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Abstract. Solving classification problems with machine learning often entails 
laborious manual labeling of test data, requiring valuable time from a subject 
matter expert (SME). This process can be even more challenging when each 
sample is multidimensional. In the case of an anomaly detection system, a 
standard two-class problem, the dataset is likely imbalanced with few 
anomalous observations and many “normal” observations (e.g., credit card 
fraud detection). We propose a unique methodology that quickly identifies 
individual samples for SME tagging while automatically classifying commonly 
occurring samples as normal.  In order to facilitate such a process, the 
relationships among the dimensions (or features) must be easily understood by 
both the SME and system architects such that tuning of the system can be 
readily achieved. The resulting system demonstrates how combining human 
knowledge with machine learning can create an interpretable classification 
system with robust performance.
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1 Introduction

Due to their infrequent nature [1], rare events are difficult to model and detect due to 
a low number of positive (“event”) cases relative to the number of negative (“non-
event”) cases.  Thus, detection is regarded as an imbalanced classification problem 
which attempts to detect events with high impact but low probability. Rare events 
detection has many applications such as network intrusion detection and credit fraud 
detection [2]. We are concerned with rare events of interest, a subset of rare events 
that must also meet some “importance” criteria. That is, we are focused on problems 
where all interesting events are rare but not all rare events are interesting.

We describe a method for human-in-the-loop automated filtering and classification 
for more efficient labeling of data that contains an abundance of uninteresting 
observations. Our approach consists of a three-step method: (1) a modified ensemble 
technique acting as a novelty filter which labels uninteresting data, (2) SME tagging 
of the remaining unlabeled data, and (3) classification of the further reduced 
unlabeled data using a Bayesian Network (BN). We are specifically interested in 
problems with many event detectors that output nonnegative values as our features, 
where zero means nothing happened and larger values indicate alerts of greater 
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interest or concern.  The novelty filter prioritizes the most interesting observations for 
SME review by assuming that the presence of more alerts (non-zero features) and/or 
rare alerts in a single observation make it more interesting and provides interpretable 
reasons for the novelty score.  Using a BN for the final classification has several 
benefits. As probabilistic graphical models of a set of variables (corresponding to our 
detector features) and their conditional dependencies, BNs are more natively 
interpretable than most other machine learning methods. BNs have also been shown 
to perform well in the area of rare event detection. Previous applications have 
included intrusion detection as demonstrated by Benferhat, et al. [3] who used naive 
Bayes and Tree Augmented Naive Bayes classifiers; Cheon, et al. [4] who used a BN 
in ozone level modeling to automatically alert a forecaster when abnormal signals 
(ozone levels) are detected; and Wong, et al. [5] who used BNs for detecting disease 
outbreaks. BNs have additional advantages over other machine learning techniques 
[6]: they provide a natural way to handle missing data, facilitate learning about causal 
relationships between variables, are robust to overfitting, and can deliver good 
prediction accuracy even with small sample sizes.  

To demonstrate extensibility of our approach to a variety of domains and problem 
sets, we evaluated against a generalized synthetic data set that is not tied to a 
particular use case. Although our data set is binary, we anticipate that the method can 
be equally applied to ordinal, continuous or categorical (via binary encoding) data or 
mixes thereof, insofar as larger values are of greater interest. Additionally, our 
method provides several benefits and differentiators relative to general classification 
problems where there is no initial labeling of data:

• Reduces SME’s data review burden and assists the SME with data labeling
• Using a BN for classification allows detecting multivariate patterns in the 

positively tagged (“interesting”) cases, tolerates and infers missing data, and 
natively provides classification likelihood and model fit estimates

• Both the novelty filter and the BN are relatively interpretable and explainable

2 Method

The method consists of progressive data classification steps as depicted in Figure 1.  
Step 0 shows the training-test partition normally used for a classification problem. In 
step 1, a novelty filter as described in section 2.1 is used to automatically label most 
of the data as uninteresting (identified by the highlighted blue region around a 
negative sign [‘-’]). The labels in the test data are treated as final system 
classifications (i.e., the BN will not override them in step 3). In step 2, SME(s) review 
the remaining unfiltered samples in the training set and label them (interesting data is 
identified by a positive sign [‘+’]). Finally, a BN is built and trained based on all 
labels from previous steps and used to classify the remainder of the test set as 
highlighted in step 3.



Fig. 1. Method steps with updated labels/classifications highlighted in blue

2.1 Novelty Filtering 

We propose a weighted voting model 𝑠𝑗 = aij where 𝑎𝑖𝑗 denotes the value of 
feature 𝑖 in sample 𝑗, and 𝑤𝑖 = W𝑖 (𝑐𝑖)-k, where 𝑐𝑖 is the sum over all samples for the 𝑖th 
feature, W𝑖 is an a priori feature weight, and (positive) k determines the relative 
importance of rarer values. This model is appropriate for directed nonnegative 
features where larger values are more interesting, such as binary alarms, ordinal alert 
levels or continuous meter readings.  It assumes that features with more frequent 
positives are less informative about abnormal conditions, and samples with more 
unusual features are more abnormal.  Using 𝑘 = 1 encodes that more active features 
are proportionately less interesting, and W𝑖 = 1 ∀i gives equal feature importance 
otherwise.

Samples with score 𝑠𝑗 falling below a threshold value are automatically labeled as 
uninteresting. This enables SME review of a smaller data set and training the 
Bayesian network on the filter-labeled uninteresting examples in the test set.  While 
choice of threshold is subjective, a low initial choice can filter out many observations 
in an unbalanced set and can be iteratively updated. In section 3.1 we discuss (by way 
of example) the process of informing choice of threshold with domain information.

Key benefits of the filter are its interpretability and adaptability: the reason for a 
sample’s score is clear based on its contributors, and a priori feature weights can be 
adjusted if score rankings or feature contributions conflict with domain knowledge.  
Scores and contributions may also assist the SME in tagging the remaining data.

2.2 SME Tagging and Bayesian Network Classification

SME tagging is accomplished via reviewing the multivariate samples in the reduced 
training set and manually assigning a class (e.g., True, False, or Red, Yellow, Green).  

Upon completion of SME tagging, a BN is built and trained from all previously 
labeled data (including those in the test set classified by the filter) and used to classify 
the remaining samples.  We use a Tree-Augmented Naive (TAN) Bayesian network, a 
restricted BN class which combines the simplicity of Naive Bayes with the ability to 
express the dependence among attributes in a Bayesian Network. It embodies a good 
tradeoff between the quality of the approximation correlation among attributes and the 
computational complexity in the learning stage. TAN relaxes the naive Bayes attribute 
independence assumption by employing a tree structure, in which each attribute only 
depends on the class and one other attribute. A maximum weighted spanning tree that 
maximizes the likelihood of the training data is used to perform classification [7][8]. 
Figure 2 shows a BN representation of the type that TAN creates [7].



Fig. 2. TAN Bayesian Network

Key BN benefits for human-in-the-loop domain-informed classification include:
Native interpretability – Traditional machine learning (especially deep learning) 

still suffers from its black-box nature and many challenges remain to enhancing its 
interpretability and explainability [9].  One mitigation has been to use BNs to aid 
humans in interpreting the results of complex deep learning models [10]. As pointed 
out in [6] and [11], the visual nature of a BN as a directed acyclic graph can be used 
to communicate the underpinnings of a model via the causal relationships among the 
real-world features. For example, in figure 2 we can immediately see that the 
probability distribution of Xi is dependent on its parents X1 and Y.

Explainability – BNs enable explainable classification via mutual information 
(describing how strongly features relate to the class variable), and provide metrics of 
classification confidence (e.g., probability of the assigned class) and per-sample 
model fit (e.g., log likelihood).

Tolerance for missing data – BNs natively tolerate and infer missing data features 
within a sample.

2.3 Iterative Workflow

Although we present and describe the novelty filtering and SME tagging processes 
sequentially, in practice (and especially on large data sets) it can be thought of as an 
iterative workflow with no defined entry or exit points as shown in Figure 3.

Fig. 3. Envisioned iterative method on larger data
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The data reduction process prior to BN training and classification can begin and/or 
end with either novelty filtering or SME tagging, based on SME/analyst objectives 
and assessment of the results of each iteration. 

3 Example Results

To provide a challenging example, we engineered a small data set with weakly 
correlated and sparsely positive binary features and highly unbalanced classes.  We 
sampled 1000 observations with 10 features where the first 250 serve as the training 
set.

The first three features are independent random binaries with a positive rate of 
20%, 10% and 5%, followed by seven ordered features each with a 10% chance of 
being positive if any of the prior three features in the same sample were positive and 
another 10% chance of being independently positive otherwise.  Ground truth classes 
are synthetic and rule-based, where an observation belongs to the “interesting” class 
only if any of the following criteria are true:

1. Features 2 and 5 are both positive
2. At least two of the remaining first six features are both positive
3. At least two of the last four features are both positive

While this data generation scheme does not mimic any specific known data set, it 
provides the complexity we desired for our example in terms of feature sparsity, weak 
multivariate correlation, and unbalanced classes based on nontrivial multivariate 
patterns.  The random draw used for this example had 13 “interesting” training set 
cases.

3.1 Choosing the Novelty Filter Threshold

Upon calculating novelty scores, one must determine the threshold below which 
observations are filtered out as uninteresting. Figure 4 depicts how the threshold score 
can be bounded by above and below. 



Fig. 4. Example of using domain information to bound novelty threshold.

Our lower bound in this example is found by examining the training set, which 
reveals that all interesting samples have at least two positive features. The upper 
bound is established by iteratively applying the novelty filter using various thresholds. 
On real data, domain-informed rules based on SME knowledge should be used and 
may be more sophisticated.  While ultimately a matter of choice, picking a threshold 
value above the lower bound reduces the amount of data for SME tagging, and 
picking a value below the upper bound reduces the likelihood of false negatives.  The 
threshold score chosen for this example was 0.017, resulting in labels of uninteresting 
for approximately 75% of the data and leaving 57 candidate samples in the training 
set for SME review.  Note that we are using an empirical CDF based on the entire 
population, so the fraction of novelty scores less than X and P(x<X) are identical.  

3.2 SME Tagging and TAN BN Classification

In practice, the next step would be SME classification of the remaining candidates in 
the larger training set (i.e., the 57 samples not filtered).  For this illustrative example, 
SME training set classifications are simply assumed to match ground truth.

 The TAN BN was learned from the fully labeled training set and the filter-labeled 
portion of the test set.  The BN provides a probability for each classification. We 
define a “prediction level” as the minimum value of probability P(class = 
“interesting”) required to tag a sample as interesting.  Results of accepting the 
classifications as-is (i.e., using a 50% prediction level) are summarized in Tables 1 
and 2. 

Table 1. Confusion Matrix (50% prediction level)
Predicted

 0 1
0 707 11Actual
1 6 26



Table 2. Classification statistics at 50% prediction level
Accuracy 97.7% True Positive (TP) Rate 81.3%
Precision 70.3% False Positive (FP) Rate 1.5%
Recall 81.3% True Negative (TN) Rate 98.5%
F1 75.4% False Negative (FN) Rate 18.8%

In Table 3 we summarize the results by P(class = predicted class) given by the BN.  
These results show that most incorrect classifications occur at lower probabilities.  
This suggests that the workflow could be adapted to include a third “ambiguous” class 
for lower-probability classifications to be flagged for further manual review.

Table 3. Count of in/correct classifications by P(class = predicted)
Probability TN FN TP FP

>90% 677 3 24 1
(80, 90] 10 3 2 0
(70, 80] 4 0 0 4
(60, 70] 8 0 0 2
(50, 60] 8 0 0 4

Figure 5 shows results formed by varying “prediction level” between 0 and 100%. 
The ROC (receiver operating characteristic) curve shows minimal tradeoff between 
true and false positive rates.  Given the unbalanced nature of the data set, the plot of 
precision vs. recall (P/R) is more meaningful than ROC for this example. The P/R 
curve shows that this model has skill (precision > 0.5) for most prediction levels, and 
that including the filter-tagged uninteresting (negative) cases from the test set when 
training the BN results in considerably better precision and recall than training the BN 
on the original training partition alone.  Model performance depends strongly on 
prediction level (denoted by the labeled percentages in Figure 5), suggesting that 
tuning may be appropriate in practice.

Fig. 5. ROC and Precision vs. Recall curves (varying prediction levels) 



4 Conclusion and Future Work

We describe a parsimonious model for detecting rare events of interest from sparse, 
imbalanced data.  The novelty filter allows fine control over the amount of data the 
SME must review.  Using a Bayesian Network for classification allows detecting 
multivariate pattern differences between classes, enables partial learning from missing 
and untagged data, and natively provides probability estimates for classifications.  
Both the novelty filter and the Bayesian Network are explainable “glass box” methods 
whose results can readily be examined to understand why certain scores or 
classifications were provided – which we expect to be invaluable for human-in-the-
loop interactive analytics.  We show promising model performance on a synthetic 
data set designed to represent some of the challenges specific to detecting rare events 
of interest from small, sparse multivariate data.

With proof of concept demonstrated, performance comparison against other 
methods on a diverse range of datasets is prudent.  While our method is intended to 
work only on nonnegative features with positive directionality, such features should 
be attainable from other data sets via appropriate transformation and feature 
extraction methods. Further study is warranted into use of classification probabilities 
in analysis (e.g., classifying samples as ambiguous).  Investigation of other BN 
structures and filtering techniques may be appropriate for some data.  Expansions of 
this method for data with temporal patterns is of interest and should be feasible via 
use of Dynamic BNs in combination with augmentation of the novelty filter analysis 
with features that encode state change detections and other temporal patterns.  

Acknowledgements

This research was funded by the NNSA Office of Defense Nuclear Nonproliferation 
Research and Development, Office of Proliferation Detection (NA-221). Sandia 
National Laboratories is a multi-mission laboratory managed and operated by 
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned 
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s 
National Nuclear Security Administration under contract DE-NA0003525. This paper 
describes objective technical results and analysis. Any subjective views or opinions 
that might be expressed in the paper do not necessarily represent the views of the U.S. 
Department of Energy or the United States Government.  SAND No. SANDxxxx-
yyyy J

References

1. Harrison, D.C., Seah W.K.G., Rayudu, R.: Rare event detection and propagation in wireless 
sensor networks. ACM Comput. Surv. 48, 4, Article 58, 22 pages. DOI: 
http://dx.doi.org/10.1145/2885508 (2016)

2. Zhao, J.H., Li, X., Dong, Z.Y.: Online Rare Events Detection. In: Zhou ZH., Li H., Yang Q. 
(eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2007. Lecture Notes in 
Computer Science, vol 4426. Springer, Berlin, Heidelberg (2007)



3. Benferhat, S., Tabia, K.: On the Detection of Novel Attacks Using Behavioral Approaches. 
ICSOFT 2008 - Proceedings of the Third International Conference on Software and Data 
Technologies, Volume PL/DPS/KE, Porto, Portugal, pp. 265-272. (2008)

4. Cheon, S-P., Kim, S., Lee, S-Y., Lee, C-B.: Bayesian networks based rare event prediction 
with sensor data. Knowledge-Based Systems, Volume 22, Issue 5, pp. 336-343, ISSN 0950-
7051, https://doi.org/10.1016/j.knosys.2009.02.004 (2009)

5. Wong, W., Moore, A., Cooper, G., Wagner, M.: Bayesian network anomaly pattern 
detection for disease outbreaks. In T.  Fawcett and N. Mishra, editors, Proceedings of the 
Twentieth International Conference on Machine Learning, pp. 808–815, Menlo Park, 
California, August 2003. AAAI Press (2003)

6. Uusitalo, L.: Advantages and challenges of Bayesian networks in environmental modelling. 
Ecological Modelling, Volume 203, Issues 3–4, pp. 312-318, ISSN 0304-3800, 
https://doi.org/10.1016/j.ecolmodel.2006.11.033. (2007)

7. Zheng, F., Webb, G.I.: Tree Augmented Naive Bayes. In: Sammut C., Webb G.I. (eds) 
Encyclopedia of Machine Learning. Springer, Boston, MA (2011)

8. Shi, H-B., Huang, H-K.: Learning tree-augmented naive Bayesian network by reduced space 
requirements. Proceedings of the International Conference on Machine Learning and 
Cybernetics, Beijing, China, pp. 1232-1236 vol.3. (2002)

9. Tjoa, E., Guan, C.: A Survey on Explainable Artificial Intelligence (XAI): Towards Medical 
XAI. arXiv:1907.07374v5 [cs.LG] (2020)

10. Vishnu, TV, Gugulothu, N., Malhotra, P., Vig, L., Agarwal, P., Shroff, G.: Bayesian 
Networks for Interpretable Health Monitoring of Complex Systems. In AI4IOT Workshop at 
International Joint Conference on Artificial Intelligence (IJCAI) (2017)

11. Wiegerinck W., Burgers W., Kappen B.: Bayesian Networks, Introduction and Practical 
Applications. In: Bianchini M., Maggini M., Jain L. (eds) Handbook on Neural Information 
Processing. Intelligent Systems Reference Library, vol 49. Springer, Berlin, Heidelberg. 
https://doi.org/10.1007/978-3-642-36657-4_12 (2013)

https://pdfs.semanticscholar.org/61bb/e26cf0ad5b76a461fcafdfad46f4e6ba56b9.pdf
https://pdfs.semanticscholar.org/61bb/e26cf0ad5b76a461fcafdfad46f4e6ba56b9.pdf

