

1 **Plant-mediated partner discrimination in ectomycorrhizal mutualisms**

2

3 Laura Bogar¹ (ORCID: 0000-0001-6121-2224), Kabir Peay¹ (ORCID: 0000-0002-7998-7412), Ari
4 Kornfeld² (ORCID: 0000-0003-1646-307X), Julia Huggins³, Sara Hortal⁴, Ian Anderson⁴ (ORCID:
5 0000-0002-3507-163X), Peter Kennedy³ (ORCID: 0000-0003-2615-3892)

6

7 ¹Stanford University, Department of Biology, Stanford, 94305, USA; ²Carnegie Institution for
8 Science, Department of Global Ecology, Stanford, 94305, USA; ³University of Minnesota,
9 Department of Plant & Microbial Biology, Saint Paul, 55108, USA; ⁴Western Sydney University,
10 Hawkesbury Institute for the Environment, Hawkesbury Campus, Locked Bag 1797, Penrith NSW
11 2751, Australia.

12

13 Correspondence:

14 Laura Bogar

15 371 Serra Mall

16 Herrin Labs rm. 227 (Biology)

17 Stanford, CA 94305

18 650-736-6676

19 lbogar@stanford.edu

20

21 **Abstract**

22 Although ectomycorrhizal fungi have well recognized effects on ecological processes ranging
23 from plant community dynamics to carbon cycling rates, it is unclear how actively plants are able
24 to influence the structure of these fungal communities. To address this knowledge gap, we
25 performed two complementary experiments to determine 1) whether ectomycorrhizal plants can
26 discriminate among potential fungal partners, and 2) to what extent the plants might reward
27 better mutualists. In experiment 1, split-root *Larix occidentalis* seedlings were inoculated with
28 spores from three *Suillus* species (*S. clintonianus*, *S. grisellus*, and *S. spectabilis*). In experiment 2,
29 we manipulated the symbiotic quality of *Suillus brevipes* isolates on split-root *Pinus muricata*
30 seedlings by changing the nitrogen resources available, and used carbon-13 labeling to track host
31 investment in fungi. In experiment 1, we found that hosts can discriminate in multi-species
32 settings. The split-root seedlings inhibited colonization by *S. spectabilis* whenever another fungus
33 was available, despite similar benefits from all three fungi. In experiment 2, we found that roots
34 and fungi with greater nitrogen supplies received more plant carbon. Our results suggest that
35 plants may be able to regulate this symbiosis at a relatively fine scale, and that this regulation
36 can be integrated across spatially separated portions of a root system.

37

38 Keywords: ectomycorrhiza, *Larix occidentalis*, partner choice, *Pinus muricata*, stable isotope
39 enrichment, *Suillus*

40

41

42 **Introduction**

43 Ectomycorrhizal fungi play critical roles in forest ecosystems, both as major drivers of nutrient
44 cycling and carbon storage in soils (Averill et al. 2014; Clemmensen et al. 2015) and as key
45 mediators of plant community dynamics (Nara and Hogetsu 2004; Bennett et al. 2017). Given the
46 plant costs involved in the symbiosis (in terms of root occupancy, immune activation, plant
47 carbon, or other resources) (Smith and Read 2008; Van Wees et al. 2008; Kennedy 2010; Corrêa
48 et al. 2012; Pringle 2016), hosts should prefer to invest in more beneficial ectomycorrhizal
49 mutualists when presented with several possible partners. This scenario has been well
50 documented in the arbuscular mycorrhizal symbiosis, where plants can reward greater nutrient-
51 providing symbionts with increased carbon supplies (Bever et al. 2009, Kiers *et al.*, 2011; Argüello
52 *et al.*, 2016), and in the legume-rhizobial mutualism, where plants can punish ineffective nitrogen
53 fixers, apparently by withholding oxygen (Kiers et al. 2003). These mechanisms—rewards and
54 punishment—likely fall along a continuum of host control strategies that encompasses many
55 possible mechanisms (Kiers and Denison 2008).

56

57 Because mechanisms of host control should only be required when a symbiotic interaction is
58 costly to the plant, the cost of the ectomycorrhizal mutualism has been the subject of much
59 debate. Since the fungi themselves principally benefit from host-derived carbon, this resource is
60 often assumed to be the main cost to the plant host (Smith and Read 2008; Pringle 2016). This
61 view has been challenged recently by the finding that carbon is an excess resource for plants
62 (Corrêa et al. 2012), and that carbon allocation does not always directly correspond to nitrogen
63 provisioning from the fungi (Corrêa et al. 2008; Valtanen et al. 2014; Hasselquist et al. 2016;
64 Hortal et al. 2017). Carbon may still be important, however, when considering the potential costs
65 of ectomycorrhizal mutualism. It might be most realistic to think of the “cost” of supporting any
66 given ectomycorrhizal fungus as an *opportunity cost*: although the plant is typically not carbon-
67 limited, any carbon that goes to one fungus is carbon could have been invested in another,
68 potentially superior, symbiotic partner. Similarly, any root tip occupied by one fungus is a root
69 tip that could have been occupied by another, with different and perhaps preferable symbiotic
70 abilities. A host should, in theory, allow an interaction to continue only while it is receiving

71 mutualistic services that are at least as beneficial as the average mutualist in the available species
72 pool (Johnstone and Bshary 2008), although recent work has demonstrated that environmental
73 fluctuations can induce hosts to support lower-quality mutualists (Moeller and Neubert 2016).
74 Maintaining this kind of control over the fungi should require an ectomycorrhizal plant to adjust
75 its investment in mutualists according to their relative performances, even when carbon is not
76 limiting *per se*.

77

78 Although discrimination among partners by plants has been demonstrated in other root
79 symbioses, the ectomycorrhizal mutualism may be controlled in different ways. Unlike arbuscular
80 mycorrhizal and rhizobial mutualisms, the ectomycorrhizal symbiosis is consistently extracellular
81 and involves dozens of independently evolved fungal lineages (Smith and Read 2008; Tedersoo
82 and Smith 2013). Additionally, the magnitude of variation in partner quality may be more
83 extreme: ectomycorrhizal fungi vary dramatically in enzymatic capabilities, biomass production,
84 and environmental tolerances (Agerer 2001; Jones et al. 2003; Talbot et al. 2013). Arbuscular
85 mycorrhizal fungi, by contrast, may contain less functional variation within their monophyletic
86 guild (Powell et al. 2009), although the full extent of their functional diversity has yet to be
87 adequately characterized (Chagnon et al. 2013; Behm and Kiers 2014). Similarly, while there has
88 been well-documented variation in nitrogen provisioning by different rhizobial strains (Friesen
89 2012), they provide a single nutrient compared to the more diverse services provided in
90 mycorrhizal symbioses (e.g. multiple nutrients and water acquisition, protection from heavy
91 metals and pathogens) (Colpaert et al. 2011; Bennett et al. 2017). Given the phylogenetic
92 diversity and the breadth of symbiotic benefits provided by ectomycorrhizal fungi, their plant
93 hosts may need to regulate them using different mechanisms from those employed by arbuscular
94 mycorrhizal or rhizobial hosts.

95

96 Plant hosts have at least two opportunities to discriminate among fungal partners. Prior to
97 initiating an interaction, a plant may respond to fungal signals and accept or reject potential
98 partners based on their identities or anticipated benefits. This phenomenon is well documented
99 in rhizobial symbioses (Oldroyd et al. 2011), and may also be important in mycorrhizal

100 associations (Schmitz and Harrison 2014; Garcia et al. 2015). In ectomycorrhizal associations, the
101 strongest evidence for pre-interaction screening by plants is the phenomenon of host specificity.
102 Among fungi, many are specific to particular families or genera of plants (Molina and Horton
103 2015); among plants, although strict specificity to one or a few species of fungi is almost entirely
104 restricted to mycoheterotrophs (Bruns et al. 2002), the suite of symbionts a plant supports often
105 varies predictably with plant taxonomy (Molina and Horton 2015). In many cases, this specificity
106 may be exerted at the spore germination stage – that is, host-specific fungi will not germinate
107 until appropriate roots are present, despite being capable of broader associations as hyphae
108 (Massicotte et al. 1994; Lofgren et al. 2018). Additionally, recent research into ectomycorrhizal
109 fungal gene expression has identified many small secreted peptides that appear to be expressed
110 at the initiation of symbiosis, and whose identities can vary considerably among fungal taxa (Plett
111 et al. 2011; Liao et al. 2016). This points strongly to pre-interaction signaling as an important
112 checkpoint in this symbiosis.

113

114 Once an interaction has been initiated, the plant may also be able to reward or sanction its
115 partner according to the benefits it provides. This is often cited as a key prerequisite for
116 mutualism stability (Hoeksema and Kummel 2003; Frederickson 2013), since pre-interaction
117 signaling may not truthfully convey the quality of the potential partner. It is far from clear,
118 however, to what extent and on what basis ectomycorrhizal plants may discriminate among
119 fungal partners according to their symbiotic benefit. Theory predicts that plants in nitrogen-
120 limited systems should reward nitrogen-providing fungi with carbon resources (Franklin et al.
121 2014; Moeller and Neubert 2016). This would be consistent with the way that plants distribute
122 resources among non-symbiotic roots, investing resources to encourage the growth of nitrogen-
123 providing roots into patches of valuable soil resources (Chen et al. 2018). Importantly, these soil
124 resources may be available to both roots and soil fungi, creating competition between the
125 symbionts (Peay 2016). These competitive interactions could complicate rewards for
126 cooperation, as hosts may direct photosynthate to portions of the root system that provide
127 nitrogen, regardless of their symbiotic status. Adding to this complexity, theory suggests that,
128 even with plant preferential allocation, a stable community of fungi on a root system may include

129 some non-mutualists, assuming that the plant will invest initially in fungi of unknown quality
130 (Christian and Bever 2018). Thus, the degree of plant discrimination that exists in any given
131 symbiosis may be important in explaining the diversity of ectomycorrhizal fungi that coexist on a
132 fine scale.

133

134 Reflecting this complexity, evidence for plant rewards of cooperative ectomycorrhizal fungi has
135 thus far been equivocal. Hasselquist et al. (2016) found idiosyncratic effects of nitrogen addition
136 and shading on resource trading between ectomycorrhizal fungi and host trees in a boreal forest,
137 suggesting that rates of carbon and nitrogen exchange are context-dependent and may not
138 always benefit host plant growth. In particular, fungal retention of nitrogen may be greatest
139 when little nitrogen is present, with transfer to host plants increasing as more becomes available
140 (Näsholm et al. 2013). Comparing three species of *Pisolithus* associated with *Eucalyptus grandis*,
141 Hortal et al. (2017) did not find evidence for plant carbon rewards of fungal nitrogen supply under
142 conditions where nitrogen was not limiting. As soil nitrogen declines, plants have been shown to
143 invest more in mycorrhizas, but they do not necessarily experience greater nitrogen transfer to
144 their own tissues with greater fungal colonization (Corrêa et al. 2008). Taken together, it appears
145 that plants may, under certain conditions, reward fungal nitrogen provisioning with carbon
146 resources, but the relationship between fungal nitrogen transfer rates and plant investment in
147 the fungus is complex.

148

149 To examine the importance of pre-colonization screening (based on fungal identity) and post-
150 colonization selection (for symbiotic benefit) in mediating plant discrimination among
151 ectomycorrhizal fungi, we performed two experiments. Both used host plants in the Pinaceae
152 and fungi in the Pinaceae-specific genus *Suillus*. In Experiment 1, we grew split-root *Larix*
153 *occidentalis* seedlings associated with each of three *Suillus* species, in single- or pair-wise
154 combinations, to investigate whether the presence of another fungus elsewhere in the root
155 system would affect the timing and extent of colonization from spores in an isolated root
156 compartment. We hypothesized that, if the plant could discriminate prior to associating with a
157 fungus, the initiation of colonization would vary depending upon the presence and identity of an

158 indirect competitor elsewhere on the root system. In experiment 2, we grew paired split-root
159 *Pinus muricata* seedlings with isolated genotypes of *Suillus brevipes* that varied only in access to
160 organic nitrogen. We then tracked plant photosynthate investment in fungi and roots of
161 artificially varying nutritional qualities using ^{13}C labeling. If rewards for nutrient provisioning were
162 important in this system, we expected nitrogen-providing roots and fungi to receive more
163 photosynthate from the plant than those with access to fewer nitrogen resources.

164

165 **Materials and Methods**

166

167 *Experiment 1: Larix-Suillus*

168

169 ***Plant propagation***

170 In March 2014, *Larix occidentalis* seeds (Silva Seed Company, Roy, WA, USA) were soaked in
171 distilled water for 24 hours and then stratified at 4°C for four weeks. The seeds were germinated
172 in Petri dishes containing moistened filter paper and then transferred into 19.5 cm x 19 cm x 0.5
173 cm plexiglass chambers. Each chamber was filled with 180 ml of a twice-autoclaved mix of forest
174 soil, peat moss, and sand (2:2:1 by volume). We added ten germinated seeds to the upper soil
175 surface. The microcosms were placed in a growth chamber at 21°C with a 16:8 hr light-dark cycle
176 and watered regularly with distilled water. After four weeks, the chambers were opened and the
177 roots of each seedling were pruned to facilitate division into two primary root segments. The
178 chambers were closed and the seedlings were grown for another 8 weeks under the same
179 conditions prior to their transfer into the experimental microcosms.

180

181 ***Microcosm set-up***

182 The experimental microcosms (hereafter referred to as microcosms) included the same soil mix,
183 but consisted of two separate square 10 cm x 10 cm x 1 cm Petri dishes that were glued together
184 (Fig. S1). Using a soldering tool, a small hole was notched into the upper sides of the Petri dishes
185 to plant each half of the seedling's root system inside each of the two Petri dishes while the shoot
186 grew above them. This allowed isolation of the two halves of the root system for each seedling

187 into the separate but immediately adjacent sides of the microcosm. A 1 mL pipette tip was
188 inserted in a second small hole in each Petri dish, which allowed for controlled addition of water
189 while preventing cross contamination between the two sides of the microcosm. For each
190 seedling, both halves of the root system were checked for viability and size equivalency during
191 transfer. If necessary, some roots were trimmed to make the two halves of the root system as
192 equal as possible. Because the seedlings were not completely uniform in size, different sized
193 seedlings were evenly distributed across treatments (i.e. all treatments received a similar range
194 of seedling sizes).

195

196 ***Experimental treatments***

197 To investigate how single- versus two-species ectomycorrhizal fungal inoculation affected both
198 fungal colonization patterns and plant performance, we added inoculum of one of three *Larix*-
199 associated *Suillus* species on one side of the microcosm: *S. clintonianus*, *S. grisellus*, or *S.*
200 *spectabilis*. The ectomycorrhizal species inoculum was added as homogenized single-species
201 spore slurries at a concentration of 5×10^5 spores/ml of soil, which falls within the range of
202 previous assays that have observed consistent ectomycorrhizal colonization (Kennedy and Bruns
203 2005). Spores were obtained from multiple sporocarps collected in Minnesota, USA in fall 2013
204 (see Kennedy et al. (2011) for additional details on spore inoculum preparation). In half of the
205 microcosms, a second species was inoculated at the same time on the other side of the
206 microcosm. The resulting treatments, which contained 6 replicate microcosms initially, were: 1)
207 *S. clintonianus*/non-ectomycorrhizal, 2) *S. grisellus*/non-ectomycorrhizal, 3) *S. spectabilis*/non-
208 ectomycorrhizal, 4) *S. clintonianus*/*S. grisellus*, 5) *S. clintonianus*/*S. spectabilis*, 6) *S. grisellus*/*S.*
209 *spectabilis*. In order to prevent algal growth and shield the roots and fungi from light, each
210 microcosm was wrapped in aluminum foil. The seedlings were grown in the microcosms for 20
211 weeks under the same light and temperature conditions used prior to inoculation, watering to
212 saturation two or three times per week.

213

214 ***Data collection***

215 After a total of 28 weeks of growth, seedlings were harvested to quantify ectomycorrhizal fungal
216 colonization and seedling performance. During harvest, the stem of each seedling was cut
217 immediately above the point where the root system split into two halves. All parts of above this
218 splitting point were designated as shoot biomass and everything below as root biomass. Shoots
219 were dehydrated at 65°C for 72 hours and then weighed. Needles from each seedling were also
220 analyzed for leaf nitrogen content. For that analysis, 2 mg of leaf material was ground to a fine
221 powder by shaking at 1500 rpm for 5 minutes in 2 mL screw-cap tubes with a Tungsten bead on
222 a Geno/Grinder 2010 (SPEX, Mutchen, NJ, USA). The percent leaf nitrogen by mass was quantified
223 on an elemental analyzer (Vario PyroCube, Elementar, Mt. Laurel, NJ, USA) at the University of
224 Minnesota. The root systems of each seedling were rinsed free of adhering soil and stored in tap
225 water at 4°C until scoring for ectomycorrhizal colonization (all treatments were processed within
226 10 days of harvest). Prior to scoring, each root sample was cut into one cm segments and mixed
227 to equalize ectomycorrhizal root tip density across the sample. We then selected pieces of the
228 root sample at random and visually scored ectomycorrhizal colonization under a dissecting
229 microscope. For each root system sample, a minimum of 200 root tips were assessed. After
230 scoring, all portions of the root sample (i.e. scored and un-scored) were dehydrated at 65°C for
231 72 hours and weighed for dry biomass. Because the microcosms were constructed with clear
232 plastic and their depths were thin enough that much of the root system was visible, we were also
233 able to visually inspect each microcosm and record the presence of ectomycorrhizal root tips
234 without disturbing the root systems or the fungi during the course of the experiment. To quantify
235 time to initial ectomycorrhizal fungal colonization, we unwrapped the microcosms every two
236 weeks and searched each side for ectomycorrhizal root tips. We note that these time
237 measurements are low-resolution estimates because initial colonization could have happened
238 any time in the two-week window before the observations were recorded.

239

240 ***Statistical analyses***

241 We used two-way analyses of variance (ANOVA) to compare differences across ectomycorrhizal
242 fungal species identity and competitor treatments in a) % ectomycorrhizal colonization at the
243 final harvest and b) time with ectomycorrhizal fungal colonization. We performed another two-

244 way ANOVA to compare compartment root mass across treatments, as a proxy for plant
245 investment in the fungus. We also assessed differences in the benefits provided by each fungus
246 by comparing plant biomass and % leaf nitrogen by mass in single-species treatments using two
247 separate one-way ANOVAs. Following each significant ANOVA, differences among treatment
248 means were determined using Tukey HSD tests. Prior to interpreting the ANOVAs, models were
249 checked for adherence to homoscedasticity and normality assumptions, and data were log-
250 transformed if necessary.

251

252 *Experiment 2: Pinus-Suillus brevipes*

253

254 ***Plant and fungal propagation***

255 *Pinus muricata* seeds were obtained from cones collected at Point Reyes National Seashore, CA,
256 USA in November 2013. Fungal inoculum was produced using 12 *Suillus brevipes* cultures that
257 were originally isolated from sporocarps collected in Yosemite National Park and Mendocino
258 County, CA, USA, as well as Alberta, Canada (Branco et al. 2015). Each plant received just one of
259 these isolates to ensure genetic homogeneity of fungi across the root system, while allowing us
260 to capture intraspecific variation in fungal behavior across seedlings with different fungi (see
261 table S1 for distribution of isolates among treatment groups). We cultivated these isolates on
262 modified Melins-Norkran medium (Marx 1969) with sterile cellophane membranes for transfer
263 to seedlings. Pine seeds were surface-sterilized, germinated on moist filter paper, and planted
264 into twice-autoclaved soil (50% sand, 50% low-ectomycorrhizal inoculum soil from Point Reyes)
265 (Peay 2018) in February 2014. Throughout the experiment, seedlings were maintained in a
266 growth room with a 16:8hr light:dark cycle at a temperature between 20-27 °C. In late 2014 (July
267 through December), seedlings were gently uprooted, rinsed in deionized water, and moved into
268 ectomycorrhizal synthesis chambers consisting of clean zip-top plastic bags containing Ingestad
269 solution-moistened paper towels (Nylund and Wallander 1989). Cellophane membranes covered
270 in *Suillus brevipes* mycelium, representing 8-12 weeks of growth from a plug, were gently pressed
271 against the roots, and the bags were zipped closed (roots inside, shoot outside) and wrapped in
272 foil to prevent light penetration. Seedlings remained in synthesis chambers for one week, and

273 then were transplanted (with adhering mycelia) into a twice-autoclaved artificial soil containing
274 50% sieved perlite, 40% vermiculite, and 10% peat by volume, in which they grew until harvest
275 in early March (total 12-32 weeks). Uninoculated seedlings were rinsed in deionized water and
276 then replanted into artificial soil, skipping the synthesis chambers step. Although the staggered
277 mycorrhization schedule meant that seedlings were not at a uniform age when fungi were
278 introduced, all mycorrhizal seedlings used in the experiment had been colonized for at least 12
279 weeks and were observed to have mature ectomycorrhizas in several places on their root systems
280 when they were transplanted into split-root microcosms.

281

282 *Microcosm set-up*

283 In March 2015, all seedlings were uprooted, checked for colonization, and replanted into split-
284 root microcosms (two 631-mL Anderson Tree Band pots taped together) containing the same
285 sterile artificial soil medium (Fig. S1). The root system of each seedling (inoculated with a single
286 genotype) was divided in two halves. Each half of the root system was planted in one of the two
287 pots of the microcosm with the shoot above them. Seedlings were watered to saturation once
288 per week with deionized water during the four-month period during which they grew in the split
289 root microcosms.

290

291 ***Nitrogen treatments to manipulate fungal partner quality***

292 During the replanting of seedlings into the split-root microcosms, we planted nitrogen-containing
293 mesh bags into both compartments of each microcosm (ANKOM technology, NY: R510 bags,
294 50µm pore size). These bags allowed us to manipulate the symbiotic quality of the genetically
295 identical isolates on either side of a given seedling's root system, by changing the amount of
296 nitrogen available to them. Bags were filled with twice-autoclaved sand mixed with casein
297 (Thermo Fisher Scientific product S25238), an extract of nitrogen-rich milk proteins, in three
298 concentrations: no casein, 0.5 g casein, or 1 g casein per bag, creating a gradient of nitrogen
299 availability to plants and fungi. Seedlings were divided into three nitrogen treatment groups:
300 Sand on each side of the root system (sand/sand), an identical amount of casein on each side
301 (nitrogen/nitrogen), and sand on one side, casein on the other (nitrogen/sand). The sand/sand

302 (S/S) and nitrogen/nitrogen (N/N) treatments allowed the genetically identical isolates on each
303 side of a given root system to perform as plant symbionts of similar quality. The nitrogen/sand
304 (N/S) treatments were intended to force one of the genetically identical isolates (provided with
305 only a sand bag) into the role of a putatively less effective symbiont than its competitor (provided
306 with casein) on the other side of the root system. Because the plant had the opportunity to
307 associate with symbionts of different quality, we called this the “choice” treatment.

308

309 ***¹³C labeling***

310 We used stable isotope enrichment to track plant allocation of carbon resources to roots and
311 genetically identical isolates on each side of their root systems. In July 2015, plants were placed
312 in CO₂ enrichment chambers at the Oxford Tract greenhouses at the University of California,
313 Berkeley (Herman et al. 2012). We used an automated system to introduce ¹³CO₂ into the
314 chamber each time the plants drew down chamber CO₂ below 400ppm, maintaining CO₂
315 concentrations between 400-800 ppm during the six hour labeling period. Plants were labeled in
316 five batches, one per day, due to space limitations within the labeling chambers. The first batch
317 was labeled using 99% ¹³CO₂ (Sigma-Aldrich product 364592). For subsequent batches, we used
318 a 10% enriched ¹³CO₂ source (Sigma-Aldrich product 600180). (See “Statistical Analysis” for
319 details on our treatment of batch effects introduced by different ¹³C concentrations.) Plants were
320 harvested exactly seven days after ¹³C enrichment, and harvested root tissues were stored up to
321 a week in cold tap water before dissection and drying.

322

323 ***Data collection***

324 At the end of the experiment, we harvested 53 labeled seedlings. These included 5 colonized and
325 12 uncolonized nitrogen/nitrogen plants, 7 colonized and 11 uncolonized nitrogen/sand plants,
326 and 6 colonized and 12 uncolonized sand/sand plants. (Some plants were not successfully
327 colonized by fungi, so replication of uncolonized plants was greater in all treatments.) Twelve
328 additional plants, which had been in the growth room with other plants, but had not received ¹³C
329 label, were harvested as unenriched controls (3 uncolonized and 1 colonized nitrogen/nitrogen
330 plants, 3 uncolonized and 1 colonized nitrogen/sand plants, and 3 uncolonized and 1 colonized

331 sand/sand plants). For each seedling, we removed the shoot, separated the root compartments,
332 and thoroughly rinsed the roots from each compartment separately in tap water. After clipping
333 the roots from each compartment into 2 cm fragments, we used randomly selected pieces to
334 determine the ectomycorrhizal colonization (counting at least 100 fine roots per plant). For
335 colonized plants, we collected both ectomycorrhizas and uncolonized fine roots (<1 mm
336 diameter) from the fragments for ^{13}C concentration measurements; because uncolonized plants
337 had no ectomycorrhizas, we collected only uncolonized fine root tissue. All plant and fungal
338 tissues were oven-dried and weighed as in experiment 1. Dried uncolonized fine roots were
339 homogenized into a fine powder in a Minibeadbeater (Biospec products, Inc., Bartlesville, OK,
340 USA) for stable isotope analysis; due to low mass of available tissue per plant, ectomycorrhizas
341 were analyzed without grinding (approximately 15-25 whole ectomycorrhizas per sample tin,
342 typically 1-3 mg dry mass). Most colonized plants yielded enough ectomycorrhizal dry mass for
343 mass spectrometry, but three nitrogen/sand, two nitrogen/nitrogen, and one sand/sand plant
344 did not, bringing replication for ectomycorrhizal tissue down to 12 plants total. Elemental
345 (carbon/nitrogen) and stable isotope analysis were performed using a Costech Elemental
346 Analyzer (Costech Analytical Technologies, Valencia, CA, USA) coupled with a Delta V Advantage
347 Isotope Ratio Mass Spectrometer (IRMS) (Thermo Fisher Scientific, Waltham, MA, USA) at the
348 Carnegie Institute of Global Ecology, Stanford, California, USA. The signal was processed as
349 described in Kornfeld et al. (2012).

350

351 ***Data processing***

352 ^{13}C label concentration was calculated from IRMS data as mmol ^{13}C excess per mol ^{12}C , relative
353 to unenriched pine seedlings (Slater et al. 2001). Using these concentration values, we calculated
354 a log ratio carbon allocation metric to express differences in the amount of ^{13}C allocated by the
355 plant to each half of its root system (Ji and Bever 2016), allowing us to consider the distribution
356 of ^{13}C in a root system with respect to a compartment of interest. A positive allocation metric
357 indicates greater $[^{13}\text{C}]$ in the focal compartment relative to the other half of the root system,
358 while a negative value indicates a lesser $[^{13}\text{C}]$ than in the other half. This ratio was calculated
359 separately for each tissue of interest (ectomycorrhizas and uncolonized fine roots). When root

systems were divided between nitrogen (casein) and non-nitrogen (sand) compartments, we used the nitrogen-provisioning half of the root system as the focal compartment, calculating the allocation metric as $\ln([^{13}\text{C}]_{\text{N compartment}}/[^{13}\text{C}]_{\text{Sand compartment}})$. Otherwise, when nitrogen treatments on each side were identical, the numerator position was assigned at random to the value from one of the compartments, with the value from the other compartment serving as the denominator (i.e. $\ln([^{13}\text{C}]_{\text{A}}/[^{13}\text{C}]_{\text{B}})$), resulting in values arbitrarily assigned to positive or negative quantities. When the mmol ^{13}C excess value was zero or slightly negative (one value, -0.03 mmol ^{13}C excess per mol ^{12}C in the mycorrhizas of a nitrogen/nitrogen plant), we forced it to a very small positive value for log-transformation (+0.000001 mmol ^{13}C /mol ^{12}C). To compare the nitrogen contents of ectomycorrhizas or fine root tissues in paired root compartments, we employed the same log ratio procedure as we did for ^{13}C allocation, comparing the percent nitrogen contents of each tissue across paired root compartments.

372

373 ***Statistical Analyses***

374 To assess differences in $^{13}\text{CO}_2$ enrichment across labeling batches, we examined patterns in
375 overall enrichment and in the carbon allocation metric. This analysis included only fine roots from
376 uncolonized plants, a reference tissue that was well-represented in all labeling batches. To
377 examine overall enrichment, we performed a Kruskal-Wallis test with a post-hoc Dunnett test to
378 compare the mean mmol ^{13}C excess in fine roots across the two halves of each split root system.
379 To test for batch effects in the carbon allocation metric, we used an analysis of variance (ANOVA).
380 To determine whether total nitrogen supplied to the plant (0g, 0.5g, or 1g times the number of
381 nitrogen-containing bags planted near the root system), average % ectomycorrhizal colonization
382 across the root system, or their interaction affected seedling biomass or fine root nitrogen
383 concentration, we built two linear models after log-transformation to improve homoscedasticity
384 and normal distribution of residuals for each outcome. We performed a two-way ANOVA to see
385 how nitrogen treatment (N/S, N/N, or S/S) and addition level (0g, 0.5g, or 1g casein) affected
386 carbon allocation to root tissues. For this analysis, we used data from the primary nutrient-
387 absorbing organ in colonized and uncolonized plants: ectomycorrhizas for colonized plants, and
388 fine roots from uncolonized plants. To see how these nitrogen treatments may have affected

389 tissue nitrogen concentrations, we performed the same set of tests using the log-transformed
390 ratio of nitrogen concentrations in paired root compartments as the dependent variable. In each
391 case, if a predictor (nitrogen treatment or addition level) did not significantly predict the
392 dependent variable, we performed a subsequent one-way ANOVA using only the significant
393 factor, followed by a Tukey HSD test to identify the pairwise differences among groups. To
394 examine how root nitrogen provisioning might have influenced carbon allocation, we performed
395 linear regression predicting the log carbon allocation ratio – that is, the difference in carbon
396 quantities allocated to each side of a split root system – to the log-transformed nitrogen
397 concentration ratio (the difference in tissue nitrogen concentrations between sides of a split root
398 system), including root tissue type (ectomycorrhiza vs. uncolonized fine root) as a covariate. All
399 statistical analyses for both experiments were conducted in R v.3.3.3 (R Core Team, 2017) and
400 considered significant at $P < 0.05$.

401

402 **Results**

403

404 *Experiment 1: Can Larix discriminate among three Suillus species?*

405

406 All the uninoculated halves of the one-species treatment microcosms remained non-mycorrhizal
407 throughout the experiment. As such, we are confident the ectomycorrhizal root tip colonization
408 observed was the result of our spore inoculation and that there was no cross contamination
409 between sides of the microcosms. The extent of colonization by each *Suillus* species depended
410 upon the interaction between fungal species identity and competitor identity (two-way
411 interaction: $F_{3, 34} = 3.475$, $p = 0.027$; Table S2A). When growing alone, all three species colonized
412 seedling root systems to similar extents, occupying on average 38% of available roots per seedling
413 (Fig. 1A). When a second species was present on the other side of the microcosm, *S. clintonianus*
414 and *S. grisellus* colonized the root systems to a similar extent as when growing alone (Fig. 1A). *S.*
415 *spectabilis*, however, was sensitive to the presence of a second species, occupying a much smaller
416 proportion of the root system in the two-species treatments (0.9%) than in the single-species
417 treatment (34.7%).

418

419 The timing of root system colonization by the three *Suillus* species also varied by treatment,
420 although with statistical significance that was marginal (two-way interaction: $F_{3, 34} = 2.363$, $p =$
421 0.088; Table S2B). Without an ectomycorrhizal fungal competitor, all three *Suillus* species
422 colonized *Larix* seedlings at approximately the same time (Fig. 1B). When a second species was
423 present on the other side of the microcosm, however, *S. spectabilis* established much later,
424 forming ectomycorrhizas only in the last 1-3 weeks of the experiment. In contrast, time with
425 ectomycorrhizal colonization by *S. clintonianus* or *S. grisellus* was approximately the same
426 whether growing alone or when a second species was present (Fig. 1B).

427

428 In the single species treatments, different fungal species appeared to be equally effective
429 mutualists, producing plants with statistically indistinguishable biomass and foliar nitrogen
430 fractions (Table 1; Table S3). We also observed no significant differences in root biomass among
431 *Larix* seedlings root compartments with different fungal treatments (Table S2C).

432

433 *Experiment 2: Can Pinus reward N-provisioning roots and fungi with carbon resources?*

434

435 Colonization by *Suillus brevipes* isolates ranged from 0-86% across all root compartments, with a
436 median of 17% among colonized plants. Although the mesh bags were intended to make added
437 nitrogen available only to fungi, they did not completely exclude roots. Nitrogen from casein,
438 then, was available both to plants and to fungi through direct contact as well as possible leaching
439 from the bags into the surrounding soil during watering. Although nitrogen addition level (0g,
440 0.5g, or 1g casein ingrowth bags) significantly affected fine root nitrogen concentrations (i.e.
441 mean % nitrogen across the two halves of a split root system) (Table S4A), % ectomycorrhizal
442 colonization had only a marginally significant effect, and neither factor had a significant impact
443 on plant biomass (Table S4B). All labeled plants were substantially enriched for ^{13}C (range -20.2
444 to +358‰, with mean \pm standard deviation (sd) = $+54.8 \pm 88.4\text{‰}$, compared to unenriched plant
445 tissues with a range of -30.3 to -27.1‰, mean \pm sd = $-28.1 \pm 1.0\text{‰}$). The extent of fine root
446 enrichment (mean mmol ^{13}C excess across the two halves of a split root system) in uncolonized

447 plants was significantly predicted by labeling day (Kruskal-Wallis: $X^2 = 28.015$, df = 3, p < 0.001),
448 but this batch effect disappeared when we analyzed the log-ratio carbon allocation metric
449 (ANOVA: $F_{3,35} = 0.396$, P = 0.756).

450

451 Nitrogen treatment (N/N, S/S, or N/S), but not nitrogen addition level (0g, 0.5g, or 1g casein),
452 significantly affected plant carbon allocation to the primary absorptive belowground tissue: fine
453 roots in uncolonized plants, and ectomycorrhizas in colonized plants (Table S5A). The “choice”
454 treatment (sand(S)/nitrogen(N)) exhibited the most pronounced preferential allocation (most
455 positive allocation metrics towards the nitrogen compartment) (Fig. 2A) (ANOVA: $F_{2,50} = 3.707$, P
456 = 0.0315; Tukey HSD test, N/N-S/S p = 0.661, N/S-S/S p = 0.174, N/S-N/N p = 0.028). This pattern
457 was mirrored by the effect of nitrogen treatment on log-transformed ratios of tissue nitrogen
458 concentrations in paired root compartments (Fig. 2B; Table S5B) (ANOVA: $F_{2,50} = 4.58$, P = 0.0149;
459 Tukey HSD test, N/N-S/S p = 0.616, N/S-S/S p = 0.114, N/S-N/N p = 0.013). There was also a strong
460 positive association between the log-transformed ratio of ^{13}C allocation to root tissues and the
461 log-transformed ratio of percent nitrogen detected in those tissues. Specifically, as the difference
462 (log ratio) in percent nitrogen between tissues in paired root compartments increased, so did the
463 difference in ^{13}C allocation to those paired tissues. Root tissue type – ectomycorrhiza, from
464 colonized plants, or uncolonized fine root, from uncolonized plants – was not a significant
465 predictor of the carbon allocation metric (Fig. 3 and Table S6: adjusted $r^2 = 0.8155$, df = 49, p <
466 0.001).

467

468 **Discussion**

469 Collectively, our results suggest that ectomycorrhizal plants have the ability to discriminate
470 among potential fungal partners both prior to colonization (experiment 1) and during a symbiotic
471 interaction (experiment 2). In the first experiment, we found that *Larix occidentalis* seedlings
472 associated less with *Suillus spectabilis* when presented with an alternative ectomycorrhizal
473 symbiont than when no alternative was available (Fig. 1). That is, the extent of *S. spectabilis*
474 colonization was heavily reduced in the two-species treatments relative to when it colonized
475 alone. This likely reflected delayed onset of root colonization by this fungus (Fig. 1B), suggesting

476 the mechanism at work acted prior to an active symbiosis with *S. spectabilis*. While our results
477 do not identify the specific mechanism, we believe they are most consistent with some kind of
478 pre-colonization signaling. One potential type of signaling could be the activation of plant defense
479 genes, as Hortal et al. (2017) recently demonstrated that defense genes can be upregulated when
480 multiple ectomycorrhizal fungal species colonize *Eucalyptus* seedlings. Specifically, they found
481 only the least effective ectomycorrhizal mutualist triggered defense gene activation, suggesting
482 that plants may have localized control on colonization. When the least effective mutualist was
483 the only fungus available for colonization, however, they showed that defense genes were not
484 upregulated against that symbiont, consistent with our observations in the present experiment.
485 This effect need not solely reflect plant control of colonization, however, as it is equally plausible
486 that both *S. clintonianus* and *S. grisellus*, but not *S. spectabilis*, induced a plant immune response
487 across the entire root system as they colonized the host roots. This activation of defense
488 pathways could have inhibited infection by *S. spectabilis*, but not either of the other fungi. If plant
489 defense genes were responsible for inhibiting colonization by *S. spectabilis* in our system,
490 however, they were only active for a limited period of time. After 20 weeks, seedlings with high
491 colonization by *S. grisellus* or *S. clintonianus* on one side of the microcosm were eventually
492 colonized (at low levels) by *S. spectabilis* on the other side. Since there was no nutrient
493 supplementation throughout the experiment, it is possible that local depletion of nutrients on
494 the initially colonized side created an incentive for host plants to allow *S. spectabilis* onto their
495 roots in order to exploit additional nutrients on the other side of the microcosms. Or, perhaps,
496 nutrient depletion could have weakened colonization on the initially colonized side, leading to a
497 downregulation of the plant's defense response. Future work that carefully manipulates soil
498 nutrient content and subsequently tracks resource movement and plant defenses would be
499 required to explore this scenario further.

500

501 Although our results could be consistent with other mechanisms, we think these alternative
502 explanations are less likely to be true. One is that this effect was mediated by plant resource
503 allocation. For example, the earlier-establishing fungus may have siphoned plant resources to its
504 side of the split-root microcosm, resulting in the *S. spectabilis* side accumulating fewer spore-

505 germination cue molecules simply because it received fewer plant resources. We believe this
506 possibility is unlikely, however, as all three *Suillus* species were equivalently effective mutualists
507 in terms of plant biomass gain and leaf nitrogen content, and root biomass was equivalent across
508 both sides of all paired microcosms (Table 1, Table S2). Furthermore, even if *S. spectabilis* were
509 an inferior mutualist, the plant did not have much opportunity to withhold resources, because
510 that fungus did not establish until the end of the experiment in the presence of a competitor. A
511 second possibility is fungal control on root colonization. In order to respond to a reduction in host
512 quality – for instance, if the host shifted photosynthate to the competing fungus – *S. spectabilis*
513 would need to be engaged in active symbiosis with a root as the competitor became established.
514 In our experiment, we detected no active symbiosis until very late in the trial. It also seems
515 unlikely that an obligate symbiont such as *S. spectabilis* would reduce its own growth so
516 profoundly, in the absence of a suitable alternative host. Taken together, these results suggest
517 the possibility that *S. spectabilis* was actively discriminating against *L. occidentalis* is also an
518 unlikely explanation for our results.

519

520 In experiment 2, we found that *Pinus muricata* seedlings directed recent photosynthate to roots
521 that contained more nitrogen, but made no distinction between ectomycorrhizal roots of
522 colonized plants and roots of uncolonized plants (Fig. 3). Although it is well established that
523 resource-providing roots receive greater investment from a plant (Eissenstat et al. 2015; Chen et
524 al. 2016; Cheng et al. 2016), this is to our knowledge the first demonstration of carbon investment
525 tracking tissue nitrogen concentrations equally well in mycorrhizal and uncolonized fine roots.
526 This mechanism may allow for plant rewards of resource-providing fungi, a phenomenon known
527 to occur in the arbuscular mycorrhizal symbiosis (Kiers et al. 2011). The design of our experiment,
528 however, makes it difficult to establish the time frame in which plant rewards may be important:
529 The ^{13}C data represent allocation after a week-long chase period, while the nitrogen
530 concentration data likely reflect a long-term average of nitrogen flux through the tissue. Despite
531 operating on different time scales, the close correspondence between differences in tissue
532 nitrogen and recent carbon concentrations across the split-root microcosms indicates that these
533 resources may be tightly coupled. In contrast with our results, however, Valtanen et al. (2014)

534 found that these resources may not to be strictly coupled over the long-term in diverse fungal
535 communities. Future work should aim to clarify the influence of experimental time frame and
536 mutualist diversity on the coupling of plant and fungal resource exchange in this symbiosis.
537 Finally, we note that if fine spatial carbon-nitrogen coupling (root tip to root tip) does exist, this
538 would allow the plant to regulate its own root foraging efforts while also encouraging cooperative
539 fungi, suggesting that fundamental plant processes could reward cooperation even without
540 symbiosis-specific mechanisms (Frederickson 2013).

541

542 We clearly recognize that the interpretation of both our experiments are constrained by
543 experimental and methodological limitations. Although the patterns we observed provide
544 intriguing evidence that ectomycorrhizal competition can be strongly influenced by host plant
545 signaling, including independent replicates for each fungus/competitor combination would
546 further increase our confidence in the interpretation of the experiment 1 results. With regard to
547 experiment 2, the nitrogen source we used (casein protein) was not solely fungus-accessible,
548 although it was contained in mesh bags that partially inhibited root growth. To fully disentangle
549 the influence of fungal partner quality from the effects of competition between plant roots and
550 soil fungi, it would be necessary to fully separate roots from the nitrogen source and render it
551 solely accessible to the fungi, for example by introducing an air gap (He et al. 2005; Fellbaum et
552 al. 2014). Using a labeled nitrogen source would also illuminate resource trading dynamics that
553 we could not capture here. Finally, it also would be useful to be able to directly control the rates
554 of ^{13}C uptake across plants (rather than tracking allocation metrics in split root plants), which
555 would require stricter control of label concentration and timing than we were able to achieve in
556 this study.

557

558 In aggregate, our results support the hypothesis that ectomycorrhizal host plants, like those
559 engaged in other root symbioses, have the ability to discriminate among potential microbial
560 partners (Bever et al. 2009; Kiers et al. 2011; Argüello et al. 2016; Hortal et al. 2017). Further, our
561 results suggest that plant-based discrimination can occur both prior to symbiosis, based on
562 signals relevant to fungal identity, as well as after symbiosis has begun, based on the services

563 provided by a fungal partner. Although signaling has been suggested to be an important factor
564 regulating partner recognition in this system (Plett et al. 2014), our results suggest that fungal-
565 plant signaling can affect the outcomes of co-colonization among ectomycorrhizal fungi. While
566 our isotope-based results apply equally well to roots associated with fungal partners and to
567 uncolonized roots, they are consistent with plant allocation patterns that would encourage
568 symbiotic cooperation. By influencing which fungi succeed and in which contexts, a host plant
569 may not only affect its own performance, but also alter the pool of symbionts available to nearby
570 plants. This process may in turn influence the way that the forest community develops and how
571 quickly resources like carbon and nitrogen move through the system.

572

573 **Acknowledgements**

574 We thank Nhu Nguyen for collecting and logistical assistance with experiment 1 as well as a
575 Hawkesbury Institute for the Environment Research Exchange Program grant provided to S.
576 Hortal. We thank Ford Denison, Tad Fukami, members of the Peay lab, Thomas Kuyper, and four
577 anonymous reviewers for feedback on prior versions of this manuscript. Thanks also to Don
578 Herman, who provided essential assistance with the isotope enrichment part of experiment 2.
579 Support for this research was provided by a National Science Foundation (NSF) Graduate
580 Research Fellowship Program grant to L. Bogar, as well as a scholarship from the Mycological
581 Society of San Francisco, and a NSF-Division of Environmental Biology grant (1554375) to P.
582 Kennedy.

583

584 **Author contributions**

585 P.K. designed experiment 1, which was conducted by S.H. and J.H. L.B. designed and carried out
586 experiment 2 with support from K.P. and A.K. L.B. analyzed the data and composed the
587 manuscript, with writing and editing assistance from P.K., and additional revisions from all co-
588 authors.

589

590 **Compliance with ethical standards**

591 Conflict of interest: The authors declare that they have no conflict of interest.

592

593 **References**

594 Agerer R (2001) Exploration types of ectomycorrhizae: a proposal to classify ectomycorrhizal
595 mycelial systems according to their patterns of differentiation and putative ecological
596 importance. *Mycorrhiza* 11:107–114. doi: 10.1007/s005720100108

597 Argüello A, O'Brien MJ, van der Heijden MGA, et al (2016) Options of partners improve carbon
598 for phosphorus trade in the arbuscular mycorrhizal mutualism. *Ecol Lett* 19:648–656. doi:
599 10.1111/ele.12601

600 Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and
601 decomposers drives soil carbon storage. *Nature* 505:534–545. doi: 10.1038/nature12901

602 Behm JE, Kiers ET (2014) A phenotypic plasticity framework for assessing intraspecific variation
603 in arbuscular mycorrhizal fungal traits. *J Ecol* 102:315–327. doi: 10.1111/1365-2745.12194

604 Bennett JA, Maherli H, Reinhart KO, et al (2017) Plant-soil feedbacks and mycorrhizal type
605 influence temperate forest population dynamics. *Science* (80-) 355:181–184. doi:
606 10.1126/science.aai8212

607 Bever JD, Richardson SC, Lawrence BM, et al (2009) Preferential allocation to beneficial
608 symbiont with spatial structure maintains mycorrhizal mutualism. *Ecol Lett* 12:13–21. doi:
609 10.1111/j.1461-0248.2008.01254.x

610 Branco S, Gladieux P, Ellison CE, et al (2015) Genetic isolation between two recently diverged
611 populations of a symbiotic fungus. *Mol Ecol* 24:2747–2758. doi: 10.1111/mec.13132

612 Bruns TD, Bidartondo MI, Taylor DL (2002) Host specificity in ectomycorrhizal communities :
613 What do the exceptions tell us? *Integr Comp Biol* 42:352–359.

614 Chagnon PL, Bradley RL, Maherli H, Klironomos JN (2013) A trait-based framework to
615 understand life history of mycorrhizal fungi. *Trends Plant Sci* 18:484–491. doi:
616 10.1016/j.tplants.2013.05.001

617 Chen W, Koide RT, Adams TS, et al (2016) Root morphology and mycorrhizal symbioses
618 together shape nutrient foraging strategies of temperate trees. *Proc Natl Acad Sci U S A*
619 113:8741–8746. doi: 10.1073/pnas.1601006113

620 Chen W, Koide RT, Eissenstat DM (2018) Nutrient foraging by mycorrhizas: from species

621 functional traits to ecosystem processes. *Funct Ecol* 12:3218–3221. doi: 10.1111/1365-
622 2435.13041

623 Cheng L, Chen W, Adams TS, et al (2016) Mycorrhizal fungi and roots are complementary in
624 foraging within nutrient patches. *Ecology* 97:2815–2823. doi: 10.1002/ecy.1514

625 Christian N, Bever JD (2018) Carbon allocation and competition maintain variation in plant root
626 mutualisms. *Ecol Evol* 1–9. doi: 10.1002/ece3.4118

627 Clemmensen KE, Finlay RD, Dahlberg A, et al (2015) Carbon sequestration is related to
628 mycorrhizal fungal community shifts during long-term succession in boreal forests. *New*
629 *Phytol* 205:1525–1536. doi: 10.1111/nph.13208

630 Colpaert J V., Wevers JHL, Krznicic E, Adriaensen K (2011) How metal-tolerant ecotypes of
631 ectomycorrhizal fungi protect plants from heavy metal pollution. *Ann For Sci* 68:17–24.
632 doi: 10.1007/s13595-010-0003-9

633 Corrêa A, Gurevitch J, Martins-Loução MA, Cruz C (2012) C allocation to the fungus is not a cost
634 to the plant in ectomycorrhizae. *Oikos* 121:449–463. doi: 10.1111/j.1600-
635 0706.2011.19406.x

636 Corrêa A, Strasser RJ, Martins-Loução MA (2008) Response of plants to ectomycorrhizae in N-
637 limited conditions: Which factors determine its variation? *Mycorrhiza* 18:413–427. doi:
638 10.1007/s00572-008-0195-0

639 Eissenstat DM, Kucharski JM, Zadworny M, et al (2015) Linking root traits to nutrient foraging in
640 arbuscular mycorrhizal trees in a temperate forest. *New Phytol* 208:114–124. doi:
641 10.1111/nph.13451

642 Fellbaum CR, Mensah JA, Cloos AJ, et al (2014) Fungal nutrient allocation in common
643 mycorrhizal networks is regulated by the carbon source strength of individual host plants.
644 *New Phytol* 203:646–656. doi: 10.1111/nph.12827

645 Franklin O, Näsholm T, Högberg P, Högberg MN (2014) Forests trapped in nitrogen limitation -
646 an ecological market perspective on ectomycorrhizal symbiosis. *New Phytol* 203:657–666.
647 doi: 10.1111/nph.12840

648 Frederickson M (2013) Rethinking mutualism stability: cheaters and the evolution of sanctions.
649 *Q Rev Biol* 88:269–295. doi: 10.1086/673757

650 Friesen ML (2012) Widespread fitness alignment in the legume-rhizobium symbiosis. *New*
651 *Phytol* 194:1096–1111. doi: 10.1111/j.1469-8137.2012.04099.x

652 Garcia K, Delaux P, Cope KR, Ané J-M (2015) Molecular signals required for the establishment
653 and maintenance of ectomycorrhizal symbioses. *New Phytol* 208:79–87. doi:
654 10.1111/nph.13423

655 Hasselquist NJ, Metcalfe DB, Inselsbacher E, et al (2016) Greater carbon allocation to
656 mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest. *Ecology* 97:1012–1022.
657 doi: 10.1890/15-1222.1

658 He X, Critchley C, Ng H, Bledsoe C (2005) Nodulated N₂-fixing *Casuarina cunninghamiana* is the
659 sink for net N transfer from non-N₂-fixing *Eucalyptus maculata* via an ectomycorrhizal
660 fungus *Pisolithus* sp. using ¹⁵NH₄⁺ or ¹⁵NO₃[–] supplied as ammonium nitrate. *New Phytol*
661 167:897–912. doi: 10.1111/j.1469-8137.2005.01437.x

662 Herman DJ, Firestone MK, Nuccio E, Hodge A (2012) Interactions between an arbuscular
663 mycorrhizal fungus and a soil microbial community mediating litter decomposition. *FEMS*
664 *Microbiol Ecol* 80:236–247. doi: 10.1111/j.1574-6941.2011.01292.x

665 Hoeksema JD, Kummel M (2003) Ecological persistence of the plant-mycorrhizal mutualism: A
666 hypothesis from species coexistence theory. *Am Nat* 162:S40–S50.

667 Hortal S, Plett KL, Plett JM, et al (2017) Role of plant–fungal nutrient trading and host control in
668 determining the competitive success of ectomycorrhizal fungi. *ISME J* 11:2666–2676. doi:
669 10.1038/ismej.2017.116

670 Ji B, Bever JD (2016) Plant preferential allocation and fungal reward decline with soil
671 phosphorus: implications for mycorrhizal mutualism. *Ecosphere* 7:e01256. doi:
672 10.1002/ecs2.1256

673 Johnstone RA, Bshary R (2008) Mutualism, market effects and partner control. *J Evol Biol*
674 21:879–888. doi: 10.1111/j.1420-9101.2008.01505.x

675 Jones MD, Durall DM, Cairney JWG (2003) Ectomycorrhizal fungal communities in young forest
676 stands regenerating after clearcut logging. *New Phytol* 157:399–422. doi: 10.1046/j.1469-
677 8137.2003.00698.x

678 Kennedy PG (2010) Ectomycorrhizal fungi and interspecific competition: species interactions,

679 community structure, coexistence mechanisms, and future research directions. *New*
680 *Phytol* 187:895–910. doi: 10.1111/j.1469-8137.2010.03399.x

681 Kennedy PG, Bruns TD (2005) Priority effects determine the outcome of ectomycorrhizal
682 competition between two *Rhizopogon* species colonizing *Pinus muricata* seedlings. *New*
683 *Phytol* 166:631–638.

684 Kennedy PG, Higgins LM, Rogers RH, Weber MG (2011) Colonization-competition tradeoffs as a
685 mechanism driving successional dynamics in ectomycorrhizal fungal communities. *PLoS*
686 *One* 6:e25126. doi: 10.1371/journal.pone.0025126

687 Kiers ET, Denison RF (2008) Sanctions, cooperation, and the stability of plant-rhizosphere
688 mutualisms. *Annu Rev Ecol Evol Syst* 39:215–236. doi:
689 10.1146/annurev.ecolsys.39.110707.173423

690 Kiers ET, Duhamel M, Beesetty Y, et al (2011) Reciprocal rewards stabilize cooperation in the
691 mycorrhizal symbiosis. *Science* (80-) 333:880–882. doi: 10.1126/science.1208473

692 Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-rhizobium
693 mutualism. *Nature* 425:78–81. doi: 10.1038/nature01931

694 Kornfeld A, Horton TW, Yakir D, Turnbull MH (2012) Correcting for nonlinearity effects of
695 continuous flow isotope ratio mass spectrometry across a wide dynamic range. *Rapid*
696 *Commun Mass Spectrom* 26:460–468. doi: 10.1002/rcm.6120

697 Liao H-L, Chen Y, Vilgalys R (2016) Metatranscriptomic study of common and host-specific
698 patterns of gene expression between pines and their symbiotic ectomycorrhizal fungi in
699 the genus *Suillus*. *PLOS Genet* 12:e1006348. doi: 10.1371/journal.pgen.1006348

700 Lofgren L, Nguyen NH, Kennedy PG (2018) Ectomycorrhizal host specificity in a changing world:
701 Can legacy effects explain anomalous current associations? *New Phytol*. doi:
702 10.1111/nph.15008

703 Marx D (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to
704 pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil
705 bacteria. *Phytopathology* 59:153–163.

706 Massicotte HB, Molina RJ, Luoma DL, Smith JE (1994) Biology of the ectomycorrhizal genus,
707 *Rhizopogon*: II. Patterns of host-fungus specificity following spore inoculation of diverse

708 hosts grown in monoculture and dual culture. *New Phytol* 126:677–690.

709 Moeller HV, Neubert MG (2016) Multiple friends with benefits: an optimal mutualist
710 management strategy? *Am Nat* 187:E1–E12. doi: 10.1086/684103

711 Molina R, Horton TR (2015) Mycorrhiza specificity: its role in the development and function of
712 common mycelial networks. In: Horton TR (ed) *Mycorrhizal Networks*, 1st edn. Springer
713 Netherlands, Dordrecht, pp 1–39

714 Nara K, Hogetsu T (2004) Ectomycorrhizal fungi on established shrubs facilitate subsequent
715 seedling establishment of successional plant species. *Ecology* 85:1700–1707. doi:
716 10.1890/03-0373

717 Näsholm T, Högberg P, Franklin O, et al (2013) Are ectomycorrhizal fungi alleviating or
718 aggravating nitrogen limitation of tree growth in boreal forests? *New Phytol* 198:214–21.
719 doi: 10.1111/nph.12139

720 Nylund J, Wallander H (1989) Effects of ectomycorrhiza on host growth and carbon balance in a
721 semi-hydroponic cultivation system. *New Phytol* 112:389–398. doi: 10.1111/j.1469-
722 8137.1989.tb00328.x

723 Oldroyd GED, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-
724 rhizobial symbiosis. *Annu Rev Genet* 45:119–144. doi: 10.1146/annurev-genet-110410-
725 132549

726 Peay KG (2016) The mutualistic niche: mycorrhizal symbiosis and community dynamics. *Annu
727 Rev Ecol Evol Syst* 47:143–164. doi: 10.1146/annurev-ecolsys-121415-032100

728 Peay KG (2018) Timing of mutualist arrival has a greater effect on *Pinus muricata* seedling
729 growth than interspecific competition. *J Ecol* 106:514–523. doi: 10.1111/1365-2745.12915

730 Plett JM, Daguerre Y, Wittulsky S, et al (2014) Effector MiSSP7 of the mutualistic fungus
731 *Laccaria bicolor* stabilizes the *Populus* JAZ6 protein and represses jasmonic acid (JA)
732 responsive genes. *Proc Natl Acad Sci U S A* 111:8299–8304. doi: 10.1073/pnas.1322671111

733 Plett JM, Kemppainen M, Kale SD, et al (2011) A secreted effector protein of *Laccaria bicolor* is
734 required for symbiosis development. *Curr Biol* 21:1197–1203. doi:
735 10.1016/j.cub.2011.05.033

736 Powell JR, Parrent JL, Hart MM, et al (2009) Phylogenetic trait conservatism and the evolution

737 of functional trade-offs in arbuscular mycorrhizal fungi. *Proc R Soc B* 276:4237–45. doi:
738 10.1098/rspb.2009.1015

739 Pringle EG (2016) Integrating plant carbon dynamics with mutualism ecology. *New Phytol*
740 210:71–75. doi: 10.1111/nph.13679

741 Schmitz AM, Harrison MJ (2014) Signaling events during initiation of arbuscular mycorrhizal
742 symbiosis. *J Integr Plant Biol* 56:250–261. doi: 10.1111/jipb.12155

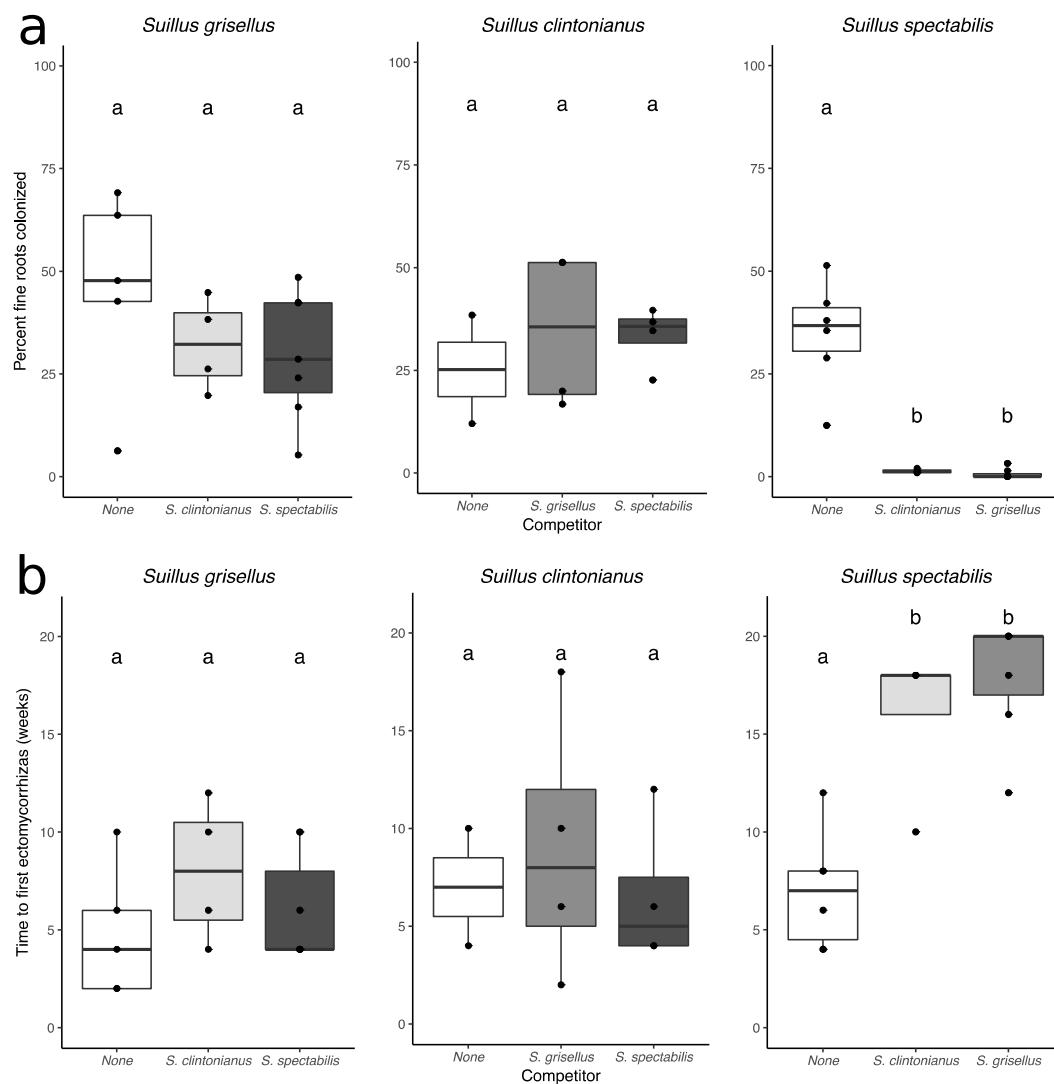
743 Slater C, Preston T, Weaver LT (2001) Stable isotopes and the international system of units.
744 *Rapid Commun Mass Spectrom* 15:1270–1273. doi: 10.1002/rcm.328

745 Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic Press, San Diego

746 Talbot JM, Bruns TD, Smith DP, et al (2013) Independent roles of ectomycorrhizal and
747 saprotrophic communities in soil organic matter decomposition. *Soil Biol Biochem* 57:282–
748 291. doi: 10.1016/j.soilbio.2012.10.004

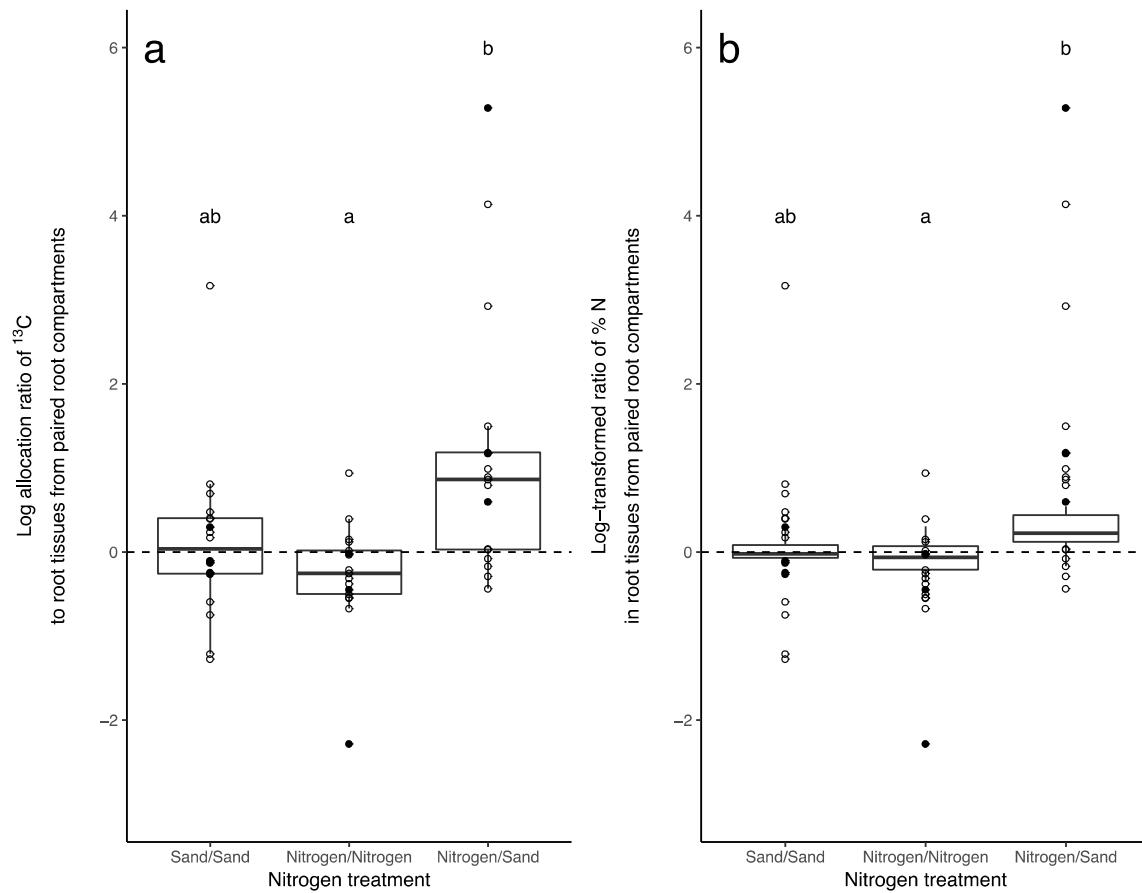
749 Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: Foraging strategies
750 and novel lineages revealed by sequences from belowground. *Fungal Biol Rev* 27:83–99.
751 doi: 10.1016/j.fbr.2013.09.001

752 Valtanen K, Eissfeller V, Beyer F, et al (2014) Carbon and nitrogen fluxes between beech and
753 their ectomycorrhizal assemblage. *Mycorrhiza* 24:645–650. doi: 10.1007/s00572-014-
754 0581-8


755 Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by
756 beneficial microbes. *Curr Opin Plant Biol* 11:443–448. doi: 10.1016/j.pbi.2008.05.005

757

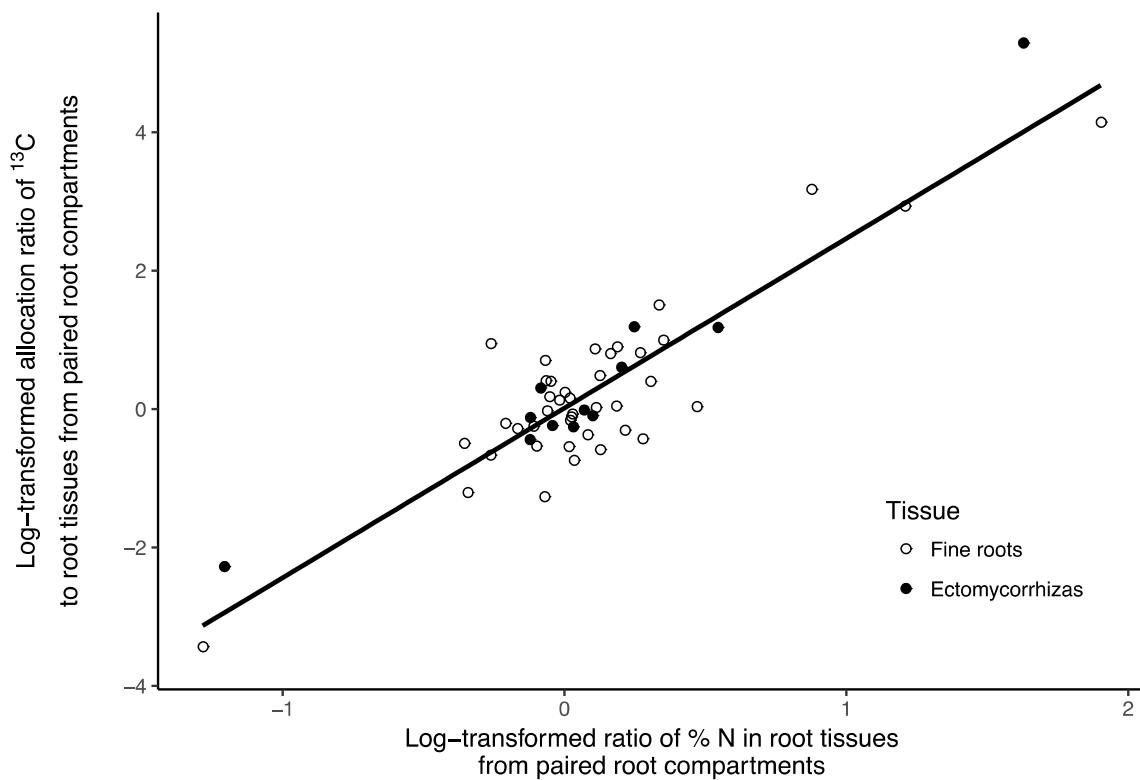
758


759 **Figures and Tables**

760 Figure 1: Extent of ectomycorrhizal % colonization (A) and timing of ectomycorrhizal fungal
 761 colonization (B) of *Larix occidentalis* seedlings varies based on the interaction between fungal
 762 species identity and competitor treatment. Letters indicate significant differences identified
 763 among the interacting factors (fungus and competitor identity) by a post-hoc Tukey HSD test on
 764 the two-way ANOVA results. The midline of each box represents the mean value for that fungus
 765 and competitor combination, hinges illustrate the boundaries of the first and third quartiles, and
 766 whiskers extend to the most extreme points no more than one and a half times the interquartile
 767 range away from the hinge. All data are plotted as individual points overlain on the boxplots.

769 Figure 2: A) The log-transformed ^{13}C allocation ratio, representing carbon allocation to across the
770 split root systems of *Pinus muricata* seedlings, was significantly higher in the choice
771 (nitrogen/sand) treatment than in the nitrogen/nitrogen treatment (significance determined by
772 a post-hoc Tukey test). This result mirrors the pattern in B): the log-transformed ratio of nitrogen
773 content in root tissues – whether absorptive roots or ectomycorrhizas – was greatest in the
774 choice treatment. Boxes, points, and significance labels are plotted as in Figure 1. Closed circles
775 illustrate data from ectomycorrhizal tissue; open circles indicate values from uncolonized fine
776 root tissue. The dashed line illustrates a log-ratio of 0 (no difference between paired root
777 compartments).

778



779

780

781

782 Figure 3: The difference in nitrogen content within a tissue type in paired root compartments,
 783 measured as a log ratio, was significantly correlated with the difference in ^{13}C allocation to those
 784 tissues, measured as the log-ratio ^{13}C allocation metric described in Materials and Methods.
 785 When comparing paired root compartments A and B from a single microcosm, the metric is
 786 calculated as $\ln([^{13}\text{C}]_A/[^{13}\text{C}]_B)$, so that a negative value indicates more ^{13}C on side B, while a
 787 positive value indicates more ^{13}C on side A. Open circles illustrate values for uncolonized fine root
 788 tissue; closed circles are from ectomycorrhizas. The line illustrates the predicted relationship
 789 between the variables as modeled by linear regression, with shading indicating the 95%
 790 confidence interval. Although percent nitrogen represents a long-term average of nitrogen flux
 791 through a root, while the ^{13}C allocation measures carbon flux over the course of the week long
 792 chase period, the amount of carbon these plants would allocate to their root tissues – whether
 793 ectomycorrhizas or absorptive roots – was related to the amount of nitrogen those roots
 794 contained.

795
 796

797 Table 1: *Larix* seedling biomass and foliar % nitrogen do not vary significantly by fungal identity
798 in single-species treatments. Values presented are mean plus or minus one standard deviation.

	Focal species (no competitor):		
	<i>S. clintonianus</i>	<i>S. grisellus</i>	<i>S. spectabilis</i>
Total biomass (g)	1.29 ± 0.05	1.27 ± 0.25	1.26 ± 0.11
Foliar nitrogen (%)	1.34 ± 0.16	1.43 ± 0.21	1.28 ± 0.16

799
800
801