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- Relative Permeability (k,): the ratio of the effective permeability of a single fluidin
a fluid mixture through a rock to the absolute permeability (k) of that fluid alone.

- Unsteady State k.: Injection of one fluidinto a rock core completely saturated
with another fluid.

 Characterization of fluid behavior and interaction in GCSreservoirsis essential to
understanding long term safety and storage efficacy

* k. is one of the fundamental parameters used to populate simulations to predict fluid
migrationand behavior

« Whilek, has been largely characterized and parameterized in fraditional ‘unreactive’
geologicreservoirs, carbonates are largely uncharacterized due to theirreactive nature

« Carbonates are highly reactive with even weak acids, such as carbonic acid, which readily
dissolves the mineral constituents and increases permeability & porosity

« Carbonate reservoirs are readily available and often have appreciable
permeability/porosity (re petroleumin the Arabian Peninsula and drinking water aquifers)
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Brine Composition (By weight %): 5% KI, 3% KCI
Pore Pressure: 9.65 Mpa
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Design
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Schematic of CT scan within CT systemillustrating data configuration.
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Brine Composition (By weight %): 5% Kl, 3% KCI
Pore Pressure: 9.65 Mpa
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System Design
) |

General Experimental Standards & Limits

« Toshiba Aquilion System
= | 1. Produces DICOM image formatin 16-bit grayscale
o 2. Calibrated to known standards relative to HU

3. 8-slice fan beam helical scanner
4. Scans< 10secondsat 10-20secondintervals

5. Resolution a1 0.43x0.43x0.5 mm

Schematic ofexpe

* Flow System
Carbon Fiber Hassler style core holder

Buna-Nsleeves for confining membrane
Teledyne ISCO 500 HP pumps for pressure/injection

Rosemount DP gauges (3051CD)
Clamshell heaters to apply heat to both coil and core holder

T g B )

Slice Number
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Assumptions of Toth et al.:
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1. E.g. the phase doesn’tchange
* Fluidsare immiscible
« Temperature is constant
Our System:
* Wk are creating a phase change CO,(l) to CO, (scCO,)
just before the core holder and then reverting back to

CO,(l) in the receiving pumps Bypass Line
«  Fluids are notimmiscible -
1. They are equilibrated* @
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Phase Change Implications for Flow Rate ¥L

« When going from liquid to supercritical, the CO, effective Z increases (Peng & Robinson, 1976).

T=70F......... 7=0.214

The backpressure pump maintains a constant -
T=145.9F.....Z=0.585

spressure = the fluid can expand via:

|4 a
Z=——
V-b

2
VRT—2RTb—(X22)

NATIONAL
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The volumetric expansion resultsin a
higher flow rate within the core than
what is being initiated with the pump

regardless of lithology,
absolute permeability, or

2. lllustrates a consistent
state conversion within
the system that results in
a higher flow rate
through the core

- Since injection rate is constant, conversionof € 12- . 1. Clear agreement
CO,(I) to scCO, should be constant -E 10 ;
» The 26 flow tests available were evaluated £ e
based on backpressure pump receiving rate o 8- ! flow rate
1. Data was evaluated from core contactto ~ @© L)
X 6
breakthrough O /
2. Duringthis timeframe the only fluids o 4- i y = 2.699x - 0.067
that are presentin the core are Brineand & :f R2=0.09289
scCO, Q 21
3. Incompressible brine is displaced by $ old”

scCO,which in turn gives us the rate of
scCO, injection rate
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Saturated Brine
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During scCO,
Injection

CT Scan of SCCO2
Saturated Core
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CT Scan of SCCO2
Saturated Brine Core
(BrineSat)

CT Scans at High
Rate (CO2X)
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i

Stack Alignment and Registration
(CO2X, BrineSat, CO2Sat)

Determine Pore Volume
(Vp)

*Total Injected Volume Brine
+

Temperature

*Differential pressure (DP(t))
+

*Injected CO2 Volume (Vi(t))
+

Temperature (T)

_ BrineSat — CO2X
" BrineSat — CO2Sat

the along core length with
known Vi, Time, and DP

t, dimes

empirical constant, dimensio
empirical constant (Pa)

volume (ml)
volumei

BrineSat
CO2X

Calculate Absolute
Permeability (k)
v L
Y

* Denotes dynamic variable that is
a function of injection

Satg.coz * Vp =

Toth et al. (1998, 2002) direct interpretation method
used to determine Kr. Employs assumptions of
unsteady state system that neglects gravity and

capillary pressure gradients with homogenous core

& fluid properties. Two linear equations using Vi,
Vo VP, and DP are used to determine empirical
constants for fitting relative permeability curves.

A
(]
(]
1
1
€O2 Vol in Core (Vep,) |
]
j

A Y

1

i

! V4 o ; . T T LTV TPV T v on TN

] i A I €02

i | :’ Vel Vs V22 (after breakthrough) 1 i Vp Vs DP (after breakthrough) ‘}

2

i | y i i 1E+5 AP = 10109(VilVp)-0.096 !

I H N25 = = 1 a, = 10109 1

i | | g20 - i 1 | =-0.096 ;

: : =15 : : sesesraaad :

N | =10 o * y=1.9957x +0.8119 i i i

’ 18 ) a=0.8119 : : 1
Ig 6 P f=1.9957 | ! eea ;
1 0 1 1

i 0.1 1 10

\ 0 5 10 15 1 L i i
o Vicoa/VP S )_ ____________________________ /

Mobility Ratio of Fluids (Md,)

Vicoz|”
Md, = [a+ﬁﬂ] +i
Y

Fractional Flow of Displacing Fluid (scCO,)

Fractional Flow of Displaced Fluid (Brine)
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Berea Sandstone
« PV 57.1ml
e k 424 mD
e @ 18.8%

Saturation vs PV Injected Example K curve
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First Injection Second Injection  Third Injection

As dissolution occurs, two physical changes happen:
» @/PV both increase
» K increases, dependent upon connectivity of new
dissolution features
* In general, small pores are difficult to isolate in systems that
obtain 3D tomographies quickly (order of seconds)
» Luckily, wormholes are quite large comparablyto the
resolution of the scanner and easy toisolate.
» llastik used to isolate pores and imagej® for image
modification
* The resaturation of the pore space with brine after each
scCO, flood allows for the determination of k between each
test
* Increasein fluid flow pathways, ‘super-highways’, resulted in
a drastic changesin k, but only moderate changes in @/PV

BrineSAT

Porosity Correction

CO2SAT

AT G
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Reactive kr — Reactive Cores, Austin Chalk

Medical CT Scans
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1. Itis possible to capture dynamic kr as a function of dissolution
* 'Time steps, not continuous

2. Absolute k is the dominant dynamic variable

*  System transitions from diffuse dominated flow to concentrated flow along primary flow path

3. Kt shifts and recedes as a function of increased channelization of flow

*  Cross-over occurs faster and at low scCO, saturation
* Potentially less initial occupation of scCO, if preferential paths are formed

Future Work
1. Image system at higher resolution during dissolution to capture micro-
channels

2. Incorporate CFD to determine how channelization proceeds temporally

3. Incorporate geochemical modeling to estimate mass transport and determine
equilibrium conditions/reactivty
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