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ABSTRACT
The Multi-Fidelity Toolkit (MFTK) is a simulation tool being developed at Sandia
National Laboratories for aerodynamic predictions of compressible flows over a range of
physics fidelities and computational speeds. These models include the Reynolds-Averaged
Navier–Stokes (RANS) equations, the Euler equations, and modified Newtonian
aerodynamics (MNA) equations, and they can be invoked independently or coupled with
hierarchical Kriging to interpolate between high-fidelity simulations using lower-fidelity
data. However, as with any new simulation capability, verification and validation are
necessary to gather credibility evidence. This work describes formal code- and
solution-verification activities as well as model validation with uncertainty considerations.
Code verification is performed on the MNA model by comparing with an analytical
solution for flat-plate and inclined-plate geometries. Solution-verification activities include
grid-refinement studies of HIFiRE-1 wind tunnel measurements, which are used for
validation, for all model fidelities. A thorough treatment of the validation comparison with
prediction error and validation uncertainty is also presented.

3



ACKNOWLEDGMENT

The authors wish to thank Greg Weirs, Derek Dinzl, and Jaideep Ray for their insights
into the HIFiRE-1 experiments as well as previous simulations performed at Sandia
National Laboratories. The authors also wish to thank Matthew Bopp, Brian Carnes, and
Bryan Morreale for their help in setting up the code-verification cases.

4



CONTENTS

1. Introduction 9

2. Code Verification 11
2.1. Code Verification with Analytical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2. Verification Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1. Case 1: Flat Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2. Case 2: Inclined Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3. Coding Error Identified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Solution Verification 17
3.1. GCI Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2. Solution Verification Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1. MNA+FPBL with 0◦ Angle of Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2. Euler+MEIT with 0◦ Angle of Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3. RANS with 0° Angle of Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4. Validation 26
4.1. Model Validation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2. HIFiRE-1 Wind Tunnel Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3. Validation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1. Surface Pressure Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2. Surface Heat Flux Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.3. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5. Conclusions 41

References 43

Appendices 46

A. Derivation of Modified Newtonian Aerodynamics 46
A.1. Assumed Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.2. Newtonian Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.3. MNA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.4. Flat Plate Boundary Layer Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.4.1. Shear Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.4.2. Heat Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5



LIST OF FIGURES

Figure 2-1. Computational domain for the flat-plate case (side view). . . . . . . . . . . . . . . . 12
Figure 2-2. Coarsest mesh for the flat-plate case (top view). . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2-3. Computational domain for the inclined-plate case. . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2-4. Coarsest Mesh for the inclined-plate case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 3-1. MNA+FPBL coarse mesh example in nose-cone region. . . . . . . . . . . . . . . . . . 17
Figure 3-2. Euler+MEIT and RANS coarse mesh examples in nose-cone region. . . . . . . 18
Figure 3-3. The HIFiRE-1 wind tunnel test geometry that shows the fore-cone on the

left, the cylindrical section in the center, and the flare on the right, from [1].
The text states that the final nosetip was changed from sharp to a radius
of 2.5 mm and the flare angle was changed from 37◦ to 33◦. . . . . . . . . . . . . . 19

Figure 3-4. GCI calculation for laminar case with 0◦ angle of attack. . . . . . . . . . . . . . . . . 20
Figure 3-5. GCI calculation for turbulent (Van Driest) case with 0◦ angle of attack. . . . 21
Figure 3-6. GCI calculation for turbulent (MEIT) case with 0◦ angle of attack. . . . . . . . 22
Figure 3-7. GCI calculation for turbulent (SA) case with 0◦ angle of attack. . . . . . . . . . . 23
Figure 3-8. GCI Calculation for turbulent (SST) case with 0◦ angle of attack. . . . . . . . . 24

Figure 4-1. HIFiRE-1 wind tunnel simulation Mach number predictions for RANS-SA
and RANS-SST models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 4-2. HIFiRE-1 wind tunnel test pressure data and predictions. . . . . . . . . . . . . . . . 31
Figure 4-3. HIFiRE-1 pressure prediction error with uncertainty. . . . . . . . . . . . . . . . . . . . 32
Figure 4-4. HIFiRE-1 pressure prediction error magnitude integrated over data with

uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 4-5. HIFiRE-1 pressure prediction error magnitude separated by section with

uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 4-6. HIFiRE-1 wind tunnel test heat flux data and predictions. . . . . . . . . . . . . . . 36
Figure 4-7. HIFiRE-1 heat flux prediction error with uncertainty. . . . . . . . . . . . . . . . . . . . 37
Figure 4-8. HIFiRE-1 heat flux prediction error magnitude integrated over data with

uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 4-9. HIFiRE-1 heat flux prediction error magnitude by section with uncertainty. 39

6



LIST OF TABLES

Table 2-1. Code-verification results for the flat-plate case. . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 2-2. Code verification results for the inclined-plate case . . . . . . . . . . . . . . . . . . . . . 15

Table A-1. Table of values used in code-verification analysis. . . . . . . . . . . . . . . . . . . . . . . . 46

7





1. INTRODUCTION

The Multi-Fidelity Toolkit (MFTK) is a suite of tools being developed at Sandia National
Laboratories to improve the response time for aerothermodynamic queries for hypersonic
flight vehicles. The toolkit comprises three levels of aerothermodynamic physics fidelity
and a series of file- and data-handling scripts: an input-file generator, a sample-point
dispatcher, a data-gathering code, and a multi-fidelity interpolation code. The
aerothermodynamic evaluation fidelity levels are being developed in the Sandia Parallel
Aerodynamics and Reentry Code (SPARC) and consist of a modified Newtonian
aerodynamics (MNA) solver, an Euler solver, and a Reynolds-Averaged Navier–Stokes
(RANS) solver. The low- and medium-fidelity models do not have the ability to compute
viscous effects such as heat flux; therefore, both transfer data to different correlation-based
models. The multi-fidelity interpolation code uses a hierarchical Kriging method [2] to
perform sample evaluations over a parameter space by using trends from lower-fidelity
predictions and anchoring to high-fidelity predictions, such as those from a RANS solver.
This allows for more accurate predictions to be computed over a large parameter space at a
reduced cost, compared to running a RANS solver only. With the multi-fidelity
interpolation method, the focus of the lower-fidelity methods is on minimizing the error in
the trend of aerothermodynamic data rather than the absolute error of each model.
However, achieving the expected order of accuracy is necessary to ensure the lower-fidelity
models have been correctly implemented.

To assess the credibility of predictions using MFTK, verification and validation activities
are performed to ensure the correct implementation and appropriate use of the models.
Validation assesses how well the implemented models represent the relevant physical
phenomena. This is typically done by comparing simulation predictions with experimental
data to assess the modeling error and ultimately the bounds of validity for a defined
application space. By contrast, verification is, according to the American Society of
Mechanical Engineers (ASME) Standard for Verification and Validation in Computational
Solid Mechanics [3], “the process of determining that a computational model accurately
represents the underlying model and its solution.” Verification is further broken up into
code verification and solution verification [4–6]. Code verification focuses on the correct
implementation of the mathematical model, whereas solution verification focuses on
estimating the numerical error for a particular solution.

Previous work on the underlying models includes code verification of the Euler
equations [7] and code and solution verification of laminar equations [8]. To continue this
effort, this paper focuses on code verification of the MNA model and solution verification of
all the models in MFTK. When solving the underlying equations numerically, the geometry
is discretized over the surface of the body. One consequence of discretizing the geometry is
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that the solution incurs a truncation error, which introduces a discretization error into the
solution. By refining the mesh for a problem with a known solution and measuring the
corresponding decrease in the L∞-norm of the discretization error, we compute an observed
order of accuracy and compare it to the theoretical order of accuracy. When the
comparison is sufficiently close, the likelihood of coding errors existing within the code is
greatly reduced.

For solution verification, the exact solution is unknown. Therefore, we estimate the
discretization error using the grid convergence index (GCI) metric [9]. GCI uses the
difference between the Richardson extrapolated solution and the solution on the finest
mesh as an approximation of the discretization error. To account for uncertainty within the
calculation, the GCI metric applies a factor-of-safety multiplier to the estimated
discretization error to account for errors not captured in the Richardson extrapolation
calculation. The GCI metric is then applied as a bound on both sides of the solution on
the finest mesh. Additional solution-verification methods exist [10–12], but these methods
can be unnecessarily complex for simple problems.

Model validation is defined by both the American Institute of Aeronautics and
Astronautics (AIAA) “Guide for Verification and Validation of Computational Fluid
Dynamics Simulations” and the ASME “Standard for Verification and Validation in
Computational Fluid Dynamics and Heat Transfer” as, “the process of determining the
degree to which a model is an accurate representation of the real world from the
perspective of the intended uses of the model.” [13,14].

The scope of this work does not include the multi-fidelity interpolation aspect of MFTK
because it is applied to a single parameter set for the validation case instead of a parameter
exploration. Instead, predictions are made at each fidelity level independently to assess
predictive accuracy, with the understanding that lower-fidelity models are expected to have
lower accuracy. The low-fidelity MNA model may occasionally be executed independently,
but its main purpose is to predict trend information with many runs across a parameter
sweep. The mid-fidelity Euler solver may be run independently for quick-turnaround
simulations or potentially in a Monte Carlo-style uncertainty quantification (UQ) analysis,
so predictive accuracy is more desirable and expected here.
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2. CODE VERIFICATION

Code verification is the first credibility activity to be completed for MFTK. This is done to
ensure that coding errors are removed before impacting solution-verification or validation
activities. The code-verification activities for this report focus on verifying the MNA model
within MFTK. The MNA model is the inviscid component of the low-fidelity model within
MFTK. In conjunction with a viscous component, such as flat-plate boundary layer
(FPBL) model, MFTK computes surface quantities for hypersonic flow calculations. MNA
falls under the umbrella of local surface inclination methods. It is an improvement on
Newtonian theory by accounting for the freestream Mach number when computing the
coefficient of pressure [15]. Newtonian and MNA methods solve for the pressure
coefficients, which in turn, allow for solving the surface pressure distribution. This method
assumes parallel streamlines directed towards a surface. In the presence of a surface, such
as an inclined plane, the fluid creates a pressure on the surface. While this model does not
perform well for low-Mach flow, it has the potential to accurately model hypersonic flow
when a thin hypersonic shock layer exists and most of the momentum from the fluid is
transferred to redirecting the fluid. Additionally, the MNA model within MFTK also
includes surface calculations of velocity, temperature, and streamline length based on
tangential velocity vectors and streamline marching. Using the MNA+FPBL model, these
streamlines enable one to compute the shear stress and heat flux using a one-dimensional
viscous model [16]. To complete an in-depth code-verification analysis, a proper
understanding of the equations (shown in Appendix A) and cases with known solutions are
required.

2.1. Code Verification with Analytical Solutions

Typically, code-verification activities involve verifying differential or integral equations that
introduce discretization error into the solution. Because of the simplicity of the MNA
model, initial code-verification test cases do not introduce discretization error. Therefore,
the relative difference between an exact solution from a separate code and the computed
solution from MFTK should be approximately round-off error, such that, if the L∞-norm

ε∞ = max
i

∣∣∣∣∣QoIiExact −QoIiMFTK

QoIiExact

∣∣∣∣∣ , (2.1)

where QoI is the quantity of interest, is less than 10−12, the test passes.
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2.2. Verification Cases

For this analysis, two code-verification cases are studied to identify implementation (also
know as constant errors) and meshing errors. Case 1 is a flat-plate case and Case 2 is an
inclined-plate case. The flat-plate case is almost identical to inclined-plate case except that
the mesh for the inclined-plate case can introduce mesh tolerance errors when inclining the
plate. Instead, the flat-plate case inclines the freestream velocity to induce the pressure
field since the precision of the freestream velocity is less prone to errors. For both test
cases, the following MNA model QoIs are tested: Cp, Pe, Ve, Me, Te, ρe, nv, and L. We
note that Case 1 and Case 2 do not identify geometry discretization errors, which require
order-of-accuracy testing and is left for future work.

2.2.1. Case 1: Flat Plate

The flat-plate case models flow over a flat plate, where the angle of attack is −7◦. The
computational domain of the flat-plate case is a 1.0 m by 1.0 m square on the XZ-plane,
which is shown in Figure 2-1. Since the mesh perfectly represents the geometry and the
mesh is aligned with the streamlines, which is shown in Figure 2-2, this case uses an
analytical solution to test the correct implementation. This case provides the most
simplistic MNA model test case to ensure all variables computed by MFTK match the
exact solution.

x

y

θV∞

Figure 2-1. Computational domain for the flat-plate case (side view).

The exact solution uses input from Table A-1 in conjunction with Equations (A.11)
through (A.18) and the velocity specified above. Using Equation (2.1), the relative error is
computed. The results of the code-verification analysis are shown in Table 2-1.

All of the errors in the MNA variables are below 10−13 and clearly below the test criteria of
10−12, which means the MNA model equations do not have constant errors when the
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Figure 2-2. Coarsest mesh for the flat-plate case (top view).

Table 2-1. Code-verification results for the flat-plate case.
Variable Mesh 1 Error Mesh 2 Error Mesh 3 Error Mesh 4 Error
nx 0.00 0.00 0.00 0.00
ny 0.00 0.00 0.00 0.00
Cp [×10−14] 9.67 9.67 9.67 9.67
P [×10−14] 3.18 3.18 3.18 3.18
u [×10−14] 5.31 5.31 5.31 5.31
v 0.00 0.00 0.00 0.00
M [×10−15] 8.14 8.14 8.14 8.14
T [×10−15] 2.06 2.06 2.06 2.06
ρ [×10−14] 5.97 5.97 5.97 5.97
Dist [×10−16] 2.18 2.07 2.07 1.71
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staggered mesh is aligned, which simplifies the streamline calculation. If an implementation
error were present, the relative error would be much higher than 10−13, making this
verification test quite sensitive to constant errors. One note in completing this verification
testing is that precision tolerances are much more important for these tests than realistic
problems. This makes setting up the test cases difficult since hidden or rarely used settings
can cause issues to the results. We also note that the error in the streamline distance is
increasing with mesh refinement. Increasing error is to be expected since round-off error
increases with the number of calculations being performed.

2.2.2. Case 2: Inclined Plate

The inclined-plate case is identical to the flat-plate case, but the implementation is slightly
different. For this case, the velocity is along the x-axis and the plate is inclined by 7◦, as
shown in Figure 2-3. Since the mesh perfectly represents the geometry and the mesh is
aligned with the streamlines, this case uses an analytical solution to test the correct
implementation. This case provides the second most simplistic MNA model test case to
ensure all variables computed by MFTK match the exact solution.

x

y

V∞ θ

Figure 2-3. Computational domain for the inclined-plate case.

The exact solution uses input from Table A-1 in conjunction with Equations (A.11)
through (A.18) and the velocity specified in Section 2.2.2. Using Equation (2.1), the
relative error is computed, and the results are shown in Table 2-2.

All of the errors in the MNA variables are at most ∼ 10−13 and clearly below the test
criteria of 10−12, which means the MNA model equations do not have constant errors when
the staggered mesh is aligned, which simplifies the streamline calculation. One note on this
particular problem is that initial results were impacted by the precision of the mesh. This
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Figure 2-4. Coarsest Mesh for the inclined-plate case.

Table 2-2. Code verification results for the inclined-plate case
Variable Mesh 1 Error Mesh 2 Error Mesh 3 Error Mesh 4 Error
nx [×10−13] 4.76 4.36 4.35 4.08
ny [×10−14] 2.36 2.29 2.26 2.24
Cp [×10−13] 2.72 2.72 2.72 0.97
P [×10−13] 1.48 0.84 0.32 0.32
u [×10−13] 1.55 1.54 1.54 1.54
v [×10−13] 1.38 0.91 0.47 0.19
M [×10−15] 8.14 8.14 8.14 8.14
T [×10−15] 2.06 2.06 2.06 2.06
ρ [×10−14] 5.97 5.97 5.97 5.97
Dist [×10−14] 9.51 4.42 1.63 0.92
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problem requires the maximum precision available from the meshing software to ensure
mesh precision does not impact the exact verification results.

2.2.3. Coding Error Identified

During the development of Cases 1 and 2, a coding error in how the stagnation point is
computed at the edge of a face was identified and corrected. Partial geometry simulations
are undertaken to reduce the computational cost of the simulation by utilizing symmetry
within the solution. Since partial geometries would have the stagnation point located at
the edge of a face, this coding error would have impacted all partial geometry simulations.
This finding highlights the importance of completing code verification.

2.3. Future Work

For future work, an additional test case should also be completed to ensure the MNA
model can pass an order-of-accuracy test. One proposed test case would be simulating flow
over a blunt-nose cone. This curved geometry would introduce geometry discretization
error as well as discretization error from the streamline distance calculation because of the
use of an unstructured grid. Additionally, code verification of the FPBL model should be
completed for all three test cases. Lastly, code verification should be applied to the
momentum/energy integral technique (MEIT) since there is currently no code verification
for the implementation within MFTK. Once all these tests have been successfully
implemented, these code-verification tests should be automated to ensure MFTK continues
to pass these tests with ongoing development.
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3. SOLUTION VERIFICATION

Once code-verification activities are complete, solution-verification activities can start.
Solution-verification activities assesses how well discrete equations can approximate the
converged solution. This is crucial to complete before validation activities start because the
numerical uncertainty can impact the validation assessment. Since the different models in
MFTK (MNA, Euler, and RANS) use discrete equations to represent the model, an
assessment of the numerical uncertainty needs to be completed for each validation case.
For an initial assessment of numerical uncertainty, we will use the GCI metric.

3.1. GCI Equations

The grid convergence index (GCI) is the most simple and popular method to assess
numerical uncertainty. GCI requires solutions on at least three mesh sets (f1, f2, and f3)
to compute the observed order of accuracy. The base case developed for the validation
study produced a solution on the medium mesh. For this study, a coarser and finer mesh
were developed with a refinement (and coarsening) factor of two (r = 2) to generate the
additional solutions required. Since the MNA+FPBL model is a panel method, whereas
Euler+MEIT and both RANS models are control-volume methods, two separate mesh
triplets were generated. Figure 3-1 shows the coarsest 3D surface mesh used for the
MNA+FPBL model, whereas Figure 3-2 shows the coarsest 2D axisymmetric volume mesh
used for the Euler+MEIT and both RANS models. For both meshes, the only significant
mesh refinement is near the nose-cone region since large gradients are expected in this
region. Each figure focuses on the mesh resolution details in the nose-cone region. The
medium and fine cell sizes can resolve length scales approximately two- and four-times
smaller than the coarse cell sizes, respectively.

Figure 3-1. MNA+FPBL coarse mesh example in nose-cone region.
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Figure 3-2. Euler+MEIT and RANS coarse mesh examples in nose-cone region.

This provides enough information to compute the observed order of accuracy, pobs, which
is

(3.1)pobs =
ln
(

f3−f2
f2−f1

)
lnr

.

Once we compute the pobs, a factor of safety, Fs, is chosen. This factor of safety turns the
discretization error estimate into a 95% confidence interval. Based on [5], when the
difference between pobs and the theoretical order of accuracy, pth, is smaller than 10%,
Fs = 1.25. For all other cases, Fs = 3.0. While multiplying the estimated discretization
error significantly inflates the reported error, being close to or outside the asymptotic range
can negatively impact the quality of the Richardson extrapolation. Additionally, when pobs
is positive, but larger in magnitude than pth, it is conservative to use pth in the GCI
metric, which will be seen in the order-of-accuracy plots below as a ceiling. When pobs is
smaller in magnitude than pth, it is conservative to use pobs in the GCI metric. For the
case when pobs is positive, but less than 0.5, the order of accuracy is set to 0.5, which will
be seen in the order-of-accuracy plots below as a floor. For the case when pobs is negative,
this suggests that the simulation is non-convergent and numerical uncertainty cannot be
estimated. Now that Fs and p are known, the GCI metric is computed using

(3.2)GCI = Fs
|f3 − f2|
(rp − 1)

3.2. Solution Verification Assessment

For the solution verification assessment, there are a variety of fidelities and viscous models
assessed to match the validation assessment of the HIFiRE-1 wind tunnel test in
Chapter 4. To assess the numerical uncertainty for each simulation case, the GCI is
computed along the downstream flow. The HIFiRE-1 geometry, shown in Figure 3-3, is
used for all simulation cases. The model fidelities assessed are MNA+FPBL, Euler+MEIT,
and Reynold-averaged Navier–Stokes (RANS) for the 0◦ angle of attack case. Since the
validation assessment is performed on the pressure (P ) and wall heat flux (qw), the
solution-verification assessment needs to quantify the numerical uncertainty for those QoIs.
In addition to the normalized GCI values, we report simulation results for each level of
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refinement to quickly assess the mesh sensitivity. Lastly, we also report the observed order
of accuracy to show how well the numerical method is performing. For all simulation
results, except for the heat flux results from the MNA+FPBL model, the theoretical order
of accuracy is assumed to be two, due to the linear approximation of the angle. For the
heat-flux results in the MNA+FPBL model, the theoretical order of accuracy is assumed to
be one, due to the sub-linear approximation of the streamline distance. To ensure
consistently converging results in the future, the streamline distance calculation should be
improved to second-order accurate.

Figure 3-3. The HIFiRE-1 wind tunnel test geometry that shows the fore-cone on the left, the
cylindrical section in the center, and the flare on the right, from [1]. The text states that the
final nosetip was changed from sharp to a radius of 2.5 mm and the flare angle was changed
from 37◦ to 33◦.

3.2.1. MNA+FPBL with 0◦ Angle of Attack

The MNA+FPBL model with 0◦ angle of attack case has the option of two different viscous
models: flat-plate laminar and flat-plate turbulent using the van Driest model, shown in
Figures 3-4 and 3-5. Note that the HIFiRE-1 geometry is shown as a shaded figure in the
background of each plot to show the increase in uncertainty due to changes in geometry.

For pressure, both the GCI and order of accuracy perform quite well for the laminar and
van Driest cases, except near the discontinuity at the front of the nose cone, which is to be
expected. We note that there is a drop in order of accuracy when the angle of the
HIFiRE-1 geometry is zero, in the cylindrical portion, since the model is designed to be
insensitive when the angle is 0◦. For heat flux, the results are less desirable because of the
larger sensitivity to the mesh and due to the large variation in order of accuracy, although
the numerical uncertainty is still quite small (approximately 3% maximum difference) and
the uncertainty and spike in order of accuracy are quite localized. Refinement of the mesh
in areas where the angle of the geometry changes should help reduce the increase in
numerical uncertainty.
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Figure 3-4. GCI calculation for laminar case with 0◦ angle of attack.
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Figure 3-5. GCI calculation for turbulent (Van Driest) case with 0◦ angle of attack.
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3.2.2. Euler+MEIT with 0◦ Angle of Attack

The Euler+MEIT model with the 0◦ angle of attack case is shown in Figure 3-6. This case
represents the standard mid-fidelity option within MFTK. Note that the HIFiRE-1
geometry is shown as a shaded figure in the background of each plot to show the increase
in uncertainty due to changes in geometry.
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Figure 3-6. GCI calculation for turbulent (MEIT) case with 0◦ angle of attack.

For pressure, there are areas in the domain that are not fully resolved with a GCI ratio of
up to 3.5. Additionally, the order of accuracy confirms this lack of convergence with spikes
from the order of accuracy. For heat flux, rather than modeling the laminar-to-turbulent
transition region, MFTK currently switches from laminar to turbulent at x = 0.45 m. This
is a relatively new addition to MFTK to include both laminar and turbulent solutions. At
x = 0.45 m, the GCI ratio is up to 10.0, which indicates the manual method of modeling
the transition region could use improvement. To improve the transition modeling, the
transition model should be adjusted to include a length scale to the transition region to
ensure a resolvable transition model. In addition to the transition region, the sharp aft
region looks to be under-resolved. If the numerical uncertainty is too large, this could be
addressed in future studies by locally refining this region.
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3.2.3. RANS with 0° Angle of Attack

The RANS model with 0° angle of attack case has the option of two different viscous
models: Spalart–Allmaras (SA) and Shear Stress Transport (SST), shown in Figures 3-7
and 3-8. These cases represent the high-fidelity options within MFTK. Note that the
HIFiRE-1 geometry is shown as a shaded figure in the background of each plot to show the
increase in uncertainty due to changes in geometry.
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Figure 3-7. GCI calculation for turbulent (SA) case with 0◦ angle of attack.

For pressure, the GCI and order of accuracy for the SA model performs much better than
the SST model, which almost never has an order of accuracy that is close to the theoretical
value and a maximum GCI ratio of around 11.0. For heat flux, the results are similar to
pressure where the GCI and order of accuracy for the SA model perform much better than
the SST model, except for the spike in the GCI ratio near the laminar–turbulent transition
region. Regardless of the turbulence model, the chaotic nature of the order of accuracy is
concerning and a more refined mesh is probably required unless a large numerical
uncertainty is acceptable.
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Figure 3-8. GCI Calculation for turbulent (SST) case with 0◦ angle of attack.
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3.3. Future Work

For future work, additional code verification should be performed for the FPBL, MEIT,
and RANS equations to ensure the proper implementation of the models. When reviewing
the mid- and high-fidelity numerical uncertainties, the RANS-SA is much lower than the
other models. We also point out that even though the RANS-SA model had the lowest
numerical uncertainty of the mid- and high-fidelity models, the order of accuracy was
sporadic and the GCI value is still quite high. The high GCI value is an important result
since these mid- and high-fidelity meshes were considered to be well refined before the
analysis was completed. This means that future simulations should use more refined
meshes and will unfortunately add to the computational expense, which adds to the appeal
of the low-fidelity model. As expected, the low-fidelity MNA+FPBL model’s numerical
uncertainty is the lowest of all the simulation results. This is due to the simplistic nature
of the model and reaching well inside the asymptotic region is less computationally
expensive. When these cases are evaluated in the validation chapter of this report, results
where the GCI ratio is unacceptably high should either be locally or globally refined to
ensure the solution is within the asymptotic region. In addition to local and global mesh
refinement, the transition from laminar to turbulent solutions should be improved to
ensure the transition is smooth. Without a smooth transition, this region is not able to
enter the asymptotic range and will yield large numerical uncertainty.
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4. VALIDATION

Validation, or more specifically, model validation, is the process of asking to what degree a
model represents physical phenomena for its intended uses [14].

4.1. Model Validation Theory

Though formally defined in the introduction, informally, model validation seeks to
determine the degree to which the model is solving the physically appropriate equations.
For high-speed aerodynamics, these would include compressible forms of the continuity,
momentum, and energy equations. For the turbulent flows, including the full forms of the
governing equations (as in Direct Numerical Simulation) is often not tractable; therefore,
closure models are frequently used (as in RANS). The inviscid treatment of certain flows is
another example of a modeling assumption. Model validation processes can be used to
determine the suitability of such modeling assumptions.

Comparing simulation predictions to experimental results is fundamental to model
validation. There are several levels of scrutiny in comparisons that are seen in literature. A
helpful comparison is found in Figure 12 of [17] that presents six levels of validation
comparisons. The first and least descriptive is the viewgraph norm where contours are
placed next to each other, but differences in values are often obscured from the wealth of
field information and colorful scales. The next plots show several levels of comparisons that
switch to a common set of axes that are much better at revealing direct information.
Increasing the levels of UQ on measurements and predictions increases the rigor.

The ASME V&V 20 standard goes beyond comparisons in plots to the calculation of
validation comparison error and the validation uncertainty [14]. In this standard, the
validation comparison error E is defined as

(4.1)E = S − D,

where S represents the simulation solution and D represents the experimental data.
Equation (4.1) provides the simplest validation metric, which nonetheless transitions from
the qualitative comparisons in plots to a quantitative measure used to evaluate predictive
accuracy. It can be used to reveal trends in model form error over space, time, or
parameter sets.

The validation comparison error reveals differences, but how meaningful are those
differences, and could experimental and/or modeling uncertainties explain them? To help
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answer these questions, ASME V&V 20 also includes the calculation of a validation
uncertainty

(4.2)uval =
√

u2
num + u2

input + u2
D,

where unum is the numerical uncertainty commonly assessed by grid convergence studies,
uinput is the input parameter uncertainty propagated through the model, and uD is the
experimental data uncertainty [14]. Equation (4.2) is in the form of a standard uncertainty
at the 1σ or 68% confidence level. To calculate the expanded uncertainty at a more typical
2σ or 95% confidence level, the confidence coefficient C = 2 can be included as in U = Cu
on the uncertainty components or on uval. Throughout this work, uncertainties are
presented at the 95% confidence level. The validation uncertainty provides perspective on
the validation error. For example, if |E|≫ uval, then model form error is discernible from
the relatively small validation uncertainty and model improvements may be prudent if the
errors are larger than desired. On the other hand, if |E|≤ uval, model form error is not
distinguishable among the validation uncertainty and efforts to reduce uncertainty may be
pertinent.

Note that E is the validation comparison error and includes possible errors in measured
data and simulation predictions. It is, therefore, not the model form error. The exact
model form error is challenging to isolate but can be bounded. In ASME V&V 20 [14], the
model form error is bounded by

(4.3)δmodel ∈ [E − uval,E + uval].

This bounding motivates efforts to minimize uncertainty in both experiments and
simulations so that the model form error can be known with greater accuracy.

4.2. HIFiRE-1 Wind Tunnel Tests

Experimental data are critical to validation studies, but there are few presented in the
public literature for hypersonic aerodynamic vehicles, possibly due to the challenges of
measurements under these extreme conditions or the sensitivities of the applications. There
are a handful of tests that include a mix of flight and ground tests. These two types have
benefits and drawbacks. Flights tests are closer to the intended uses of MFTK, but
measurement quantity and quality for aero-only quantities are challenging. Most flight
tests of hypersonic vehicles require a thermal protection system that complicates the direct
measurement of aerodynamic quantities such as surface pressure, temperature, and heat
flux. Also, flight test conditions are only loosely controlled and measured. Conversely,
ground tests are farther from the intended uses of MFTK but enable greater
instrumentation and control of conditions. Many ground test facilities are shock tunnels
that induce hypersonic conditions for a fraction of a second, eliminating the need for
thermal protection systems.
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Many potential validation data sources were surveyed for this work. One source of
hypersonic aerodynamic validation data is the Hypersonic International Flight Research
and Experimentation (HIFiRE) program that sought to develop hypersonic technologies.
The program included atmospheric flight tests and ground tests in the shock tunnel
facilities at the Calspan–University at Buffalo Research Center (CUBRC). Their Large
Energy National Shock (LENS) facilities include LENS I, LENS II, and LENS XX [18]. Of
particular interest are the HIFiRE-1 wind tunnel tests that have been used for validation
data in a number of subsequent publications that were conducted in the LENS I shock
tunnel [1].

The HIFiRE-1 wind tunnel tests were selected for a validation application due to
hypersonic flow conditions, challenging flow characteristics, turbulence, testing with air,
and a wealth of high-quality data that spans a range of angles of attack and Reynolds
numbers [1]. One down-side is the low enthalpy conditions in the flow that will not exercise
the reacting gas models in the MFTK RANS implementation. The HIFiRE-1 flight test
was not selected due to the coning motion during reentry that makes it less ideal for
validation [19].

The HIFiRE-1 wind tunnel geometry is shown in Figure 3-3. It has a complex shape with a
slender 7◦ half-angle fore-cone, a cylindrical section in the center, then a blunt flare at the
rear. Depending on the run configuration, turbulent transition occurs naturally or is
tripped on the fore-cone. The flare causes a separation bubble in the cylindrical section
that is a challenge for many RANS models [18]. The test series had a total of over 50 runs
in two phases and the model contains a total of almost 100 heat flux sensors and 56
pressure sensors that are located at four different meridional angles.

To provide a sense of the flow field, the Mach number predictions in a two-dimensional,
axisymmetric, wall-normal plane for two RANS models are shown in Figure 4-1. The flow
is left to right. The solid wind tunnel model is the white region in the lower right and
includes the cone, the cylinder, and the flare. The white region in the upper left is not
simulated. The RANS Spalart–Allmaras (SA) and RANS Shear Stress Transport (SST)
models predict similar flow fields with the exception of the separated region near the
cylinder-flare intersection that is more pronounced for RANS-SST.

4.3. Validation Results

The validation studies herein include surface pressure and heat flux comparisons for Run
30, a 0◦ angle-of-attack case at a relatively high Reynolds number. In addition to
traditional comparison plots, the validation comparison error E from (4.1) and validation
uncertainty uval from (4.2) are calculated and plotted to enable quantitative comparisons of
predictive accuracy at all three fidelity levels of MFTK. The experimental data have known
uncertainties [1]. Similarly, the solution-verification studies in Chapter 3 provide numerical
uncertainty values unum. Note that for all of the simulation results herein, the medium
mesh was used and iterative convergence was achieved by driving normalized residuals
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(a) RANS-SA

(b) RANS-SST

Figure 4-1. HIFiRE-1 wind tunnel simulation Mach number predictions for RANS-SA and
RANS-SST models.
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below 10−12. The parameter uncertainty uinput is not calculated in this work but
recommended for future work.

4.3.1. Surface Pressure Comparisons

The first validation comparison is the surface pressure along the axial length of the vehicle
as shown in Figure 4-2. The test vehicle geometry is shown with the second y axis as a
gray region to provide background to the drastically different behavior along the length.
The results include measured data and predictions from the RANS-SA model, the
RANS-SST model, the Euler model combined with the Momentum/Energy Integral
Technique (MEIT), and the modified Newtonian aerodynamics (MNA) model combined
with flat-plate boundary layer (FPBL) correlations. The experimental pressure uncertainty
is 3% [1], interpreted as 3% of reading in the associated error bars/uncertainty bands. The
simulations have numerical uncertainty from the GCI results from solution verification
shown as shaded regions that are colored according to their respective model color. The
data are taken from the 0◦ meridian that has the most sensors. The fore-cone has very few
pressure sensors, but the pressure is nearly constant in this region. The instrumentation
density increases towards the rear of the vehicle where the flow is more complex. The
pressures increase drastically on the 33◦ flare region. The predictions used meshes that
were derived from the same source. From a 3D source mesh, a 2D axisymmetric mesh with
131,072 cells was derived for the RANS and Euler+MEIT simulations. For the MNA
model, which only requires a surface mesh, the 3D surface was extracted from the source
mesh.

This figure features an inset plot that highlights the aft end of the cylindrical and the flare
regions where the pressure measurements and predictions are quite complex. The RANS
predictions compare very well on the fore-cone and cylinder sections, as expected due to
the inviscid nature of the surface pressure. However, the agreement breaks down at the
separation point leading to the flare, which highlights the known inability of RANS models
to capture the complex physics of turbulent flow through a shock/boundary layer
interaction [20]. The SA model generally predicts pressure more accurately in this region,
though it appears to miss the physics of separation. The SST model over-predicts the
separation region, consistent with the findings of modelers associated with the HIFiRE
study [18]. The RANS-SA model has low numerical uncertainty while the RANS-SST
model has a very large uncertainty as the pressure predictions change drastically in the
separation and flare regions.

While others at Sandia National Laboratories have recently completed validation studies
with RANS in a similar manner [20], the mid-fidelity Euler+MEIT and low-fidelity
MNA+FPBL models have undergone no known validation work. Similar to the two RANS
models, the Euler+MEIT predictions are also qualitatively very good in the fore-cone and
cylinder sections. The pressure predictions more closely align with those from the SA
model in the separation region, though with some noise along the axis. Interestingly, it
appears that this mid-fidelity model combination is more accurate than the SST model
near this separation. However, the mid-fidelity model is not mesh-converged as evidenced
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Figure 4-2. HIFiRE-1 wind tunnel test pressure data and predictions.

by the large numerical uncertainty. Quantitative comparisons follow herein that present
greater detail.

The surface pressure predictions of the MNA+FPBL are also of high interest. Because
MNA is one of the class of so-called ‘panel’ methods, the only means by which it computes
the surface pressure is by using analytic formulas to process the flow through a shock wave
and then deflect the flow at the angle of the panel on the surface. These two steps dictate
the surface pressure on any forward-facing panel in the solver. The theoretical concept of
panel methods, flow deflection without losses or viscous modification, is reasonably true in
the limit of infinite Mach and Reynolds numbers and thus is only an approximation at
finite values. With this in mind, the MNA solver does a reasonable job predicting the
surface pressure on the fore-cone and cylindrical portions of the vehicle. The MNA solver
does not model any shock waves or boundary layers and is incapable of predicting the
separation point observed in the experiments. The flare portion of the vehicle presents a
higher degree of deflection compared to the rest of the vehicle and therefore shows the
highest surface pressure, aside from the stagnation point on the nose. The MNA+FPBL
models predict the increase in surface pressure at the flare with reasonable accuracy, but
do not capture the non-uniform behavior observed in the experiment. The numerical
uncertainty is negligible because this model is a panel method for which the pressure
predictions are only a function of inflow and the angle between the panel and the flow.

To determine quantitative accuracy, the errors in surface pressure predictions were
calculated using (4.1) and normalized by the experimental data for the four models along
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the vehicle axis and shown in Figure 4-3. The error is very low in the fore-cone and
cylindrical sections as expected with the MNA+FPBL models showing the largest error.
The error increases greatly in the separation and flare region with strong positive and
negative errors. The validation uncertainty calculated from (4.2), with uinput = 0, is also
shown as a shaded band to help determine if the validation error is discernible among the
uncertainty, which it clearly is for the RANS-SA and MNA+FPBL models but not
consistently for others.
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Figure 4-3. HIFiRE-1 pressure prediction error with uncertainty.

Because the validation error along the axis is very noisy with large differences in magnitude
in different sections, overall conclusions may be challenging to formulate. To compensate
for this, the validation error relative to the experimental data was integrated across all
experimental data points for each model independently using a trapezoidal method and
plotted in a bar plot in Fig. 4-4. Figure 4-4a only includes the experimental uncertainty of
3%, whereas Fig. 4-4b includes both experimental and numerical uncertainty sources. The
accuracy is better shown in Fig. 4-4a. Here, the improved accuracy of the SA model is
shown with the subsequent models being Euler+MEIT, MNA+FPBL, and finally SST.
The surprisingly high error of SST is due to the over-prediction of the separation region
size where the data are relatively low. Again, the validation uncertainty is shown but in
the form of uncertainty bands/error bars. If the experimental uncertainty were the only
source, the errors would be distinguishable among the uncertainty calculated. However, as
Fig. 4-4b shows, the validation uncertainty dominates for the RANS-SST and Euler+MEIT
models, such that the error is not discernible. However, it is still distinguishable for the
other two models.
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(a) Validation uncertainty only considering experimental source.
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(b) Validation uncertainty considering experimental and numerical sources.

Figure 4-4. HIFiRE-1 pressure prediction error magnitude integrated over data with uncer-
tainty.
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The HIFiRE-1 geometry has several different sections that cause the flow to have different
behavior, allowing us to evaluate the prediction error in multiple scenarios from the same
data set. The pressure error is therefore integrated over sections of a cone with laminar
and turbulent portions, a turbulent cylinder, and a turbulent flare with flow separation.
The prediction error relative to experimental data is shown for these sections for all four
model combinations in Fig. 4-5, except that there are no pressure measurements in the
laminar section. Figure 4-5a provides a better look at prediction error by only considering
the experimental uncertainty in the validation uncertainty. A more complete
understanding is obtained from Fig. 4-5b where the validation uncertainty includes both
experimental and numerical sources.

The pressure predictions are much more accurate in the turbulent cone section than the
cylindrical or flare sections, suggesting that the flow separation is, in general, more
challenging to model. In the turbulent cone section, the higher-fidelity models tend to
provide the lowest errors. In the cylindrical section, the RANS-SA and Euler+MEIT model
combinations have the most accurate pressure predictions. The RANS-SST model
over-predicts the pressure in the separation region where the experimental data are
relatively low. In the flare section, the three higher-fidelity models are the most accurate.

4.3.2. Surface Heat Flux Comparisons

The heat flux comparisons are shown in Figure 4-6. Compared with pressure, there are
many more sensors and there is an obvious transition from laminar to turbulent flow around
x = 0.45 m. The experimental heat flux uncertainty is 5% [1]. The numerical uncertainty
from solution verification is shown for each model as a shaded band. The RANS solutions
do well in capturing both the laminar and turbulent heating on the fore-cone and cylinder.
The transition between the boundary layer flow types is enacted by turning on the
turbulence production terms at the approximate transition point on the fore-cone. The
result of this method is to affect the change of laminar-to-turbulent transition heat flux
over a much shorter duration than observed in the experiment. Additionally, the overshoot
observed in the data is also missed by the simple transition method. As discussed
previously, the separation point location is early in the RANS solution; however, the peak
heat flux is consistent with the experimental data. The approach of manually setting the
transition location was taken so that the focus is on the predictive accuracy of the physics
models, not on the accuracy of a model to predict the transition location, an area that
merits further research outside the scope of this work. The numerical uncertainty for the
RANS-SA model is generally small throughout, except near the laminar-to-turbulent
transition location. Conversely, this uncertainty for the RANS-SST model can be quite
large, especially in the turbulent cone section, the aft end of the cylinder, and the flare (of
which the latter two are in the predicted separation region).

The Euler+MEIT model combination predictions are very reasonable considering their
medium-physics fidelity. The predictive accuracy is nearly as good as the RANS models in
the conical section and nearly identical in the cylinder section (except where the
RANS-SST model predicts a larger separation bubble on the aft end). The predictions also
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(a) Validation uncertainty only considering experimental source.
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(b) Validation uncertainty considering experimental and numerical sources.

Figure 4-5. HIFiRE-1 pressure prediction error magnitude separated by section with uncer-
tainty.

35



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
x, m

0

50

100

150

200

250

300

350

He
at

 F
lu

x,
 W

/c
m

2
RANS-SA
RANS-SST

Euler+MEIT
MNA+FPBL

Data

0.0

0.2

0.4

0.6

0.8

1.0

HI
Fi

RE
-1

 R
ad

iu
s, 

m

1.55 1.60 1.65 1.70
0

100

200

300

Figure 4-6. HIFiRE-1 wind tunnel test heat flux data and predictions.

match data very well on the fore end of the ramp but decrease too early with an error of
about 2×. However, even with this premature decrease, the trend is correct and even better
than either RANS model prediction. The numerical uncertainty can be moderately large,
especially for x > 0.9 m. Note that, as with the RANS models, a laminar version of the
model was used upstream of x = 0.45 m, and a turbulent version was used downstream.

The MNA+FPBL solver uses a flat-plate boundary layer correlation, a standard laminar
correlation, and the Van Driest model for turbulent flow [16] to predict heat flux. As the
conical geometry is somewhat removed from a flat plate, it should be expected to have an
error of at least

√
3 from the theoretical differences in heat flux. Future implementations of

the boundary layer correlations may be targeted toward curvature-aware correlations to
reduce this error. However, for the current implementation, the laminar heat flux has an
error on the order of 2× from the experiment over the laminar section of the fore-cone. As
done with previous models, the laminar and turbulent models were applied fore and aft of
x = 0.45 m, respectively. Interestingly, the heat flux nearly matches the experiment over the
cylinder section of the vehicle, where the flat-plate correlation is very reasonable. On the
flare, the error in heat flux is on the order of 3×, which is decent considering the complex
fluid dynamics over the flare that are not modeled with the MNA model. Note the nearly
flat shape of the heat flux prediction on the ramp where this model does not resolve the
complex flow separation. As before, the MNA+FPBL numerical uncertainty is negligible.

As with surface pressure, the heat flux tends to have a lot of variation that can obscure
quantitative accuracy conclusions. Therefore, the prediction error with validation
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uncertainty clouds for all four model combinations is shown in Figure 4-7. Experimental
data are available farther upstream than for pressure, into the laminar cone section of the
domain. Accurate predictions in this laminar region are made by all but the MNA+FPBL
model which under-predicts the heat flux. In the laminar-to-turbulent transition region,
the prediction errors trend from positive to negative and tend to remain slightly negative in
the turbulent cone section. In the cylinder section, all models show a high degree of
accuracy. Similar to pressure, the errors tend to be largest in the flare region. The
uncertainty cloud includes both the experimental and numerical uncertainty from (4.2), of
which the latter dominates. Similar to pressure, the validation uncertainty is largest for the
RANS-SST and Euler+MEIT models. Here, the turbulent transition region has higher
uncertainty, possibly due to the changing cell location where transition is manually set.
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Figure 4-7. HIFiRE-1 heat flux prediction error with uncertainty.

Similar to before, the heat flux prediction errors are integrated to provide a better
comparison between accuracy of the different models with the results shown in Fig. 4-8.
Figure 4-8a shows the validation error with the uncertainty only considering the
experimental source to better highlight the errors. However, Fig. 4-8b includes both
experimental and numerical uncertainty sources to provide a more complete representation
of the relative sizes of the error and uncertainty. Similar to pressure, the RANS-SA and
Euler+MEIT models have the smallest errors. However, the RANS-SST heat flux error is
much smaller than with pressure while the MNA+FPBL model has the largest with a
difference of about 2×, an expected result. With the more comprehensive validation
uncertainty in Fig. 4-8b, this uncertainty overwhelms the prediction error for the
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RANS-SST and Euler+MEIT models, suggesting that these models are not
mesh-converged.
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(a) Validation uncertainty only considering experimental source.
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(b) Validation uncertainty considering experimental and numerical sources.

Figure 4-8. HIFiRE-1 heat flux prediction error magnitude integrated over data with uncer-
tainty.

The prediction errors are again separated into different sections in Fig. 4-9 with only the
experimental uncertainty considered in Fig. 4-9a to help resolve errors and the more
comprehensive uncertainty treatment in Fig. 4-9b. On both the laminar and turbulent
sections of the cone, the RANS models are most accurate, followed by Euler+MEIT, with
MNA+FPBL least accurate as expected. These three higher-fidelity models have slightly
higher error in the turbulent cone section than laminar, an expected result from the higher
heat flux and modeling challenges inherent with turbulence modeling. In the cylindrical
section, the RANS-SST model has the highest prediction error, likely due to the premature
separation prediction. As with the cone, the three higher-fidelity models are most accurate
in the flare region. When considering both uncertainty terms available in this work, the
uncertainty is consistently larger than the error for the RANS-SST and Euler+MEIT
models. Further mesh refinement or potentially mesh quality improvements could reduce
the numerical uncertainty and help resolve the predictive accuracy.
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(b) Validation uncertainty considering experimental and numerical sources.

Figure 4-9. HIFiRE-1 heat flux prediction error magnitude by section with uncertainty.
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4.3.3. Future Work

This validation study has included a detailed analysis of a single run of the HIFiRE-1 wind
tunnel test data set at 0◦ angle of attack. It will be extended to include cases with nonzero
angles of attack and potentially to those at different Reynolds numbers so the predictive
accuracy can be quantified under other conditions of interest. Furthermore, other data sets
with higher enthalpy flow will be explored to exercise reacting gas models not currently
tested with this case. The large magnitude of the numerical uncertainty for the RANS-SST
and Euler+MEIT models in the area of separated flow dominates the validation error and
should be reduced for more conclusive results. This could be done relatively easily by
further mesh refinement. Furthermore, a parameter UQ study could provide added fidelity
to the validation uncertainty to help discern validation error from uncertainty.
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5. CONCLUSIONS

This work undertakes the first known verification and validation activities for the
Multi-Fidelity Toolkit to provide credibility evidence for its use in high-consequence
decision making in hypersonic vehicle analysis at a variety of physics-fidelity and
computational-expense levels. It has leveraged best practices in both verification and
validation. The code-verification activities focused on the modified Newtonian
aerodynamics model that is a large component of the low-fidelity capability of MFTK. The
other component, the flat-plate boundary layer models, should be the subject of future
code-verification efforts. Solution-verification and validation activities were applied to all
three fidelity levels of MFTK.

Code and solution verification are vital precursors for high-quality validation activities. By
minimizing the coding errors and measuring the numerical uncertainty, we can ensure the
impact of discretizing the equations and geometry is minimized. The MNA
code-verification results showed that for all QoIs, the difference between the MFTK results
and the analytical solution are less than 10−13 when the mesh perfectly represents the
geometry and the mesh lines up with the streamlines. This means the MNA model has
been implemented correctly in MFTK without coding errors for all situations matching the
code-verification case scenarios. Additionally, the MNA model has significantly less
numerical uncertainty than the Euler+MEIT or either RANS models, which is expected
since the asymptotic range for the low fidelity MNA model starts significantly earlier than
the Euler+MEIT or either RANS cases. Future Euler+MEIT and RANS-SST cases should
be refined where significant numerical uncertainty exists.

This work includes a practical description of model validation theory, an overview of the
HIFiRE-1 wind tunnel tests, and validation studies of all three fidelity levels of the MFTK
at 0◦ angle of attack. The relative accuracy of the RANS-SA and RANS-SST models is
superior for both pressure and heat flux on the laminar and turbulent fore-cone sections of
the HIFiRE-1 geometry. The RANS-SA accuracy remains high for the cylindrical and flare
sections as well, while the RANS-SST accuracy suffers due to an over-prediction of the
separation region. The RANS-SA model had consistently high accuracy and low numerical
uncertainty. The Euler+MEIT pressure predictions are second best in general with very
reasonable accuracy throughout the domain. For heat flux, the accuracy was second best
overall but followed the RANS models for conical performance. The MNA+FPBL model
was generally least accurate for both pressure and heat flux; however, the RANS-SST
model had the poorest performance in the cylinder section.

With these considerations and recognizing that these accuracies do not directly extrapolate
to other parameter spaces of interest, including high-enthalpy or higher-Mach flows, the
RANS-SA model is recommended for situations where the highest accuracy is desired with
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the capability to run more expensive models. The RANS-SST model has accurate
predictions for conical flows but is not recommended for separated flows, and has the
highest numerical uncertainty in this study. This finding is surprising as the SST model
was formulated to perform better than its predecessors in separated flows [21]. The high
numerical uncertainty of this model in the separation region deserves further attention.
The Euler+MEIT model combination has reasonable accuracy and computational expense
but higher than expected numerical uncertainty, an area that deserves further investigation.
This mid-fidelity model may be a good fit where the RANS models are too expensive. The
iterative stability of the Euler simulations was a challenge with these moderately refined
meshes, requiring special attention to the run schedule for complete convergence. The
MNA+FPBL models have reasonable accuracy, excellent speed, and negligible numeric
uncertainty and may be used where a very high number of simulations is required.

This validation activity has focused on accuracy without regard to performance.
Nevertheless, the differences in solution speed were notable. While the MNA+FPBL model
is solved on a 3D surface mesh for solver convenience, it could theoretically be solved in 2D
for this case. Even with this, the speedup is approximately 2,000× compared to the
RANS-SST model. A more thorough evaluation of the trade-offs between accuracy and
speed are recommended for a future work, especially as the faster models enable Monte
Carlo uncertainty quantification and design/parameter exploration studies much more
readily than the high-fidelity models.
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APPENDIX A. Derivation of Modified Newtonian Aerodynamics

This appendix focuses on the derivation of the MNA model for inviscid flow regions and
the three flat plate boundary layer (FPBL) models for the viscous flow regions.

A.1. Assumed Inputs

Before discussing the derivation of the MNA model and the FPBL models, the model
inputs should be stated. The following constants are used as inputs into MFTK and will be
used as part of the analytic solution. The constant names, notation, and values are listed
in Table A-1.

Table A-1. Table of values used in code-verification analysis.
Constant Name Notation Value Units
Gas constant for air R 287.05 J/kg/K
Ratio of specific heats γ 1.4 –
Prandtl number Pr 0.73684 –
Freestream density ρ∞ 0.066958 kg/m3

Freestream speed V∞ 2170.0 m/s
Freestream velocity V∞ Problem Specific m/s
Freestream temperature T∞ 226.46 K
Wall temperature Tw 300 K
Sutherland constant C Cvisc 1.458 ×10−6 –
Sutherland constant S Svisc 110.3 –

A.2. Newtonian Theory

Based on Section 3.2 of [15], Newtonian theory computes the pressure applied by the fluid’s
momentum in

pe −p∞ = ρ∞V 2
∞ sin2 θ, (A.1)

where pe is the edge pressure, p∞ is the freestream pressure shown in

p∞ = ρ∞RT∞, (A.2)

ρ∞ is the freestream density, R is the gas constant for air, T∞ is the freestream
temperature, V∞ is the freestream speed of the flow, and θ is the local surface angle
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relative to the freestream flow direction. The ratio between the static pressure and the
dynamic pressure is Cp and is defined as

Cp = pe −p∞
1
2ρ∞V 2

∞
. (A.3)

Substituting Eq. (A.1) into Eq. (A.4) results in

Cp = 2sin2 θ. (A.4)

While it is typical to derive these equations on an angled, one-dimensional plate, θ in
Eq. (A.4) is the local angle of the surface. This means that these equations are applicable
on two- and three-dimensional surfaces. For complex surfaces, θ is calculated by

θ = sin−1
(

V∞
V∞

·n
)

. (A.5)

where V∞ is the freestream velocity and n is the element surface unit vector. Another
important portion of the domain is the other side of the body (also known as the shadow
region). Since the shadow region does not undergo the increase in pressure due to the flow,
the pressure in the shadow region is the same as p∞. To account for the shadow region,
when θ < 0,Cp = 0.

A.3. MNA Model

The MNA model [22] is an improved method to compute the edge pressure distribution, pe,
over blunt-nosed bodies [15]. Additionally, we use pe to compute edge velocities, Ve, and
edge temperatures, Te. MNA assumes the pressure at the stagnation point is equal to the
stagnation pressure behind a normal shock wave (pO2). This exactly computes Cp at the
stagnation point, so it is natural to replace the factor of two in Newtonian theory with a
new coefficient. This new coefficient, Cpmax is used in the MNA model, such that Eq. (A.4)
becomes

Cp = Cpmax sin2 θ, (A.6)
where

Cpmax = pO2 −p∞
1
2ρ∞V 2

∞
. (A.7)

Noting that q = 1
2ρ∞V 2

∞ = γ
2 p∞M2

∞ (see [15, pg. 44]), Eq. (A.7) is simplified to

Cpmax = 2
γM2

∞

(
pO2

p∞
−1

)
, (A.8)

where γ is the ratio of specific heats and M∞ is the freestream Mach number and
computed using

M∞ = V∞√
γRT∞

(A.9)
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Using the Rayleigh pitot tube formula from normal shock-wave theory, the relationship
between the total pressure behind the pressure wave compared to the freestream pressure is
shown by [15, pg. 65]

pO2

p∞
=
(

(γ +1)2 M2
∞

4γM2
∞ −2(γ −1)

)
(A.10)

By substituting Eq. (A.8) and Eq. (A.10) into Eq. (A.6), the equation is now a function of
the ratio of specific heats for air, γ, and M∞, which matches Eq. (2.3) in [23]. Now that Cp

is derived, we can compute pe by rearranging the terms in Eq. (A.3) to obtain

pe = 1
2Cpρ∞V 2

∞ +p∞ (A.11)

Now that pe has been derived, edge velocity, Ve, and edge temperature, Te, can be derived.
Ve is defined as

Ve = Ve ·nv (A.12)
where the edge velocity unit vector, nv, is computed using the freestream speed of the flow,
freestream velocity, and the surface unit vector given by the surface of the body, ns, in

nv =
ns ×

(V∞
V∞

)
∣∣∣ns ×

(V∞
V∞

)∣∣∣ . (A.13)

The edge speed Ve is computed using the edge Mach number, Me, (see [15, pg. 79]) and
the speed of sound, a in

Ve = Mea, (A.14)
where

Me =

√√√√√√ 2
γ −1

( pe

pemax

) 1−γ
γ

−1

, (A.15)

a =
√

γRTe, (A.16)

pmax = 1
2Cpmax , (A.17)

and
Te = T∞

1+ 1
2 (γ −1)M2

∞
1+ 1

2 (γ −1)M2
e

. (A.18)

A.4. Flat Plate Boundary Layer Model

The flat plate boundary layer (FPBL) model is an empirical correlation that computes Cf

based on the properties of the flow. Cf is a non-dimensional number to describe the ratio
between shear stress and dynamic pressure of the flow. From Cf , the shear stress, τ , and
heat flux, qw, are computed.
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A.4.1. Shear Stress

The shear stress model is based on the Cf calculation of flow along a flat plate. There are
three models to compute Cf based on two different flow regimes within MFTK. When the
flow is characterized as laminar, Cf is based on the calculation from van Driest [24], which
is a modification of the Blasius equation. When the flow is turbulent, the user has the
choice of using the law-of-the-wall method developed by White and Christoph [25] or a
turbulent version of the flat plate model developed by van Driest [26].

Laminar

Based on Equation 7-41b of [16], the laminar coefficient of friction is

Cf = 0.664
√

C∗
√

Rexe
, (A.19)

where the Champman–Rubesin parameter, C∗, is defined by

C∗ = ρ∗µ∗

ρeµe
, (A.20)

where the operator ∗ is the characteristic value and the edge Reynolds number, Rexe, is
defined by

Rexe = ρeVeℓ

µe
, (A.21)

where

ρ∗ = Teρe

T ∗ , (A.22)

µ∗ = CviscT
∗

√
T ∗

T ∗ +Svisc
, (A.23)

ℓ = Dist(x) , (A.24)

T ∗ = Te

(
0.5+

(
γ −1

12

)√
PrM2

e +0.5Tw

Te

)
, (A.25)

ρe = pe

RTe
, (A.26)

µe = CviscTe

√
Te

Te +Svisc
. (A.27)

Note that Dist (x) is the streamline distance function, Pr is the Prandtl number, which
measures the ratio of momentum diffusivity and thermal diffusivity, and Cvisc and Svisc are
the Sutherland model coefficients.
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Turbulent (White)

Based on Equation 7-132 of [16],

Cfe ≈ 0.455
S2 ln2

(
0.06

S Rexe
µe
µw

√
Te
Tw

) , (A.28)

where

S =

√
Taw
Te

−1
sin−1 A+sin−1 B

, (A.29)

A = 2a2 − b√
b2 +4a2 , (A.30)

B = b√
b2 +4a2 , (A.31)

a2 = γ −1
2 M2

e
Te

Tw
, (A.32)

b = Taw

Tw
−1, (A.33)

and
µw = CviscTw

√
Tw

Tw +Svisc
. (A.34)

Based on Equation 7-35 in [16], the adiabatic wall temperature is

Taw = Te + r
Ve

2

2cp
, (A.35)

where the laminar and turbulent recovery factors are defined as

rlaminar = Pr
1
2 (A.36)

and
rturbulent = Pr

1
3 . (A.37)

Noting that Equation 7-26 in [16] shows

Ve
2

cpTe
= (γ −1)M2

e , (A.38)

which is substituted into Equation (A.35) and results in

Taw = Te

(
1.0+ r

(
γ −1

2

)
M2

e

)
, (A.39)
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Turbulent (van Driest)

Based on Equation 7-119 of [16], Cfe is solved iteratively using a Newton iteration. The
function that is minimized is

sin−1 A+sin−1 B√
Cfe

(
Taw
Te

−1
) ≈ 4.15log

(
RexeCfe

µe

µw

)
+1.7. (A.40)

Shear Stress

Once the Cf is calculated by the shear stress, τ , is defined as

τ = 1
2Cf ρeVeVe (A.41)

Note: for turbulent cases, MFTK assumes Cf ≈ Cfe based on Equation 7-39 in [16].

A.4.2. Heat Flux

Using the Cf computed above, the heat flux is computed using the Reynold’s analogy.
Based on Equation 7-15 in [16], the heat coefficient, Ch, is computed using

Ch = qw

ρeVecp (Taw −Tw) = Cf

2Pr2/3
, (A.42)

where
cp = γR

γ −1 . (A.43)

Note that the Reynold’s analogy assumes Pr = 1 and a pressure gradient of zero [16]. In
addition, the power of Pr in Equation (A.42) is changed from that in Equation 7-15 in [16]
to apply to both laminar and turbulent flows. Rearranging for qw, Equation (A.42)
becomes

qw = Cf

2Pr2/3
ρeVecp (Taw −Tw) . (A.44)

51



DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address

Greg Weirs 1446 vgweirs@sandia.gov

Jeff Payne 1510 jlpayne@sandia.gov

Matthew Barone 1515 mbarone@sandia.gov

Paul Delgado 1515 pmdelga@sandia.gov

Derek Dinzl 1515 djdinzl@sandia.gov

Nathan Miller 1515 nmille1@sandia.gov

Bryan Morreale 1515 bjmorre@sandia.gov

Eric Robertson 1515 edrobe@sandia.gov

Justin Smith 1515 jussmit@sandia.gov

Ross Wagnild 1515 rmwagni@sandia.gov

Walt Witkowski 1540 wrwitko@sandia.gov

Matthew Bopp 1541 msbopp@sandia.gov

Paul Crozier 1541 pscrozi@sandia.gov

Travis Fisher 1541 tcfishe@sandia.gov

Lauren Beghini 1544 llbeghi@sandia.gov

Brian Carnes 1544 bcarnes@sandia.gov

Kevin Dowding 1544 kjdowdi@sandia.gov

Brian Freno 1544 bafreno@sandia.gov

Sarah Kieweg 1544 skieweg@sandia.gov

Jared Kirsch 1544 jkirsch@sandia.gov

Aaron Krueger 1544 amkrueg@sandia.gov

Blake Lance 1544 blance@sandia.gov

Josh Mullins 1544 jmullin@sandia.gov

Bill Rider 1544 wjrider@sandia.gov

Justin Winokur 1544 jgwinok@sandia.gov

Jon Murray 5422 jmurray@sandia.gov

Chisom Wilson 5913 cswilso@sandia.gov

52



Name Org. Sandia Email Address

Leah Tuttle 5914 lworrel@sandia.gov

Alex Stevenson 5915 asteven@sandia.gov

Amanda Dodd 8750 ajbarra@sandia.gov

Technical Library 1911 sanddocs@sandia.gov

53



Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.


	Introduction
	Code Verification
	Code Verification with Analytical Solutions
	Verification Cases
	Case 1: Flat Plate
	Case 2: Inclined Plate
	Coding Error Identified

	Future Work

	Solution Verification
	GCI Equations
	Solution Verification Assessment
	MNA+FPBL with 0^ Angle of Attack
	Euler+MEIT with 0^ Angle of Attack
	RANS with 0° Angle of Attack

	Future Work

	Validation
	Model Validation Theory
	HIFiRE-1 Wind Tunnel Tests
	Validation Results
	Surface Pressure Comparisons
	Surface Heat Flux Comparisons
	Future Work


	Conclusions
	References
	Appendices
	Derivation of Modified Newtonian Aerodynamics
	Assumed Inputs
	Newtonian Theory
	MNA Model
	Flat Plate Boundary Layer Model
	Shear Stress
	Heat Flux



