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Abstract. Solving classification problems with machine learning often entails
laborious manual labeling of test data, requiring valuable time from a subject
matter expert (SME). This process can be even more challenging when each
sample is multidimensional. In the case of an anomaly detection system, a
standard two-class problem, the dataset is likely imbalanced with few
anomalous observations and many “normal” observations (e.g., credit card
fraud detection). We propose a unique methodology that quickly identifies
individual samples for SME tagging while automatically classifying commonly
occurring samples as normal. In order to facilitate such a process, the
relationships among the dimensions (or features) must be easily understood by
both the SME and system architects such that tuning of the system can be
readily achieved. The resulting system demonstrates how combining human
knowledge with machine learning can create an interpretable classification
system with robust performance.
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1 Introduction

Due to their infrequent nature [1], rare events are difficult to model and detect due to
a low number of positive (“event”) cases relative to the number of negative (“non-
event”) cases. Thus, detection is regarded as an imbalanced classification problem
which attempts to detect events with high impact but low probability. Rare events
detection has many applications such as network intrusion detection and credit fraud
detection [2]. We are concerned with rare events of interest, a subset of rare events
that must also meet some “importance” criteria. That is, we are focused on problems
where all interesting events are rare but not all rare events are interesting.

We describe a method for human-in-the-loop automated filtering and classification
for more efficient labeling of data that contains an abundance of uninteresting
observations. Our approach consists of a three-step method: (1) a modified ensemble
technique acting as a novelty filter which labels uninteresting data, (2) SME tagging
of the remaining unlabeled data, and (3) classification of the further reduced
unlabeled data using a Bayesian Network (BN). We are specifically interested in
problems with many event detectors that output nonnegative values as our features,
where zero means nothing happened and larger values indicate alerts of greater
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interest or concern. The novelty filter prioritizes the most interesting observations for
SME review by assuming that the presence of more alerts (non-zero features) and/or
rare alerts in a single observation make it more interesting and provides interpretable
reasons for the novelty score. Using a BN for the final classification has several
benefits. As probabilistic graphical models of a set of variables (corresponding to our
detector features) and their conditional dependencies, BNs are more natively
interpretable than most other machine learning methods. BNs have also been shown
to perform well in the area of rare event detection. Previous applications have
included intrusion detection as demonstrated by Benferhat, et al. [3] who used naive
Bayes and Tree Augmented Naive Bayes classifiers; Cheon, et al. [4] who used a BN
in ozone level modeling to automatically alert a forecaster when abnormal signals
(ozone levels) are detected; and Wong, et al. [S] who used BNs for detecting disease
outbreaks. BNs have additional advantages over other machine learning techniques
[6]: they provide a natural way to handle missing data, facilitate learning about causal
relationships between variables, are robust to overfitting, and can deliver good
prediction accuracy even with small sample sizes.

To demonstrate extensibility of our approach to a variety of domains and problem
sets, we evaluated against a generalized synthetic data set that is not tied to a
particular use case. Although our data set is binary, we anticipate that the method can
be equally applied to ordinal, continuous or categorical (via binary encoding) data or
mixes thereof, insofar as larger values are of greater interest. Additionally, our
method provides several benefits and differentiators relative to general classification
problems where there is no initial labeling of data:

*  Reduces SME’s data review burden and assists the SME with data labeling

* Using a BN for classification allows detecting multivariate patterns in the

positively tagged (“interesting”) cases, tolerates and infers missing data, and
natively provides classification likelihood and model fit estimates

*  Both the novelty filter and the BN are relatively interpretable and explainable

2 Method

The method consists of progressive data classification steps as depicted in Figure 1.
Step 0 shows the training-test partition normally used for a classification problem. In
step 1, a novelty filter as described in section 2.1 is used to automatically label most
of the data as unminteresting (identified by the highlighted blue region around a
negative sign [‘-’]). The labels in the test data are treated as final system
classifications (i.e., the BN will not override them in step 3). In step 2, SME(s) review
the remaining unfiltered samples in the training set and label them (interesting data is
identified by a positive sign [‘+’]). Finally, a BN is built and trained based on all
labels from previous steps and used to classify the remainder of the test set as
highlighted in step 3.



0) Partition data set
1) Filter uninteresting samples

2) SME labels remaining training samples
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3) BN classifies remaining test samples

Fig. 1. Method steps with updated labels/classifications highlighted in blue

2.1  Novelty Filtering

We propose a weighted voting model s; = Ele W _a; where @; denotes the value of

feature i in sample j, and w; = W; (c;)*, where c; is the sum over all samples for the i
feature, W; is an a priori feature weight, and (positive) & determines the relative
importance of rarer values. This model is appropriate for directed nonnegative
features where larger values are more interesting, such as binary alarms, ordinal alert
levels or continuous meter readings. It assumes that features with more frequent
positives are less informative about abnormal conditions, and samples with more
unusual features are more abnormal. Using k = 1 encodes that more active features
are proportionately less interesting, and W; = 1 Vi gives equal feature importance
otherwise.

Samples with score s; falling below a threshold value are automatically labeled as
uninteresting. This enables SME review of a smaller data set and training the
Bayesian network on the filter-labeled uninteresting examples in the test set. While
choice of threshold is subjective, a low initial choice can filter out many observations
in an unbalanced set and can be iteratively updated. In section 3.1 we discuss (by way
of example) the process of informing choice of threshold with domain information.

Key benefits of the filter are its interpretability and adaptability: the reason for a
sample’s score is clear based on its contributors, and a priori feature weights can be
adjusted if score rankings or feature contributions conflict with domain knowledge.
Scores and contributions may also assist the SME in tagging the remaining data.

2.2 SME Tagging and Bayesian Network Classification

SME tagging is accomplished via reviewing the multivariate samples in the reduced
training set and manually assigning a class (e.g., True, False, or Red, Yellow, Green).

Upon completion of SME tagging, a BN is built and trained from all previously
labeled data (including those in the test set classified by the filter) and used to classify
the remaining samples. We use a Tree-Augmented Naive (TAN) Bayesian network, a
restricted BN class which combines the simplicity of Naive Bayes with the ability to
express the dependence among attributes in a Bayesian Network. It embodies a good
tradeoff between the quality of the approximation correlation among attributes and the
computational complexity in the learning stage. TAN relaxes the naive Bayes attribute
independence assumption by employing a tree structure, in which each attribute only
depends on the class and one other attribute. A maximum weighted spanning tree that
maximizes the likelihood of the training data is used to perform classification [7][8].
Figure 2 shows a BN representation of the type that TAN creates [7].



Fig. 2. TAN Bayesian Network

Key BN benefits for human-in-the-loop domain-informed classification include:

Native interpretability — Traditional machine learning (especially deep learning)
still suffers from its black-box nature and many challenges remain to enhancing its
interpretability and explainability [9]. One mitigation has been to use BNs to aid
humans in interpreting the results of complex deep learning models [10]. As pointed
out in [6] and [11], the visual nature of a BN as a directed acyclic graph can be used
to communicate the underpinnings of a model via the causal relationships among the
real-world features. For example, in figure 2 we can immediately see that the
probability distribution of X is dependent on its parents X; and Y.

Explainability — BNs enable explainable classification via mutual information
(describing how strongly features relate to the class variable), and provide metrics of
classification confidence (e.g., probability of the assigned class) and per-sample
model fit (e.g., log likelihood).

Tolerance for missing data — BNs natively tolerate and infer missing data features
within a sample.

2.3 Iterative Workflow

Although we present and describe the novelty filtering and SME tagging processes
sequentially, in practice (and especially on large data sets) it can be thought of as an
iterative workflow with no defined entry or exit points as shown in Figure 3.
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SME Novelty

Tagging i Filtering

Fig. 3. Envisioned iterative method on larger data
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The data reduction process prior to BN training and classification can begin and/or
end with either novelty filtering or SME tagging, based on SME/analyst objectives
and assessment of the results of each iteration.

3 Example Results

To provide a challenging example, we engineered a small data set with weakly
correlated and sparsely positive binary features and highly unbalanced classes. We
sampled 1000 observations with 10 features where the first 250 serve as the training
set.

The first three features are independent random binaries with a positive rate of
20%, 10% and 5%, followed by seven ordered features each with a 10% chance of
being positive if any of the prior three features in the same sample were positive and
another 10% chance of being independently positive otherwise. Ground truth classes
are synthetic and rule-based, where an observation belongs to the “interesting” class
only if any of the following criteria are true:

1. Features 2 and 5 are both positive
2. Atleast two of the remaining first six features are both positive
3. Atleast two of the last four features are both positive

While this data generation scheme does not mimic any specific known data set, it
provides the complexity we desired for our example in terms of feature sparsity, weak
multivariate correlation, and unbalanced classes based on nontrivial multivariate
patterns. The random draw used for this example had 13 “interesting” training set
cases.

3.1 Choosing the Novelty Filter Threshold

Upon calculating novelty scores, one must determine the threshold below which
observations are filtered out as uninteresting. Figure 4 depicts how the threshold score
can be bounded by above and below.
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Fig. 4. Example of using domain information to bound novelty threshold.

Our lower bound in this example is found by examining the training set, which
reveals that all interesting samples have at least two positive features. The upper
bound is established by iteratively applying the novelty filter using various thresholds.
On real data, domain-informed rules based on SME knowledge should be used and
may be more sophisticated. While ultimately a matter of choice, picking a threshold
value above the lower bound reduces the amount of data for SME tagging, and
picking a value below the upper bound reduces the likelihood of false negatives. The
threshold score chosen for this example was 0.017, resulting in labels of uninteresting
for approximately 75% of the data and leaving 57 candidate samples in the training
set for SME review. Note that we are using an empirical CDF based on the entire
population, so the fraction of novelty scores less than X and P(x<X) are identical.

3.2 SME Tagging and TAN BN Classification

In practice, the next step would be SME classification of the remaining candidates in
the larger training set (i.e., the 57 samples not filtered). For this illustrative example,
SME training set classifications are simply assumed to match ground truth.

The TAN BN was learned from the fully labeled training set and the filter-labeled
portion of the test set. The BN provides a probability for each classification. We
define a “prediction level” as the minimum value of probability P(class =
“Interesting”) required to tag a sample as interesting. Results of accepting the
classifications as-is (i.e., using a 50% prediction level) are summarized in Tables 1
and 2.

Table 1. Confusion Matrix (50% prediction level)

Predicted

0 1
Actual | 0 | 707 | 11
1 6 26




Table 2. Classification statistics at 50% prediction level

Accuracy | 97.7% True Positive (TP) Rate 81.3%
Precision | 70.3% False Positive (FP) Rate 1.5%
Recall 81.3% True Negative (TN) Rate | 98.5%
F1 75.4% False Negative (FN) Rate | 18.8%

In Table 3 we summarize the results by P(class = predicted class) given by the BN.
These results show that most incorrect classifications occur at lower probabilities.
This suggests that the workflow could be adapted to include a third “ambiguous” class
for lower-probability classifications to be flagged for further manual review.

Table 3. Count of in/correct classifications by P(class = predicted)

Probability | TN | FN | TP | FP
>90% | 677 | 3 | 24 | 1|
(80,901 | 10 | 3 | 2 ] 0
(70,801 | 4 | 0 | 0 | 4
60,701 8 | o | 0 | 2
(50,6011 8 | 0 ] 0| 4

Figure 5 shows results formed by varying “prediction level” between 0 and 100%.
The ROC (receiver operating characteristic) curve shows minimal tradeoff between
true and false positive rates. Given the unbalanced nature of the data set, the plot of
precision vs. recall (P/R) is more meaningful than ROC for this example. The P/R
curve shows that this model has skill (precision > 0.5) for most prediction levels, and
that including the filter-tagged uninteresting (negative) cases from the test set when
training the BN results in considerably better precision and recall than training the BN
on the original training partition alone. Model performance depends strongly on
prediction level (denoted by the labeled percentages in Figure 5), suggesting that
tuning may be appropriate in practice.

Receiver Operator Characteristic (ROC) Precision vs. Recall

| ——— BN trained with filter-tagged test
04 | set negatives (AUC = 98.3%)

BN trained on training set only

True Postive Rate (TPR)
Precision (TR/[TP+FP]}

— 96.5%)
(AUC =96.5%) —— BN trained with filter-tagged test set
0.2 | 0.2 negatives (86.3% average precision) o
BN trained on training set only (70.5% |
average precision)
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
False Positive Rate (FPR) Recall (TP/P)

Fig. 5. ROC and Precision vs. Recall curves (varying prediction levels)



4 Conclusion and Future Work

We describe a parsimonious model for detecting rare events of interest from sparse,
imbalanced data. The novelty filter allows fine control over the amount of data the
SME must review. Using a Bayesian Network for classification allows detecting
multivariate pattern differences between classes, enables partial learning from missing
and untagged data, and natively provides probability estimates for classifications.
Both the novelty filter and the Bayesian Network are explainable “glass box” methods
whose results can readily be examined to understand why certain scores or
classifications were provided — which we expect to be invaluable for human-in-the-
loop interactive analytics. We show promising model performance on a synthetic
data set designed to represent some of the challenges specific to detecting rare events
of interest from small, sparse multivariate data.

With proof of concept demonstrated, performance comparison against other
methods on a diverse range of datasets is prudent. While our method is intended to
work only on nonnegative features with positive directionality, such features should
be attainable from other data sets via appropriate transformation and feature
extraction methods. Further study is warranted into use of classification probabilities
in analysis (e.g., classifying samples as ambiguous). Investigation of other BN
structures and filtering techniques may be appropriate for some data. Expansions of
this method for data with temporal patterns is of interest and should be feasible via
use of Dynamic BNs in combination with augmentation of the novelty filter analysis
with features that encode state change detections and other temporal patterns.
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