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ABSTRACT

CPU/GPU heterogeneous compute platforms are an ubiquitous element in computing and a pro-
gramming model specified for this heterogeneous computing model is important for both per-
formance and programmability. A programming model that exposes the shared, unified, address
space between the heterogeneous units is a necessary step in this direction as it removes the burden
of explicit data movement from the programmer while maintaining performance. GPU vendors,
such as AMD and NVIDIA, have released software-managed runtimes that can provide program-
mers the illusion of unified CPU and GPU memory by automatically migrating data in and out
of the GPU memory. However, this runtime support is not included in GPGPU-Sim [1], a com-
monly used framework that models the features of a modern graphics processor that are relevant to
non-graphics applications. UVM Smart [2] was developed, which extended GPGPU-Sim 3.x to in-
corporate the modeling of on-demand pageing and data migration through the runtime. This report
discusses the integration of UVM Smart and GPGPU-Sim 4.0 and the modifications to improve
simulation performance and accuracy.
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1. INTRODUCTION

Graphics processing units (GPUs) have become more general purpose and are increasingly used
for a wide range of applications. As an accelerator device, however, a conventional discrete GPU
only allows access to its own device memory, which can force developers to make tradeoffs in
problem size and performance to ensure that kernels fit in the device memory. This makes it very
challenging and costly to run large-scale applications with hundreds of GBs of memory footprint,
such as Graph Computing workloads, because it requires careful data and algorithm partitioning in
addition to purchasing more GPUs just for memory capacity. To address this issue, recent GPUs
support Unified Virtual Memory (UVM) [3]. UVM provides a coherent view of a single virtual
address space between CPUs and GPUs with automatic data migration via demand paging. This
allows GPUs to access a page that resides in the CPU memory as if it were in the GPU memory,
thereby allowing GPU applications to run without worrying about the device memory capacity
limit. As such, UVM frees programmers from tuning an application for an individual GPU and
allows the application to run on a variety of GPUs with different physical memory sizes without
any source code changes. This is good for programmability and portability.

While the feature sounds promising, in reality the benefit comes with a non-negligible performance
cost. Virtual memory support requires address translation for every memory request, and its per-
formance impact is more substantial than in CPUs because GPUs can issue a significantly larger
number of memory requests in a short period of time. In addition, transferring GPU pages requires
large communication overhead between the CPU and GPU over an interconnect such as PCIe and
an interrupt handler invocation. Prior work reports that page fault handling latency ranges from
20µs to 50µs [4]. Unfortunately, this page-fault latency cannot be easily hidden even with thread-
level parallelism (TLP) in GPUs.

Recently, Debashis explored various hardware prefetchers in the context of FPU’s unified memory
management [2]. His results show prefetching larger chunks of memory improves PCIe utilization
and reduces transfer latency. Further, prefetched pages reduce the number of page-faults and the
overhead to resolve them. To explore this design space, he developed a simulation framework,
GPGPU-Sim UVM Smart [2], which provides both functional and timing simulation support for
UVM.
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2. BACKGROUND

This chapter explores on-demand memory paging and its impact on page faults.

2.1. On-Demand GPU Memory

On-demand paged GPU memory can improve performance over up-front bulk memory transfer by
overlapping concurrent GPU execution with memory transfers. However, fine-grain migration of
memory pages to the GPU might cause significant overheads to be incurred on each transfer rather
than amortized across many pages in an efficient bulk transfer.

CPUs are able to hide the long-latency of page-faults by context switching. However, GPUs do
not support context switching to operating system service routines. Thus page-faults that can be
resolved by migrating a physical page from the host to the device cannot be handled in-line by the
GPU compute units. Instead, the GPU’s MMU (GMMU) must handle this outside of the compute
unit, returning either a successful page translation request or a fatal exception. Because the GMMU
handling of this page-fault actually invokes a software runtime on the host CPU, the latency of
completing this handling is both long (10s of µs) and non-deterministic. As such, GPUs may
choose to implement page-fault handling by having the GMMU stop the GPU TLB from taking
new translation requests until the SW runtime has performed the page migration and the GMMU
can successfully return a page translation. Under such a scenario, each individual CU could be
blocked for many microseconds while its page-fault is handled, but other non-faulting compute
units can continue making progress, enabling some overlap between GPU kernel execution and
on-demand memory migration.

UVM Smart [2] explores two techniques that are able to hide on-demand GPU page-fault latencies
rather than trying to reduce them. First, page-fault latency can potentially be hidden by not only
decoupling GPU CUs from each other under page-faults, but by allowing each CU to continue
executing in the presence of a page-fault. GPUs are efficient because their pipelines are drasti-
cally simplified and do not typically support restartable instructions, precise exceptions, nor the
machinery required to replay a faulting instruction without side effects. While replayable instruc-
tions are a common technique for supporting long latency paging operations on CPUs, this would
be an exceptionally invasive modification to current GPU designs. Instead, UVM Smart explores
the option of augmenting the GPU memory system, which already supports long latency memory
operations, to gracefully handle occasional ultra-long latency memory operations. Second, in ad-
dition to improving CU execution and memory transfer overlap, aggressive page-prefetching can
build upon this concurrent execution model and eliminate the latency penalty associated with the
first touch to a physical page.
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2.2. GPU Page-Fault Handling

The previous section explained that allowing GPU compute units to execute independently and
stalling execution only on their own page-faults, was insufficient to hide the effects of long latency
page-fault handling. Due to the fact that the GPU compute units are not capable of resolving these
page-faults locally, the GMMU must interface with a software driver executing on the CPU to
resolve these faults. The architectural support for this augmentation was proposed in [4], as shown
in Figure 2-1. Since this fault handling occurs outside the GPU CU, they are oblivious that a page-
fault is even occurring. To prevent overflowing the GMMU with requests while a page-fault is
being resolved, the GMMU may choose to pause the CU TLB from accepting any new memory
requests, effectively blocking the CU. Alternatively, to enable the CU to continue executing in
the presence of a page-fault, both the CU TLB and GMMU structures need to be extended with
new capabilities to track and replay page translation requests once they have been handled by the
software runtime, a capability refered to as “replayable faults”.

Figure 2-1. Architectural View of GPU MMU and TLBs Implementing CU
Transparent Far Page-faults

Figure 2-1 shows a simplified architecture of a GPU that supports ‘replayable’ page-faults. 1©
Upon first access to a page that is not present in GPU memory, a TLB miss will occur in the CU’s
local TLB structure. 2© This translation miss will be forwarded to the GMMU which performs
a local page table lookup. Once discovering that this page is not physically present, the GMMU
would normally return an exception to the CU or block the TLB from issuing additional requests.
To enable the CU to continue computation under a page-fault, the GPU’s GMMU employs a book-
keeping structure called ‘far-fault MSHRs’ to track potentially multiple outstanding page migration
requests to the CPU. 3© Upon discovery that a translation request has transitioned into a far-fault,
the GMMU inserts an entry into the far-fault MSHR table. 4© Additionally,the GMMU also sends
a new ’Nack-Replayable’ message to CU’s requesting TLB. This Nack response tells the CU’s
TLB that this particular fault may need to be re-issued to the GMMU for translation at a later time.
5© Once this Nack-Replayable message has been sent, the GMMU initiates the SW handling rou-

tine for page-fault servicing by putting its page translation request in memory and interrupting the
CPU to initiate fault servicing. 6© Once the page is migrated to the GPU, the corresponding entry
in the far-fault MSHRs is used to notify the appropriate TLBs to replay their translation request for
this page. This translation will then be handled locally a second time, successfully translated, and
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returned to the TLB as though the original TLB translation request had taken tens of microseconds
to complete.

2.3. Hardware Prefetchers

As described in previous sections, while the CU is able to continue executing upon a page-fault,
it is still difficult to completely hide the page-fault latency. Thus the total kernel execution time
increases dramatically as it includes far-fault handling latency and memory copy time. cudaMem-
PrefetchAsync, is an asynchronous construct in CUDA 8.0, that allows programmers to specify
an address range to migrate in parallel to the kernel execution. Prefetching later referenced pages
helps reduce the number of page-faults and also ensures overlap between data migration and kernel
execution. However, the responsibility of what to prefetch and when to prefetch still belongs to the
programmer. Zheng et al. [4] are the first to propose programmer-agnostic hardware prefetchers to
overlap kernel execution and data migration. They introduced (i) random, (ii) sequential, and (iii)
locality-aware hardware prefetchers. Debashis et al. [2] explore and verify a tree-based hardware
prefetcher, called (iv) tree-based neighborhood prefetcher, that is implemented by NVIDIA. Hard-
ware prefetchers take away the burden from the programmer by automatically deciding what and
when to prefetch. These hardware prefetchers are incorporated in UVM Smart.

2.3.1. Random Prefetcher

A random prefetcher prefetches a random 4KB page along with the 4KB page for which the far-
fault occurred in the current cycle. The prefetch candidate is selected randomly from the 2MB
large page boundary to which the faulty page belongs. This not only helps CUDA workloads with
random access pattern, but also selecting from 2MB large page boundary instead of the whole
virtual address space helps in cases of locality of memory accesses.

2.3.2. Sequential-local Prefetcher

Zheng et al. [4] describe their sequential prefetcher as the process of bringing a sequence of 4KB
pages from the lowest to the highest order of virtual address irrespective of page access pattern or
far-faults. Their locality aware prefetcher migrates consecutive 128 4KB pages (or total 512KB
memory chunk) starting from the faulty-page. Debashis et al. [2] propose a different variation
called sequential-local hardware prefetcher. Each cudaMallocManaged allocation is logically split
into multiple 64KB basic blocks. GMMU upon discovering the pages corresponding to the coa-
lesced memory requests are invalid in the GPU page table, first calculates the base addresses of
the 64KB logical chunks to which these faulty 4KB pages belong. Thus, GMMU identifies these
64KB basic blocks as prefetch candidates. Further, it divides these candidate basic blocks into
prefetch groups and page-fault groups based on the position of the faulty page in the current basic
block and then schedules them for sequential transfers by the PCIe interconnect. Prefetching 64KB
basic blocks ensures contiguous 16 4KB pages local to the current faulty pages. The position of a
faulty page can be anywhere within the corresponding 64KB basic block. Further, multiple faulty
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pages are taken in consideration while choosing a basic block for prefetching and can be grouped
within the same 64KB boundary.

2.3.3. Tree-based Neighborhood Prefetcher

The semantics of TBNp demands that every cudaMallocManaged allocation is first logically di-
vided into 2MB large pages. Then, these 2MB large pages are further divided into logical 64KB
basic blocks to create a full binary tree per large page boundary. By the definition of a full binary
tree, every node has exactly 2 children nodes. The root node of each binary tree corresponds to the
virtual address of a 2MB large page and the leaf-level nodes correspond to the virtual addresses of
the 64KB basic blocks. If the user-specified size of an allocation is not a perfect multiple of 2MB,
then the remainder allocation is rounded up to the next 2i ∗ 64KB and another full binary tree is
created.

The maximum memory capacity of a node in the full binary tree can be calculated as 2h ∗ 64KB,
where h is the height of a node and h = 0 at the leaf level. On every far-fault, the GMMU first
identifies the 64KB basic block corresponding to the faulty page being requested. With the un-
derstanding that upon migrating, 16 pages in the basic block will be validated in the GPU page
table, GMMU then recalculates the to-be valid size of its parent and grandparent up to the root
node of the tree. Here and henceforth, valid size is the size of all valid pages corresponding to the
leaf-nodes belonging to a given node. At any point, if GMMU discovers the to-be valid size of a
node is strictly greater than 50% of the maximum memory capacity at this level, it tries to balance
the valid sizes between the two children of that node. This balancing process is recursively pushed
down to the children which have not reached the maximum valid size quota. This balancing act
identifies basic blocks for prefetching. This process continues till no more basic blocks at leaf level
can be identified as prefetch candidates and the to-be valid size of any non-leaf node including root
is not more than 50% of maximum size capacity at its level.

In Figure 2-2, Tree-based Neighborhood Prefetcher is demonstrated by two examples. Both of
these examples explain the semantics on 512KB memory chunk for simplicity. These examples
use NI

h to denote a node in the full binary tree, where h is the height of the node and i is the
numeric position of the node in that particular level. These examples assume initially all pages
in this 512KB allocation are invalid with valid bit not set in the GPU’s page table and thus every
first access to a page causes a far-fault. In the first example, for the first four far-faults, GMMU
identifies the corresponding basic blocks N1

0 , N3
0 , N5

0 , and N7
0 for migration. As the first byte

of every basic block is accessed, the basic blocks are split into 4KB page-fault groups and 60KB
prefetch groups. All memory transfers are serialized in time. After these first four accesses, each
of nodes N1

0 , N3
0 , N5

0 , and N7
0 has 64KB valid pages. Then, GMMU traverses the full tree to

update the valid page size for all the parent nodes and thus each node at h = 1 (N1
0 , N1

1 , N2
1 ,

and N3
1 ) has 64KB valid pages. When the fifth access occurs, GMMU discovers that N0

1 and N0
2

will have 128KB and 192KB valid pages respectively. For N0
2 , the to-be valid size is greater than

50% of the maximum valid size of 256KB. Hence, the right child N1
1 is identified for prefetching.

This decision is then pushed down to the children. This process identifies the basic block N2
0 as a

prefetch candidate. Further, GMMU discovers that after prefetching N2
0 , N0

3 will have 320KB of
valid pages which is more than 50% of the maximum valid size of 512KB. Then, node N0

3 pushes
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Figure 2-2. Demonstration of TBNp on 512 KB memory chunk for two different
page access patterns.

prefetch request to the node N1
2 which in turn pushes it to its children. This process identifies basic

blocks N4
0 and N6

0 for further prefetching.

In the second example, the first two far-faults cause migration of basic blocks N1
0 and N3

0 . GMMU
traverses the tree to update the valid size of nodes N0

1 and N1
1 as 64KB each. At the third far-fault,

as basic block N0
0 is migrated, the estimated valid sizes for nodes N0

1 , and N0
2 are updated as 128KB

and 192KB respectively. As the valid size of N0
2 is more than 50% of the maximum valid size of

256KB, N2
0 is identified for prefetching. After this point, the N0

2 is fully balanced and both N0
2 and

N0
3 have exactly 256KB of valid pages. On fourth access, GMMU discovers that the valid size

of N0
3 will be 320KB which is more than 50% of the maximum memory size it can hold. This

imbalance causes prefetching of nodes N5
0 , N6

0 , and N7
0 . Note at this point as GMMU finds four

consecutive basic blocks, it groups them together to take advantage of higher bandwidth. Then,
based on the page-fault, it splits this 256KB into two transfers: 4KB and 252KB. An interesting
point to observe here is that for a full binary tree of 2MB size, TBNp can prefetch at most 1020KB
at once in a scenario similar to the second example.
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3. UVM SMART INTEGRATION

This chapter discusses the integration of UVM Smart with GPGPU-Sim.

3.1. Merge Code

Table 3-1 enumerates the relevant CUDA API calls currently supported by UVM Smart. These
calls are enough to enable the execution of the shared virtual memory space programming model.
UVM Smart adds the ability to model far-fault handling latency and PCIe transfer latency. Based
on Table 3-2, a function to express PCIe bandwidth as a function of transfer size can be deduced.
In the simulator, PCIe transfer latency is calculated based on this expression – an additional 100
core cycles for page table walk. The simulator makes simplified assumptions to model the TLB
and page table. TLB look ups are performed in a single core cycle, based on the assumption of
fully-associative TLB. A multi-threaded model for a page table walk is used and an additional fixed
100 core cycles for the page table walk is add.

Table 3-1. CUDA API Calls Supported by UVM Smart

CUDACall
cudaMallocManaged
cudaDeviceSynchronize
cudaMemprefetchAsync

Table 3-2. CUDA API Calls Supported by UVM Smart

Transfer Size (KB) PCIe Bandwidth (GB/s)
4 3.2219
16 6.4437
64 8.4771
256 10.508
1024 11.223

The first step in merging UVM Smart into GPGPU-Sim is to understand the difference between
the two simulators. Since UVM Smart extended GPGPU-Sim v3.2, the major change is a new
class, called gmmu_t, that handles the GPU memory management added to UVM Smart. This class
stores necessary information about memory requests from all shader cores that missed in the TLB.
If a page-fault occurs, it coalesces faults to the same page and handles these page-faults one by
one. If hardware prefetch is enabled, it brings extra pages to GPU memory based on the chosen
prefetching algorithm (Section 2.3). The update from GPGPU-Sim v3.2 to v4.0 has some minor
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changes, such as making simulation cycle count a class variable instead of a global variable. While
minor, these changes can cause simulation crashes if not found and manged properly.

3.2. Optimize Simulation Performance

In Section 2, it was discussed that GPUs may choose to implement page-fault handling by having
the GMMU stop the GPU TLB from taking new translation requests until the SW runtime has
performed the page migration and GMMU can successfully return a page translation. Under such
a scenario, each individual CU could be blocked for thousands of cycles while its page-fault is
handled, but other non-faulting compute units can continue make progress, enabling some overlap
between GPU kernel execution and on-demand memory migration. Alternatively, to enable the
CU to continue executing in the presence of a page-fault, the CU TLB and GMMU need to be
augmented. Even though UVM Smart choose the latter that enables compute unit execution under
page-faults, in the worst case, page-fault latency cannot be hidden if all warps are waiting for their
page-fault handling requests, especially common at the beginning of kernel execution.

The page-fault latency includes the page-fault handling latency and page migration time. As de-
scribed in Section 3.1, the page-fault handling latency is fixed and the page migration time is cal-
culated once the memory transfer size is known, thus the simulator knows in which cycle the pages
is ready in GPU memory before the page-fault handling request is sent. This simulator assumption
is a opportunity to skip those cycles when all warps are stalled due to page-fault handling.

3.3. Improving TLB performance

The GPU MMU design handles TLB flushes similar to the CPU MMU. When the register that
stores the pointer to the page table is written, the GPU MMU is notified via inter-processor com-
munication and all of the GPU TLBs are flushed. This is a rare event that usually happens between
two different kernels. A more common case is when a page-fault occurs and a new page is brought
to GPU memory. When this occurs, all TLBs need to be flushed because the MMU does not know
which TLB has stale translation information.

Mechanisms to reduce the cost of TLB shootdowns on CPUs, and emerging heterogeneous mem-
ory systems, have attracted significant attention over the last decade. This is due to the rising cost
of TLB shootdowns, especially as core counts continue to scale and heterogeneous memory makes
its way into mainstream systems. Previous work by Agarwal et al. [5] have studied on mecha-
nisms to reduce the occurrence of TLB shootdowns on a CPU-GPU system. Reducing the cost for
translation coherence on virtualized systems has also been studied.
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4. EVALUATION

With the UVM Smart simulation framework, we can gain insight into TLB performance. A number
of benchmarks have been modified to use UVM, shown in Table 4-1. With these benchmarks, we
correlate the timing reported by the simulator with a real GPU and examine the impact of TLB
shootdown granularity.

Table 4-1. UVM Smart Benchmarks

Benchmark Input
bfs 4096
hotspot 30 6 40
pathfinder 1000 20 5
backprop 65536
srad 1024 127 .5 4

4.1. Correlation

A validation sweep was run using six benchmarks. These applications were run using a UVM
Smart model that approximates a NVIDIA V100. The simulation parameters are shown in Table
4-2. The overall kernel runtime was compared with the results of running the six applications
through nvprof, the NVIDIA profiling tool, on NVIDIA Tesla V100. Figure 4-1 shows the total
number cycles that each application took on the simulation model and on the native V100. Note
that this is only cycles where a kernel was running and does not include host execution time. The
performance gap mainly comes from prefetching algorithms. The blue cross points represent the
result of no prefetcher applied, the yellow represents random prefetched, the black represents the
sequential locality prefetcher, and the cyan represents the tree-based neighbor prefetcher. It is very
clear that the tree-based neighbor prefetcher has the best correlation, which seems very close to
the tree-based hardware prefetcher implemented by NVIDIA CUDA driver.

4.2. TLB Performance

Once the models were correlated with a real device, an experiment was designed to justify the
positive impact of advanced TLBs. We compared two TLB shootdown granularities: per-TLB
entry and whole TLB when the GPU page table is updated. The default implementation is to
invalidate the whole TLB of every CU. Alternatively, only one TLB entry will be modified with
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Table 4-2. CPU/V100 Model Parameters

Clock 1312MHz
SMs 84
L2 Slices 32
L2 Capactiy 192KiB per slice
HBM Capacity 16384MiB
HBM Stacks 4
Crossbar Frequency 1200MHz
Crossbar Input Ports 2
Crossbar Output Ports 1

Figure 4-1. Correlations between simulator and
hardware.

TLB coherence. Although TLB coherence requires additional hardware support, it should have
similar behavior with per-TLB entry shootdown in terms of the TLB hit rate.

From Figure 4-2a, the per-TLB shootdown implementation has a higher hit rate than the whole-
TLB shootdown due to it’s small granularity. However, this does not translate to performance. As
can be seen in Figure 4-2b, there is very little difference in terms of cycle counts between the two
implementations. This result demonstrates that if there is no significant latency improvement, the
GPU barely benefits from a TLB coherence model.
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(a) TLB Hit Rate (b) Simulation Cycles

Figure 4-2. TLB Entry Shootdown and TLB Shootdown
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5. CONCLUSIONS AND FUTURE WORK

This report describes the integration of Unified Virtual Memory (UVM) with GPGPU-Sim and
potential research opportunities to improve UVM performance. The integrated GPGPU-Sim with
UVM-enabled is able to reduce 92.7% cycles and correspondingly reduce 20% simulation time
on average compared to original UVM Smart. Correlation with the NVIDIA V100 is excellent
when the hardware prefetcher is enabled, showing 37% error in the runtime for the applications
considered. The final phase of the project has involved investigating how TLB performance is
affected by different TLB shootdown granularities. Initial performance results demonstrate poor
latency improvement but good hit rate improvement.
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