our method relies on a dictionary of functional forms for local
and nonlocal contributions which have been proposed in the literature and the appropriate coefficients are calculated
via a linear regression framework. To model the nonlocal contributions, we explore two new nonlocal functionals - a
functional that captures fluctuations in electronic density and a functional that incorporates gradient information. Since,
the analytical functional forms of the kernels present in these nonlocal terms are not known from theory, we propose
a basis function expansion to model these seemingly difficult nonlocal quantities. This allows us to easily reconstruct
kernels for any system using only a few structures. The proposed method is able to learn kinetic energy densities
and total kinetic energies of molecular and periodic systems, such as H,, LiH, LiF and a one-dimensional chain of 8
hydrogens using data from Kohn-Sham density functional theory calculations for only a few structures. For the ease of

reproduction, codes used to generate the models are provided in the supporting materials.

I. INTRODUCTION

Kohn-Sham density functional theory (KSDFT) is a pow-
erful technique that is commonly used to calculate the elec-
tronic structure of a wide variety of materials to predict, and/or
to analyze their mechanical, optical, electronic, or magnetic
properties. The relevance of KSDFT can be judged from the
fact that tens of thousands of papers based on electronic struc-
ture calculations are published every year, but in spite of its
widespread use, system sizes accessible in routine KSDFT
are typically limited to a few hundred? or a few thousand
atoms>. Orbital-free density functional theory (OFDFT) can
potentially be used to simulate electronic structure of large,
realistic systems which are currently not possible*~!!. How-
ever, OFDFT calculations are often not as reliable as KSDFT
and fundamental bottlenecks that have impeded the develop-
ment of OFDFT (such as inability to capture bond formation)
have been extensively discussed in the literature®!?-!7 and the
foremost among them is the absence of an accurate kinetic
energy functional. Nearly thirty years ago, in a seminal paper
Wang and Teter!® succinctly stated that “An accurate and com-
putationally inexpensive kinetic-energy density functional is
highly desirable in the simulation of condensed-matter sys-
tems, because, in that environment, the solution of the Kohn-
Sham equation for a large number of bands and k-points can
be reduced to the calculation of a single function by using the
kinetic energy functional.” Since then, many groups have pro-
posed kinetic energy functionals and local pseudo-potentials

¥Electronic mail: samantal @l1nl.gov

that can be used to run orbital-free DFT calculations for large
system sizes. However, in spite of these developments, the
popularity and the applicability of OFDFT remains far behind
that of KSDFT.

A typical kinetic energy functional used in OFDFT can be
written as a sum of semilocal and nonlocal contributions, such
as

Tielp ) = [ (e +m (@) )ar, (1)

where the semilocal contributions (denoted by f1o¢ [p (1r)]) de-
pend on the local electron density and its derivatives and the
explicit functional form for non-interacting Fermions in one-
dimension, derived by Samaj and Percus'® is given by
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In the above equation, the first and second terms on right hand
side are the Thomas-Fermi and von Weizsicker terms. Fig-
ure 1 shows the calculated kinetic energy densities from KS-
DFT for a few one-dimensional systems and those predicted
by using Eq. 2.We add a regularization constant of magni-
tude 1073 to the denominator of the last two terms of Eq.
2 to prevent divergence in the low density regime. The un-
physical behavior seen in Fig. 1 in the low density limit is
related to the behavior of the last two terms in Eq. 2: If den-
sity decays as p (x) ~ exp (—Ax) in the low density limit, then
[p” (X)]*/[p (x)]> ~ 1/p (x) which diverges as p (x) — 0. In
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FIG. 1. The performance of kinetic energy functional model devel-
oped for non-interacting Fermions by Samaj et al.!® for two represen-
tative one-dimensional systems - a chain of eight hydrogens (shown
in (a)) and a LiF molecule (shown in (b)) are compared with kinetic
energy density calculated from a one-dimensional KSDFT code. Pre-
dictions from models containing only the first three terms on the right
hand side of Eq 2 (marked “second order”) are very close to predic-
tions from models containing all the terms shown in Eq 2 (marked
“fourth order”). This suggests that contributions from higher order
corrections are negligible.

all of these systems, the model predictions are able to capture
the trends in KSDFT kinetic energies, but the amplitudes are
off. Thus, semilocal contributions alone are unable to capture
the kinetic energy of these relatively simple one-dimensional
systems.

The nonlocal term in Eq.
literature!>16:19 as

D0 =pm0) [0

Here V is a function of electron density, m and n are ex-
ponents and taken to be m=n=1 and 5/6 in Chacén et al.!3

1 is typically written in

Q(jr—r'|,V)dr 3)

and Wang et al.'®, respectively. Different authors have used
different forms of V: In some cases, V depends only on
p(r)!3, while in other cases it depends on both p(r) and
p(r)1®. This nonlocal term can be traced back to Hohen-
berg and Kohn?® who showed that the response function is
related to the second functional derivative of the kinetic en-
ergy, ie. K(r,v') = 8°Txg/Sp (r)Sp (r') which for a ho-
mogeneous, non-interacting system (with density pg) is re-
lated to the Lindhard susceptibility in the Fourier space'3?!
via K (k,po) = —1/x0(n) where 1 = k/2kr(po), ke(po) is
the Thomas-Fermi momentum and Y is the Lindhard suscep-
tibility, which for a one-dimensional system is given by

%o(n)z—** “4)
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To gauge the importance of the nonlocal correction to the
kinetic energy functional, in Fig. 2 we show results of one
such 1D model proposed by Combariza et al.>> where the ex-

pression of kinetic energy is written as

Tlp(x)) = Towlp(x)] - ;TTF / dxp()r(p(x).

w(lx=x],p(x
(5)

Here T,w and Tt are the von Weizsidcker and Thomas-Fermi
terms, and the last integral on the right hand side is the non-
local term. The weight function, w(|x — x|, p(x)), is usually
determined by imposing the Lindhard response on the kinetic
energy. Figure 2 shows the differences between KSDFT ki-
netic energy densities and model predictions (using ground
state electron densities obtained from KSDFT calculations)
for four very different systems - Hp, LiH and LiF molecules
and a one-dimensional chain of eight hydrogens, Hg. The to-
tal kinetic energies obtained from one-dimensional numerical
integration (using Euler method) of the kinetic energy densi-
ties for H,, LiH, LiF and Hg systems obtained from the model
proposed by Combariza et al. are 0.17, 0.37, 0.68, 2.41 Ha,
respectively, and those obtained from KSDFT are 0.10, 0.36,
0.50, 2.70 Ha, respectively. As shown in Fig. 2, the nonlocal
contributions significantly improve the predictions and errors
in predicted total kinetic energies are small, but disparities be-
tween KSDFT kinetic energy density profiles and the model
predictions suggest that there is room for improvement.

()

In a way, the nonlocal term 7’ can be derived from a

generalization of the Thomas-Fermi model.'® On the other
hand, Garcia-Aldea and Alverellos**?* have proposed non-
local models based on the von-Weizsacker term that cap-
ture spatial correlations between p'/2 (r) and its derivatives.
Even though the authors focused on elemental systems, their
analysis suggests that these models are able to accurately
model kinetic energy densities at intermediate electron den-
sities. Similarly, many other researchers have explore meta-
GGA based kinetic energy functionals?—3? by systematically
analyzing the behavior at low and high electron densities and
|Vp|/p*/ and many such models have been compared in Ref.
[26, 31, and 32].4°
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FIG. 2. The performance of the kinetic energy functional model de-
veloped for non-interacting fermions by Combariza et al.22 for vari-
ous one dimensional systems is compared with kinetic energy densi-
ties calculated from a one-dimensional KSDFT code. Subplots a, and
b correspond to Hg and LiF systems. The distance between atoms in
both of these systems is about 3.5 Bohr.

With the development of machine learning techniques and
in the absence of a proper theoretical framework to capture
the nonlocal contributions, many researchers have explored
the possibility of using neural networks or other nonlinear re-
gression techniques to model the kinetic energy functional. In
a seminal paper, Snyder et al.>3> were able to obtain accurate
kinetic energy density models for one-dimensional systems
using a kernel ridge regression based framework. However,
the performance deteriorated when such models were used in
conjunction with an orbital free DFT framework>*. Recently,
Meyer et al.>> have shown that better kinetic energy models
can be generated by including functional derivatives in the fit-
ting. Ghasemi and Kiihne®® have also used a neural network
model based on functional derivative of the kinetic energy to
train reliable models for systems containing up to 4 electrons.
However, major bottlenecks in using these methods for real-
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FIG. 3. nonlocal kernel of Eq. 5 proposed by Combariza et al.?2. The
abscissa x is dimensionless variable given by y = wp|x —x'|. The
function w (y) is large when density is low and/or |x — /| is small,
and w (y) — 0 as y becomes large.

istic three-dimensional systems are the requirements of large
data sets for training, and that model predictions are reliable
only when they are used to interpolate between data points
already present in training sets. Thus, it is important to de-
sign better kinetic energy density models that need only a few
structures to train. To this end, designing models by manipu-
lating existing physics-based models can be a promising route.

Recently, Golub and Manzhos®’ have demonstrated that us-
ing linear regression to fit a model containing up to fourth or-
der derivatives of the density results in better reproduction of
the kinetic energy density?’. This is in agreement with con-
clusions presented by Seino et al.® that the performance of ki-
netic energy models can be improved by incorporating higher
order derivatives of the density. However, Golub and Manzhos
were also able to obtain better models using neural networks
containing up to 12 hidden layers and using Gaussian process
regression®’3%, The fact that a neural network model with
multiple hidden layers increases the accuracy of the model
suggests that spatial correlations of the ground state electron
density and its derivatives as well as their nonlinear combina-
tions play an important role in the kinetic energy functional.
This is contrast to traditional models that only include correla-
tions in the density to capture the nonlocal part of the kinetic
energy density. Thus, it is natural to ask if it is possible to
design nonlocal terms containing derivatives of the density in
line with the models proposed by Garcia-Aldea and Alverel-
los.

In this contribution, we follow the data-aided learning ide-
ology and propose a simple prescription that allows us to cal-
culate the local and nonlocal contributions to the kinetic en-
ergy and model the total kinetic energy of any system. Our
method relies on a dictionary of functional forms that have
been proposed in the literature to capture the local and nonlo-
cal contributions, and a basis function expansion to capture the
seemingly difficult, and analytically unknown, nonlocal ker-
nel. To illustrate our method, we first use a one-dimensional



KSDFT framework to screen a few kinetic energy functionals.
To this end, we use chemically homogeneous and heteroge-
neous systems, like Hp, LiF, F;, and a one-dimensional chain
of eight hydrogens, that have been used in the literature to an-
alyze different electronic structure theories®*!. Next, we use
three-dimensional (3D) calculations of simple molecules to
assess the predictive capabilities of the model identified from
the 1D analysis. We show that by using kinetic energy densi-
ties and the corresponding electronic densities of only a few
(between 2-5) structures, it is possible to accurately recon-
struct nonlocal contributions to the kinetic energy. In addition,
our results show that instead of sampling the whole configu-
ration space of Kohn-Sham kinetic energy and electron densi-
ties, it is easier to develop models that can learn a small part
of the configuration space pertaining to the system of interest.

Il. KINETIC ENERGY FUNCTIONAL MODELS
A. Semi-local contributions

The semi-local contributions in our approximation are
based on the gradient expansion of the kinetic energy. We
consider all five terms in the fourth order gradient expansion'®
for one-dimensional system. The first three terms are the
Thomas-Fermi, von Weizséicker and the Laplacian terms and
the last two terms are the fourth order terms in the low density
region as discussed in the introduction section and shown in
Fig. 1. A regularization constant, A, is thus used in the de-
nominator of the last two terms to avoid the aforementioned
divergence issue (see Eq. 6). The Thomas-Fermi term repro-
duces the exact kinetic energy for a uniform, non-interacting
system. On the other hand, the von Weizsicker gradient term
reproduces the exact kinetic energy for a system with a single
orbital. Therefore, to model the kinetic energy of an interact-
ing system, we consider a dictionary of terms that include the
fourth-order gradient expansion terms of kinetic energy of the
following form::

[p'(x)]?
p(x)
(0" () +p' (x)p™ (x)

[p(x)]+A ’

fiocal (X) =co[p (x)]* + ¢ +c2p" (x)+

P (x)
[p(x)]* + A

(6)

c3 +cq

where fiocq (1) is @ KE density model, c}s are the coefficients
to be determined by fitting against the data and A is the reg-
ularization constant. Our results show that different powers
of the von Weizsicker and the Laplacian of the density are
not very effective in capturing the local contributions to the
kinetic energy density. This is also evident from the profiles
shown in Fig. 1: Inclusion of the higher order terms leads to
only minor changes in the predicted total kinetic energy densi-
ties. In addition, many researchers have neglected the Lapla-
cian of the density, but our results show that it affects the local
behavior of our models. Our model differs from other models
reported in the literature®!3-1642-44 because the coefficients
associated with each term in Eq. 6 are obtained by fitting.

B. Nonlocal contributions

It is known that nonlocal contributions play an impor-
tant role in the kinetic energy functional for inhomogeneous
systems®. Therefore, generating nonlocal functionals to de-
scribe the kinetic energy density is an active topic of research
and many models - majority of which are based on models
proposed by Wang and Teter,'® Chacén et al.,'* or Garcia-
Gonzilez et al.> - have been proposed in the past few decades.
For example, in 2018, Mi et al.’ proposed a nonlocal kinetic
energy model that includes the model proposed in Ref. [13]
and a correction term obtained via functional integration. On
the other hand, nonlocal kinetic energy models proposed by
Emily Carter and co-workers in Ref. [14 and 15] are based on
solving an ordinary differential equation in the Fourier space.
In this work, we propose to learn the nonlocal kernel for an
inhomogeneous system directly from KSDFT data. Thus, to
model the kinetic energy functional for one-dimensional sys-
tems, we consider the following form

M0 = [0 (15— wx)) [p ()P,
w(x,x') = p(x) +p(x),

)

where tr(ﬂl ) [p](x) is an approximation for nonlocal kinetic en-

ergy density and o, 3 are the exponents. We set both & and
B to 2 so that tr(dl) is symmetric with respect to x and x’ and
satisfies the uniform coordinate scaling relation®S.

C. A nonlocal kernel based on Herring’s formulation

In a seminal paper on learning the kinetic energy functional,
Herring!® in 1986 suggested that for systems with spin de-
grees of freedom, the relative contributions of different eigen-
functions of the Hamiltonian to the ground state electron den-
sity can be captured by u; (r) = y;(r)/+/p (r) and corre-
spondingly the kinetic energy functional can be written as'®

t(r) = WJrZI_‘,P(r)IWi (r)? @)

Therefore, Herring proposed that the total energy is given by'®

E=Tiglp(r)]+ [ p()v(r)dr ©)

and the kinetic energy is given by the sum of the von
Weizsidcker term and contributions from the phase factor (the
last term in Eq. 8), i.e. Txg = Tyw + Tp. At the ground
state, v(r) = —0T /8p (r) and the potential v(r) is given by
v(r) = vy (r) +vg (r). Here vy (r) = —6T,w/6p (r) de-
pends on first and second derivative of the electronic density
and vy (r) = —8Ty/Sp (r). Based on his analysis of an al-
most uniform electron gas, Herring suggested the following



functional form'? for vg:

P (r)—p¥
(0)
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(10)

v (r) =v + Ay

Here p(© is the uniform electronic density of the electron gas,
p (r) is the perturbed electronic density, similarly vg (r) — v(?)
is the deviation in the potential from that of an uniform Fermi
gas and Q» is a density dependent nonlocal kernel. The nonlo-
cal term in Eq. 10 is different from the functional form used in
Eq. 3 because it convolves the perturbation in the ground state
electron density with the nonlocal, density-dependent kernel
(0». Motivated by this discussion we consider a second nonlo-
cal kernel to model the kinetic energy density:

w(xx)) [p(x)—p (x’)]zdx/.

(1)
The exponents of p(x) and (p(x) — p(x') are set to 2 to ensure
that this nonlocal term satisfies the coordinate scaling crite-
rion. Before concluding this section, we note a few salient
differences between the nonlocal terms proposed in Eqs. 3
and 11. Since, the ground state electron density is a positive
quantity, the kinetic energy contribution from Eq. 3 is neg-
ative only when the density-dependent kernel Q; is negative.
On the other hand, kinetic energy contribution from Eq. 11 is
negative when the difference in electronic densities at x and
x' is negative or when the kernel Q; is negative. In addition,
using a Taylor series expansion we see that

1P @ =lp (P [ @ (jx—¥

p(x) =p(x)=Vip () [x —x] +--- (12)

This means that the kernel @, automatically includes correla-
tions between derivatives of the ground state electron density.

D. A kernel to capture spatial correlations between
derivatives

In a series of papers, N. H. March and co-authors (including
P. M. Kozlowski, A. Holas and W. H. Young)*’—? explored
the nonlocal dependence of the kinetic energy functional for
various model systems and proposed a kinetic energy density
model for a one-dimensional harmonic oscillator in which the
nonlocal term contains the derivative of the density instead of
the form shown in Eq. 3. With this discussion in mind, let us
consider the expression for kinetic energy given by Liu and
Parr in Ref. [53]

_ [ 1Ve ()P
8 p(r)

+%/p(r) Ve VP (r,x) |_pdr (13)

Txe [p (r)] dr

1
+§/Vrp (r)-VyP(r,x') |,_dr,
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where, P2(r,r') = |y(r,*')|* /p (r)p (r') and y(r,r) is the
density matrix. Let us assume that P (r,r’) is a nonlocal kernel
that captures the spatial separation between two local environ-
ments (at r and r’) and has a form similar to the kernel in Eq.
3 (i.e. the kernel itself depends on the local density). Then
the derivative of P (with respect to r’) in the second and third
terms on the right hand side of the above equation will also
contain a derivative of the density at r’. Therefore, to capture
the kinetic energy density of a general multi-component sys-
tem it is instructive to consider the derivative of the two-point
correlation function in terms of a nonlocal kernel. If we limit
ourselves to kernels containing only first order derivatives, a
tractable form is

/Vrp (r)-VpP(r,x')|,_ydr

(14)

— //Vrp (r)-Vep (') Qs (|r—r'| u(r,x')) dr'dr
Therefore, the third nonlocal kernel we propose to model the
kinetic energy density is

t1§13> (x) = /VxP (x)- Vup (+) Q3 (Jx—x'| ,w(x,x')) dx'.
(15)

Since the kernel in our model is a dimensionless quantity, the
right hand size of Eq. 15 satisfies the coordinate scaling crite-
rion.

E. Numerical implementation

In this section, a detailed description of the implementa-
tion of the models discussed in the previous sections is pre-
sented. Traditional nonlocal kernels discussed in the litera-
ture are obtained from slight modifications of the Lindhard’s
susceptibility function or by solving a differential equation in
the Fourier space'>~1¢. The motivation for using Lindhard’s
susceptibility function is that it can capture Friedel oscilla-
tions in the electronic density>*. Since, Lindhard’s suscep-
tibility function was derived for a uniform electron gas, the
characteristic features of the nonlocal kernel for an inhomo-
geneous system in KSDFT has remained elusive. Motivated
by recent developments in data-aided learning of partial dif-
ferential equations, we learn the nonlocal kernel by using a
set of basis functions>>®. To this end, we analyzed the ef-
fectiveness of a set of orthogonal basis functions, like spher-
ical Bessel functions and Chebyshev functions, and a set of
Gaussian functions. In our analyses, a set of Gaussian func-
tions produced stable kernels and for all subsequent analysis
we approximate the nonlocal kernels by a linear combination
of standard Gaussian functions as

Qi (Jx—+

W) = ¥ e Pl P
= (16)

w(x,x)=px)+p(), i€ {1,2,3}.

Here d; ; are the coefficients, Ng is the number of Gaussian
functions, and f3;, ; are the width of the Gaussian functions.



Systems | Parameters Local 01 ) 03 01+0 0>+ 03 01+03 01+0>+03
R? 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RMSE 7.7E-05 5.6E-05 5.9E-05 4.0E-05 4.9E-05 2.6E-05 2.8E-05 5.6E-05
TKSDFT 0.1851 0.1011 0.1011 0.1011 0.1011 0.1011 0.1011 0.1011
H» Trmodel 0.1841 0.1020 0.0999 0.1018 0.1003 0.1008 0.1008 0.0985
Terror 0.0010 0.0009 0.0012 0.0007 0.0008 0.0003 0.0003 0.0025
R? 0.9847 0.9975 0.9902 0.9850 0.9983 0.9929 0.9977 0.9983
RMSE 0.0042 0.0019 0.0037 0.0041 0.0016 0.0032 0.0018 0.0015
TKSDFT 0.3550 0.3558 0.3560 0.3550 0.3558 0.3560 0.3558 0.3788
Hg Tmodel 0.2591 0.3768 0.3418 0.2475 0.3686 0.3451 0.3663 0.3891
Terror 0.0959 0.0210 0.0141 0.1075 0.0128 0.0108 0.0105 0.0103
R? 0.9846 0.9974 0.9955 0.9914 0.9994 0.9968 0.9989 0.9968
RMSE 0.0074 0.0031 0.0040 0.0055 0.0014 0.0034 0.0020 0.0030
TKSDFT 0.5403 0.5403 0.5403 0.5403 0.5020 0.5403 0.5020 0.4739
LiH Tinodel 04817 | 05714 | 05574 | 04436 | 04926 | 0.5261 0.5144 0.5340
Terror 0.0587 0.0310 0.0170 0.0967 0.0094 0.0142 0.0125 0.0602
R? 0.9988 0.9996 0.9994 0.9990 0.9996 0.9994 0.9997 0.9996
RMSE 0.0050 0.0027 0.0035 0.0045 0.0029 0.0034 0.0024 0.0026
TKSDFT 2.7035 2.7035 2.4304 2.4304 2.7055 2.4304 2.4304 2.4709
LiF Tmodel 2.7145 2.6849 2.4079 2.4220 2.6982 2.4185 2.4084 2.4440
Terror 0.0111 0.0186 0.0225 0.0083 0.0073 0.0119 0.0220 0.0269

TABLE I. A comparison of kinetic energy densities and total kinetic energies between model predictions and KSDFT results for structures in
test data sets. For each system, 3 structures are used for training and 27 structures are used for testing. Here R* and RMSE are the coefficient of
determination and the root mean square error of kinetic energy density (Ha/Bohr), respectively, Txsprr and Tyjoge] are the total kinetic energies
(Ha) obtained from KSDFT calculations and the various models, respectively, and Ty is the error in total kinetic energy (Ha) between the
KSDFT value and the model. For each model type, total kinetic energies (Txg, Tmodel and Terror) only for the structure with the maximum
absolute error (out of the 27 structures used for testing) are shown. Q1, Q> and Q3 correspond to the nonlocal models in Eqs. 7, 11 and 15,

respectively.

The coefficients f; ; are further written as a geometric pro-
gression f; ; = BB, where Bio and B, are parameters of

the model®’°. With this approximation, we obtain the fol-
lowing expression to model the kinetic energy of a system in
KSDFT:

o P [p/(x)]z ST p(4)(x)
() =eolp (@) a1 = o3 Fep (W) e o
[p" () +p'(x)p1) ()
B P L R
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Y dijlpP? [ e Pk Tl o 2ay s
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Ng /2 NV b
Y ol [ e Pk P o) - p(a)av
j=1

NG ! 2 " 2
+ Y daVip() [Pk Ty (),
=1
p /

wx,x) = p(x) +p ().
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Here A is a regularization parameter. For numerical imple-
mentation, let us assume that the kinetic energy density data
(for structures in the training data set) at different grid points
are stored in a column vector ty, the coefficients ¢; and d; ;
are stored in another column vector ¢, and A is a matrix that
stores the local and nonlocal terms, whose number of rows
is equal to the number of grid points used for training and

the number of columns is equal to the total number of coeffi-
cients. To obtain the coefficients ¢, we use a linear regression
framework®?®! and minimize the following cost function with
L,-regularization:

Q1 = Y[ty — Ac|?+ A[e|3,. (18)
Su

Here, the sum S, is over all the structure in the training data
set. The parameters for the widths of Gaussian functions, Bi,()
and fB; 1, are obtained by minimizing the root mean square
error in kinetic energy density.

Ill. RESULTS

A. DFT Data

We used four different systems, namely, H, molecule, Hg
chain, LiH and LiF molecules to assess the performance of
our models. For each of these four systems, 30 different
structures are generated and ground state change densities
and kinetic energy densities are saved for training and test-
ing. For the molecules, the bond length is varied uniformly
from 3.5 to 9 Bohr to obtain a total of thirty structures. For
the Hg chain, structures are obtained by randomly perturbing
the bond lengths by 5% of the original bond length (4 Bohr).
For each of the four systems, we use three structures for train-
ing the model and the remaining structures are used for test-
ing the model. The three structures used in training models
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FIG. 4. Comparison of kinetic energy densities between local, nonlocal models and KSDFT results for Hy, Hg, LiH and LiF systems for
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intermediate case. Figures a, b, ¢ and d correspond to local, Q1, Q», and Q3 models, respectively, while e, f, g, and & correspond to Q1 + O»,

0>+ 03, 01 + 03, and Q1 + Q> + O3 models, respectively.

for the molecular systems have bond lengths of 3.5, 6 and 9
Bohr, respectively, and for Hg, three structures for training are
randomly selected from the set of 30 structures. Kohn-Sham
DFT data is generated using a Matlab code based on methods
outlined in Section I'V. To solve the one- dimensional KSDFT
eigen-value problem, we used a mesh side of 0.03 Bohr, a su-
percell with 30 Bohr edge length and 10 k-points in the first
Brillouin zone. The self-consistent iterations are considered
to have converged when the change in energy per atom is less
than 10~ Ha.

B. Model training

To learn the kinetic energy density we consider 8 different
models consisting of different combinations of semi-local and
nonlocal terms shown in Eq. (17). They are (i) only the semi-
local terms show in Eq. (6), (ii) semi-local terms shown in Eq.

(6) and the nonlocal term, trgll ) (x), shown in Eq. (7), (iii) semi-

local terms shown in Eq. (6) and the nonlocal term, tl(ﬂz) (x),
shown in Eq. (11), (iv) semi-local terms shown in Eq. (6) and

©)

nonlocal term, z‘nl3 (x), shown in Eq. (15), (v) semi-local terms

shown in Eq. (6) and nonlocal terms tl(ﬂl ) (x) and tr(ﬂz) (x), (vi)
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semi-local terms shown in Eq. (6) and nonlocal terms t[(ﬂz) (%)
(

and tnf) (x), (vii) semi-local terms shown in Eq. (6) and non-

local terms t[(ﬂl ) (x) and tr(j) (x), (viii) semi-local terms shown

in Eq. (6) and all the three nonlocal terms tlgll ) (), tlglz) (x) and
3)
7 ().

nl

To model the nonlocal kernels in tl(ﬂl ) (x), tl(llz) (x) and téf) (x)
we used 6 Gaussian functions - this number of basis functions
corresponds to a minimum in the mean squared error. For
models containing the local terms and one nonlocal term, the
total number of coefficients is 11. Similarly, for models con-
taining the local terms and two (or three) nonlocal terms, the
total number of coefficients is 17 (or 23). The widths of these
Gaussian functions are optimized by using the Nelder-Mead
simplex method and the coefficients of the local terms and the
Gaussian functions (used to model the nonlocal kernels) are
obtained by optimizing the cost function in Eq. (18) using
linear regression. For these optimizations, the regularization
parameter is set to 107,

For all systems considered in this study, we use 3 structures
for training and 27 structures for testing and validation. For
molecules, like Hy, LiF and LiH, structures with 3.5 and 9
Bohr bond lengths (i.e. atoms are too close and far apart) and
a structure with intermediate bond length are used. Structures
in the testing set include systems with bond lengths in between
the two extremities, i.e. 3.5 and 9 Bohr. For Hg, training and

testing sets contain structures in which atomic positions are
perturbed using random numbers between -0.50 and 0.50.

C. Kinetic energy density prediction

Table I shows the performance of the proposed models -
measured in terms of metrics, like coefficient of determination
(i.e. R2 score), root mean square error (RMSE), and the maxi-
mum error in the total kinetic energy - for a few representative
systems. The coefficient of determination and RMSE values
are calculated by using all the 27 structures in the training data
sets, while only the maximum errors in the predicted total ki-
netic energies are shown in Table I. For all the systems con-
sidered in this study, fitting the coefficients of the local terms
results in models that exhibit superior performance than the
model shown in Eq. (2). For example, the root mean squared
errors are less than 0.008 Ha/Bohr and the maximum error in
the total kinetic energy is less than 0.09 Ha. The fitted coef-
ficients, shown in Table 1 in the supplementary material, con-
tain a mixture of positive and negative terms and are different
from the coefficients of the local terms in Eq. (2). We observe
a decrease in RMSE values for all 4 systems when nonlocal
terms, like tr(ul ), ttglz) or tl(ﬂ3>, are included in the model along
the with local terms. For majority of the test systems (except

for LiF with 7", LiH with #*)

N . » €tc.), errors in total kinetic en-
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local, Q1, Q», and Q3 models, respectively. Figures d, e, and f show kinetic energy densities obtained by using Q| + O, O + 03, Q1 + O3,

and Q1 + Qs + 03 models, respectively.

ergies also decreased for models containing a nonlocal term.
This suggests that capturing spatial correlations in gradient of
the electron density is important to learn the kinetic energy
density.

From Table I, we also see that RMSE values decrease when
two or three nonlocal terms are present in the models. Since
the three nonlocal terms incorporate spatial correlations in
density, fluctuations in density and gradient of density, intu-
itively we expect them to be mostly orthogonal to each other.
However, the increase in RMSE values for some systems with
2 or 3 nonlocal terms are present suggests that (1) these non-
local terms have a large overlap (i.e. they have large collinear
components), or (2) the increase in number of fitting parame-
ters leads to over-fitting.

As shown in Fig. 3, kinetic energy densities of hydrogen
molecules predicted by all of the eight models lie nearly on
top of the KSDFT curve. This is also evident from the fact
that the RMSE values shown in Table I are on the order of
1073 Ha/Bohr. In case of LiF too, the local and nonlocal
models are able to model the kinetic energy densities accu-
rately. However, for Hg and LiH, local models and models
containing only one nonlocal term are unable to accurately
model the kinetic energies of all the structures in the test data

set. For example, in case of LiH, the model containing tr(113) (%)
results in oscillations in the kinetic energy (at x ~ £0). Sim-
ilarly, kinetic energies in regions between two atoms are also
not correctly captured in case of Hg using models contain one

nonlocal term. However, as shown in Figs. 4 (c¢), (g) major-
ity of these issues are resolved when two nonlocal terms are
included in the model.

Since we used a least-square procedure for training, we see
a nearly uniform distribution of grid points where model pre-
dictions show either positive or negative deviations from the
KSDFT calculated kinetic energy density values. This means
that the predicted total kinetic energy can exhibit positive or
negative deviations from the KSDFT value. At first glance,
this may seem to violate the N —representability constraint,5>
of the kinetic energy, but this is simply a result of the fit-
ting procedure of minimizing the magnitude of model er-
rors during training. In principle, it is possible to impose
a penalty function to make sure that the model predictions
are always higher than KSDFT values. But this leads to
larger errors and worse models without having any guaran-
tee that the final model is N-representable as the condition
[td’r < [tprrd’r is not a sufficient one. Since, no patho-
logical issues have been reported for functionals that do not
satisfy [td’r < [tpprd®r,®** and the fact that many data-
driven models3”-3%%3 reported in the literature also do not obey
this condition, we focus only on developing models that min-
imize error magnitudes.
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of LiH molecule.

D. Characteristic features of nonlocal kernels

The kernel shown in Fig. 3 is representative of many other
nonlocal kernels that have been proposed in the literature.
Since such a kernel is unable to accurately capture the kinetic
energy densities of simple systems, like H and Hg (e.g. Figs.
2(a)-(b)), it is intuitive to ask how different are the kernels
learned from KSDFT data. To this end, in Fig. 5 we show
nonlocal kernels for two representative systems - Hg chain and
LiH molecule. We specifically focus on these two systems
because their kinetic energy densities show features, such as
splitting of the kinetic energy peak located close to the Li atom
position (see Fig. 4) which are difficult to capture.

All the kernels shown in Fig. 5 exhibit similar features,
i.e. they are nonzero at y = [x—x'|(p (x)+p (¥)) =0, but
they exhibit an oscillatory behavior as y increases from 0 and
finally decay to zero at large values of y. However, unlike
the kernel in Fig. 3, we do not see multiple humps in the
kernel for the model containing the local terms and | (x) for
Hg and LiH systems. In fact, for LiH, the kernel Q; remains
positive, while for Hg the kernel is negative only near y ~ 1
(see Fig. 5). We also see that a particular type of kernel often
displays features that are common in all the nonlocal models.
For example, the kernel Q; (in Fig. 5 (a), (d)) reconstructed
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from KSDFT data of LiH and Hg in the model containing only
01, and in the model containing Q1 + Q> + Q3 have similar
features. The same is true for the nonlocal kernel Q3 (see Fig.
5 (c), (D).

To further analyze the behavior of the nonlocal kernels, we
trained models using structures from different systems. To
this end, we used 3 structures from each of two systems - Hj
and Hg, and trained eight models. As evident from Fig. 8§,
the characteristic features of the kernels Q, Q> and Qs for
Hg and Hg+H; systems are very similar, but amplitudes of
fluctuations in these kernels for H, are much smaller than ker-
nels for Hg and Hg+H, systems. In addition, magnitudes and
signs of the kernels Q1 and Q> at y = 0 for models trained
using only Hg structures and those trained using both H, and
Hg structures are different. This suggests that contributions
from some of the local terms also change as the diversity of
the training data set changes. Nevertheless, the oscillations in
these kernels are similar to those reported in the literature ob-
tained by using the Lindhard’s susceptibility function, and we
believe that our models can be used to learn kernels for other
complex systems and capture effects like Friedel oscillations.

E. Behavior outside the training region: Performance for
charged systems

Next, to study the performance of the models outside of
their training region, we analyzed the performance of our
models (trained on neutral structures) by inserting one extra
electron into the test structures of the 4 systems. Data (i.e.
ground state electron densities and kinetic energy densities)
for such charged systems is generated by adding a jellium
external potential to our KSDFT formulation. We show the
predicted kinetic energy densities for these systems (one rep-
resentative structure for each system is shown) in Fig. 6 us-
ing models trained with neutral systems. Interestingly, all the
eight models perform satisfactorily for the charged systems,
though we observe that models with either O, or Q3 perform
better than the rest. Here we also note that for a neutral Hp
molecule, only a single eigenfunction is used to calculate the
ground state change density. Therefore, the discrepancies in
the predicted kinetic energy densities for H, can be attributed
to the presence of additional nonlinearities in the system due
to the inclusion of an additional eigenfunction in the electron
density and kinetic energy calculations. In addition, it is evi-
dent from Figs. 6(b) and 6(c) that only Q; is not sufficient to
capture all the features of the kinetic energy density. This sug-
gests that nonlocal terms containing the gradient of the density
are need to accurately model the kinetic energy density.

To further understand the suitability of the proposed mod-
els, we study the performance of our models (trained using
three neutral structures) on highly charged Hg systems. Fig-
ure 9 shows total kinetic energies of systems containing dif-
ferent number of electrons obtained from all of the eight local
and nonlocal models. Interestingly, we observe that the local
model as well as the nonlocal models containing Q3, Q> + O3
and Q1 + Qs + Q3 perform very poorly with increase in the
charge on the system. On the other hand, models containing
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QO along with Q, or Q3 are able to capture the trend. These
observations highlight the importance of incorporating spatial
correlations of derivatives of the density and local fluctuations
in the electron density, and models containing these quantities
exhibit better transferability. The poor performance of Q3 also

suggests poor transferability of models just based on the gra-
dient information.

Next, we study changes in the three nonlocal kernels Q,
0> and Q3 by including charged systems during the training
process. nonlocal kernels obtained from these updated train-
ing sets are shown in Fig. 10. Interestingly, shapes of these
kernels remain essentially the same, however values of the
kernels near y = 0 changes. A similar behavior is also evident
in the kernels shown in Fig. 5 and this also suggests that the
semi-local part of our model is perhaps not complete and the
missing contributions in the semi-local part are being captured
by the nonlocal kernels.

F. Behavior outside the training region: Kinetic energy
density during a self-consistent iteration

Finally, we verify the stability and performance of pro-
posed models during a self-consistent field (SCF) iteration of
an OFDFT calculation. To this end, we mimic an actual SCF
iteration during an OFDFT simulation by storing electron den-
sities and kinetic energy densities for each SCF step for the Hg
system during a KSDFT calculation. Then, the stored electron
densities are taken as an inputs for the nonlocal models with
01, 02, O3 and Q1 + Q3 and the predicted kinetic energy den-
sities are compared with the corresponding KSDFT values in
Fig. 11. The model containing the nonlocal kernel O, per-
forms best among the three models considered in this analysis
and the maximum error in the total kinetic energy (after first
SCEF iteration) is about 0.017 Ha (i.e. 0.0021 Ha/atom). The
error in total kinetic energy is about 0.012 Ha (i.e. 0.0015
Ha/atom) for the Q; + QO3 model. Motivated by the perfor-
mance of our models, we conjecture that such models can be
used to perform OFDFT calculations.

G. Results from 3D analysis

It is clear from the analysis of one-dimensional systems
that models containing two nonlocal terms are optimal in
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terms of RMSE scores as well as the number of param-
eters. In addition, the nonlocal term with kernel Q, is

closely related the kernel Qs, i.e., tr(ﬂz) (x) =[p (X)]* [ Q2dX +
P (W J Oslp (¥ — 2[p (x) ] 02p (¥)dv'. Thus, we

analyze the performance of the following model containing
Q1 and Q3 for three dimensional systems:

t(r)= C()ps'/3 (r)+c————

(B )7 VoI, Ap()|Vp(r)f
o) A T S

—|—pm(r)/Q1 (w(’r—r' z,r,r/))pm (x')ar’
+/Vp (r)-Vp ()03 (w(’r—r"z,r,r’))dr’

w(le=rPop e () = [ [p*° )+ ()]
(19)

+c

As in case of 1D, we use a set of Gaussian functions to model
the nonlocal kernels and our kernel depends on the density at
r and r’. The exponent of the density in the nonlocal term
containing Q is set to m = 5/6. The functional form of w in
Eq. 19 and the value of exponent m are motivated by models
proposed in Ref. [16,44].

For general three-dimensional systems pseudo-potentials
are used in routine calculations, however, in absence of or-
bitals, the nonlocal part in the pseudo-potential cannot be han-
dled straightforwardly within the framework of OFDFT. For
this purpose, we focus here on light elements and perform all
electron calculations to generate data for training and testing
(see Appendix D). We consider two systems: helium dimer
and lithium dimer. These systems allow us to demonstrate our
capability to model kinetic energy densities when atoms are
very close and when they are far apart. For each system, we
use 3 structures with bond lengths 2,4 and 6 a.u. for train-
ing and four structures (bond lengths of 2.5, 3, 5, 5.5 a.u.)
for testing the model. Since we have a small molecule in a
large box, we only consider grid points with electron densities
greater than 0.05 e/a.u.? for training (about 5x10°-1.3x10*
grid points per structure) and testing purposes.

In case of He, we obtain a RMSE score of 0.003 Ha/a.u.?
for structures in the test set while for lithium dimer we obtain
a RMSE score of 0.017 Ha/a.u.>. The R? scores for the pre-
dicted kinetic energy densities for helium and lithium dimers
are better than 0.9999, which suggests that scatter in the data
(due to basis set errors, see Appendix D) is responsible for the
disparity in the RMSE scores of Li and He systems. In addi-
tion, the mean error in the predicted total kinetic energies of
test structures for both the systems is about 0.02 Ha, which is
close to the values obtained for one-dimensional systems.

H. Comparison with other models proposed in the literature

Now, we compare our results to the models that have been
proposed in the literature. Snyder et al.>® used kernel ridge
regression to directly learn the kinetic energy functional from



the Kohn-Sham electron densities for one dimensional sys-
tems. We observe that the performance of our model is com-
parable in terms of the error in kinetic energy. They obtained
a maximum error in kinetic energy of around 2 x 10~% Ha for
H, while we obtain a value of around 3 x 10~*. Golub and
Manzhos3"% | Seino et al.3® have proposed different models
for three dimensional systems by using neural networks and
Gaussian process regression. We see that the performance of
our models in terms of the root mean square errors in the pre-
dicted kinetic energy densities are similar to those proposed
by these authors. In principle, a neural network or a deep
learning based model can learn very complex functions with
a large dataset.®*% In this regard, for simple molecules, it
seems that these a few physics-inspired terms are sufficient
to model the kinetic energy density. However, we note that
the complexity of the framework proposed here can be in-
creased by expanding the dictionary of physics-inspired terms
by including higher order nonlocal terms!®31*> and we plan
to expand our study to include crystalline solids in future. Our
model has the advantage of requiring a much smaller training
data set (electron densities and kinetic energy densities from
only 3 structures in the training set, 10* grid points in total)
than ~ 10 grid points required to train neural network mod-
els. In addition, the unknown coefficients in our framework
are simply obtained by solving a linear system which makes
it easy to implement and computationally efficient.

IV. CONCLUSION

In this contribution, a data-driven, physics-informed pre-
scription is proposed to model the kinetic energy density of an
inhomogeneous system using data from KSDFT calculations.
To model the nonlocal contributions, we have considered two
new nonlocal terms - one that includes local fluctuations in the
density and another that includes gradient information. The
proposed models are used to predict kinetic energy densities
and total energies of molecules, such as H,, LiH and LiF, and
one dimensional chain of eight hydrogens. The two new non-
local terms are shown to help in improving the predictive ca-
pability of the models for systems with complicated kinetic
energy density profiles (like Hg) and for systems not present
in the training set (e.g. systems containing extra electrons and
kinetic energy densities from a self-consistent field iteration).
In addition, we have used a simple procedure to learn the non-
local kernels by using a set of Gaussian basis functions. Using
only a few training structures our models are able to achieve
high accuracy (i.e. root mean square error of 0.003 Ha/atom
in the total kinetic energy).

From the analysis of the models with one, two or three non-
local terms (Section IV.C) we conclude that models contain-
ing two kernels most suitable because they contain an opti-
mum number of parameters (thereby minimize over-fitting)
and have lower errors in the predicted kinetic energy densities
and total energies. In addition, it is shown in Section IV.E that
the nonlocal models with Q; lacks transferability. However,
the performance is significantly improved when Q; is used
along with O, or Q3. Similarly, in Section IV.F, it is clear that

13

the nonlocal with Q; is needed to correctly reproduce the ki-
netic energy density. Since there is some collinearity between
0> and Q3, therefore we propose the following model to learn
kinetic energy density from Q; and Qs3:

=co[p(x)]? CM cp" (x)+c¢ &
t(x) =co[p(x)]” +c1 o0 +e2p” (x) + SR
[ ()]* +p'(x)p™ (x)
TP R

X slp(0)

+Zd31 P(x / b Ll o ()
p(x)+p(x).

2 / Bl [ [wix)]? [p(xX)]?dx

w(x X) =
(20)

Here, A is a regularization parameter. The ability of the mod-
els discussed here to model the kinetic energy density and the
total kinetic energy suggests that this is a promising route to
develop reliable models for OFDFT calculations. Given the
need to study larger system sizes beyond those accessible in
KSDFT calculations and the fact the developing a universal
density-dependent, kinetic energy functional is challenging,
our results show that there is a more amenable path: Instead
of sampling the whole configuration space of Kohn-Sham ki-
netic energy and electron densities, it is easier to develop mod-
els that can learn a small part of the configuration space using
a set of physics-informed descriptors.

SUPPLEMENTARY MATERIAL

See the supplementary material for the coefficients of the
local terms for the proposed models, distribution of error in
the kinetic energy for the testing data-set, and the Matlab code
to fit the models.
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Appendix A: Kohn-Sham DFT in 1D

In this section, we briefly outline the formulation and im-
plementation of Kohn-Sham DFT?*70 for a periodic one-
dimensional (1D) system. In what follows, x denotes the
coordinate in 1D space. The ground state electron density
and energy of a system in presence of an external potential
Vext(x) can be obtained by minimizing a total energy func-
tional, E[p(x)], which is given by

Elp(] = Hlp(0)] + Enlp )]+ Eulp o)+ Beclp (0,
Here Ti[p(x)] is the non-interacting kinetic energy of elec-
trons, Eex[p ()] is the external potential energy due to vex(x),
Ey[p(x)] is the Hartree electron-electron repulsion energy and
Exc|p(x)] is the exchange correlation energy. In Kohn-Sham
formulation, the kinetic energy density is obtained by solving
the following eigenvalue problem for a non-interacting sys-
tem:

2
{ ;;2 + Vext(x )+vH[p](x)+vXc[p](x)} v (x,k) =
€j kWi (x,k),
IVS
=Y [hlviPak ;e (1,2}
j=1

ll/] (ka) = eikxuj (ka)v
(A2)

where vex(x) is external potential, vi[p](x) is the Hartree
potential, vxc[p](x) is the exchange-correlation potential, y;
and €; are the Kohn-Sham orbitals and energy levels, Nj is
the total number of occupied orbitals, f; is their occupation
number, { f(k)dk denotes the average integral of some func-
tion f(k) over the Brillouin zone, and u; (x, k) is some periodic
function. Orbitals y's are also a function of reciprocal space
coordinate k in first Brillouin zone due to Bloch’s theorem!”7!
as shown in the above equation. For one-dimensional model
systems, we replace the Hartree potential and external nuclear
potential by a soft form:3%72

/
/p I—Hx x\z

Ve () = Y el
ext ; 1+|_foI|2

Here, Z; is the nuclear charge of the I atom. For our analysis
of the kinetic energy functional, we use local density approx-
imation (LDA) functional for the exchange-correlation poten-
tial proposed in Ref. [73]. The exchange potential is

A /T
vxc:f;tan 1(%)

(A3)

(A4)
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The Kohn-Sham equation in Eq. A2 can be formulated
as a fixed-point iteration problem’ p = F(p), which can be
solved self-consistently using an appropriate mixing scheme,
such as, the Pulay mixing scheme’*. We follow similar higher
order finite difference strategy outlined in Ref. [75] to numer-
ically solve the Kohn-Sham equations. Further details of our
implementation are described in Appendix I.

Appendix B: Implementation

We solve the Kohn-Sham equation numerically using a fi-
nite difference discretization method in which a supercell with
an edge length of L is discretized using an uniform finite-
difference grid of spacing /. Grid points are indexed from 1 to
N, where N = L/h. The second derivative in Eq. A2 is approx-

imated by using a central finite-difference approximation'”-’6
2f|" e ik i~k 2N
el :sz)Ck (f(ﬁ)"'f(k )>+0(h ), (BI)

where () denotes the value of the function at i’ grid point.
The weights ¢; are!”:

181
CO:_hz = 2
2(_1)k+1 (NFD!)z
= k=1,2,....Npp.
Ck h2k2 (NFD_k)'(NFD+k)‘7 s &y e INFD
(B2)

Here Npp is the order of finite difference approximation. The
Hartree and the external potentials in Eq. D2 can be obtained
by summing over contributions from all periodic images. The
mean integral in Eq. A2 over the Brillouin zone is approxi-
mated by finite k-points sampled uniformly'”

N
. fodkx Y wif () (B3)
BZ b=1

where, kj, and wy, are the nodes and weights for the integration.
With the above discretization scheme, Kohn-Sham equation in
Eq. A2 can be written in terms of matrix eigenvalue problem:

Hy =gy, HeRVN yeRV

1 . ) . .
5 Vil 85 (i lo] v+ vielo] )

N Ni
0 = Z Z bf/‘lfjb‘/’,b
Jj=1b=1

H(ivj) —
(B4)

The eigenvalue problem outlined above in Eq. B4 is solved
in Matlab using the inbuilt eig solver. With a given initial
guess of electron density, these equations are solved using
self consistent iterations until convergence to desired accu-
racy. The kinetic energy and kinetic energy density are ob-



tained using the converged orbitals as

Ny Ng

Z Y Z hwbw,hvh b‘l’,hv

i=1j=1b=
Ny Ng

ZMZ Wb w/bvhbwjll
J

(BS)

Here Ti[p] = [#[p](x)dx and t;[p](x) are total kinetic energy
and kinetic energy density respectively, ¥ is the complex con-
jugate of y, V% is the finite-difference discrete second deriva-
tive matrix.

Appendix C: Results for modified Q; model

Here, we modify the Q; model in Eq. 7 such that it cap-
tures the correct physics in the uniform gas limit. The model
proposed in section II B follows the uniform coordinate scal-
ing relation. Hence, we modify the Q| model proposed before
by changing the exponents ¢ and f3 to 4/3 so that it has cor-
rect asymptotic behavior in the uniform gas limit. We call the
modified model as O which can be written as:

W@ = [0 (k=] i) @) a,
p(x)+p(x),

wix,x') =
(ChH

where Q; is the modified nonlocal kernel Q;. We note that
the modified model does not obey the uniform coordinate scal-
ing law. We also show the performance of the modified model
in terms of root mean square error in kinetic energy density,
R? score and error in total kinetic energy in table II. We ob-
serve that the performance of the models with modified Q;
kernel has comparable performance as the coordinate scaling
compliant model.

Appendix D: Kohn-Sham DFT in 3D

In this section, we briefly outline the formulation and im-
plementation of Kohn-Sham DFT?%70 for a three-dimensional
(3D) system. To generate data for 3D systems, we solve the
Kohn-Sham equations using a set of even-tempered Gaus-
sian basis functions and all terms in the standard Kohn-
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Sham Hamiltonian are calculated analytically using expres-
sions given in Ref. [77,78]. Therefore, to obtain the ground
state electron density, we solve the following eigenvalue prob-
lem

Hc = ASc, H:/u/(r)HKsly(r)dr
(D1)
S= [wmwmdr, y) =Y 5
P

Here ¢; (r), ¢ (r), ... are a set of even-tempered Gaussian ba-
sis functions, I, are the centers and ¢ is a vector that contains
all the coefficients. We model the Hartree and external nu-
clear potentials of the Kohn-Sham Hamiltonian (denoted by
Hks) by using the Coulomb kernel

/p \r—R|

Here, Z; is the nuclear charge of an atom located at R;. We use
the local density approximation (LDA) functional for the ex-
change potential. The eigenvalue problem in Eq. D1 is solved
iteratively and the electron density is updated using a simple
mixing scheme with mixing coefficient set to 0.10. The widths
of the Gaussian basis functions for helium dimer are set to
those in STO-4G basis set (Ref. [79,80]). However, in case of
lithium, kinetic energy densities obtained from DFT calcula-
tions performed using this basis set shows significant scatter at
high electron densities. This scatter in the kinetic energy den-
sities close to atom centers decreases significantly when we
use an even-tempered basis set (containing 12 Gaussian func-
tions at each atom position with widths given by 0.05 x 3/, i =
0,1,2, ..,11.) for lithium dimer.

Electron densities and kinetic energy densities are obtained
using a supercell of size 25x25x25 Bohr® and 200 grid points
along x, y and z-directions. The coefficients obtained from
self-consistent field iterations are used to calculate the kinetic
energy and electron densities for a given structure by using the
analytical form of the wavefunction given in Eq. D1:

vea (1) =X gy O

occupled occupled 2
rljk Z 2|y, (r Z 2[2@7 ‘pp Tiji, Tp ‘| )
occupied () (n) 2
Hrg) = X lch 0p (riji: p) Alch 0p (riji: p)
n p P
(D3)

Here cg,") is the coefficient for the n-th eigenfunction of H, r;

is a grid point and A denotes the Laplacian.
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Systems | Parameters Local 01 0> 03 01+02 | O +0; 01+03 01+0>+03

R? 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
RMSE 7.7E-05 4.5E-05 5.9E-05 4.0E-05 2.9E-05 2.6E-05 3.8E-05 1.9E-04

TKSDFT 0.1851 0.1011 0.1011 0.1011 0.1011 0.1011 0.1011 0.1011

Hj Tmodel 0.1841 0.1023 0.0999 0.1018 0.1019 0.1008 0.1015 0.0992
Terror 0.0010 0.0012 0.0012 0.0007 0.0008 0.0003 0.0005 0.0018

R? 0.9847 0.9970 0.9902 0.9850 0.9982 0.9929 0.9984 0.9874

RMSE 0.0042 0.0020 0.0037 0.0041 0.0015 0.0031 0.0014 0.0040

TKSDFT 0.3550 0.3550 0.3560 0.3550 0.4315 0.3560 0.3558 0.3550

Hg Timodel 0.2591 0.3819 0.3418 0.2475 0.4145 0.3451 0.3684 0.2771
Terror 0.0959 0.0269 0.0141 0.1075 0.0170 0.0108 0.0126 0.0778

R? 0.9846 0.9973 0.9955 0.9914 0.9996 0.9968 0.9989 0.9915

RMSE 0.0073 0.0030 0.0039 0.0055 0.0012 0.0033 0.0019 0.0054

TKSDFT 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403

LiH Tnodel 04817 | 05180 | 05574 | 04436 | 04940 | 0.5261 0.4885 0.4785
Terror 0.0587 0.0224 0.0170 0.0967 0.0463 0.0142 0.0518 0.0618

R? 0.9988 0.9995 0.9994 0.9990 0.9995 0.9994 0.9997 0.9990

RMSE 0.0050 0.0032 0.0035 0.0045 0.0031 0.0034 0.0024 0.0045

TKSDFT 2.7035 2.7035 2.4304 2.4304 2.4304 2.4304 2.7055 2.5385

LiF Tinodel 27145 | 26747 | 24079 | 24220 | 2.4437 2.4185 2.6979 2.5573
Terror 0.0111 0.0288 0.0225 0.0083 0.0133 0.0119 0.0076 0.0188

TABLE II. A comparison of kinetic energy densities and total kinetic energies between model predictions and KSDFT results for structures in

test data sets. For each system, 3 structures are used for training and 27 structures are used for testing. Here R> and RMSE are the coefficient of

determination and the root mean square error of kinetic energy density (Ha/Bohr), respectively, Txsprr and Tyjoge] are the total kinetic energies
(Ha) obtained from KSDFT calculations and the various models, respectively, and Terror 1S the error in total kinetic energy (Ha) between the
KSDFT value and the model. For each model type, total kinetic energies (Tkg, Tmodel and Terror) Only for the structure with the maximum
absolute error (out of the 27 structures used for testing) are shown. Q1, Q> and Q3 correspond to the nonlocal models in Eqs. C1, 11 and 15,

respectively.
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Systems | Parameters Local 01 &) 03 O01+02 | O +0s 01+03 01+02+03
cl 0.0054 -0.0018 0.0095 0.0026 0.0034 0.0029 0.0048 0.0362
) -0.0417 -0.0579 -0.0712 -0.0049 -0.0233 -0.0109 -0.0080 -0.0219
c3 0.0729 0.0435 0.0529 10.0271 0.0053 -0.0141 -0.0112 0.0120
H, cq 0.0088 0.0142 0.0597 0.0378 0.0273 0.0258 0.0157 0.0006
cs -0.0158 0.0076 0.0387 0.0401 0.0191 0.0306 0.0198 0.0027
c6 -0.0165 0.0047 0.0203 0.0244 0.0107 0.0209 0.0135 0.0020
c7 0.1250 0.1309 0.1256 0.1286 0.1281 0.1268 0.1298 0.1325
cg -0.2524 -0.2579 -0.2531 -0.2526 -0.2561 -0.2524 -0.2552 -0.2610
() 0.1155 0.6306 -0.0190 0.0834 0.8079 -0.0506 0.4184 -0.0919
o -0.3779 -1.2120 0.6357 0.0364 -1.0756 0.8832 -0.2055 -0.7537
c3 0.1063 1.0184 -2.1099 -1.0408 0.8180 -2.8271 -0.16401 0.8353
Hg c4 0.9551 0.6316 1.1807 1.1273 0.3865 1.7117 0.5557 0.6457
Cs -0.4107 -0.5368 1.6168 0.5912 -0.3263 2.2320 0.1841 -0.2110
c6 -1.312 -0.9994 0.9905 -0.2452 -0.5860 1.3226 -0.1989 -0.6192
c7 0.0876 0.0152 0.1208 0.4493 -0.0152 0.16601 0.0834 0.1587
cg -0.2413 -0.1966 -0.2236 -0.2422 -0.1940 -0.1804 -0.1912 -0.1624
c1 -0.0973 -0.5668 -0.0996 -0.1805 -3.0154 -0.1912 0.0524 -2.0184
o 0.6679 1.4608 1.0914 1.4051 -2.0306 1.6433 -0.1786 -1.0939
c3 -1.2626 -2.4629 -2.6248 -3.1637 2.9282 -4.4005 1.1139 1.9321
LiH cq 0.4823 1.3787 1.9897 1.8827 0.0832 4.3226 -0.5579 0.3806
cs 3.7629 2.0615 2.7009 4.4846 -1.5788 2.3514 -0.2158 -1.0608
c6 -3.7048 -2.0919 -3.0603 -4.6344 0.2793 -3.8335 -0.0470 -0.1188
c7 0.0613 0.0718 0.0492 0.1705 0.0571 0.0804 0.1014 0.2074
cg -0.1407 -0.1940 -0.1544 -0.1501 -0.1835 -0.1238 -0.2354 -0.1824
cl 0.0690 -1.3735 0.0100 -0.0214 0.0721 -0.0175 -0.2466 0.4540
(o) -0.8073 -0.4971 -0.1785 0.3125 0.0094 0.2454 -0.0428 -0.1961
c3 3.3079 2.8944 1.4291 -0.7444 0.9409 -0.8186 0.0113 0.6546
LiF cq -4.9538 -4.5818 -2.6406 1.0195 -1.5722 2.0805 1.4844 -0.1402
Cs 4.1186 4.1206 2.9774 0.3557 1.8270 -1.3394 -1.4675 0.0889
c6 -1.3232 -1.4200 -1.1875 -0.5080 -0.7418 0.2617 0.4554 -0.0568
c7 0.0388 0.0121 0.0267 1.1036 -0.0083 0.2629 0.7265 1.4591
cg -0.0845 -0.1124 -0.1163 -0.0665 -0.1099 -0.0905 -0.0768 -0.0947

TABLE I. Coefficients of the local terms which includes the gradient expansion term and polynomial terms in all 8 models for the 4 chosen

structures. The coefficients ¢; correspond to the following equation: #(x) = Z?:l cjp’(x)+e7 @;;((7))?))2 +cgp” (x) + 1" [p] (x)
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FIG. 1. Shown here are the distributions of errors in kinetic energies (Ha) predicted using local and non-local models for all structures in the
test datasets of Hy, LiH, LiF and Hg. The horizontal bar on the top of each plot shows the mean (marked with a circle) and standard deviation
of the errors in predicted kinetic energies.



