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Abstract

Text-to-speech technologies are evolving quickly towards
realistic-sounding human-like voices. As this technology im-
proves, so does the opportunity for malpractice in speaker iden-
tification (SID) via spoofing, the process of impersonating a
voice biometric via synthesis. More data typically equates to
a more realistic voice model, which poses an issue for well-
known subjects, such as politicians and celebrities, who have
vast amounts of multimedia available online. Detection of syn-
thetic speech has relied on signal processing techniques that fo-
cus on the generation of new acoustic features and train deep-
learning models to detect when an audio file has been manip-
ulated through the characterization of unnatural changes or ar-
tifacts. However, these techniques do not use any information
from the speaker they are evaluating. This paper proposes to
incorporate information from the speaker-of-interest (Sol) into
the models to avoid specific spoofing attacks for certain vul-
nerable people. The wealth of data for well-known people can
also be used to train a speaker-specific spoofing detector with a
higher level of accuracy than a speaker-independent model. The
paper proposes a new xResNet-PLDA system and compares it
to three different baseline systems: a state-of-the-art speaker
identification system, an xResNet system trained to discrimi-
nate between bonafide and fake speech, and a speaker identifi-
cation system in which the PLDA and calibration models were
trained with bonafide and fake speech. We evaluated the sys-
tems in two different scenarios — a cross-validation scenario
and a hold-out scenario — with three different databases. We
show how the proposed system outperforms dramatically the
baseline systems in each scenario and for each database. Fi-
nally, we show how using a small amount of the Sol’s speech to
adapt global calibration parameters improves the performance
of the system, especially in unseen conditions.

Index Terms: Deep-fake speech, speaker information, xRes-
Net, calibration

1. Introduction

Fake speech has challenged the status of multimedia documents
as evidence of past situations. Synthetic speech generated by
deep-fake algorithms can be used to falsify events and spread
online misinformation. While the generation and manipulation
of speech is not new, the quality of the state-of-the-art text-to-
speech (TTS) methods and the quantity of available data to train
the algorithms allow users with limited knowledge to create
convincing speech for targeted individuals. End-to-end models
like WaveNet [1], Tacatronl/2 [2, 3], Deep Voice 3 [4], Fast-
Speech 1/2 [5], ClariNet [6], or EATS [7] have improved the
TTS technologies considerably with their abilities to generate

natural and intelligible speech. As a result, the amount of deep-
fake content has consistently increased over the last few years.

Training a high-quality TTS system that mimics a specific
speaker requires a large amount of transcribed speech of the
speaker-of-interest (Sol). Therefore, celebrities and politicians
are easy targets of malicious TTS attack. However, even when
data resources are limited, there are techniques that focus on
leveraging data from other speakers to improve the quality of
the Sol [8, 9].

These recent developments in TTS have heightened the
need for methods and systems to detect deep-fake attacks. Most
deep-fake detectors are based on signal processing techniques
and deep-learning methods that detect artifacts in the speech
signal [10]. Although some of the artifacts have similar uncom-
mon energy distribution, unnatural prosody, or clippings in the
high frequencies, the artifacts are easy to mask by adding some
background noise or music, applying filters to the speech signal,
or using some specific codecs [11]. Moreover, the TTS systems
mentioned above can reduce the amount of artifacts to a mini-
mum if enough data are available to train the models properly.
Therefore, detection methods based on artifacts are not reliable
for high-performance synthetic speech and cannot generalize
their decisions in different scenarios other than those used for
training [12]. Also, these general methods do not use any infor-
mation about the Sol since they are intended to be applied to all
speakers without previous knowledge.

Very recently, Belli et al. [13] investigated the face enroll-
ment approach associated with each query image for face spoof-
attack detection. In contrast to contemporary systems that rely
only on query images to detect fake images, this approach sig-
nificantly improved spoof-attack detection. Along the same line
of research, we propose a new deep-fake detection approach
that can leverage the information of the Sol (enrollment) to dif-
ferentiate between generated and bonafide speech. A consid-
erable amount of literature has been published on automatic
speaker verification (ASV) from the threat of spoofing thanks
to the ASV Spoof evaluations [12]. While these evaluations
focused on ASV as the core task, they also reported perfor-
mance on fake-audio detection. However, we have not found
previous work where Sol information was used as enrollment
to detect fake audio to the best of our knowledge. The pro-
posed system in this work allows a user to enroll bonafide Sol
speech that the back-end of the system uses for three specific
goals: a) to compare the bonafide speech (enrollment) with the
test speech (query), b) to re-calibrate the system output for that
specific Sol, and c) to output a likelihood ratio between the
bonafide hypothesis and the fake hypothesis. This proposed ap-
proach is based on an xResNet architecture [14] trained to clas-
sify bonafide versus fake speech. From that architecture, we
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extract embeddings that we use in a Probabilistic Linear Dis-
criminant Analysis (PLDA) backend. We also propose a new
challenging database of deep-fake videos from YouTube that
has background noises and music. The videos are composed
of 22 celebrities and politicians with many audio documents on
the Internet. The human ear cannot easily distinguish between
the deep fake audios from the bonafide samples.

Section 2 of this paper describes the different parts of the
proposed system. Section 3 describes the databases used to
evaluate the proposed solution and several other databases used
during the training stage. Section 4 shows the experimental set-
tings and results of comparing the proposed system to a gen-
eral deep-fake detector and to a speaker ID system. Section 5
presents the conclusions of this work.

2. System Description

The system is composed of a) the front-end part that of the sys-
tem that does not contain speaker-specific information, and b)
the back-end part of the system that contains speaker informa-
tion.

2.1. Front-end

The front-end of the system is composed of the acoustic fea-
tures, the speech activity detector (SAD), and the deep-fake em-
bedding extractor.

2.1.1. Acoustic Features: Linear Frequency Cepstral Coeffi-
cients

Linear Frequency Cepstral Coefficients (LFCC) is an acous-
tic feature that uses a series of filterbanks on a linear fre-
quency scale (uniform separation between filters). LFCC pro-
vides higher signal resolution at high frequencies than filter-
banks based on the Mel-scale [15] because the separation be-
tween filters does not increase with frequency. These high fre-
quencies are essential for detecting deep-fakes because the arti-
facts in the synthetic speech are usually located in the limits of
low and high frequencies of the speech spectrum [15].

2.1.2. Speech Activity Detection (SAD)

Our SAD is DNN-based with two hidden layers containing 500
and 100 nodes, respectively. The SAD DNN is trained using 20-
dimensional Mel-frequency cepstral coefficients (MFCC) fea-
tures, stacked with 31 frames. Before training the SAD DNN,
the features were mean and variance normalized over a 201-
frame window. In our previous work [16], we investigated the
impact of SAD on the performance of speaker-embeddings-
based speaker recognition systems. It was shown that a low
SAD threshold during training tended to benefit the embeddings
extractor, while maintaining a strict threshold during evaluation
was necessary. The thresholds for selecting the speech versus
non-speech frames was 2.0 for evaluation and -1.5 for DNN
training.

2.1.3. Deep-fake embedding extractor

Deep residual networks (ResNets) were introduced to ad-
dress the neural network degradation and generalization prob-
lem [17]. The skip connections in residual modules has partially
relieved the degradation problem, and the ResNet architecture
has demonstrated impressive generalization for image recogni-
tion. We used a variation of ResNet called xResNet trained to
classify generated versus bonafide speech. The xResNet archi-

tecture comes with a small modification in the downsampling
block [14] to use more information that is typically discarded
in the regular ResNet models. To improve DNN generalization,
we used a one-class feature learning approach [18] to train the
deep embedding space with only bonafide speech. This pre-
vented the model from over-fitting to known generated speech
classes. The following OC-Softmax function is used for DNN
training.
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where #; € RP and wo € RP represent the normalized
target-class embeddings and weight-vector, respectively. y; €
0, 1 denotes sample labels, and mo, m1 € [—1,1], mo > ma
are the angular margins between classes.

Figure 1 shows the parts of the xResNet network. This net-
work consists of an input stem, four residual stages, and an out-
put layer. The input stem consists of three 3x3 convolution lay-
ers with stride 2 in the first layer for downsampling, 32 filters in
the first two layers, and 64 filters in the last layer. Each resid-
ual stage includes multiple residual blocks, where each residual
block consists of a residual path and an identity path. The first
residual stage does not include any downsampling blocks. Start-
ing from the second residual stage, the first residual block has
been replaced with a downsampling residual block. The iden-
tity path of this downsampling block first downsamples with a
2x2 average pool for anti-aliasing. The 1x1 convolution after
is used to increase the number of feature maps, matching the
residual path output. The first convolution block in the resid-
ual path downsamples with a stride of 2x2. It also doubles the
number of feature maps to keep computation constant. To ex-
tract embeddings from the xResNet, we compute the mean of
the last layer of the xResNet before the output in windows of
2.5 seconds and 0.5 second steps.

2.2. Back-end
2.2.1. Probabilistic Linear Discriminant Analysis (PLDA)

As an alternative back-end less used for this task, we propose to
apply a PLDA back-end [19]. In view of the impressive results
achieved with PLDA in speaker verification with embeddings,
we apply it to have a reference result of PLDA in embeddings
for deep-fake detection. After extracting the embeddings from
the ResNet, the embeddings are transformed using linear dis-
criminant analysis (LDA), then mean- and variance-normalized
and L2 length-normalized. LDA, mean, and variance statistics
are learned from a back-end training dataset. Next, PLDA is
used to obtain scores for each pair of examples (verification
trial.) Thus, a binary detector is used to determine if a test
speech is generated or bonafide using trials. The trial is com-
posed of a bonafide speech of the Sol (the enrollment or model),
and a test speech than can be bonafide or generated (the query).
The PLDA modeling that we employ can be expressed as

yi=p+ U - z1 + €, 2)

where p is the speaker-independent mean vector, Uy is the
eigenspeaker matrix, x is the speaker factor, and € models the
residual variability.

2.2.2. Calibration

There are many different calibration strategies in the literature
(e.g., [20]). In this work, we applied a common and simple solu-
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Figure 1: xResNet34 input stem with example residual blocks. The xResNet has a modified input stem compared to its original version.
The original 7x7 convolutional layer was replaced with three 3x3 convolutional layers. After the input stem, the ResNet consists of four
residual stages. Each stage has a certain number of residual blocks ([3, 6, 4, 3] in this system). The first residual stage always passes
through the full-sized input. After the first stage, every other stage downsamples the input and double the number of filters to keep the
computation constant. The downsampling is performed with a 2x2 average pooling for its anti-aliasing benefits. The final output of the
residual stages is then fed to our statistical pooling and embedding layers for further processing.



tion using a discriminatively trained affine transformation from
scores to log-likelihood ratios (LLRs.) The parameters of this
transformation (a scale v and an offset 3) are trained to mini-
mize a weighted binary cross-entropy objective which measures
the ability of the calibrated scores to make cost-effective Bayes
decisions when they are interpreted as LLRs [21]. Assuming
the calibration training data reflects the evaluation conditions,
this procedure has shown great performance in different condi-
tions. Yet, when evaluation conditions differ from those in the
calibration training data, the average performance of the hard
decisions made with the system can be poor, sometimes worse
than that of random decisions [22]. Finally, we propose a regu-
larization approach to adapt the global calibration model using
Sol speech for the test trials. Calibration parameter training
requires both positive and negative trial scores, and we use the
speech of the Sol to increase the score count of Sol bonafide tri-
als to get more matched samples for this process as previously
proposed in [23].

3. Data

3.1. Front-end training data

For better DNN generalization and to prevent the model from
over-fitting to any known speech generators or datasets, our
training pool includes bonafide and synthetic speech from a
diverse collection of state-of-the art TTS and VC algorithms.
We used 17 speech generators samples from the training sub-
set of the ASV Spoof 2019 [24] logical attack task, which in-
cludes 2,580 genuine and 22,800 generated speech utterances.
To avoid model over-fitting, we used half of the generated data
from each speech generator. Another publicly available syn-
thetic speech data collection is the Fake or Real (FoR) dataset
[25], which contains more than 111,000 bonafide and 87,000
synthetic speech samples from 33 speech generators. For
DNN training, we used 53,000 bonafide and 53,000 synthetic
speech samples originating from 32 speech generators from this
dataset. We also used in-house generated 30,000 TTS samples
from RTVC [26] and Tacotron2 [3] trained with 80 LibriTTS
speakers.

We augmented training data with four types of audio degra-
dation: (1) reverb, (2) compression, (3) instrumental music, and
(4) noise. Noises included babble, restaurant noises, different
in-door and outdoor sounds, traffic, mechanical, and natural
sounds at 5 dB signal-to-noise (SNR) ratio. We also applied
a frequency-masking [27] technique to randomly dropout fre-
quency bands during training ranging from fo to fo + f, where
f is chosen from a uniform distribution from 0 to maximum
number of masked channels, F'.

3.2. Testing data
3.2.1. ASV Spoof 2019

ASV Spoof is a well-established community led challenge for
evaluating spoof attacks in speaker-verification systems. These
databases mainly come with two types of attacks: physical
attack (PA) and logical attack (LA). The PA task consists of
recorded speech spoof attack, while the LA task consists of
synthetic speech attack generated with TTS and VC systems.
In this paper, we used ASV Spoof 2019 [24] LA task for our
system evaluation. This task consists of 7355 bonafide sam-
ples from 67 speakers and 63882 generated samples from 48
speakers. Generated samples are produced with 2 known and
11 unknown state-of-the-art TTS synthesis and VC algorithms.

3.2.2. VCC data

The voice conversion challenge (VCC) is a bi-annually held
challenge to progress and compare the latest voice conversion
technologies in the research community. Three past editions
of VCC provided us with a sufficient amount of data for syn-
thetic speech detector testing. From VCC 2016 [28], we used
324 bonafide samples and in-house generated 108 VC samples
with CycleGAN [29] and 80 samples with VQ-VAE [30] from
2 unseen speakers. From VCC 2018 [31] dataset, we used 470
bonafide samples and participant submitted 20,627 generated
samples from 4 different speakers.

3.2.3. Speaking-of-Al

A corpus of deep-fake audio was created from the Speaking-of-
Al YouTube channel' via the youtube-dl program?. This chan-
nel contains synthesized videos of a collection of celebrities
such as Betty White, Adam Driver, and characters like Homer
Simpson (Dan Castellaneta). Al models were developed by
the Speaking-of-Al author and are not publicly available. Each
video of the channel was diarized to keep the deep-fake voice
and delete the other speakers. Ground-truth versions of these
voices were found from various sources across YouTube. Au-
dio was extracted from videos as wav files with ffmpeg at a
sampling rate of 16kHz. In many cases, the ground-truth au-
dio contained multiple voices (e.g., in conversation) or peri-
ods of background noise (e.g., applause). In-house diarization
software was used to separate irrelevant voices and background
from the ground-truth audio. These clips were manually cor-
rected by one of the authors.

3.3. Trial preparation

To enroll the speaker-of-interest (Sol), we created trials where
the enrollment utterance is always bonafide speech, and test ut-
terance can be either bonafide or fake speech. In contrast to
speaker identification trials where the enrollment and the test
utterances can or cannot be from the same speaker, in this task,
all the enrollment and test utterances are from the same speaker.
We defined the target trial as the trail where both utterances are
bonafide speech; the impostor trial is composed of a bonafide
speech in the enrollment and fake speech in the test.

Table 1: Number of speakers, target trials, and impostor trials
for ASV Spoof 2019, VCC, and Speaking-of-Al datasets

| Num. Spk.  Tgt. Trials Imp. Trials

ASYV Spoof 2019 67 380533 7277893
vCC 17 633552 2390919
Speaking-of-Al 22 10748 2147

Table 1 shows the number of speakers and the number of
target and impostor trials for each database used for the evalua-
tion.

4. Experimental Settings

We conducted two sets of experiments that show different sce-
narios and conditions.

! Accessed at https://www.youtube.com/channel/UCID5qustF32kSj-
0SGq3rlg
2 Available here: https://github.com/ytdl-org/youtube-dl
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Figure 2: Equal Error Rate (EER) and the Actual Cost of the Likelihood Ratio (Cllr) of each system for each condition of the ASV

Spoof 2019 testing set and the average over all conditions

4.1. Cross-validation scenario

In this section, we evaluate four different systems: three base-
line systems and the proposed system.

* Baseline 1: A standard Speaker-ID system based on x-
vectors [32]. The input features for the embedding ex-
traction network are power-normalized cepstral coeffi-
cients (PNCC) that, in our experiments, produced bet-
ter results than the more standard mel frequency cep-
stral coefficients (MFCCs). We extracted 30 PNCCs, and
the features were mean and variance normalized over a
rolling window of 3 seconds. Silence frames are dis-
carded using the DNN-based speech activity detection
system described in section 2. System training data in-
cluded 234K signals from 14,630 speakers. This data
was compiled from NIST SRE 2004-2008, NIST SRE
2012, Mixer6, Voxcelebl, and Voxceleb2 (training set)
data (see [22] for a detailed description). The training
data for the PLDA backend and the calibration was a sub-
set of the training data used for the speaker embeddings
DNN. In this case, the PLDA was trained to identify real
speakers and, therefore, no fake data and no data parti-
tions has been used in this system except for the test par-
tition. For more details about the system and references
about the databases, we refer to [23, 22].

» Baseline 2: For this baseline system, we used the output
of the xResNet described in section 2 since the net was
trained to classify generated versus bonafide speech. In
this case, we have not used the embeddings, and the final
score is computed as the average over the speech seg-
ments of the utterance. This system cannot be used to
enroll speakers directly as the Baseline 1 system since
the detection is done in our previously defined front-end.

* Baseline 3: We used the same speaker-ID system de-
scribed in Baseline 1 but with a different PLDA back-
end and calibration models. In this case, the PLDA was
trained to identify real speech versus fake speech using
the partitions of the cross-validation as described below.

* Proposed system: This system is the same xResNet de-
scribed in Section 2, but in this case, we extracted em-
beddings from the last layer of the net before the softmax
layer using a mean over the activations. Then we used
the embeddings to train and evaluate the PLDA and cal-
ibration system in the same way as for system Baseline

3.

We used a 4-fold cross-validation method where two por-
tions of the data were used to train the PLDA models, one por-
tion of the data was used to train the calibration models, and the
final portion of the data was used for testing. Because the data
was split in terms of speakers, there are no overlapping speak-
ers across the partitions. The experiments are done with ASV
Spoof 2019, the VCC data, and the Speaker-of-Al data previ-
ously described.

4.1.1. Metrics

We used the equal error rate (EER) and the actual cost of the
likelihood ratio (Cllr) to evaluate the baselines and proposed
systems for both scenarios. While EER provides a measure of
the discrimination of a system, the Cllr provides both the dis-
crimination and the calibration performance. The calibration
is motivated by the requirement to be able to make good deci-
sions in the face of uncertainty [33]. Cllr indicates score calibra-
tion across all operating points along a detection error tradeoff
(DET) curve. Van Leeuwen et al. [34] provide deeper descrip-
tion about these metrics.

4.1.2. Results

Figure 2 compares the average of the cross-validation partitions
for each condition of the ASV Spoof 2019 data, and the total
average over all the conditions. The left part of the figure shows
the discrimination of the systems in terms of the EER, while the
right part of the figure shows the Cllr of the same conditions and
systems. Proposed system outperforms the rest of the systems
in discrimination (EER) and calibration (Cllr) for all the con-
ditions except condition A17 where Baseline 3 system shows
better performance. Comparing the systems for all conditions
shows that the proposed system provides an improvement of
77% for EER and 72% for CllIr relative to the second-best sys-
tem (Baseline 3). A ClIr above 1 indicates a poor-calibrated
system. Figure 2 also shows that the Baseline 3 system presents
better calibration than the other baseline systems, sespecially
when compared to Baseline 1. This is due to the exposure of
the backend systems (PLDA and calibration) to the conditions
using the rest of the partitions of the cross-validation. How-
ever, the Baseline 3 system shows similar discrimination per-
formance as the Baseline 2 system. Baseline 2 shows slightly
worse performance than Baseline 1 in terms of EER, but Base-
line 2 is better calibrated than the Baseline 1 because the xRes-



Net was trained using 17 speech-generator samples from the
training subset of the ASV Spoof 2019 dataset.

Table 2: EER and Cllr for ASV Spoof 2019, VCC, and
Speaking-of-Al datasets

Basel Base2 Base3 Prop

DATA EER
ASYV Spoof 2019 0.38 0.43 0.22 0.05
VCC 0.29 0.29 0.23 0.07
Speaking-of-Al 0.09 0.41 0.08 0.07
Clir
ASV Spoof 2019 5.38 1.01 0.68 0.19
VCC 3.34 1.00 0.74 0.54

Speaking-of-Al 12.08 1.02 0.76 0.67

Table 2 presents the results obtained in all the conditions of
the ASV Spoof 2019 and the results with VCC and Speaking-
of-Al databases for all the systems. The results using VCC and
Speaking-of-Al data show similar trends. Again, the proposed
system shows improvement in calibration and discrimination
for both databases. Similar to the results for ASV Spoof2019,
the Baseline 3 system is better than the other two baseline sys-
tems, especially in terms of calibration. Strong evidence indi-
cates that training the backend systems with similar conditions
to those the system sees during the test stage significantly im-
proves calibration performance.

4.2. Hold-out scenario

Based on the results, we designed a scenario where the backend
systems were not trained using in-domain data, as happened
with the cross-validation experiments. Because the backend
systems need enough data to train good models that can perform
properly with out-of-domain data, we used ASV Spoof 2019
and the VCC data to train the PLDA and the calibration model,
and we tested the systems with Speaking-of-Al data, which con-
tains realistic utterances with background noises and music.
We focused our experiments for this scenario on effects that
occur when the backend was trained with out-of-domain data.
The following information reports the results for Baseline 3 and
the proposed system. (Baseline 1 is very similar to Baseline 3,
Baseline 2 is not designed to enroll new speakers, and previous
results (Section 4.1) suggested that Baselines 1 and 2 perform
poorly in comparison to Baseline 3 and the proposed system.)

4.2.1. Metrics

To analyze what part of the Cllr is due to miscalibration, we
used the minimum CllIr that is computed when the test scores
are calibrated optimally. This is usually done by using the PAV
algorithm [35] on the test scores. Also, we show results using
the detection cost function (DCF) used in NIST SREs, which,
in this case, is the average cost on the test data with a prior
probability of bonafide speech, P(Bs) = 0.5, and unity costs.
That is, we computed DCF = 0.5 x Pmiss + 0.5 x Pfa,
where Pmiss is the probability of labeling a bonafide trial as a
fake trial and P fa is the probability of labeling a fake trial as a
bonafide trial. The errors are computed on hard decisions made
by thresholding the scores with the threshold that would result
in the best expected DCF if the scores were well calibrated. For
the Cllr, a minimum value of DCF can also be obtained to de-
termine what part of the DCF is due to misscalibration. In this

case, the minimum is obtained by simply sweeping the thresh-
old and choosing the one that minimizes the DCF.

4.2.2. Results

The upper part of Table 3 shows the results on Baseline 3 and
the proposed system when the PLDA model was trained with
75% of ASV Spoof 2019 and VCC databases and 25% was used
to train the calibration model (as known as Global Calibration
in the table). The proposed system shows a relative improve-
ment of approximately 50% for all the metrics, outperforming
Baseline 3. This is the same trend shown in the experiments in
the cross-validation scenario. However, the differences between
the ClIr and the minCllIr and between the DCF and the minDCF
suggest that the calibration of the proposed system could be im-
proved.

While it is likely that the calibration model (and the PLDA
model) was trained partially with the same type of TTS used in
the Speaking-of-Al database due to the limited number of TTS
systems with good quality, the model was not trained with the
speakers and background noises that we are evaluating. The
problem that we are tackling is that the celebrities and politi-
cians (Sol’s) have enough bonafide speech data in the Internet
to be able to train a good TTS to impersonate them. Therefore, it
seems reasonable to have access to some extra bonafide speech
from the Sol to use it in our calibration system. In order to do
that, we collected 3 more utterances of 30 secs for each of the
Sol to be able to create an extra 6 target trials per speaker that
we use to adapt the global calibration system. We used the new
target trials and 396 impostor trials (three times the amount of
target trials) randomly selected from the global calibration pool
of data (ASV Spoof 2019 and VCC) to adapt the global cal-
ibration model using regularized linear logistic regression. In
our previous work [23], we investigated the impact of different
regularization factors and determined that values between 0.02
and 0.05 lead to the best performance. For this experiment, we
used a 0.05 regularization factor to adapt the default parame-
ters, a0 and 0, given by the global calibration model. Figure 3
compares the score distributions of the bonafide and fake tri-
als with global calibration (dotted lines) and after adapting the
global calibration parameters (solid lines). The figure shows the
shift of the score distributions calibrated with the global modal
toward the center (zero value) with the adapted parameters.

Table 3: EER, Cllr, minCllr, DCF and MinDCF for Speaking-
of-Al database in a hold-out scenario

‘ EER ‘ Clir MinClir ‘ DCF MinDCF

Global Calibration
Base3 | 0.065 | 1.12 0.30 0.83 0.12
Prop | 0.038 | 0.48 0.18 0.34 0.07

Speaker-specific Calibration

Base 3 ‘ 0.065 ‘ 0.58 0.30 ‘ 0.29 0.12

Prop | 0.038 | 0.40 0.18 0.25 0.07

The bottom part of Table 3 shows the results obtained
with the adaptation. While the calibration does not affect
the discrimination of the system (same EER, minCLLR, and
minDCF), the Cllr and the DCF show values closer to min-
ClIr and minDCEF, respectively. Therefore, using some bonafide
speech from the Sol’s provides a better calibration especially in
unseen scenarios.
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Figure 3: Scores of the bonafide and deep-fake trials with global
calibration (dotted lines) and adaptation (solid lines)

5. Conclusions

This paper describes the process and results of our investiga-
tion into the detection of deep-fake speech based on modern
techniques of TTS. The purpose of the study was to determine
how including bonafide and fake speaker-of-Interest (Sol) data
in the backend models would affect system performance. We
compared the proposed system, based on xResNet and PLDA
backend, to three different baseline systems: a state-of-the-
art speaker identification system, an xResNet system trained to
discriminate between bonafide and fake speech, and a speaker
identification system in which the PLDA and calibration mod-
els were trained with bonafide and fake speech. Results in two
different scenarios and with three different databases suggest
that the xResNet-PLDA proposed system outperforms the base-
line systems. Finally, we proposed an adaptation of the global
calibration model with bonafide speech from the Sol. Adapting
the calibration model with a small amount of speech reduces
the miscalibration of the system compared to calibration with
global parameters.
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