

1 Austenitic parent grain reconstruction in martensitic
2 steel using deep learning

3 Patxi Fernandez-Zelaia^{a,*}, Andrés Márquez Rossy^b, Quinn Campbell^a,
4 Andrzej Nycz^a, Christopher Ledford^a, Michael M. Kirka^a

5 ^a*Manufacturing Science Division, Oak Ridge National Lab, Oak Ridge, TN, United States*

6 ^b*Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN,
7 United States*

8 **Abstract**

In this work we develop a deep convolutional architecture to estimate the prior austenite structure from observed martensite electron backscatter diffraction micrographs. A novel data augmentation strategy randomizes the global reference coordinate system which makes it possible to train our model from only four micrographs. The model is much faster than algorithmic approaches and generalizes well when applied to micrographs of a different material. Empirical evidence suggests the efficacy of the model depends on the scale of the microstructure and receptive field of the vision model. This work demonstrates that modern computer vision approaches are well suited for capturing complex spatial-orientation patterns present in orientation imaging micrographs.

9 **Keywords:**

10 phase transformations, martensite, steel, machine learning, deep learning

11

12 **1. Introduction**

13 Allotropic phase transformations occur in many commonly used structural
14 materials. Transformations in steels are perhaps the most studied with many
15 complex microstructures obtainable via different heat treatments and process-
16 ing routes. In most steels a stable austenite phase forms (γ) from the melt
17 during solidification. Depending on the alloy content and subsequent cooling a

*Corresponding author

Email addresses: fernandezzep@ornl.gov (Patxi Fernandez-Zelaia),
marquezae@ornl.gov (Andrés Márquez Rossy), campbellqa@ornl.gov (Quinn Campbell),
nycz@ornl.gov (Andrzej Nycz), ledfordcc@ornl.gov (Christopher Ledford),
kirkamm@ornl.gov (Michael M. Kirka)

Notice of Copyright. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (<http://energy.gov/downloads/doe-public-access-plan>).

18 number of different microstructures can be obtained at room temperature. In
19 martensitic steels subject to rapid cooling a transformation takes place from the
20 face centered cubic (FCC) γ to a body centered tetragonal (BCT) martensitic
21 phase α' . In titanium alloys an analogous transformation can take place with
22 $\beta \rightarrow \alpha$. In fields such as welding and additive manufacturing (AM) there is
23 great interest in studying the originally solidified phase structure so as to study
24 the process-structure relations [2, 3, 5, 34]. The difficulty is that the high tem-
25 perature parent phase must be inferred from the observable child phase. This is
26 typically done by identifying several child-parent crystallographic relationships
27 and then algorithmically reconstructing the unobserved parent phase structure
28 [2, 3, 22].

29 In the past decade there has been an explosion of research and development
30 in the machine learning (ML) community. This bustling effort has enabled great
31 advances in image processing, natural language processing, data-mining, etc..
32 Scientists and engineering in other fields have quickly adapted these models
33 for addressing other domain specific challenges. Convolutional neural networks
34 (CNNs) are well suited for analyzing images and so have been repurposed for
35 computer vision (CV) anomaly and defect detection in manufacturing processes
36 such as AM [27, 28, 33, 42–44]. There are a number of works utilizing ML models
37 for segmenting different phases in metallographic images [13, 35]. A few works
38 have even utilized ML for processing the Kikuchi patterns generated in electron
39 backscatter diffraction imaging to aid in the indexing of crystal orientations [15–
40 17]. ML approaches have become ubiquitous in the computation sciences fields
41 for developing computationally efficient surrogate models trained from complex
42 finite element (FE) simulations [20, 38, 39]. Deep learning approaches have been
43 utilized for learning crystal plasticity laws from discrete dislocation simulations
44 [40]. Plasticity models have been effectively trained using purely data-driven
45 procedures which compete reasonably well against traditionally derived plastic-
46 ity laws [4, 12, 21]. Recent work has even implemented such a model within a
47 user material subroutine in commercial FE software Abaqus [41]. Since gradient
48 information is computed using backpropagation, ML models not only encode the
49 complex physics exhibited by physical simulations but they also capture gradi-
50 ent information about the system. This has enabled a number of researchers
51 to repurpose these networks for solving inverse design or topology optimization
52 problems [7, 9]. This presents an opportunity for massive improvements since
53 ML based topology optimization is not limited by the complexity of the phys-
54 ical simulation. For instance, for density topology optimization the algorithm
55 requires the solid mechanics problem to be limited to the linear elastic regime
56 in order to allow for computation of closed form derivatives of the governing FE
57 equations [30]. In ML there is no such limitation; derivatives are approximated
58 via the architecture and learned model hyperparameters.

59 There are limited works currently in the literature employing ML approaches
60 towards quantification of spatial orientation data. A number of papers have been
61 published developing CNN models for analyzing Kikuchi patterns but these
62 works focus more on the microscopy aspects of the experiment e.g. indexing the
63 patterns and identifying space groups [15–17]; the joint treatment of spatial-
64 orientation data is not covered. Two-point correlation functions have been
65 established for spatial orientation data on synthetic microstructures [24, 25].
66 A later work developed an interpretable two-point mean autocorrelation func-
67 tion from experimental EBSD data [11]. A few works have utilized similar

68 microstructural representations for the development of polycrystalline FE sur-
69rogate models [20, 37]. These works are promising as they introduce a novel
70 orientation descriptor that demonstrates remarkable predictive power. The re-
71 maining experimental works focus largely on the development of predictive fea-
72 ture descriptors. A magnesium alloy was studied and a decision tree model was
73 built to predict the propensity of grains to nucleate twins during deformation by
74 exploring features distilled from EBSD micrographs such as grain size, neighbor
75 grain characteristics, Schmid factor, kernel average misorientation, etc. [23].
76 Another work curiously states that use of the Euler angle descriptors, the raw
77 output of EBSD micrographs, is inherently problematic and this seems to be
78 the bottleneck in quantitative analysis of spatial orientation data [19]. These
79 authors also develop a random forest model based on a number of candidate
80 features such as grain shape, misorientation, Schmid factor, Taylor factor, etc..
81 Very recent work has developed a ML CV model for phase identification from
82 SEM images by using EBSD data as ground truth [29]. However, these authors
83 simply use EBSD to classify phases and the full orientation data is neglected in
84 their analysis.

85 While there are many works utilizing ML in CV tasks related to other as-
86 pects of materials science, to the best of our knowledge no one has addressed
87 the challenge associated with using ML to reconstruct parent grain orientation
88 image maps. That is, given an EBSD image with observable child phase predict
89 the associated unobserved parent phase EBSD image. Furthermore, processing
90 the orientation information present in EBSD image maps is more difficult than
91 gray scale images as the data represents rotational data which must remain
92 physically meaningful and also encode crystal symmetries. In general, works
93 utilizing modern ML CV models to analyze spatial orientation data are sparse
94 and so the topic of study is novel and challenging. In this work we proposed a
95 deep CNN CV model for performing the task of reconstructing prior γ grains
96 from experimental EBSD maps of the α' martensite. We introduce a novel data
97 augmentation strategy which exploits the structure of the orientation data and
98 allows us to train a model from only four micrographs. We find that the model
99 generalizes remarkably well when we test it on large area micrographs from a dif-
100 ferent alloy produced via a different manufacturing process (AM). Furthermore,
101 it is significantly faster, by orders of magnitude, than the existing algorithmic
102 approaches. However, the efficacy of the model is shown to be sensitive to the
103 ratio of the model's receptive field to the size of α' grains.

104 2. Methods

105 The data for training and validation corresponds to martensitic alloy AF9628
106 [31]. The data is publicly available at <https://petreldata.alcf.anl.gov/>
107 [32]. Four $968.2\mu\text{m} \times 424.9\mu\text{m}$ EBSD micrographs were utilized for training and
108 one micrograph of the same size for validation. Details on the data augmenta-
109 tion procedure will be described following description of the architecture. Test
110 micrographs were obtained which correspond to wire-arc large area additively
111 manufactured 17-4PH. Samples were metallographically prepared up to a $1\mu\text{m}$
112 diamond suspension finish. Vibratory polishing was performed as a final step
113 using $0.05\mu\text{m}$ colloidal silica for $\sim 12\text{ hrs}$. A Zeiss Crossbeam 550 field emission
114 scanning electron microscope with Oxford detectors was used for electron back
115 scatter diffraction (EBSD) imaging.

116 *2.1. Physics based grain reconstruction*

117 Reconstruction of the unobserved parent phase structure is of great impor-
118 tance for studying process-structure relations in processes such as welding and
119 additive manufacturing [2, 3, 5]. For steels there are a number of works in the
120 literature proposing various strategies for inferring parent austenite grains from
121 observed martensitic child structures [2, 22]. The fundamental basis of these
122 approaches is built on the assumption of certain orientation relationships (OR)
123 which describe crystallographic relationships between austenite and martensite.
124 There are several such proposed relationships but the reconstructions used in
125 this work for training our model will focus on a recent work utilizing an iterative
126 method [22]. These author’s algorithm is iterative in nature but it most closely
127 follows the Kurdjumov–Sachs (KS) OR. The KS criterion states that $(111)\gamma$
128 and $(011)\alpha'$ planes and $[101]\gamma$ and $[\bar{1}\bar{1}1]\alpha'$ directions should be parallel.

129 The algorithm introduced in [22], which is implemented in open source Mat-
130 lab software *MTEX* [6], instead introduces some flexibility to this criterion. We
131 use the *MTEX* implementation to generate austenite maps which will serve as
132 our ground truth during training. A general description of the procedure will
133 be included here but for a more precise description the reader should refer to
134 the original manuscript. The KS criterion is utilized as an initial guess but
135 these authors develop a more robust model which allows for grain boundary
136 misorientations to deviate slightly from the KS OR. An input image is first pro-
137 cessed to identify grain boundaries (given some cut-off misorientation) and the
138 misorientation of each boundary is calculated. These misorientation values are
139 assumed to follow a normally distributed random variable, with the mean corre-
140 sponding to the KS OR, and thereby this statistical structure allows boundaries
141 to be described by a likelihood function. The boundaries are no longer determin-
142 istically KS or non-KS, there is a gradation of probability, and this allows for
143 boundaries which are close to the KS OR to be considered in the analysis. All
144 martensitic grains are then utilized to construct a graph; each node represents
145 a grain and adjacent grains are connected with an edge. The edge weight is
146 assigned a value which is related to the likelihood of that particular boundary
147 being a KS boundary. A Markov clustering algorithm is then used to iteratively
148 manipulate the graph, eliminating weak edges, until the structure becomes sta-
149 ble yielding many clusters. These clusters represent martensitic grains, which
150 share a common parent austenite grain, and from the available information the
151 parent austenite orientation can also be estimated. In the *MTEX* implemen-
152 tation a number of additional steps are also included; filling in of mis-indexed
153 pixels, cleaning of spurious small martensitic grains, cleaning of spurious small
154 austenitic grains, etc.. These steps ensure that no pixels are empty in any of
155 the training, validation, and test images. While this may introduce some error,
156 e.g. pixel orientations which were estimated using information not consistent
157 with the reconstruction algorithm, we found it necessary to include these steps
158 in order to simplify the numerical workflow.

159 *2.2. Rotation representation*

160 In order to build an effective CV model suitable orientation descriptors must
161 first be identified for quantifying the raw data. The standard approach for
162 EBSD data is to specify the local material orientation with Bunge-Euler angles
163 [8]. In this approach each pixel is represented by three angles $\mathbf{g} = (\phi_1, \Phi, \phi_2)$

164 which describe three rotations necessary to map from a global coordinates sys-
 165 tem to the local crystal coordinate system. Typically the global coordinates
 166 system is described by the orientation of the sample inside the microscope (out
 167 of plane direction, vertical, and horizontal with respect to the acquired image).
 168 While Bunge-Euler angles are intuitively appealing they fail to capture crystal
 169 structure symmetries e.g. for cubic materials $(0, 0, 0)$ and $(\pi/2, 0, 0)$ represent
 170 identical crystal orientations. This knowledge suggests that perhaps, prior to
 171 building and training the CV model, a more appropriate orientation representa-
 172 tion is needed. Ideally a mapping (many-to-one) is needed from the Bunge-Euler
 173 representation to a representation that does not discriminate between equiva-
 174 lent orientations e.g. $(0, 0, 0)$ and $(\pi/2, 0, 0)$. It is possible that such a mapping
 175 could be learned during training but there are a number of approaches in the
 176 literature which describe suitable mappings for similar quantification tasks.

177 For decades basis expansion based approaches have been utilized for de-
 178 scribing the crystallographic orientation distribution function (ODF) [8]. Much
 179 like how Fourier coefficients can summarize or describe a discrete signal these
 180 expansion based methods encode the ODF into a basis weight representation.
 181 Since these basis representations are designed for describing crystallographic
 182 data they automatically capture crystallographic symmetries. One of these ex-
 183 pansions is the generalized spherical harmonics (GSH) representation which has
 184 been utilized recently in a number of works for quantifying spatial orientation
 185 data. Yabansu et al. [37] utilized GSH in developing a finite element surro-
 186 gate model for simulating the elastic response of cubic polycrystalline synthetic
 187 microstructures. The surrogate consisted of essentially a three-dimensional ker-
 188 nel regression model which behaves like a one layer CNN with no non-linearity.
 189 Paulson et al. [24] utilized a GSH representation for developing two-point statis-
 190 tics metrics for digital microstructure representations. In another work Paulson
 191 et al. [25] demonstrated that these descriptors can be utilized to correlate struc-
 192 tural attributes to the fatigue resistance of different hexagonal closed packed
 193 microstructures. In recent work Montes de Oca Zapiain et al. [20] utilized the
 194 GSH representation to develop a deep CNN surrogate model for emulating fi-
 195 nite element plasticity simulations. An interpretable EBSD-based two-point
 196 autocorrelation function was developed by Fernandez-Zelaia and Melkote [11]
 197 for experimental work studying the length scale and morphological anisotropy
 198 evolution of polycrystalline copper subject to severe plastic deformation. These
 199 works demonstrate that the GSH expansion is well suited for quantifying local
 200 crystal orientation in spatial data.

201 The ODF, $f_{\mathbf{x}}(\mathbf{g})$, can be described for each individual spatial location \mathbf{x} as,

$$f_{\mathbf{x}}(\mathbf{g}) = \sum_{\mu, n, l} F_{l\mathbf{x}}^{\mu n} \dot{T}_l^{\mu n}(\mathbf{g}), \quad (1)$$

202 where μ, n, l represent indices for multiple sums, and $F_{l\mathbf{x}}^{\mu n}$ is the complex-valued
 203 GSH coefficient at \mathbf{x} . $\dot{T}_l^{\mu n}$ is the corresponding complex valued GSH basis.
 204 A detailed description on obtaining these quantities may be found elsewhere
 205 [8, 11, 24, 25, 37]. Prior works have shown that for cubic materials 10 terms in
 206 the expansion is reasonable [20, 37]. In this work we are not really interested in
 207 the ODF rather we simply want to repurpose the basis weights $F_{l\mathbf{x}}^{\mu n}$ to represent
 208 the local orientation at each pixel. These GSH basis weights can be obtained
 209 via a mapping,

$$\mathbf{y}_G = s(\mathbf{g}), \quad (2)$$

210 where the function s takes in the spatial Bunge-Euler data and maps it to the
 211 GSH coefficients (hence the subscript G). Note that we omit the indices μ, n, l
 212 and simply represent the quantity as a vector. This representation is complex
 213 and so for simplicity in implementing the numerical framework we take the 10
 214 complex coefficients and separate them into real and complex parts to yield 20
 215 features. Furthermore, since some of these features are either constant (like the
 216 DC offset in a Fourier expansion) or lack a real or an imaginary part we only
 217 use the non-trivial features (total of 17).

218 To demonstrate some of the key points from this section a number of micro-
 219 graphs are shown in Fig. 1. First, an IPF map (out of page direction) is shown
 220 for both the observed child martensitic phase and inferred parent austenitic
 221 phase. The first Euler angle, ϕ_1 , is shown which appears to be noisy and,
 222 hence, makes it difficult to visually discern individual grains. However, the two
 223 GSH maps clearly highlight all of the grains present in the IPF map. It is rea-
 224 sonable to believe that the unprocessed Euler angles would introduce additional
 225 difficulty when training the proposed model architecture.

226 *2.3. Machine learning based grain reconstruction*

227 Since the algorithmic reconstruction of the parent austenite grain is driven
 228 by the nature of grain boundaries (KS or near-KS OR) and connecting similarly
 229 misoriented features (children of a parent austenite grain) its is plausible to hy-
 230 pothesize that perhaps a convolutional CV model can capture these physical
 231 relationships. The architecture should be able to capture features at differ-
 232 ent scales, for instance different size lathes, while also “connecting” features
 233 over long length scales e.g. lathes within one large grain. Hence, we adopt a
 234 model based on the U-net architecture which was developed for biomedical im-
 235 age segmentation [26]. The architecture down samples feature maps and then up
 236 samples them with some connections allowed between maps of identical sizes.
 237 The intuition is that features of different length scales can be learned at dif-
 238 ferent resolutions. Simultaneously the architecture also expands the receptive
 239 field of each pixel due to sharing of information between scales. A flowchart of
 240 our network is shown in Fig. 2. The input image is convolved four times with
 241 3×3 kernels and 64 filters. Reflective padding is included to maintain identi-
 242 cal shapes. Batch normalization follows each convolution operation. Shortcut
 243 residual connections are utilized following the first convolution [14]; empirically
 244 we observed that this greatly accelerates learning. Following these residual con-
 245 volution blocks the sample is down sampled using 2×2 MaxPool operations.
 246 This is repeated three more times. Then the resulting feature map is up sampled
 247 and following each up sampling another residual convolution block of the same
 248 structure is applied. This is done until the feature map is $128 \times 128 \times 64$. At
 249 each level of up sampling a shortcut residual connection is allowed from the cor-
 250 responding down sampled feature map. Finally, a fully connected (FC) network
 251 with 4 hidden layers maps the depth dimension $64 \rightarrow 256 \rightarrow 128 \rightarrow 64 \rightarrow 17$.
 252 A dropout rate of 0.5 was utilized in the FC layers. Layer weights were pe-
 253 nalyzed with penalty coefficient 5×10^{-4} . Leaky ReLu with $\alpha = 0.1$ was used
 254 in all activations. The output of the network is the GSH representation of the

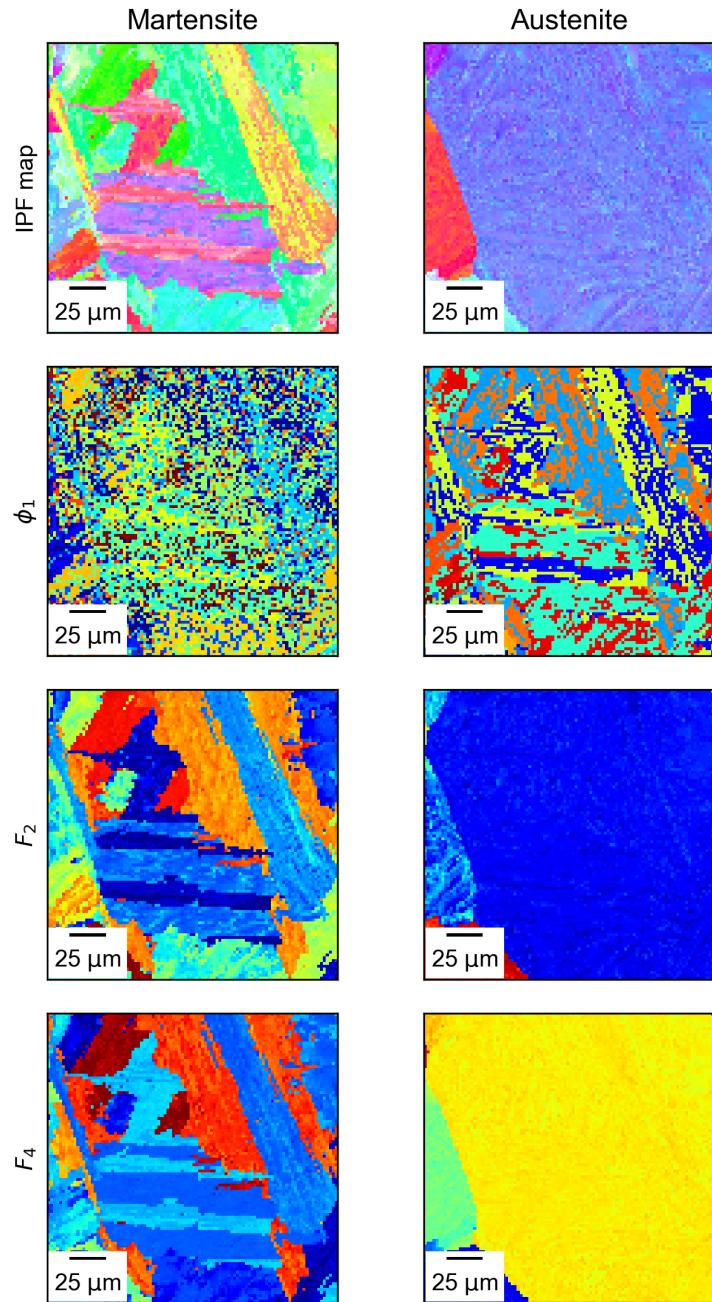


Figure 1: Example micrographs of (left) observed martensitic phase and (right) reconstructed parent austenite phase. IPF map illustrates the out of page orientation. The first Euler angle, ϕ_1 , is shown as well as second and fourth GSH coefficient maps for both child and parent phases. GSH many-to-one mapping captures spatial crystal structure more effectively.

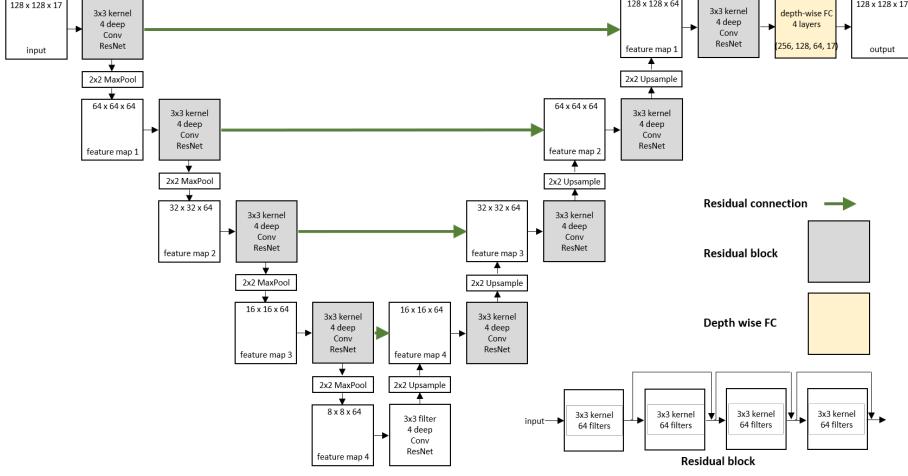


Figure 2: Architecture of the proposed CNN model. The structure generally mimics a UNet architecture but with liberal use of residual connections. Finally, a four layer FC block is utilized in the depth dimension to map each pixel from the latent feature representation to 17 GSH coefficients.

255 austenite parent grain. A L_2 loss function was utilized to minimize the discrepancy
 256 between the ground truth parent austenite GSH representation (\mathbf{y}_G) and
 257 the model’s prediction ($\hat{\mathbf{y}}_G$).

258 However, additional effort is needed to produce a model that will yield the
 259 desired Bunge-Euler angle outputs $\hat{\mathbf{y}}_E$. This representation is needed because it
 260 is more amenable for traditional texture analysis (IPF maps, pole figures, etc.).
 261 While there is a mapping from the Bugle-Euler angles to the GSH coefficients,
 262 to the best of our knowledge the inverse mapping is not as straight forward.
 263 Furthermore, the output of the CV model may not even produce physically
 264 admissible GSH values, which, despite being “close”, would produce nonsen-
 265 sical and complex-valued Bunge-Euler estimates if the inverse transform were
 266 available. An analogous operation would be taking the Fast Fourier transform
 267 (FFT) of a real signal, then perturbing the coefficients slightly, and inverse
 268 transforming back; the reconstructed signal will almost certainly have a signif-
 269 icant imaginary component. Hence, another model needs to be learned which
 270 maps from the estimated GSH representation to realistic Bunge-Euler angles.
 271 This mapping can be described by,

$$\hat{\mathbf{y}}_E = h(\mathbf{y}_G), \quad (3)$$

272 where h is a learnable function (a neural network). We use a FC model with 6
 273 hidden layers each with 128 units except the last which has three units (for the
 274 Bunge-Euler angles). Training can be performed by minimizing the following
 275 loss function,

$$loss = \sum_i \exp\left(-\|\mathbf{y}_{G,i} - \hat{\mathbf{y}}_{G,i}\|^2\right) [s(h(\hat{\mathbf{y}}_{G,i})) - \hat{\mathbf{y}}_{G,i}]^2, \quad (4)$$

276 where s is the function that transforms Bunge-Euler angles into the GSH coef-
 277 ficients. The $\exp(\dots)$ is a weighting function which penalizes pixels which are

278 poorly predicted by the CV model. This was found to be helpful in training h
279 since otherwise the model will be biased by data in regions where poor GSH val-
280 ues are predicted. The nested structure forces the network to learn a mapping
281 h which generates Bunge-Euler angles which in turn produce reasonable GSH
282 coefficients. This may seem confusing but it is necessary; s is a many-to-one
283 mapping so the inverse is not truly a function. However, keep in mind that
284 there is non-uniqueness associated with the Bunge-Euler representation and so
285 this apparent problem really doesn't matter; in this case there is no "right"
286 answer. There are several Bunge-Euler representations which can be "picked"
287 for a given GSH feature vector and they all represent the same crystal orienta-
288 tion. Under this interpretation h is really more of a sampler and this procedure
289 simply ensures that h picks one of the many suitable Bunge-Euler angles. This
290 model was trained separately from the CV model using the Adam optimizer
291 and a learning rate of 10^{-3} .

292 There is one final complication that must be resolved prior to moving for-
293 ward. The function s must be differentiable in order to learn the hyperpara-
294 meters associated with h using gradient based methods. Unfortunately, while that
295 function has real inputs (Bunge-Euler angles) and considered to also have real
296 outputs (10 GSH complex coefficients converted to 17 real values), the compu-
297 tations involve complex numbers. This complicates the theory somewhat but
298 significantly affects numerical implementation. Out of curiosity we simply tried
299 to emulate this function with yet another FC network and it worked reasonably
300 well. In this case the FC network consists of 7 layers each with 128 units except
301 the final layer which has 17 units (for 17 GSH coefficient features). Training
302 was performed separately using the Adam optimizer and a learning rate of 10^{-3} .
303 The training procedure involved randomly generating one million Bunge-Euler
304 angles, computing the GSH representations, and then reducing the correspond-
305 ing L_2 loss.

306 In summary three models are introduced and described in this section,

- 307 1. A convolutional deep neural network with a U-net structure which makes
308 liberal use of residual connections. The input into this model are child
309 phase martensite micrographs ($128 \times 128 \times 17$) represented using GSH
310 expansion basis weights. The output is a micrograph of identical shape
311 which estimates the GSH representation micrograph of the parent austen-
312 ite phase.
- 313 2. A fully connected neural network which maps each pixel in the estimated
314 parent austenite GSH micrograph to Bunge-Euler angles.
- 315 3. A fully connected neural network that emulates the Bunge-Euler to GSH
316 mapping. This function is somewhat a of a nuisance since it is really
317 only needed during training of the prior network. It is necessary since
318 it is difficult for gradients to flow through the true function which maps
319 Bunge-Euler angles to GSH coefficients.

320 An illustration of these three models is shown in Fig. 3.

321 2.4. Data augmentation & training

322 Training was performed using four publicly available $968.2\mu\text{m} \times 424.9\mu\text{m}$
323 EBSD micrographs with a native resolution of $0.5\mu\text{m}$ [31, 32]. Through exper-
324 imentation we found that a 128×128 sample at $2\mu\text{m}$ resolution was suitable

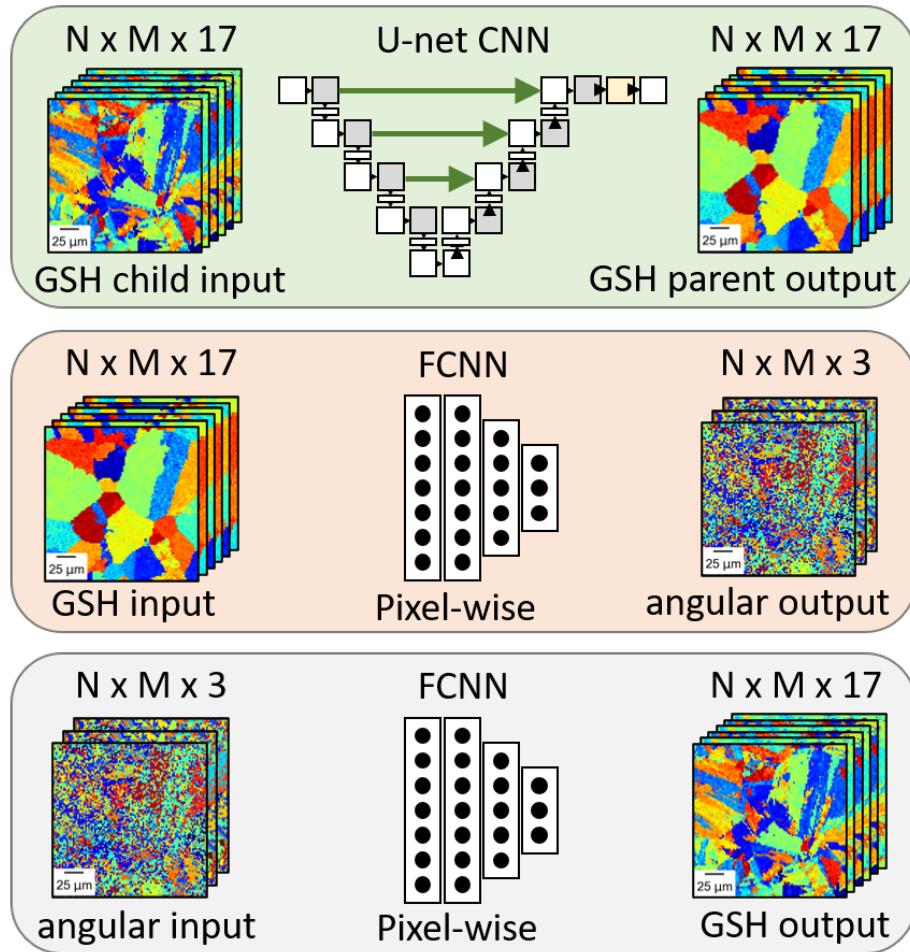


Figure 3: Schematic illustration of the three models proposed in this work. The final model is purely needed for convenience during training of the second model. The FC models operate on image in a pixel-wise fashion.

325 for training. The data set was augmented by sub-sampling images subject to
 326 random spatial rotations. Note that in natural images interpolation is trivial
 327 since colors are indeed physically continuous. However, this is not true of the
 328 GSH representation; averaging two GSH basis weights may yield a weight which
 329 is physically inadmissible. Furthermore, interpolation may be dangerous when
 330 considering EBSD micrographs since grain boundaries are sharp; we found that
 331 naive interpolation introduces artificial smoothing on grain boundaries. There-
 332 fore, we utilized a nearest neighbors interpolation approach for random spatial
 333 rotation of the GSH feature maps. More simple augmentation operations were
 334 done on the fly during training. This includes flipping of the image (up/down,
 335 left/right) and injection of a small amount of noise $\mathcal{N}(0, 0.1)$. Note the injection
 336 of noise does also produce some non-physical values but we found that this effect
 337 not to be deleterious and, more importantly, it does not bias grain boundary
 338 pixels like continuous interpolation.

339 In addition to the above augmentation strategies we also utilized a novel
 340 operation specific for this niche application; random *orientation* rotations. Re-
 341 call that each pixel represents a rotation that maps the local crystal coordinate
 342 system to a reference global coordinate system. Hence, a random orientation
 343 rotation can be applied over the entire image (pixel by pixel) to yield a “new”
 344 micrograph. This micrograph represents the orientation data relative to a *ran-*
 345 *dom reference coordinate system*. Since the choice of global coordinate system
 346 is arbitrary this is a reasonable operation. Furthermore, since the orientation of
 347 each pixel is rotated identically, the relative misorientation across grain bound-
 348 *aries is preserved. Since the parent phase is inferred via analysis of the grain*
 349 *boundary misorientations, which are unaffected by the absolute orientations*
 350 *of grains, then this operation should be effective at augmenting the data set*
 351 *and will enable learning of a more robust CV model. This random rotation is*
 352 *implemented by first sampling three random angles,*

$$\phi'_1, \Phi', \phi'_2 \sim \text{unif}(0, 2\pi) \quad (5)$$

353 which represent the random transformation in Bunge-Euler angles. Next, con-
 354 sider that at each pixel the Bunge-Euler angles represent the rotation necessary
 355 to map from the global to the crystal coordinate system. Hence, the procedure
 356 will be to (1) map from the crystal coordinates back to the global coordinate,
 357 and then (2) randomly rotate the global coordinate with $(\phi'_1, \Phi', \phi'_2)$. Using
 358 z-x-z (ϕ_1, Φ, ϕ_2) ordering the rotation matrix describing this operations is

$$\mathbf{R}_x = \mathbf{R}_{\phi_2, x}^T \mathbf{R}_{\Phi, x}^T \mathbf{R}_{\phi_1, x}^T \mathbf{R}_{\phi'_1} \mathbf{R}_{\Phi'} \mathbf{R}_{\phi'_2} \quad (6)$$

359 where x in the subscript indicates that the quantity is spatially dependent e.g.
 360 at each pixel. $\phi_{1,x}$ indicates the first Bunge-Euler angle at spatial location
 361 x . Rotation matrices are about either x or z coordinate axis indicated by the
 362 Bunge-Euler angle subscript. The randomly drawn angles are not spatially de-
 363 pendent because the entire micrograph, both child and parent images, must
 364 share the same reference coordinate system. The resulting rotation matrix rep-
 365 resents the orientation of each pixel relative to a random reference coordinate
 366 system. Bunge-Euler angles corresponding to this rotation matrix can easily be
 367 extracted. We used the implementation provided by *Python* scientific comput-
 368 ing library *SciPy* (`scipy.spatial.transform.Rotation`) [36].

369 In Fig. 4 we show one of the training micrographs and three random ro-
370 tations of a selected 128×128 patch. Both the child martensite and parent
371 austenite samples are shown. The spatial structure is identical in these three
372 examples but clearly the absolute orientation is perturbed in each micrograph.

373 A total of 7,000 $128 \times 128 \times 17$ micrographs were generated for training
374 using the above procedures. The architecture was implemented in *Python 3.7*
375 using *Tensorflow 2.0* [1]. Training of the CV model was performed using the
376 *Adam* optimizer with default parameters and a learning rate of 5×10^{-4} [18].
377 A relatively small batch size of 16 was utilized. All training was performed on
378 a single Nvidia Quadro RTX 5000 with 16GB of RAM.

379 3. Results

380 In Figs. 5 & 6 two samples from the validation data set are shown. In the first
381 row are micrographs corresponding to three GSH feature maps. The middle row
382 is an IPF map (out of plane direction) corresponding to the ground truth *MTEX*
383 physics reconstruction. The bottom row is an IPF map of the reconstruction
384 using our ML CV model. Overall the CV model reconstructions are fairly good.
385 With a few exceptions the general parent austenite grain shape is recovered,
386 although, on occasion, there is a fictitious grain boundary or slightly misplaced
387 boundary. Most notably the CV reconstruction appears to have a significant
388 amount of within-grain internal misorientations. This is perhaps most clear in
389 Fig. 6 which contains a few large grains. The internal misorientations, while
390 visually unappealing, appear to match the variation from noise present within
391 grains in the physics reconstruction. It is as if the CV model realizes that
392 there will be variability in the reconstructed grain but erroneously “spreads”
393 the variation over large length scales. In the physics reconstructed grains the
394 noise is pixel-to-pixel whereas variation in the CV reconstruction gyrates over
395 many pixels.

396 In order to test the model’s ability to generalize the learned crystallographic
397 spatial patterns we utilized it to reconstruct a completely different martensitic
398 system produced via a different process. Shown in Fig. 7 are micrographs
399 from 17-4PH fabricated via large area wire-arc AM. IPF maps in x,y, and z
400 directions are shown for the observed martensite, physics reconstruction, and
401 ML reconstruction. The input image was $1\mu m$ resolution and 800×800 pixels.
402 The reconstructions in this case are remarkably good. There are a few misplaced
403 grains but in general both the morphology and crystallographic texture of the
404 ML reconstruction are accurate.

405 The 17-4PH micrographs are again shown in Fig. 8 but this time a $256\mu m \times$
406 $256\mu m$ region is magnified to highlight smaller scale features. Furthermore, the
407 resolution of the input image is decreased by a factor of 4 and 8 to empirically
408 evaluate the efficacy of the model to generalize to coarser images. Again, the
409 model performs remarkably well at making predictions on coarser images. This,
410 however, is not particularly surprising. Firstly, the model does not know about
411 physical scale it simply operates on pixels. What is important is the model’s
412 *receptive field*, that is, how much of the surrounding area the model can “see”
413 when making a prediction at a individual pixel. Assume that the receptive field
414 of the model is constant e.g. perhaps 100×100 pixels. When the resolution
415 is decreased then more and more microstructural features will fit within the
416 receptive field ($\sim 100 \times 100$) and so there is more context available for predicting

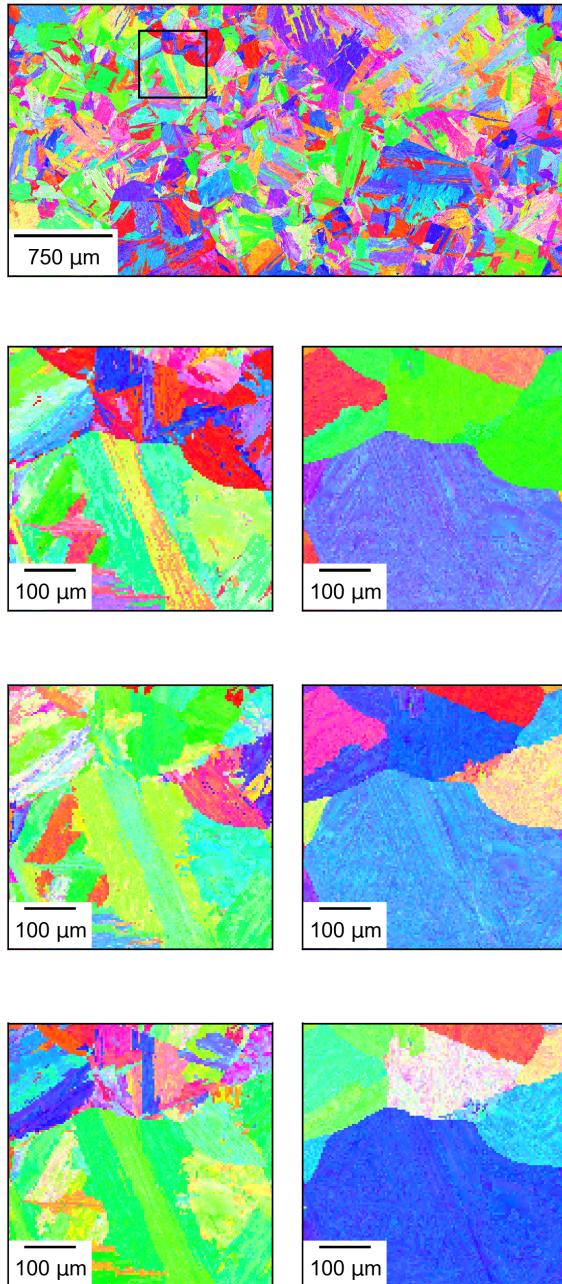


Figure 4: All IPF maps shown out of page orientation. (top) One of four training micrographs. Highlighted is a 128×128 window corresponding to micrographs below. Below are three realizations of (left) the martensitic child phase and (right) the austenitic parent phase. For each pair of (child,parent) micrographs each pixel's rotational representation is randomly rotated to generate additional synthetic data. Boundary misorientations are preserved through this transformation while absolute orientation is changed. This emulates the randomization of the global reference frame.

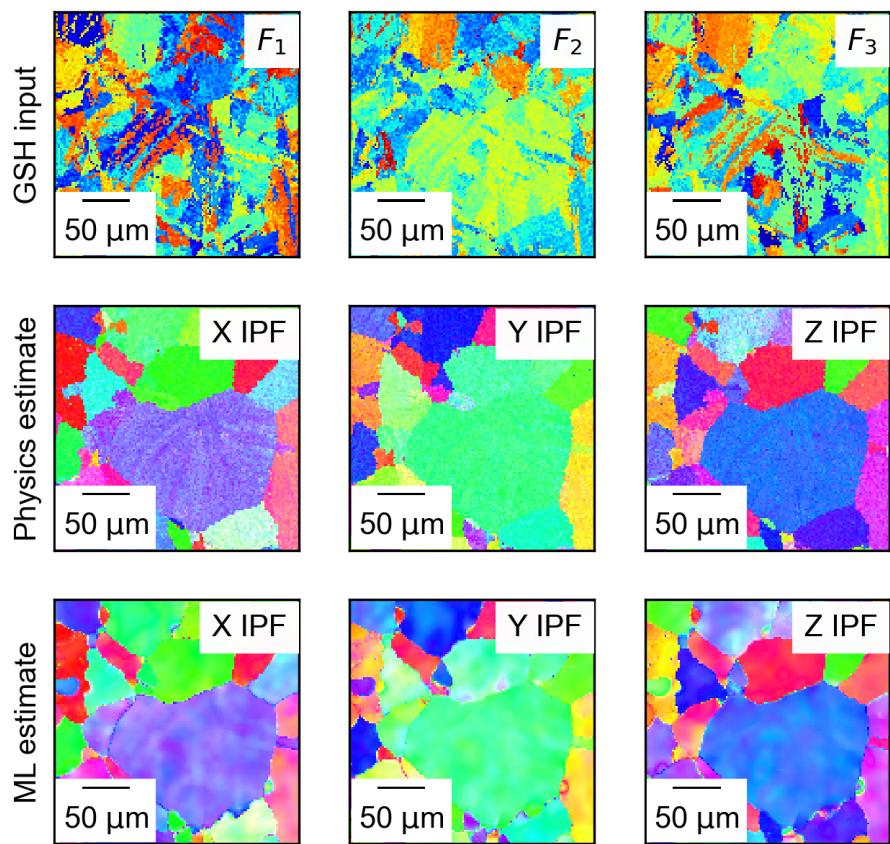


Figure 5: Validation data set example including mostly small scale grains.

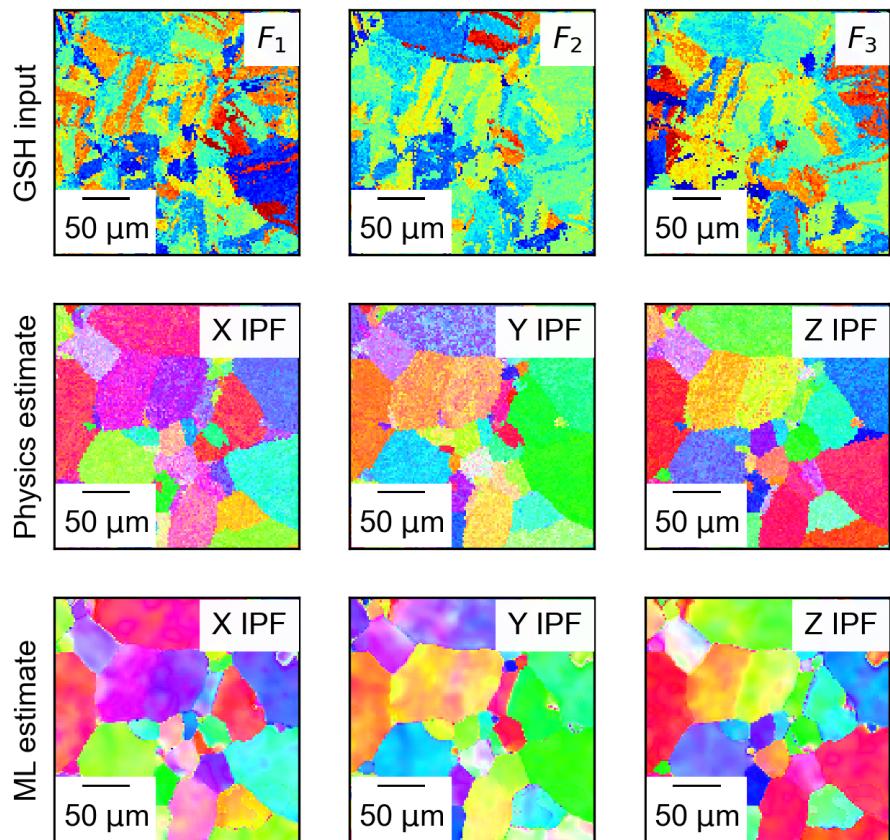


Figure 6: Validation data set example including several large scale grains.

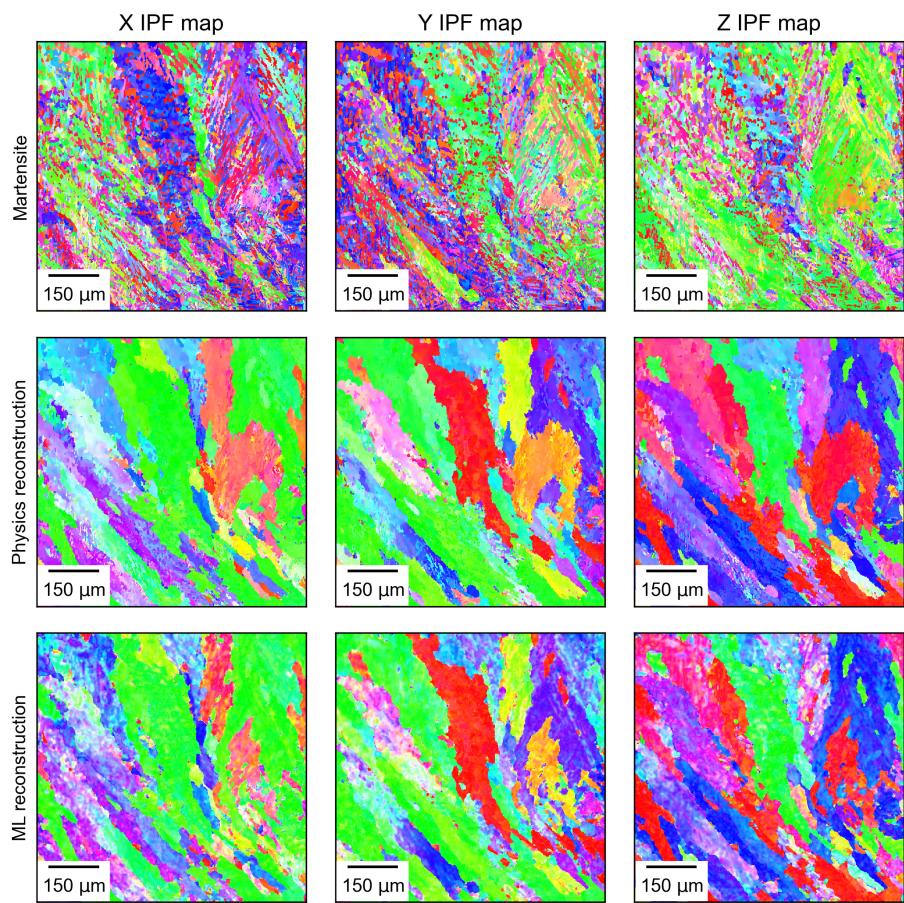


Figure 7: Test example on large area wire-arc AM 17-4PH material. The micrograph has a $1 \mu m$ resolution.

417 the value of the central pixel. The model can “look” in the surrounding area
418 and identify KS OR grain boundaries or boundaries far from being KS OR.
419 It seems intuitive that when there are more features in the receptive field the
420 model can more confidently infer the parent austenite grain orientation.

421 To demonstrate the importance of the receptive field now consider the higher
422 magnification micrograph in Fig. 9. In each image a 128×128 pixel box is
423 shown for reference. The original image in this case is 1536×1024 pixels with
424 a $0.15\mu\text{m}$ pixel resolution. The micrograph only consists of fewer than 10 prior
425 austenite grains. So in this case, there are very few grains in the receptive field
426 of the model and the ML model exhibits poor predictive performance. As the
427 resolution is decreased the model prediction becomes increasingly better. From
428 this example it is clear that the limitation of the ML model is related to the
429 perceptive field which is critical in capturing spatial-orientation patterns that
430 drive the reconstruction. However, even in the highest resolution images small
431 grains and small features, presumably those which fit inside the perceptive field,
432 can still be predictive reasonably well. Even the large green grain is predicted
433 reasonably well despite the magenta grain being poorly predicted. Visually it
434 seems as though the green grain has many more lathe variants within it and
435 so this potentially aids in inference. The magenta grain only consists of one
436 martensitic variant. This suggests that the efficacy of inference is dependent on
437 the degree of *microstructural information* present within the receptive field.

438 4. Discussion

439 In the prior section it was demonstrated that the established ML CV model
440 is effective in generating reconstructed prior austenite orientation maps. When
441 tested on unobserved 17-PH AM material with large morphologically anisotropic
442 grains the model exhibited a remarkable ability to correctly infer the prior
443 austenite structure at various pixel resolutions. However, it was empirically ob-
444 served that for high magnification micrographs the model’s performance greatly
445 deteriorates. It is suspected that this is related to the receptive field of the model
446 and the necessity for it to “see” sufficient contextual information for making ac-
447 curate inferences.

448 Once again, in order to further analyze the performance of the model, we
449 consider the full field prediction of the validation micrograph in Fig. 10. Two
450 resolutions are shown: the native $0.5\mu\text{m}$ resolution and the $2\mu\text{m}$ resolution
451 adopted for training. While the $0.5\mu\text{m}$ resolution estimate captures most of the
452 grain structure and orientation it is heavily corrupted by spurious noise. The
453 $2\mu\text{m}$ resolution micrograph is much more visually appealing with the exception
454 of some internal grain misorientations. Again, it must be noted, however, that
455 it seems that these misorientations are not random but rather mimic noise
456 present in the physics reconstruction. So even these misorientations indicate
457 that the ML CV model is identifying physical patterns which are indeed present
458 in the physics based inferred micrograph. 128×128 windows are shown in all
459 micrographs to highlight the size of training examples used for estimation of
460 the model’s hyperparameters. This is relevant because we hypothesize that the
461 receptive field must be on the order of 128×128 pixels (or smaller) since this
462 is all the model had available during training. It seems unlikely that, when
463 considering a particular pixel, the model will be able to consider information

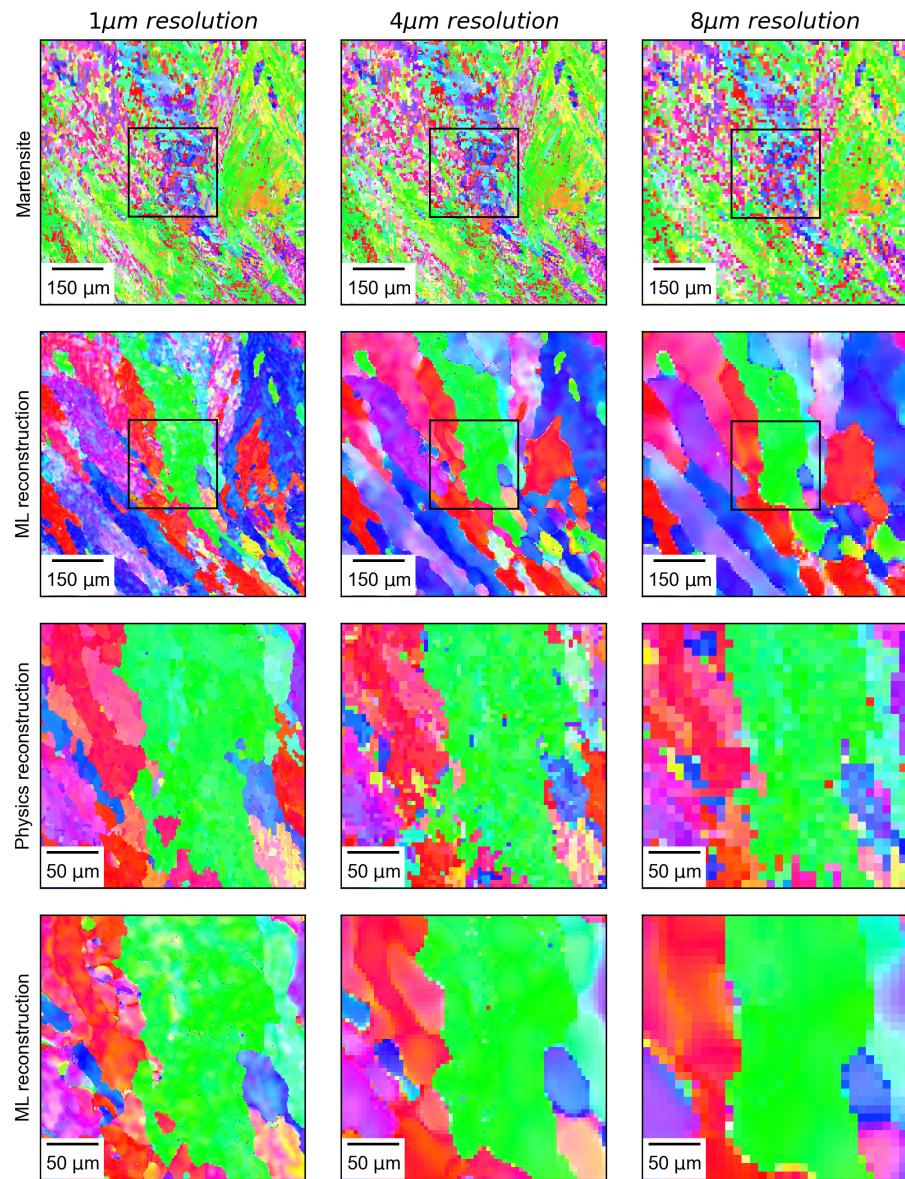


Figure 8: Micrographs demonstrating the effect of resolution and scale on large area wire-arc AM 17-4PH material. A selected area is shown to reveal smaller scale features.

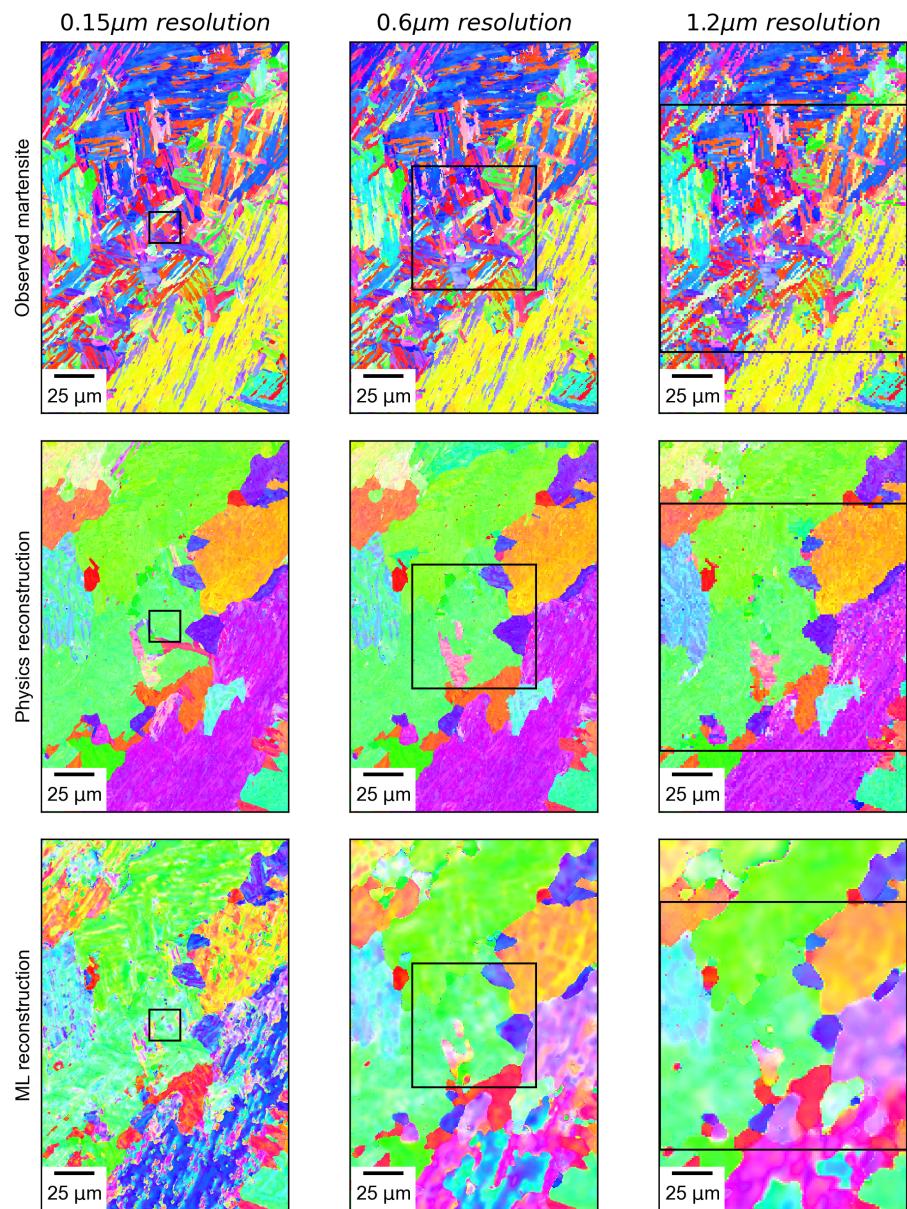


Figure 9: Micrographs demonstrating the effect of resolution and scale on small area wire-arc AM 17-4PH material.

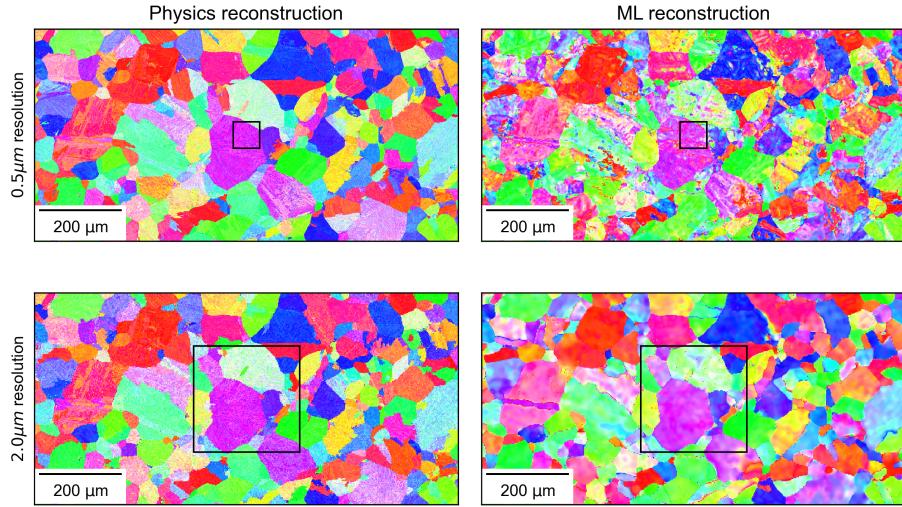


Figure 10: Difference in model predictions on the validation EBSD micrograph at resolutions $1\mu\text{m}$ and $2\mu\text{m}$. A 128×128 window, the size selected for training at $2\mu\text{m}$ resolution, is shown in each IPF map for perspective.

464 outside of this window size since such long range information was never present
 465 during training.

466 It is important to acknowledge that microstructural “features” are also nec-
 467 essary to consider. A pixel in the middle of a large grain will be more difficult
 468 to predict accurately if the grain is 500 pixels wide or 50 pixels wide. Hence,
 469 in Fig. 11 a more quantitative assessment of this concept is illustrated. The
 470 validation micrograph from Fig. 10 was manipulated to produce identical mi-
 471 crographs but at different resolutions. We varied the resolution by fifteen factors
 472 yielding resolutions ranging from $0.25\mu\text{m}$ to $2\mu\text{m}$. Since the high resolution im-
 473 ages grow large in pixel size not all the images could be processed fully and so
 474 we randomly sampled 128×128 patches 100 times at each resolution, predicted
 475 the prior austenite map using our ML model, and from that computed the GSH
 476 reconstruction error. The micrograph used for these operations contains 366
 477 prior austenite grains and so given this, the known resolution of an image, and
 478 the use of a fixed 128×128 field of view, one can compute a summary metric
 479 which measures the influence of features present in the field of view against
 480 model error.

481 The results of this exercise agree with observations made previously in the
 482 manuscript; the model is effective in analyzing medium to low magnification mi-
 483 crographs but poor at high magnifications when there are few features available
 484 in the receptive field. This behavior was already observed before in Fig. 9 when
 485 the ML prediction was observed to improve at $0.6\mu\text{m}$ and $1.2\mu\text{m}$ resolution. The
 486 key consideration is the amount of microstructural feature information present
 487 within the receptive field of the model.

488 It may be possible to alleviate some of the model’s deficiencies via adoption
 489 of alternative architectures or training strategies. There are a host of novel
 490 ML architectures that may be better suited for expanding the receptive field of

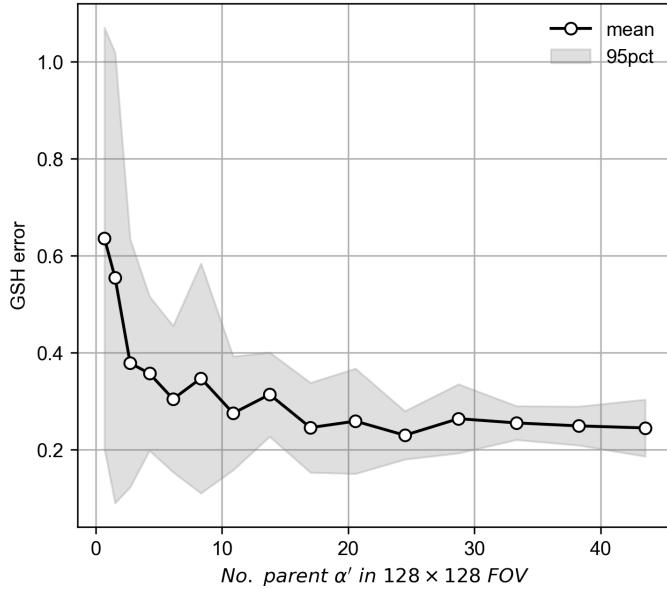


Figure 11: Mean error in the GSH representation prediction, $\|\mathbf{y}_{G,i} - \hat{\mathbf{y}}_{G,i}\|^2$, as a function of the number of parent α' grains in a 128×128 field of view (FOV). The gray region represents the 95% confidence interval computed from 100 random samples of the validation data.

491 the model to enable better generalization. Vision transformers are promising
 492 as they currently exhibiting great success in a number of vision related tasks
 493 [10]. Nonetheless, this work represents a first for successful application of ML
 494 CV models towards the analysis of experimental spatial orientation EBSD data.
 495 Furthermore, we demonstrate that we did not need a voluminous data set to
 496 effectively train the model; it was all done from only four micrographs. While the
 497 application of quantitative ML models directly on EBSD data has historically
 498 been made difficult due to issues associated with the orientation representation
 499 (Bunge-Euler angles) this complexity is precisely what enabled efficient training.
 500 The complexity of the data also makes it very dense and rich with information
 501 suitable for training complex models.

502 In order to develop a better understanding of the information flow through
 503 the model a few select feature maps corresponding to the top left corner of the
 504 validation micrograph are shown in Fig. 12. The top row corresponds to the
 505 input IPF map and then down sampled feature maps decreasing in resolution
 506 (left to right) through the U-net architecture. The bottom row corresponds
 507 to features in the up sampling portion of the model with resolution increasing
 508 (right to left) finally reaching the output IPF map. Interestingly, the lowest
 509 resolution map appears to have no discernible spatial structure. Across images
 510 and across filters, however, the mean value does change. This indicates that the
 511 deepest feature map simply captures some mean information. The first feature
 512 generated in down sampling almost always simply captures small length scale
 513 grain boundary features. It is likely that these maps are attempting to recognize
 514 “special” grain boundary relationships which may be related to near-KS OR fea-
 515 tures. The second down sampled map was empirically observed to capture both

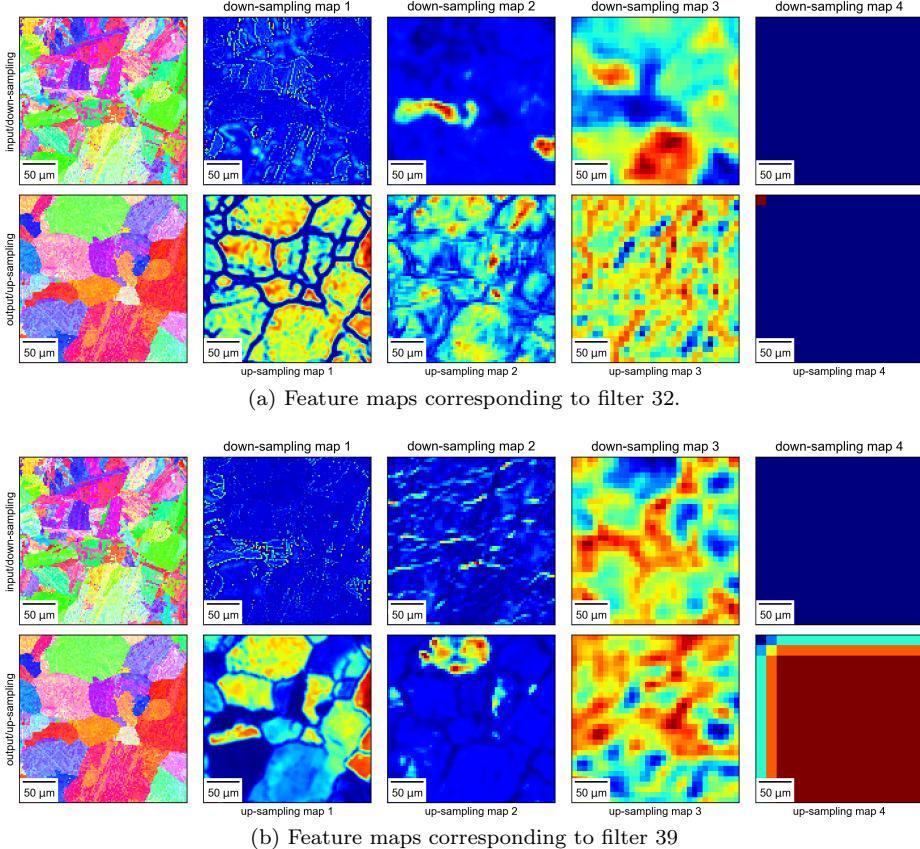


Figure 12: Feature maps produced during evaluation of the ML CV model.

516 boundary type information as well as grain features. The third down sampled
 517 maps are more difficult to interpret however they appear to capture long length
 518 scale features. The up sampling trends are once again similar with the exception
 519 that the up sampled map closest to the output is nearly entirely made up of
 520 grain scan features. Intuitively this agrees with the task that the model has been
 521 trained for; during down sampling select grain boundaries must be identified as
 522 well as long length scale features and during up sampling this information must
 523 be distilled into generating the parent austenite grain structure.

524 The direct value of this model is that it is incredibly fast. A visualization
 525 comparing the two methods, physics and ML models, is shown in Fig.
 526 13. The physics based algorithmic approach utilized consistently requires sig-
 527 nificantly more time on the order of tens of minutes for inference. This is
 528 because the algorithms have to compute pixel-by-pixel misorientations, iden-
 529 tify grain boundaries, identify martensitic grains, construct a graph connecting
 530 *all* martensite grains, etc.. Our ML model alleviates all of this by treating the
 531 problem much more locally and distilling all of these steps into a single computa-
 532 tional pipeline. The result is that our ML model performs inference in less than
 533 a second even on the largest images considered (768^2 pixels). Note, however,
 534 that these comparisons are somewhat unfair as the physics model is evaluated
 535 using CPU computations whereas the ML approaches takes advantage of the

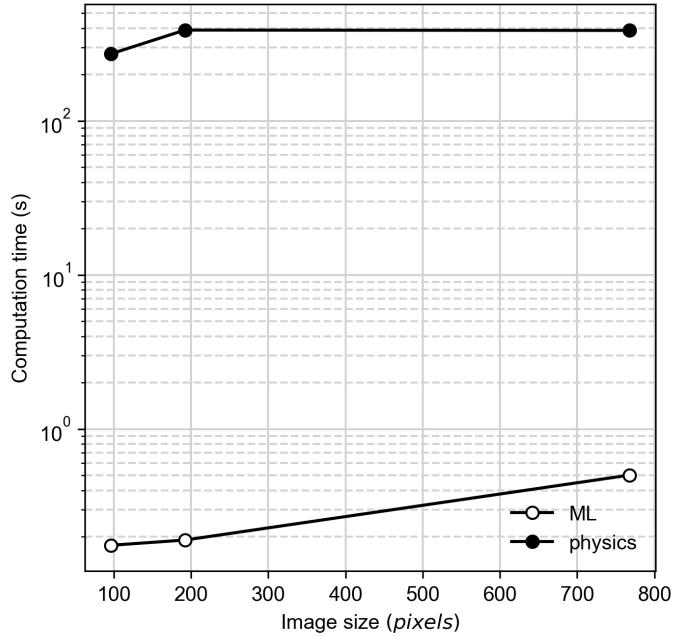


Figure 13: Computation time for physics and ML model.

536 computational efficiency of the GPU. Nonetheless, the speed of our ML CV
 537 model suggests that perhaps these reconstructions could be performed in real
 538 time. The computational efficiency is apparent and this aspect is attractive to
 539 microscopists and microscopy software developers who may see utility in being
 540 able to quickly preview the underlying prior austenite structure in-situ during
 541 imaging.

542 More generally, however, this work demonstrates that there is a viable frame-
 543 work for quantifying and analyzing EBSD micrographs using modern ML ap-
 544 proaches. While we train this specific model to emulate an algorithmic physics-
 545 based model the framework can be generally applied towards other quantitative
 546 tasks. The value, demonstrated in the feature maps shown in Fig. 12, is that
 547 the GSH representation and CNN architecture are capable of encoding both
 548 local (grain boundary) and large length scale (shared γ parent grain) spatial-
 549 orientation features.

550 **5. Summary**

551 In this work we present a machine learning based computer vision model for
 552 reconstructing parent austenite grains from observed martensite EBSD micro-
 553 graphs. The model structure is based on a convolutional U-net architecture.
 554 The orientation data is represented using generalized spherical harmonics de-
 555 scriptors which alleviates issues associated with Bunge-Euler angles. Training
 556 of the model is performed using only four $\sim 1.0\text{mm} \times 0.5\text{mm}$ micrographs with
 557 a resolution of $2\mu\text{m}$ and this is achieved by utilizing a novel data augmentation
 558 strategy; randomization of the global reference coordinate system. Since the

559 global coordinate system is arbitrary this allows the model to “see” a much more
560 diverse set of grain boundaries which facilitates in learning a more generalizable
561 model. The model is shown to perform remarkably well when tested against
562 martensitic micrographs obtained from a different alloy with completely differ-
563 ent parent austenite grain structure. In addition, the evaluation of the model
564 is orders of magnitude faster than algorithmic reconstruction approaches for
565 large area micrographs. However, the model does have some limitations demon-
566 strated by its poor performance when analyzing high resolution micrographs
567 with few parent austenite grains. We suspect that this is related to the amount
568 of microstructural information present in the receptive field of the model. This
569 could be potentially alleviated by construction of alternative architectures.

570 **6. Acknowledgements**

571 Research was sponsored by the US Department of Energy, Office of Energy
572 Efficiency and Renewable Energy (EERE), Advanced Manufacturing Office, the
573 Office of Fossil Energy, Crosscutting Research Program, under contract DE-
574 AC05-00OR22725 with UT-Battelle LLC and performed in partiality at the Oak
575 Ridge National Laboratory’s Manufacturing Demonstration Facility, an Office
576 of Energy Efficiency and Renewable Energy user facility.

577 **7. Competing Interests**

578 The authors declare no competing interests.

579 **8. Data availability**

580 All data and models generated associated with the current study are avail-
581 able from the corresponding author request. The experimental data is publicly
582 available at <https://petreldata.alcf.anl.gov/> [32].

583 **9. References**

584 **References**

- 585 [1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
586 S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-
587 scale machine learning. In *12th {USENIX} symposium on operating systems
design and implementation ({OSDI} 16)*, pages 265–283, 2016.
- 588 [2] M. Abbasi, T. W. Nelson, C. D. Sorensen, and L. Wei. An approach to
589 prior austenite reconstruction. *Materials characterization*, 66:1–8, 2012.
- 590 [3] M. Abbasi, D.-I. Kim, T. W. Nelson, and M. Abbasi. Ebsd and reconstruc-
591 tion of pre-transformation microstructures, examples and complexities in
592 steels. *Materials characterization*, 95:219–231, 2014.
- 593 [4] D. W. Abueidda, S. Koric, N. A. Sobh, and H. Sehitoglu. Deep learning for
594 plasticity and thermo-viscoplasticity. *International Journal of Plasticity*,
595 136:102852, 2021.

597 [5] A. A. Antonysamy, J. Meyer, and P. Prangnell. Effect of build geometry
598 on the β -grain structure and texture in additive manufacture of ti6al4v by
599 selective electron beam melting. *Materials characterization*, 84:153–168,
600 2013.

601 [6] F. Bachmann, R. Hielscher, and H. Schaeben. Texture analysis with mtex–
602 free and open source software toolbox. In *Solid State Phenomena*, volume
603 160, pages 63–68. Trans Tech Publ, 2010.

604 [7] S. Bi, J. Zhang, and G. Zhang. Scalable deep-learning-accelerated topol-
605 ogy optimization for additively manufactured materials. *arXiv preprint*
606 *arXiv:2011.14177*, 2020.

607 [8] H.-J. Bunge. *Texture analysis in materials science: mathematical methods*.
608 Elsevier, 2013.

609 [9] C.-T. Chen and G. X. Gu. Generative deep neural networks for inverse ma-
610 terials design using backpropagation and active learning. *Advanced Science*,
611 7(5):1902607, 2020.

612 [10] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
613 M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image
614 is worth 16x16 words: Transformers for image recognition at scale. *arXiv*
615 *preprint arXiv:2010.11929*, 2020.

616 [11] P. Fernandez-Zelaia and S. N. Melkote. Process-structure-property model-
617 ing for severe plastic deformation processes using orientation imaging mi-
618 croscopy and data-driven techniques. *Integrating Materials and Manufac-*
619 *turing Innovation*, 8(1):17–36, 2019.

620 [12] A. L. Frankel, R. E. Jones, C. Alleman, and J. A. Templeton. Predicting
621 the mechanical response of oligocrystals with deep learning. *Computational*
622 *Materials Science*, 169:109099, 2019.

623 [13] S. Gupta, A. Banerjee, J. Sarkar, M. Kundu, S. K. Sinha, N. Bandyopad-
624 hyay, and S. Ganguly. Modelling the steel microstructure knowledge for
625 in-silico recognition of phases using machine learning. *Materials Chemistry*
626 *and Physics*, 252:123286, 2020.

627 [14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
628 recognition. In *Proceedings of the IEEE conference on computer vision and*
629 *pattern recognition*, pages 770–778, 2016.

630 [15] D. Jha, S. Singh, R. Al-Bahrani, W.-k. Liao, A. Choudhary, M. De Graef,
631 and A. Agrawal. Extracting grain orientations from ebsd patterns of poly-
632 crystalline materials using convolutional neural networks. *Microscopy and*
633 *Microanalysis*, 24(5):497–502, 2018.

634 [16] K. Kaufmann, C. Zhu, A. S. Rosengarten, D. Maryanovsky, T. J. Harr-
635 ington, E. Marin, and K. S. Vecchio. Crystal symmetry determination
636 in electron diffraction using machine learning. *Science*, 367(6477):564–568,
637 2020.

638 [17] K. Kaufmann, H. Lane, X. Liu, and K. S. Vecchio. Efficient few-shot
 639 machine learning for classification of ebsd patterns. *Scientific reports*, 11
 640 (1):1–12, 2021.

641 [18] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
 642 *arXiv preprint arXiv:1412.6980*, 2014.

643 [19] A. Mangal and E. A. Holm. Applied machine learning to predict stress
 644 hotspots i: Face centered cubic materials. *International Journal of Plasticity*, 111:122–134, 2018.

645 [20] D. Montes de Oca Zapiain, A. Shanker, and S. Kalidindi. Convolutional
 646 neural networks for the localization of plastic velocity gradient tensor
 647 in polycrystalline microstructures. *Journal of Engineering Materials and*
 648 *Technology*, pages 1–41.

650 [21] M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao, and M. Bessa.
 651 Deep learning predicts path-dependent plasticity. *Proceedings of the Na-*
 652 *tional Academy of Sciences*, 116(52):26414–26420, 2019.

653 [22] T. Nyyssönen, P. Peura, and V.-T. Kuokkala. Crystallography, morphology,
 654 and martensite transformation of prior austenite in intercritically annealed
 655 high-aluminum steel. *Metallurgical and Materials Transactions A*, 49(12):
 656 6426–6441, 2018.

657 [23] A. D. Orme, I. Chelladurai, T. M. Rampton, D. T. Fullwood, A. Khosra-
 658 vani, M. P. Miles, and R. K. Mishra. Insights into twinning in mg az31:
 659 a combined ebsd and machine learning study. *Computational Materials*
 660 *Science*, 124:353–363, 2016.

661 [24] N. H. Paulson, M. W. Priddy, D. L. McDowell, and S. R. Kalidindi.
 662 Reduced-order structure-property linkages for polycrystalline microstruc-
 663 tures based on 2-point statistics. *Acta Materialia*, 129:428–438, 2017.

664 [25] N. H. Paulson, M. W. Priddy, D. L. McDowell, and S. R. Kalidindi. Data-
 665 driven reduced-order models for rank-ordering the high cycle fatigue perfor-
 666 mance of polycrystalline microstructures. *Materials & Design*, 154:170–183,
 667 2018.

668 [26] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks
 669 for biomedical image segmentation. In *International Conference on Med-*
 670 *ical image computing and computer-assisted intervention*, pages 234–241.
 671 Springer, 2015.

672 [27] L. Scime and J. Beuth. Using machine learning to identify in-situ melt pool
 673 signatures indicative of flaw formation in a laser powder bed fusion additive
 674 manufacturing process. *Additive Manufacturing*, 25:151–165, 2019.

675 [28] L. Scime, D. Siddle, S. Baird, and V. Paquit. Layer-wise anomaly detec-
 676 tion and classification for powder bed additive manufacturing processes: A
 677 machine-agnostic algorithm for real-time pixel-wise semantic segmentation.
 678 *Additive Manufacturing*, 36:101453, 2020.

679 [29] C. Shen, C. Wang, M. Huang, N. Xu, S. van der Zwaag, and W. Xu.
680 A generic high-throughput microstructure classification and quantification
681 method for regular sem images of complex steel microstructures combining
682 ebsd labeling and deep learning. *Journal of Materials Science & Technol-*
683 *ogy*, 2021.

684 [30] O. Sigmund and K. Maute. Topology optimization approaches. *Structural*
685 *and Multidisciplinary Optimization*, 48(6):1031–1055, 2013.

686 [31] V. Sinha, M. Gonzales, and E. Payton. Datasets acquired with corre-
687 lative microscopy method for delineation of prior austenite grain bound-
688 aries and characterization of prior austenite grain size in a low-alloy high-
689 performance steel. *Data in brief*, 27:104471, 2019.

690 [32] V. Sinha, M. Gonzales, and E. Payton. Correlative microscopy
691 data for quantification of prior austenite grain size in af9628 steel.
692 [https://petreldata.alcf.anl.gov/mdf/detail/sinha_correlative_](https://petreldata.alcf.anl.gov/mdf/detail/sinha_correlative_microscopy_steel_v1.1/)
693 [microscopy_steel_v1.1/](https://petreldata.alcf.anl.gov/mdf/detail/sinha_correlative_microscopy_steel_v1.1/), 2019. [Online; accessed 13-April-2019].

694 [33] Y. Tan, B. Jin, A. Nettekoven, Y. Chen, Y. Yue, U. Topcu, and
695 A. Sangiovanni-Vincentelli. An encoder-decoder based approach for
696 anomaly detection with application in additive manufacturing. In *2019*
697 *18th IEEE International Conference On Machine Learning And Applica-*
698 *tions (ICMLA)*, pages 1008–1015. IEEE, 2019.

699 [34] J. Tiley, A. Shiveley, A. Pilchak, P. Shade, and M. Groeber. 3d recon-
700 struction of prior β grains in friction stir-processed ti–6al–4v. *Journal of*
701 *microscopy*, 255(2):71–77, 2014.

702 [35] K. Tsutsui, H. Terasaki, K. Uto, T. Maemura, S. Hiramatsu, K. Hayashi,
703 K. Moriguchi, and S. Morito. A methodology of steel microstructure recog-
704 nition using sem images by machine learning based on textural analysis.
705 *Materials Today Communications*, 25:101514, 2020.

706 [36] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
707 D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al.
708 Scipy 1.0: fundamental algorithms for scientific computing in python. *Na-*
709 *ture methods*, 17(3):261–272, 2020.

710 [37] Y. C. Yabansu, D. K. Patel, and S. R. Kalidindi. Calibrated localiza-
711 tion relationships for elastic response of polycrystalline aggregates. *Acta Mate-*
712 *rialia*, 81:151–160, 2014.

713 [38] Z. Yang, Y. C. Yabansu, R. Al-Bahrani, W.-k. Liao, A. N. Choudhary, S. R.
714 Kalidindi, and A. Agrawal. Deep learning approaches for mining structure-
715 property linkages in high contrast composites from simulation datasets.
716 *Computational Materials Science*, 151:278–287, 2018.

717 [39] Z. Yang, Y. C. Yabansu, D. Jha, W.-k. Liao, A. N. Choudhary, S. R. Ka-
718 lidindi, and A. Agrawal. Establishing structure-property localization link-
719 ages for elastic deformation of three-dimensional high contrast composites
720 using deep learning approaches. *Acta Materialia*, 166:335–345, 2019.

721 [40] Z. Yang, S. Papanikolaou, A. C. Reid, W.-k. Liao, A. N. Choudhary,
722 C. Campbell, and A. Agrawal. Learning to predict crystal plasticity at
723 the nanoscale: Deep residual networks and size effects in uniaxial compres-
724 sion discrete dislocation simulations. *Scientific reports*, 10(1):1–14, 2020.

725 [41] A. Zhang and D. Mohr. Using neural networks to represent von mises
726 plasticity with isotropic hardening. *International Journal of Plasticity*,
727 132:102732, 2020.

728 [42] A. Ziabari, D. H. Ye, S. Srivastava, K. D. Sauer, J.-B. Thibault, and C. A.
729 Bouman. 2.5 d deep learning for ct image reconstruction using a multi-gpu
730 implementation. In *2018 52nd Asilomar Conference on Signals, Systems,*
731 *and Computers*, pages 2044–2049. IEEE, 2018.

732 [43] A. Ziabari, M. Kirka, V. Paquit, P. Bingham, and S. Venkatakrishnan.
733 X-ray ct reconstruction of additively manufactured parts using 2.5 d deep
734 learning mbir. *Microscopy and Microanalysis*, 25(S2):376–377, 2019.

735 [44] A. Ziabari, S. Venkatakrishnan, M. Kirka, P. Brackman, R. Dehoff, P. Bing-
736 ham, and V. Paquit. Beam hardening artifact reduction in x-ray ct recon-
737 struction of 3d printed metal parts leveraging deep learning and cad models.
738 In *ASME International Mechanical Engineering Congress and Exposition*,
739 volume 84492, page V02BT02A043. American Society of Mechanical Engi-
740 neers, 2020.