10

11

12

13

14

15

16

17

Austenitic parent grain reconstruction in martensitic
steel using deep learning

Patxi Fernandez-Zelaia®*, Andrés Marquez Rossy®, Quinn Campbell?,
Andrzej Nycz?®, Christopher Ledford®, Michael M. Kirka®

% Manufacturing Science Division, Oak Ridge National Lab, Oak Ridge, TN, United States
b Materials Science 6 Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN,
United States

Abstract

In this work we develop a deep convolutional architecture to estimate the prior
austenite structure from observed martensite electron backscatter diffraction
micrographs. A novel data augmentation strategy randomizes the global refer-
ence coordinate system which makes it possible to train our model from only
four micrographs. The model is much faster than algorithmic approaches and
generalizes well when applied to micrographs of a different material. Empir-
ical evidence suggests the efficacy of the model depends on the scale of the
microstructure and receptive field of the vision model. This work demonstrates
that modern computer vision approaches are well suited for capturing complex
spatial-orientation patterns present in orientation imaging micrographs.

Keywords:
phase transformations, martensite, steel, machine learning, deep learning

1. Introduction

Allotropic phase transformations occur in many commonly used structural
materials. Transformations in steels are perhaps the most studied with many
complex microstructures obtainable via different heat treatments and process-
ing routes. In most steels a stable austenite phase forms () from the melt
during solidification. Depending on the alloy content and subsequent cooling a
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number of different microstructures can be obtained at room temperature. In
martensitic steels subject to rapid cooling a transformation takes place from the
face centered cubic (FCC) v to a body centered tetragonal (BCT) martensitic
phase /. In titanium alloys an analogous transformation can take place with
B8 — «. In fields such as welding and additive manufacturing (AM) there is
great interest in studying the originally solidified phase structure so as to study
the process-structure relations [2, 3, 5, 34]. The difficulty is that the high tem-
perature parent phase must be inferred from the observable child phase. This is
typically done by identifying several child-parent crystallographic relationships
and then algorithmically reconstructing the unobserved parent phase structure
2, 3, 22].

In the past decade there has been an explosion of research and development
in the machine learning (ML) community. This bustling effort has enabled great
advances in image processing, natural language processing, data-mining, etc..
Scientists and engineering in other fields have quickly adapted these models
for addressing other domain specific challenges. Convolutional neural networks
(CNNs) are well suited for analyzing images and so have been repurposed for
computer vision (CV) anomaly and defect detection in manufacturing processes
such as AM [27, 28, 33, 42-44]. There are a number of works utilizing ML models
for segmenting different phases in metallographic images [13, 35]. A few works
have even utilized ML for processing the Kikuchi patterns generated in electron
backscatter diffraction imaging to aid in the indexing of crystal orientations [15—
17]. ML approaches have become ubiquitous in the computation sciences fields
for developing computationally efficient surrogate models trained from complex
finite element (FE) simulations [20, 38, 39]. Deep learning approaches have been
utilized for learning crystal plasticity laws from discrete dislocation simulations
[40]. Plasticity models have been effectively trained using purely data-driven
procedures which compete reasonably well against traditionally derived plastic-
ity laws [4, 12, 21]. Recent work has even implemented such a model within a
user material subroutine in commercial FE software Abaqus [41]. Since gradient
information is computed using backpropagation, ML models not only encode the
complex physics exhibited by physical simulations but they also capture gradi-
ent information about the system. This has enabled a number of researchers
to repurpose these networks for solving inverse design or topology optimization
problems [7, 9]. This presents an opportunity for massive improvements since
ML based topology optimization is not limited by the complexity of the phys-
ical simulation. For instance, for density topology optimization the algorithm
requires the solid mechanics problem to be limited to the linear elastic regime
in order to allow for computation of closed form derivatives of the governing FE
equations [30]. In ML there is no such limitation; derivatives are approximated
via the architecture and learned model hyperparameters.

There are limited works currently in the literature employing ML approaches
towards quantification of spatial orientation data. A number of papers have been
published developing CNN models for analyzing Kikuchi patterns but these
works focus more on the microscopy aspects of the experiment e.g. indexing the
patterns and identifying space groups [15-17]; the joint treatment of spatial-
orientation data is not covered. Two-point correlation functions have been
established for spatial orientation data on synthetic microstructures [24, 25].
A later work developed an interpretable two-point mean autocorrelation func-
tion from experimental EBSD data [11]. A few works have utilized similar
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microstructural representations for the development of polycrystalline FE sur-
rogate models [20, 37]. These works are promising as they introduce a novel
orientation descriptor that demonstrates remarkable predictive power. The re-
maining experimental works focus largely on the development of predictive fea-
ture descriptors. A magnesium alloy was studied and a decision tree model was
built to predict the propensity of grains to nucleate twins during deformation by
exploring features distilled from EBSD micrographs such as grain size, neighbor
grain characteristics, Schmid factor, kernel average misorientation, etc. [23].
Another work curiously states that use of the Euler angle descriptors, the raw
output of EBSD micrographs, is inherently problematic and this seems to be
the bottleneck in quantitative analysis of spatial orientation data [19]. These
authors also develop a random forest model based on a number of candidate
features such as grain shape, misorientation, Schmid factor, Taylor factor, etc..
Very recent work has developed a ML. CV model for phase identification from
SEM images by using EBSD data as ground truth [29]. However, these authors
simply use EBSD to classify phases and the full orientation data is neglected in
their analysis.

While there are many works utilizing ML in CV tasks related to other as-
pects of materials science, to the best of our knowledge no one has addressed
the challenge associated with using ML to reconstruct parent grain orientation
image maps. That is, given an EBSD image with observable child phase predict
the associated unobserved parent phase EBSD image. Furthermore, processing
the orientation information present in EBSD image maps is more difficult than
gray scale images as the data represents rotational data which must remain
physically meaningful and also encode crystal symmetries. In general, works
utilizing modern ML CV models to analyze spatial orientation data are sparse
and so the topic of study is novel and challenging. In this work we proposed a
deep CNN CV model for performing the task of reconstructing prior v grains
from experimental EBSD maps of the o’ martensite. We introduce a novel data
augmentation strategy which exploits the structure of the orientation data and
allows us to train a model from only four micrographs. We find that the model
generalizes remarkably well when we test it on large area micrographs from a dif-
ferent alloy produced via a different manufacturing process (AM). Furthermore,
it is significantly faster, by orders of magnitude, than the existing algorithmic
approaches. However, the efficacy of the model is shown to be sensitive to the
ratio of the model’s receptive field to the size of o’ grains.

2. Methods

The data for training and validation corresponds to martensitic alloy AF9628
[31]. The data is publicly available at https://petreldata.alcf.anl.gov/
[32]. Four 968.2um x 424.9um EBSD micrographs were utilized for training and
one micrograph of the same size for validation. Details on the data augmenta-
tion procedure will be described following description of the architecture. Test
micrographs were obtained which correspond to wire-arc large area additively
manufactured 17-4PH. Samples were metallographically prepared up to a lum
diamond suspension finish. Vibratory polishing was performed as a final step
using 0.05um colloidal silica for ~ 12 hrs. A Zeiss Crossbeam 550 field emission
scanning electron microscope with Oxford detectors was used for electron back
scatter diffraction (EBSD) imaging.
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2.1. Physics based grain reconstruction

Reconstruction of the unobserved parent phase structure is of great impor-
tance for studying process-structure relations in processes such as welding and
additive manufacturing [2, 3, 5]. For steels there are a number of works in the
literature proposing various strategies for inferring parent austenite grains from
observed martensitic child structures [2, 22]. The fundamental basis of these
approaches is built on the assumption of certain orientation relationships (OR)
which describe crystallographic relationships between austenite and martensite.
There are several such proposed relationships but the reconstructions used in
this work for training our model will focus on a recent work utilizing an iterative
method [22]. These author’s algorithm is iterative in nature but it most closely
follows the Kurdjumov—Sachs (KS) OR. The KS criterion states that (111)y
and (011)a’ planes and [101]y and [111]a’ directions should be parallel.

The algorithm introduced in [22], which is implemented in open source Mat-
lab software MTEX [6], instead introduces some flexibility to this criterion. We
use the MTEX implementation to generate austenite maps which will serve as
our ground truth during training. A general description of the procedure will
be included here but for a more precise description the reader should refer to
the original manuscript. The KS criterion is utilized as an initial guess but
these authors develop a more robust model which allows for grain boundary
misorientations to deviate slightly from the KS OR. An input image is first pro-
cessed to identify grain boundaries (given some cut-off misorientation) and the
misorientation of each boundary is calculated. These misorientation values are
assumed to follow a normally distributed random variable, with the mean corre-
sponding to the KS OR, and thereby this statistical structure allows boundaries
to described by a likelihood function. The boundaries are no longer determin-
istically KS or non-KS, there is a gradation of probability, and this allows for
boundaries which are close to the KS OR to be considered in the analysis. All
martensitic grains are then utilized to construct a graph; each node represents
a grain and adjacent grains are connected with an edge. The edge weight is
assigned a value which is related to the likelihood of that particularly boundary
being a KS boundary. A Markov clustering algorithm is then used to iteratively
manipulate the graph, eliminating weak edges, until the structure becomes sta-
ble yielding many clusters. These clusters represent martensitic grains, which
share a common parent austenite grain, and from the available information the
parent austenite orientation can also be estimated. In the MTEX implemen-
tation a number of additional steps are also included; filling in of mis-indexed
pixels, cleaning of spurious small martensitic grains, cleaning of spurious small
austenitic grains, etc.. These steps ensure that no pixels are empty in any of
the training, validation, and test images. While this may introduce some error,
e.g. pixel orientations which were estimated using information not consistent
with the reconstruction algorithm, we found it necessary to include these steps
in order to simplify the numerical workflow.

2.2. Rotation representation

In order to build an effective CV model suitable orientation descriptors must
first be identified for quantifying the raw data. The standard approach for
EBSD data is to specify the local material orientation with Bunge-Euler angles
[8]. In this approach each pixel is represented by three angles g = (¢1, P, ¢2)
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which describe three rotations necessary to map from a global coordinates sys-
tem to the local crystal coordinate system. Typically the global coordinates
system is described by the orientation of the sample inside the microscope (out
of plane direction, vertical, and horizontal with respect to the acquired image).
While Bunge-Euler angles are intuitively appealing they fail to capture crystal
structure symmetries e.g. for cubic materials (0,0,0) and (7/2,0,0) represent
identical crystal orientations. This knowledge suggests that perhaps, prior to
building and training the CV model, a more appropriate orientation representa-
tion is needed. Ideally a mapping (many-to-one) is needed from the Bunge-Euler
representation to a representation that does not discriminate between equiva-
lent orientations e.g. (0,0,0) and (7/2,0,0). It is possible that such a mapping
could be learned during training but there are a number of approaches in the
literature which describe suitable mappings for similar quantification tasks.

For decades basis expansion based approaches have been utilized for de-
scribing the crystallographic orientation distribution function (ODF) [8]. Much
like how Fourier coefficients can summarize or describe a discrete signal these
expansion based methods encode the ODF into a basis weight representation.
Since these basis representations are designed for describing crystallographic
data they automatically capture crystallographic symmetries. One of these ex-
pansions is the generalized spherical harmonics (GSH) representation which has
been utilized recently in a number of works for quantifying spatial orientation
data. Yabansu et al. [37] utilized GSH in developing a finite element surro-
gate model for simulating the elastic response of cubic polycrystalline synthetic
microstructures. The surrogate consisted of essentially a three-dimensional ker-
nel regression model which behaves like a one layer CNN with no non-linearity.
Paulson et al. [24] utilized a GSH representation for developing two-point statis-
tics metrics for digital microstructure representations. In another work Paulson
et al. [25] demonstrated that these descriptors can be utilized to correlate struc-
tural attributes to the fatigue resistance of different hexagonal closed packed
microstructures. In recent work Montes de Oca Zapiain et al. [20] utilized the
GSH representation to develop a deep CNN surrogate model for emulating fi-
nite element plasticity simulations. An interpretable EBSD-based two-point
autocorrelation function was developed by Fernandez-Zelaia and Melkote [11]
for experimental work studying the length scale and morphological anisotropy
evolution of polycrystalline copper subject to severe plastic deformation. These
works demonstrate that the GSH expansion is well suited for quantifying local
crystal orientation in spatial data.

The ODF, fz(g), can be described for each individual spatial location x as,

= > P g (1)

won,l

where yi,n, [ represent indices for multiple sums, and F};" is the complex-valued

GSH coefficient at x. Tl" ™ is the corresponding complex valued GSH basis.
A detailed description on obtaining these quantities may be found elsewhere
[8, 11, 24, 25, 37]. Prior works have shown that for cubic materials 10 terms in
the expansion is reasonable [20, 37]. In this work we are not really interested in
the ODF rather we simply want to repurpose the basis weights F}."* to represent
the local orientation at each pixel. These GSH basis weights can be obtained
via a mapping,
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Yc = 3(9)7 (2)

where the function s takes in the spatial Bunge-Euler data and maps it to the
GSH coefficients (hence the subscript G). Note that we omit the indices u,n, !
and simply represent the quantity as a vector. This representation is complex
and so for simplicity in implementing the numerical framework we take the 10
complex coefficients and separate them into real and complex parts to yield 20
features. Furthermore, since some of these features are either constant (like the
DC offset in a Fourier expansion) or lack a real or an imaginary part we only
use the non-trivial features (total of 17).

To demonstrate some of the key points from this section a number of micro-
graphs are shown in Fig. 1. First, an IPF map (out of page direction) is shown
for both the observed child martensitic phase and inferred parent austenitic
phase. The first Euler angle, ¢, is shown which appears to be noisy and,
hence, makes it difficult to visually discern individual grains. However, the two
GSH maps clearly highlight all of the grains present in the IPF map. It is rea-
sonable to believe that the unprocessed Euler angles would introduce additional
difficulty when training the proposed model architecture.

2.83. Machine learning based grain reconstruction

Since the algorithmic reconstruction of the parent austenite grain is driven
by the nature of grain boundaries (KS or near-KS OR) and connecting similarly
misoriented features (children of a parent austenite grain) its is plausible to hy-
pothesize that perhaps a convolutional CV model can capture these physical
relationships. The architecture should be able to capture features at differ-
ent scales, for instance different size lathes, while also “connecting” features
over long length scales e.g. lathes within one large grain. Hence, we adopt a
model based on the U-net architecture which was developed for biomedical im-
age segmentation [26]. The architecture down samples feature maps and then up
samples them with some connections allowed between maps of identical sizes.
The intuition is that features of different length scales can be learned at dif-
ferent resolutions. Simultaneously the architecture also expands the receptive
field of each pixel due to sharing of information between scales. A flowchart of
our network is shown in Fig. 2. The input image is convolved four times with
3 x 3 kernels and 64 filters. Reflective padding is included to maintain identi-
cal shapes. Batch normalization follows each convolution operation. Shortcut
residual connections are utilized following the first convolution [14]; empirically
we observed that this greatly accelerates learning. Following these residual con-
volution blocks the sample is down sampled using 2 x 2 MaxPool operations.
This is repeated three more times. Then the resulting feature map is up sampled
and following each up sampling another residual convolution block of the same
structure is applied. This is done until the feature map is 128 x 128 x 64. At
each level of up sampling a shortcut residual connection is allowed from the cor-
responding down sampled feature map. Finally, a fully connected (FC) network
with 4 hidden layers maps the depth dimension 64 — 256 — 128 — 64 — 17.
A dropout rate of 0.5 was utilized in the FC layers. Layer weights were pe-
nalized with penalty coefficient 5 x 1074, Leaky ReLu with o = 0.1 was used
in all activations. The output of the network is the GSH representation of the
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Figure 1: Example micrographs of (left) observed martensitic phase and (right) reconstructed
parent austenite phase. IPF map illustrates the out of page orientation. The first Euler angle,
¢1, is shown as well as second and fourth GSH coefficient maps for both child and parent
phases. GSH many-to-one mapping captures spatial crystal structure more effectively.
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Figure 2: Architecture of the proposed CNN model. The structure generally mimics a UNet
architecture but with liberal use of residual connections. Finally, a four layer FC block is
utilized in the depth dimension to map each pixel from the latent feature representation to
17 GSH coefficients.

austenite parent grain. A Lo loss function was utilized to minimize the discrep-
ancy between the ground truth parent austenite GSH representation (y¢g) and
the model’s prediction (gg).

However, additional effort is needed to produce a model that will yield the
desired Bunge-Euler angle outputs yg. This representation is needed because it
is more amenable for traditional texture analysis (IPF maps, pole figures, etc.).
While there is a mapping from the Bugle-Euler angles to the GSH coeficients,
to the best of our knowledge the inverse mapping is not as straight forward.
Furthermore, the output of the CV model may not even produce physically
admissible GSH values, which, despite being “close”, would produce nonsen-
sical and complex-valued Bunge-Euler estimates if the inverse transform were
available. An analogous operation would be taking the Fast Fourier transform
(FFT) of a real signal, then perturbing the coefficients slightly, and inverse
transforming back; the reconstructed signal will almost certainly have a signif-
icant imaginary component. Hence, another model needs to be learned which
maps from the estimated GSH representation to realistic Bunge-Euler angles.
This mapping can be described by,

where h is a learnable function (a neural network). We use a FC model with 6
hidden layers each with 128 units except the last which has three units (for the
Bunge-Euler angles). Training can be performed by minimizing the following
loss function,

loss = Zexp (f lyg.: — ?)G,i”Q) [s (B (9c.4)) — Gail® (4)

where s is the function that transforms Bunge-Euler angles into the GSH coef-
ficients. The exp (...) is a weighting function which penalizes pixels which are



278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

203

294

295

296

297

298

299

300

301

302

304

305

306

307

308

309

310

312

313

314

315

316

317

318

319

320

322

323

324

poorly predicted by the CV model. This was found to be helpful in training h
since otherwise the model will be biased by data in regions where poor GSH val-
ues are predicted. The nested structure forces the network to learn a mapping
h which generates Bunge-Euler angles which in turn produce reasonable GSH
coefficients. This may seem confusing but it is necessary; s is a many-to-one
mapping so the inverse is not truly a function. However, keep in mind that
there is non-uniqueness associated with the Bunge-Euler representation and so
this apparent problem really doesn’t matter; in this case there is no “right”
answer. There are several Bunge-Euler representations which can be “picked”
for a given GSH feature vector and they all represent the same crystal orienta-
tion. Under this interpretation h is really more of a sampler and this procedure
simply ensures that h picks one of the many suitable Bunge-Euler angles. This
model was trained separately from the CV model using the Adam optimizer
and a learning rate of 1073.

There is one final complication that must be resolved prior to moving for-
ward. The function s must be differentiable in order to learn the hyperparame-
ters associated with h using gradient based methods. Unfortunately, while that
function has real inputs (Bunge-Euler angles) and considered to also have real
outputs (10 GSH complex coefficients converted to 17 real values), the compu-
tations involve complex numbers. This complicates the theory somewhat but
significantly affects numerical implementation. Out of curiosity we simply tried
to emulate this function with yet another FC network and it worked reasonably
well. In this case the FC network consists of 7 layers each with 128 units except
the final layer which has 17 units (for 17 GSH coefficient features). Training
was performed separately using the Adam optimizer and a learning rate of 1073.
The training procedure involved randomly generating one million Bunge-Euler
angles, computing the GSH representations, and then reducing the correspond-
ing Lo loss.

In summary three models are introduced and described in this section,

1. A convolutional deep neural network with a U-net structure which makes
liberal use of residual connections. The input into this model are child
phase martensite micrographs (128 x 128 x 17) represented using GSH
expansion basis weights. The output is a micrograph of identical shape
which estimates the GSH representation micrograph of the parent austen-
ite phase.

2. A fully connected neural network which maps each pixel in the estimated
parent austenite GSH micrograph to Bunge-Euler angles.

3. A fully connected neural network that emulates the Bunge-Euler to GSH
mapping. This function is somewhat a of a nuisance since it is really
only needed during training of the prior network. It is necessary since
it is difficult for gradients to flow through the true function which maps
Bunge-Euler angles to GSH coefficients.

An illustration of these three models is shown in Fig. 3.

2.4. Data augmentation & training

Training was performed using four publicly available 968.2um x 424.9um
EBSD micrographs with a native resolution of 0.5 um [31, 32]. Through exper-
imentation we found that a 128 x 128 sample at 2 um resolution was suitable



/lele17 U-net CNN NxMx17\

FCNN

\GSHlnput Pixel-wise angular utpuy

/NxMx?: FCNN NxMx17\

\.angular input Pixel-wise GSH OUtPU/

Figure 3: Schematic illustration of the three models proposed in this work. The final model is
purely needed for convenience during training of the second model. The FC models operate
on image in a pixel-wise fashion.
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for training. The data set was augmented by sub-sampling images subject to
random spatial rotations. Note that in natural images interpolation is trivial
since colors are indeed physically continuous. However, this is not true of the
GSH representation; averaging two GSH basis weights may yield a weight which
is physically inadmissible. Furthermore, interpolation may be dangerous when
considering EBSD micrographs since grain boundaries are sharp; we found that
naive interpolation introduces artificial smoothing on grain boundaries. There-
fore, we utilized a nearest neighbors interpolation approach for random spatial
rotation of the GSH feature maps. More simple augmentation operations were
done on the fly during training. This includes flipping of the image (up/down,
left /right) and injection of a small amount of noise N'(0,0.1). Note the injection
of noise does also produce some non-physical values but we found that this effect
not to be deleterious and, more importantly, it does not bias grain boundary
pixels like continuous interpolation.

In addition to the above augmentation strategies we also utilized a novel
operation specific for this niche application; random orientation rotations. Re-
call that each pixel represents a rotation that maps the local crystal coordinate
system to a reference global coordinate system. Hence, a random orientation
rotation can be applied over the entire image (pixel by pixel) to yield a “new”
micrograph. This micrograph represents the orientation data relative to a ran-
dom reference coordinate system. Since the choice of global coordinate system
is arbitrary this is a reasonable operation. Furthermore, since the orientation of
each pixel is rotated identically, the relative misorientation across grain bound-
aries is preserved. Since the parent phase is inferred via analysis of the grain
boundary misorientations, which are unaffected by the absolute orientations
of grains, then this operation should be effective at augmenting the data set
and will enable learning of a more robust CV model. This random rotation is
implemented by first sampling three random angles,

&, @' ¢y ~ unif (0,27) (5)

which represent the random transformation in Bunge-Euler angles. Next, con-
sider that at each pixel the Bunge-Euler angles represent the rotation necessary
to map from the global to the crystal coordinate system. Hence, the procedure
will be to (1) map from the crystal coordinates back to the global coordinate,
and then (2) randomly rotate the global coordinate with (¢}, ®’,¢5). Using
72-x-7 (¢1, P, ¢2) ordering the rotation matrix describing this operations is

R, = Rgmeg,ch:gl,wR% R<1>/R¢’2 (6)

where x in the subscript indicates that the quantity is spatially dependent e.g.
at each pixel. ¢, indicates the first Bunge-Euler angle at spatial location
. Rotation matrices are about either x or z coordinate axis indicated by the
Bunge-Euler angle subscript. The randomly drawn angles are not spatially de-
pendent because the entire micrograph, both child and parent images, must
share the same reference coordinate system. The resulting rotation matrix rep-
resents the orientation of each pixel relative to a random reference coordinate
system. Bunge-Euler angles corresponding to this rotation matrix can easily be
extracted. We used the implementation provided by Python scientific comput-
ing library SciPy (scipy.spatial.transform.Rotation) [36].
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In Fig. 4 we show one of the training micrographs and three random ro-
tations of a selected 128 x 128 patch. Both the child martensite and parent
austenite samples are shown. The spatial structure is identical in these three
examples but clearly the absolute orientation is perturbed in each micrograph.

A total of 7,000 128 x 128 x 17 micrographs were generated for training
using the above procedures. The architecture was implemented in Python 3.7
using Tensorflow 2.0 [1]. Training of the CV model was performed using the
Adam optimizer with default parameters and a learning rate of 5 x 10~% [18].
A relatively small batch size of 16 was utilized. All training was performed on
a single Nvidia Quadro RTX 5000 with 16GB of RAM.

3. Results

In Figs. 5 & 6 two samples from the validation data set are shown. In the first
row are micrographs corresponding to three GSH feature maps. The middle row
is an IPF map (out of plane direction) corresponding to the ground truth MTEX
physics reconstruction. The bottom row is an IPF map of the reconstruction
using our ML CV model. Overall the CV model reconstructions are fairly good.
With a few exceptions the general parent austenite grain shape is recovered,
although, on occasion, there is a fictitious grain boundary or slightly misplaced
boundary. Most notably the CV reconstruction appears to have a significant
amount of within-grain internal misorientations. This is perhaps most clear in
Fig. 6 which contains a few large grains. The internal misorientations, while
visually unappealing, appear to match the variation from noise present within
grains in the physics reconstruction. It is as if the CV model realizes that
there will be variability in the reconstructed grain but erroneously “spreads”
the variation over large length scales. In the physics reconstructed grains the
noise is pixel-to-pixel whereas variation in the CV reconstruction gyrates over
many pixels.

In order to test the model’s ability to generalize the learned crystallographic
spatial patterns we utilized it to reconstruct a completely different martensitic
system produced via a different process. Shown in Fig. 7 are micrographs
from 17-4PH fabricated via large area wire-arc AM. IPF maps in x,y, and z
directions are shown for the observed martensite, physics reconstruction, and
ML reconstruction. The input image was 1um resolution and 800 x 800 pixels.
The reconstructions in this case are remarkably good. There are a few misplaced
grains but in general both the morphology and crystallographic texture of the
ML reconstruction are accurate.

The 17-4PH micrographs are again shown in Fig. 8 but this time a 256 um x
256 m region is magnified to highlight smaller scale features. Furthermore, the
resolution of the input image is decreased by a factor of 4 and 8 to empirically
evaluate the efficacy of the model to generalize to coarser images. Again, the
model performs remarkably well at making predictions on coarser images. This,
however, is not particularly surprising. Firstly, the model does not know about
physical scale it simply operates on pixels. What is important is the model’s
receptive field, that is, how much of the surrounding area the model can “see”
when making a prediction at a individual pixel. Assume that the receptive field
of the model is constant e.g. perhaps 100 x 100 pixels. When the resolution
is decreased then more and more microstructural features will fit within the
receptive field (~ 100 x 100) and so there is more context available for predicting

12



Figure 4: All IPF maps shown out of page orientation. (top) One of four training micrographs.
Highlighted is a 128 x 128 window corresponding to micrographs below. Below are three
realizations of (left) the martensitic child phase and (right) the austenitic parent phase. For
each pair of (child,parent) micrographs each pixel’s rotational representation is randomly
rotated to generate additional synthetic data. Boundary misorientations are preserved through
this transformation while absolute orientation is changed. This emulates the randomization
of the global reference frame.
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Figure 5: Validation data set example including mostly small scale grains.
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Physics estimate GSH input
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Figure 6: Validation data set example including several large scale grains.
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Figure 7: Test example on large area wire-arc AM 17-4PH material. The micrograph has a
1 um resolution.
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the value of the central pixel. The model can “look” in the surrounding area
and identify KS OR grain boundaries or boundaries far from being KS OR.
It seems intuitive that when there are more features in the receptive field the
model can more confidently infer the parent austenite grain orientation.

To demonstrate the importance of the receptive field now consider the higher
magnification micrograph in Fig. 9. In each image a 128 x 128 pixel box is
shown for reference. The original image in this case is 1536 x 1024 pixels with
a 0.15um pixel resolution. The micrograph only consists of fewer than 10 prior
austenite grains. So in this case, there are very few grains in the receptive field
of the model and the ML model exhibits poor predictive performance. As the
resolution is decreased the model prediction becomes increasingly better. From
this example it is clear that the limitation of the ML model is related to the
perceptive field which is critical in capturing spatial-orientation patterns that
drive the reconstruction. However, even in the highest resolution images small
grains and small features, presumably those which fit inside the perceptive field,
can still be predictive reasonably well. Even the large green grain is predicted
reasonably well despite the magenta grain being poorly predicted. Visually it
seems as though the green grain has many more lathe variants within it and
so this potentially aids in inference. The magenta grain only consists of one
martensitic variant. This suggests that the efficacy of inference is dependent on
the degree of microstructural information present within the receptive field.

4. Discussion

In the prior section it was demonstrated that the established ML CV model
is effective in generating reconstructed prior austenite orientation maps. When
tested on unobserved 17-PH AM material with large morphologically anisotropic
grains the model exhibited a remarkable ability to correctly infer the prior
austenite structure at various pixel resolutions. However, it was empirically ob-
served that for high magnification micrographs the model’s performance greatly
deteriorates. It is suspected that this is related to the receptive field of the model
and the necessity for it to “see” sufficient contextual information for making ac-
curate inferences.

Once again, in order to further analyze the performance of the model, we
consider the full field prediction of the validation micrograph in Fig. 10. Two
resolutions are shown: the native 0.5um resolution and the 2um resolution
adopted for training. While the 0.5um resolution estimate captures most of the
grain structure and orientation it is heavily corrupted by spurious noise. The
2pm resolution micrograph is much more visually appealing with the exception
of some internal grain misorientations. Again, it must be noted, however, that
it seems that these misorientations are not random but rather mimic noise
present in the physics reconstruction. So even these misorientations indicate
that the ML CV model is identifying physical patterns which are indeed present
in the physics based inferred micrograph. 128 x 128 windows are shown in all
micrographs to highlight the size of training examples used for estimation of
the model’s hyperparameters. This is relevant because we hypothesize that the
receptive field must be on the order of 128 x 128 pixels (or smaller) since this
is all the model had available during training. It seems unlikely that, when
considering a particular pixel, the model will be able to consider information
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Figure 8: Micrographs demonstrating the effect of resolution and scale on large area wire-arc
AM 17-4PH material. A selected area is shown to reveal smaller scale features.
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Figure 9: Micrographs demonstrating the effect of resolution and scale on small area wire-arc
AM 17-4PH material.
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Figure 10: Difference in model predictions on the validation EBSD micrograph at resolutions
lpm and 2um. A 128 x 128 window, the size selected for training at 2um resolution, is shown
in each IPF map for perspective.

outside of this window size since such long range information was never present
during training.

It is important to acknowledge that microstructural “features” are also nec-
essary to consider. A pixel in the middle of a large grain will be more difficult
to predict accurately if the grain is 500 pixels wide or 50 pixels wide. Hence,
in Fig. 11 a more quantitative assessment of this concept is illustrated. The
validation micrograph from Fig. 10 was manipulated to produce identical mi-
crographs but at differt resolutions. We varied the resolution by fifteen factors
yielding resolutions ranging from 0.25um to 2um. Since the high resolution im-
ages grow large in pixel size not all the images could be processed fully and so
we randomly sampled 128 x 128 patches 100 times at each resolution, predicted
the prior austenite map using our ML model, and from that computed the GSH
reconstruction error. The micrograph used for these operations contains 366
prior austenite grains and so given this, the known resolution of an image, and
the use of a fixed 128 x 128 field of view, one can compute a summary metric
which measures the influence of features present in the field of view against
model error.

The results of this exercise agree with observations made previously in the
manuscript; the model is effective in analyzing medium to low magnification mi-
crographs but poor at high magnifications when there are few features available
in the receptive field. This behavior was already observed before in Fig. 9 when
the ML prediction was observed to improve at 0.6m and 1.2um resolution. The
key consideration is the amount of microstructural feature information present
within the receptive field of the model.

It may be possible to alleviate some of the model’s deficiencies via adoption
of alternative architectures or training strategies. There are a host of novel
ML architectures that may be better suited for expanding the receptive field of

20



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

—O— mean
1.0 1 95pct
0.8
S
@ 0.6
T
0
O]
0.4 A
0.2
0 10 20 30 40

No. parent a' in 128 x 128 FOV

Figure 11: Mean error in the GSH representation prediction, ||ygyl- — gc,i||2, as a function of
the number of parent o’ grains in a 128 x 128 field of view (FOV). The gray region represents
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the model to enable better generalization. Vision transformers are promising
as they currently exhibiting great success in a number of vision related tasks
[10]. Nonetheless, this work represents a first for successful application of ML
CV models towards the analysis of experimental spatial orientation EBSD data.
Furthermore, we demonstrate that we did not need a voluminous data set to
effectively train the model; it was all done from only four micrographs. While the
application of quantitative ML models directly on EBSD data has historically
been made difficult due to issues associated with the orientation representation
(Bunge-Euler angles) this complexity is precisely what enabled efficient training.
The complexity of the data also makes it very dense and rich with information
suitable for training complex models.

In order to develop a better understanding of the information flow through
the model a few select feature maps corresponding to the top left corner of the
validation micrograph are shown in Fig. 12. The top row corresponds to the
input IPF map and then down sampled feature maps decreasing in resolution
(left to right) through the U-net architecture. The bottom row corresponds
to features in the up sampling portion of the model with resolution increasing
(right to left) finally reaching the output IPF map. Interestingly, the lowest
resolution map appears to have no discernible spatial structure. Across images
and across filters, however, the mean value does change. This indicates that the
deepest feature map simply captures some mean information. The first feature
generated in down sampling almost always simply captures small length scale
grain boundary features. It is likely that these maps are attempting to recognize
“special” grain boundary relationships which may be related to near-KS OR fea-
tures. The second down sampled map was empirically observed to capture both
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Figure 12: Feature maps produced during evaluation of the ML CV model.

boundary type information as well as grain features. The third down sampled
maps are more difficult to interpret however they appear to capture long length
scale features. The up sampling trends are once again similar with the exception
that the up sampled map closest to the output is nearly entirely made up of
grain scan features. Intuitively this agrees with the task that the model has been
trained for; during down sampling select grain boundaries must be identified as
well as long length scale features and during up sampling this information must
be distilled into generating the parent austenite grain structure.

The direct value of this model is that it is incredibly fast. A visualiza-
tion comparing the two methods, physics and ML models, is shown in Fig.
13. The physics based algorithmic approach utilized consistently requires sig-
nificantly more time on the order of tens of minutes for inference. This is
because the algorithms have to compute pixel-by-pixel misorientations, iden-
tify grain boundaries, identify martensitic grains, construct a graph connecting
all martensite grains, etc.. Our ML model alleviates all of this by treating the
problem much more locally and distilling all of these steps into a single computa-
tional pipeline. The result is that our ML model performs inference in less than
a second even on the largest images considered (7682 pizels). Note, however,
that these comparisons are somewhat unfair as the physics model is evaluated
using CPU computations whereas the ML approaches takes advantage of the
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Figure 13: Computation time for physics and ML model.

computational efficiency of the GPU. Nonetheless, the speed of our ML CV
model suggests that perhaps these reconstructions could be performed in real
time. The computational efficiency is apparent and this aspect is attractive to
microscopists and microscopy software developers who may see utility in being
able to quickly preview the underlying prior austenite structure in-situ during
imaging.

More generally, however, this work demonstrates that there is a viable frame-
work for quantifying and analyzing EBSD micrographs using modern ML ap-
proaches. While we train this specific model to emulate an algorithmic physics-
based model the framework can be generally applied towards other quantitative
tasks. The value, demonstrated in the feature maps shown in Fig. 12, is that
the GSH representation and CNN architecture are capable of encoding both
local (grain boundary) and large length scale (shared -y parent grain) spatial-
orientation features.

5. Summary

In this work we present a machine learning based computer vision model for
reconstructing parent austenite grains from observed martensite EBSD micro-
graphs. The model structure is based on a convolutional U-net architecture.
The orientation data is represented using generalized spherical harmonics de-
scriptors which alleviates issues associated with Bunge-Euler angles. Training
of the model is performed using only four ~ 1.0mm x 0.5mm micrographs with
a resolution of 2um and this is achieved by utilizing a novel data augmentation
strategy; randomization of the global reference coordinate system. Since the
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global coordinate system is arbitrary this allows the model to “see” a much more
diverse set of grain boundaries which facilitates in learning a more generalizable
model. The model is shown to perform remarkably well when tested against
martensitic micrographs obtained from a different alloy with completely differ-
ent parent austenite grain structure. In addition, the evaluation of the model
is orders of magnitude faster than algorithmic reconstruction approaches for
large area micrographs. However, the model does have some limitations demon-
strated by its poor performance when analyzing high resolution micrographs
with few parent austenite grains. We suspect that this is related to the amount
of microstructural information present in the receptive field of the model. This
could be potentially alleviated by construction of alternative architectures.
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