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Abstract8

In this work we develop a deep convolutional architecture to estimate the prior
austenite structure from observed martensite electron backscatter diffraction
micrographs. A novel data augmentation strategy randomizes the global refer-
ence coordinate system which makes it possible to train our model from only
four micrographs. The model is much faster than algorithmic approaches and
generalizes well when applied to micrographs of a different material. Empir-
ical evidence suggests the efficacy of the model depends on the scale of the
microstructure and receptive field of the vision model. This work demonstrates
that modern computer vision approaches are well suited for capturing complex
spatial-orientation patterns present in orientation imaging micrographs.
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1. Introduction12

Allotropic phase transformations occur in many commonly used structural13

materials. Transformations in steels are perhaps the most studied with many14

complex microstructures obtainable via different heat treatments and process-15

ing routes. In most steels a stable austenite phase forms (γ) from the melt16

during solidification. Depending on the alloy content and subsequent cooling a17
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number of different microstructures can be obtained at room temperature. In18

martensitic steels subject to rapid cooling a transformation takes place from the19

face centered cubic (FCC) γ to a body centered tetragonal (BCT) martensitic20

phase α′. In titanium alloys an analogous transformation can take place with21

β → α. In fields such as welding and additive manufacturing (AM) there is22

great interest in studying the originally solidified phase structure so as to study23

the process-structure relations [2, 3, 5, 34]. The difficulty is that the high tem-24

perature parent phase must be inferred from the observable child phase. This is25

typically done by identifying several child-parent crystallographic relationships26

and then algorithmically reconstructing the unobserved parent phase structure27

[2, 3, 22].28

In the past decade there has been an explosion of research and development29

in the machine learning (ML) community. This bustling effort has enabled great30

advances in image processing, natural language processing, data-mining, etc..31

Scientists and engineering in other fields have quickly adapted these models32

for addressing other domain specific challenges. Convolutional neural networks33

(CNNs) are well suited for analyzing images and so have been repurposed for34

computer vision (CV) anomaly and defect detection in manufacturing processes35

such as AM [27, 28, 33, 42–44]. There are a number of works utilizing ML models36

for segmenting different phases in metallographic images [13, 35]. A few works37

have even utilized ML for processing the Kikuchi patterns generated in electron38

backscatter diffraction imaging to aid in the indexing of crystal orientations [15–39

17]. ML approaches have become ubiquitous in the computation sciences fields40

for developing computationally efficient surrogate models trained from complex41

finite element (FE) simulations [20, 38, 39]. Deep learning approaches have been42

utilized for learning crystal plasticity laws from discrete dislocation simulations43

[40]. Plasticity models have been effectively trained using purely data-driven44

procedures which compete reasonably well against traditionally derived plastic-45

ity laws [4, 12, 21]. Recent work has even implemented such a model within a46

user material subroutine in commercial FE software Abaqus [41]. Since gradient47

information is computed using backpropagation, ML models not only encode the48

complex physics exhibited by physical simulations but they also capture gradi-49

ent information about the system. This has enabled a number of researchers50

to repurpose these networks for solving inverse design or topology optimization51

problems [7, 9]. This presents an opportunity for massive improvements since52

ML based topology optimization is not limited by the complexity of the phys-53

ical simulation. For instance, for density topology optimization the algorithm54

requires the solid mechanics problem to be limited to the linear elastic regime55

in order to allow for computation of closed form derivatives of the governing FE56

equations [30]. In ML there is no such limitation; derivatives are approximated57

via the architecture and learned model hyperparameters.58

There are limited works currently in the literature employing ML approaches59

towards quantification of spatial orientation data. A number of papers have been60

published developing CNN models for analyzing Kikuchi patterns but these61

works focus more on the microscopy aspects of the experiment e.g. indexing the62

patterns and identifying space groups [15–17]; the joint treatment of spatial-63

orientation data is not covered. Two-point correlation functions have been64

established for spatial orientation data on synthetic microstructures [24, 25].65

A later work developed an interpretable two-point mean autocorrelation func-66

tion from experimental EBSD data [11]. A few works have utilized similar67
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microstructural representations for the development of polycrystalline FE sur-68

rogate models [20, 37]. These works are promising as they introduce a novel69

orientation descriptor that demonstrates remarkable predictive power. The re-70

maining experimental works focus largely on the development of predictive fea-71

ture descriptors. A magnesium alloy was studied and a decision tree model was72

built to predict the propensity of grains to nucleate twins during deformation by73

exploring features distilled from EBSD micrographs such as grain size, neighbor74

grain characteristics, Schmid factor, kernel average misorientation, etc. [23].75

Another work curiously states that use of the Euler angle descriptors, the raw76

output of EBSD micrographs, is inherently problematic and this seems to be77

the bottleneck in quantitative analysis of spatial orientation data [19]. These78

authors also develop a random forest model based on a number of candidate79

features such as grain shape, misorientation, Schmid factor, Taylor factor, etc..80

Very recent work has developed a ML CV model for phase identification from81

SEM images by using EBSD data as ground truth [29]. However, these authors82

simply use EBSD to classify phases and the full orientation data is neglected in83

their analysis.84

While there are many works utilizing ML in CV tasks related to other as-85

pects of materials science, to the best of our knowledge no one has addressed86

the challenge associated with using ML to reconstruct parent grain orientation87

image maps. That is, given an EBSD image with observable child phase predict88

the associated unobserved parent phase EBSD image. Furthermore, processing89

the orientation information present in EBSD image maps is more difficult than90

gray scale images as the data represents rotational data which must remain91

physically meaningful and also encode crystal symmetries. In general, works92

utilizing modern ML CV models to analyze spatial orientation data are sparse93

and so the topic of study is novel and challenging. In this work we proposed a94

deep CNN CV model for performing the task of reconstructing prior γ grains95

from experimental EBSD maps of the α′ martensite. We introduce a novel data96

augmentation strategy which exploits the structure of the orientation data and97

allows us to train a model from only four micrographs. We find that the model98

generalizes remarkably well when we test it on large area micrographs from a dif-99

ferent alloy produced via a different manufacturing process (AM). Furthermore,100

it is significantly faster, by orders of magnitude, than the existing algorithmic101

approaches. However, the efficacy of the model is shown to be sensitive to the102

ratio of the model’s receptive field to the size of α′ grains.103

2. Methods104

The data for training and validation corresponds to martensitic alloy AF9628105

[31]. The data is publicly available at https://petreldata.alcf.anl.gov/106

[32]. Four 968.2µm×424.9µm EBSD micrographs were utilized for training and107

one micrograph of the same size for validation. Details on the data augmenta-108

tion procedure will be described following description of the architecture. Test109

micrographs were obtained which correspond to wire-arc large area additively110

manufactured 17-4PH. Samples were metallographically prepared up to a 1µm111

diamond suspension finish. Vibratory polishing was performed as a final step112

using 0.05µm colloidal silica for ∼ 12hrs. A Zeiss Crossbeam 550 field emission113

scanning electron microscope with Oxford detectors was used for electron back114

scatter diffraction (EBSD) imaging.115
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2.1. Physics based grain reconstruction116

Reconstruction of the unobserved parent phase structure is of great impor-117

tance for studying process-structure relations in processes such as welding and118

additive manufacturing [2, 3, 5]. For steels there are a number of works in the119

literature proposing various strategies for inferring parent austenite grains from120

observed martensitic child structures [2, 22]. The fundamental basis of these121

approaches is built on the assumption of certain orientation relationships (OR)122

which describe crystallographic relationships between austenite and martensite.123

There are several such proposed relationships but the reconstructions used in124

this work for training our model will focus on a recent work utilizing an iterative125

method [22]. These author’s algorithm is iterative in nature but it most closely126

follows the Kurdjumov–Sachs (KS) OR. The KS criterion states that (111)γ127

and (011)α′ planes and [1̄01]γ and [1̄1̄1]α′ directions should be parallel.128

The algorithm introduced in [22], which is implemented in open source Mat-129

lab software MTEX [6], instead introduces some flexibility to this criterion. We130

use the MTEX implementation to generate austenite maps which will serve as131

our ground truth during training. A general description of the procedure will132

be included here but for a more precise description the reader should refer to133

the original manuscript. The KS criterion is utilized as an initial guess but134

these authors develop a more robust model which allows for grain boundary135

misorientations to deviate slightly from the KS OR. An input image is first pro-136

cessed to identify grain boundaries (given some cut-off misorientation) and the137

misorientation of each boundary is calculated. These misorientation values are138

assumed to follow a normally distributed random variable, with the mean corre-139

sponding to the KS OR, and thereby this statistical structure allows boundaries140

to described by a likelihood function. The boundaries are no longer determin-141

istically KS or non-KS, there is a gradation of probability, and this allows for142

boundaries which are close to the KS OR to be considered in the analysis. All143

martensitic grains are then utilized to construct a graph; each node represents144

a grain and adjacent grains are connected with an edge. The edge weight is145

assigned a value which is related to the likelihood of that particularly boundary146

being a KS boundary. A Markov clustering algorithm is then used to iteratively147

manipulate the graph, eliminating weak edges, until the structure becomes sta-148

ble yielding many clusters. These clusters represent martensitic grains, which149

share a common parent austenite grain, and from the available information the150

parent austenite orientation can also be estimated. In the MTEX implemen-151

tation a number of additional steps are also included; filling in of mis-indexed152

pixels, cleaning of spurious small martensitic grains, cleaning of spurious small153

austenitic grains, etc.. These steps ensure that no pixels are empty in any of154

the training, validation, and test images. While this may introduce some error,155

e.g. pixel orientations which were estimated using information not consistent156

with the reconstruction algorithm, we found it necessary to include these steps157

in order to simplify the numerical workflow.158

2.2. Rotation representation159

In order to build an effective CV model suitable orientation descriptors must160

first be identified for quantifying the raw data. The standard approach for161

EBSD data is to specify the local material orientation with Bunge-Euler angles162

[8]. In this approach each pixel is represented by three angles g = (φ1,Φ, φ2)163
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which describe three rotations necessary to map from a global coordinates sys-164

tem to the local crystal coordinate system. Typically the global coordinates165

system is described by the orientation of the sample inside the microscope (out166

of plane direction, vertical, and horizontal with respect to the acquired image).167

While Bunge-Euler angles are intuitively appealing they fail to capture crystal168

structure symmetries e.g. for cubic materials (0, 0, 0) and (π/2, 0, 0) represent169

identical crystal orientations. This knowledge suggests that perhaps, prior to170

building and training the CV model, a more appropriate orientation representa-171

tion is needed. Ideally a mapping (many-to-one) is needed from the Bunge-Euler172

representation to a representation that does not discriminate between equiva-173

lent orientations e.g. (0, 0, 0) and (π/2, 0, 0). It is possible that such a mapping174

could be learned during training but there are a number of approaches in the175

literature which describe suitable mappings for similar quantification tasks.176

For decades basis expansion based approaches have been utilized for de-177

scribing the crystallographic orientation distribution function (ODF) [8]. Much178

like how Fourier coefficients can summarize or describe a discrete signal these179

expansion based methods encode the ODF into a basis weight representation.180

Since these basis representations are designed for describing crystallographic181

data they automatically capture crystallographic symmetries. One of these ex-182

pansions is the generalized spherical harmonics (GSH) representation which has183

been utilized recently in a number of works for quantifying spatial orientation184

data. Yabansu et al. [37] utilized GSH in developing a finite element surro-185

gate model for simulating the elastic response of cubic polycrystalline synthetic186

microstructures. The surrogate consisted of essentially a three-dimensional ker-187

nel regression model which behaves like a one layer CNN with no non-linearity.188

Paulson et al. [24] utilized a GSH representation for developing two-point statis-189

tics metrics for digital microstructure representations. In another work Paulson190

et al. [25] demonstrated that these descriptors can be utilized to correlate struc-191

tural attributes to the fatigue resistance of different hexagonal closed packed192

microstructures. In recent work Montes de Oca Zapiain et al. [20] utilized the193

GSH representation to develop a deep CNN surrogate model for emulating fi-194

nite element plasticity simulations. An interpretable EBSD-based two-point195

autocorrelation function was developed by Fernandez-Zelaia and Melkote [11]196

for experimental work studying the length scale and morphological anisotropy197

evolution of polycrystalline copper subject to severe plastic deformation. These198

works demonstrate that the GSH expansion is well suited for quantifying local199

crystal orientation in spatial data.200

The ODF, fx(g), can be described for each individual spatial location x as,201

fx (g) =
∑
µ,n,l

Fµnlx
˙̇Tµnl (g) , (1)

where µ, n, l represent indices for multiple sums, and Fµnlx is the complex-valued202

GSH coefficient at x. ˙̇Tµnl is the corresponding complex valued GSH basis.203

A detailed description on obtaining these quantities may be found elsewhere204

[8, 11, 24, 25, 37]. Prior works have shown that for cubic materials 10 terms in205

the expansion is reasonable [20, 37]. In this work we are not really interested in206

the ODF rather we simply want to repurpose the basis weights Fµnlx to represent207

the local orientation at each pixel. These GSH basis weights can be obtained208

via a mapping,209
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yG = s (g) , (2)

where the function s takes in the spatial Bunge-Euler data and maps it to the210

GSH coefficients (hence the subscript G). Note that we omit the indices µ, n, l211

and simply represent the quantity as a vector. This representation is complex212

and so for simplicity in implementing the numerical framework we take the 10213

complex coefficients and separate them into real and complex parts to yield 20214

features. Furthermore, since some of these features are either constant (like the215

DC offset in a Fourier expansion) or lack a real or an imaginary part we only216

use the non-trivial features (total of 17).217

To demonstrate some of the key points from this section a number of micro-218

graphs are shown in Fig. 1. First, an IPF map (out of page direction) is shown219

for both the observed child martensitic phase and inferred parent austenitic220

phase. The first Euler angle, φ1, is shown which appears to be noisy and,221

hence, makes it difficult to visually discern individual grains. However, the two222

GSH maps clearly highlight all of the grains present in the IPF map. It is rea-223

sonable to believe that the unprocessed Euler angles would introduce additional224

difficulty when training the proposed model architecture.225

2.3. Machine learning based grain reconstruction226

Since the algorithmic reconstruction of the parent austenite grain is driven227

by the nature of grain boundaries (KS or near-KS OR) and connecting similarly228

misoriented features (children of a parent austenite grain) its is plausible to hy-229

pothesize that perhaps a convolutional CV model can capture these physical230

relationships. The architecture should be able to capture features at differ-231

ent scales, for instance different size lathes, while also “connecting” features232

over long length scales e.g. lathes within one large grain. Hence, we adopt a233

model based on the U-net architecture which was developed for biomedical im-234

age segmentation [26]. The architecture down samples feature maps and then up235

samples them with some connections allowed between maps of identical sizes.236

The intuition is that features of different length scales can be learned at dif-237

ferent resolutions. Simultaneously the architecture also expands the receptive238

field of each pixel due to sharing of information between scales. A flowchart of239

our network is shown in Fig. 2. The input image is convolved four times with240

3 × 3 kernels and 64 filters. Reflective padding is included to maintain identi-241

cal shapes. Batch normalization follows each convolution operation. Shortcut242

residual connections are utilized following the first convolution [14]; empirically243

we observed that this greatly accelerates learning. Following these residual con-244

volution blocks the sample is down sampled using 2 × 2 MaxPool operations.245

This is repeated three more times. Then the resulting feature map is up sampled246

and following each up sampling another residual convolution block of the same247

structure is applied. This is done until the feature map is 128 × 128 × 64. At248

each level of up sampling a shortcut residual connection is allowed from the cor-249

responding down sampled feature map. Finally, a fully connected (FC) network250

with 4 hidden layers maps the depth dimension 64 → 256 → 128 → 64 → 17.251

A dropout rate of 0.5 was utilized in the FC layers. Layer weights were pe-252

nalized with penalty coefficient 5 × 10−4. Leaky ReLu with α = 0.1 was used253

in all activations. The output of the network is the GSH representation of the254
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Figure 1: Example micrographs of (left) observed martensitic phase and (right) reconstructed
parent austenite phase. IPF map illustrates the out of page orientation. The first Euler angle,
φ1, is shown as well as second and fourth GSH coefficient maps for both child and parent
phases. GSH many-to-one mapping captures spatial crystal structure more effectively.
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Figure 2: Architecture of the proposed CNN model. The structure generally mimics a UNet
architecture but with liberal use of residual connections. Finally, a four layer FC block is
utilized in the depth dimension to map each pixel from the latent feature representation to
17 GSH coefficients.

austenite parent grain. A L2 loss function was utilized to minimize the discrep-255

ancy between the ground truth parent austenite GSH representation (yG) and256

the model’s prediction (ŷG).257

However, additional effort is needed to produce a model that will yield the258

desired Bunge-Euler angle outputs ŷE . This representation is needed because it259

is more amenable for traditional texture analysis (IPF maps, pole figures, etc.).260

While there is a mapping from the Bugle-Euler angles to the GSH coefficients,261

to the best of our knowledge the inverse mapping is not as straight forward.262

Furthermore, the output of the CV model may not even produce physically263

admissible GSH values, which, despite being “close”, would produce nonsen-264

sical and complex-valued Bunge-Euler estimates if the inverse transform were265

available. An analogous operation would be taking the Fast Fourier transform266

(FFT) of a real signal, then perturbing the coefficients slightly, and inverse267

transforming back; the reconstructed signal will almost certainly have a signif-268

icant imaginary component. Hence, another model needs to be learned which269

maps from the estimated GSH representation to realistic Bunge-Euler angles.270

This mapping can be described by,271

ŷE = h (yG) , (3)

where h is a learnable function (a neural network). We use a FC model with 6272

hidden layers each with 128 units except the last which has three units (for the273

Bunge-Euler angles). Training can be performed by minimizing the following274

loss function,275

loss =
∑
i

exp
(
−‖yG,i − ŷG,i‖2

)
[s (h (ŷG,i))− ŷG,i]

2
, (4)

where s is the function that transforms Bunge-Euler angles into the GSH coef-276

ficients. The exp (. . .) is a weighting function which penalizes pixels which are277
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poorly predicted by the CV model. This was found to be helpful in training h278

since otherwise the model will be biased by data in regions where poor GSH val-279

ues are predicted. The nested structure forces the network to learn a mapping280

h which generates Bunge-Euler angles which in turn produce reasonable GSH281

coefficients. This may seem confusing but it is necessary; s is a many-to-one282

mapping so the inverse is not truly a function. However, keep in mind that283

there is non-uniqueness associated with the Bunge-Euler representation and so284

this apparent problem really doesn’t matter; in this case there is no “right”285

answer. There are several Bunge-Euler representations which can be “picked”286

for a given GSH feature vector and they all represent the same crystal orienta-287

tion. Under this interpretation h is really more of a sampler and this procedure288

simply ensures that h picks one of the many suitable Bunge-Euler angles. This289

model was trained separately from the CV model using the Adam optimizer290

and a learning rate of 10−3.291

There is one final complication that must be resolved prior to moving for-292

ward. The function s must be differentiable in order to learn the hyperparame-293

ters associated with h using gradient based methods. Unfortunately, while that294

function has real inputs (Bunge-Euler angles) and considered to also have real295

outputs (10 GSH complex coefficients converted to 17 real values), the compu-296

tations involve complex numbers. This complicates the theory somewhat but297

significantly affects numerical implementation. Out of curiosity we simply tried298

to emulate this function with yet another FC network and it worked reasonably299

well. In this case the FC network consists of 7 layers each with 128 units except300

the final layer which has 17 units (for 17 GSH coefficient features). Training301

was performed separately using the Adam optimizer and a learning rate of 10−3.302

The training procedure involved randomly generating one million Bunge-Euler303

angles, computing the GSH representations, and then reducing the correspond-304

ing L2 loss.305

In summary three models are introduced and described in this section,306

1. A convolutional deep neural network with a U-net structure which makes307

liberal use of residual connections. The input into this model are child308

phase martensite micrographs (128 × 128 × 17) represented using GSH309

expansion basis weights. The output is a micrograph of identical shape310

which estimates the GSH representation micrograph of the parent austen-311

ite phase.312

2. A fully connected neural network which maps each pixel in the estimated313

parent austenite GSH micrograph to Bunge-Euler angles.314

3. A fully connected neural network that emulates the Bunge-Euler to GSH315

mapping. This function is somewhat a of a nuisance since it is really316

only needed during training of the prior network. It is necessary since317

it is difficult for gradients to flow through the true function which maps318

Bunge-Euler angles to GSH coefficients.319

An illustration of these three models is shown in Fig. 3.320

2.4. Data augmentation & training321

Training was performed using four publicly available 968.2µm × 424.9µm322

EBSD micrographs with a native resolution of 0.5µm [31, 32]. Through exper-323

imentation we found that a 128 × 128 sample at 2µm resolution was suitable324
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Figure 3: Schematic illustration of the three models proposed in this work. The final model is
purely needed for convenience during training of the second model. The FC models operate
on image in a pixel-wise fashion.
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for training. The data set was augmented by sub-sampling images subject to325

random spatial rotations. Note that in natural images interpolation is trivial326

since colors are indeed physically continuous. However, this is not true of the327

GSH representation; averaging two GSH basis weights may yield a weight which328

is physically inadmissible. Furthermore, interpolation may be dangerous when329

considering EBSD micrographs since grain boundaries are sharp; we found that330

naive interpolation introduces artificial smoothing on grain boundaries. There-331

fore, we utilized a nearest neighbors interpolation approach for random spatial332

rotation of the GSH feature maps. More simple augmentation operations were333

done on the fly during training. This includes flipping of the image (up/down,334

left/right) and injection of a small amount of noise N (0, 0.1). Note the injection335

of noise does also produce some non-physical values but we found that this effect336

not to be deleterious and, more importantly, it does not bias grain boundary337

pixels like continuous interpolation.338

In addition to the above augmentation strategies we also utilized a novel339

operation specific for this niche application; random orientation rotations. Re-340

call that each pixel represents a rotation that maps the local crystal coordinate341

system to a reference global coordinate system. Hence, a random orientation342

rotation can be applied over the entire image (pixel by pixel) to yield a “new”343

micrograph. This micrograph represents the orientation data relative to a ran-344

dom reference coordinate system. Since the choice of global coordinate system345

is arbitrary this is a reasonable operation. Furthermore, since the orientation of346

each pixel is rotated identically, the relative misorientation across grain bound-347

aries is preserved. Since the parent phase is inferred via analysis of the grain348

boundary misorientations, which are unaffected by the absolute orientations349

of grains, then this operation should be effective at augmenting the data set350

and will enable learning of a more robust CV model. This random rotation is351

implemented by first sampling three random angles,352

φ′1,Φ
′, φ′2 ∼ unif (0, 2π) (5)

which represent the random transformation in Bunge-Euler angles. Next, con-353

sider that at each pixel the Bunge-Euler angles represent the rotation necessary354

to map from the global to the crystal coordinate system. Hence, the procedure355

will be to (1) map from the crystal coordinates back to the global coordinate,356

and then (2) randomly rotate the global coordinate with (φ′1,Φ
′, φ′2). Using357

z-x-z (φ1,Φ, φ2) ordering the rotation matrix describing this operations is358

Rx = RT
φ2,xR

T
Φ,xR

T
φ1,xRφ′

1
RΦ′Rφ′

2
(6)

where x in the subscript indicates that the quantity is spatially dependent e.g.359

at each pixel. φ1,x indicates the first Bunge-Euler angle at spatial location360

x. Rotation matrices are about either x or z coordinate axis indicated by the361

Bunge-Euler angle subscript. The randomly drawn angles are not spatially de-362

pendent because the entire micrograph, both child and parent images, must363

share the same reference coordinate system. The resulting rotation matrix rep-364

resents the orientation of each pixel relative to a random reference coordinate365

system. Bunge-Euler angles corresponding to this rotation matrix can easily be366

extracted. We used the implementation provided by Python scientific comput-367

ing library SciPy (scipy.spatial.transform.Rotation) [36].368
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In Fig. 4 we show one of the training micrographs and three random ro-369

tations of a selected 128 × 128 patch. Both the child martensite and parent370

austenite samples are shown. The spatial structure is identical in these three371

examples but clearly the absolute orientation is perturbed in each micrograph.372

A total of 7,000 128 × 128 × 17 micrographs were generated for training373

using the above procedures. The architecture was implemented in Python 3.7374

using Tensorflow 2.0 [1]. Training of the CV model was performed using the375

Adam optimizer with default parameters and a learning rate of 5 × 10−4 [18].376

A relatively small batch size of 16 was utilized. All training was performed on377

a single Nvidia Quadro RTX 5000 with 16GB of RAM.378

3. Results379

In Figs. 5 & 6 two samples from the validation data set are shown. In the first380

row are micrographs corresponding to three GSH feature maps. The middle row381

is an IPF map (out of plane direction) corresponding to the ground truth MTEX382

physics reconstruction. The bottom row is an IPF map of the reconstruction383

using our ML CV model. Overall the CV model reconstructions are fairly good.384

With a few exceptions the general parent austenite grain shape is recovered,385

although, on occasion, there is a fictitious grain boundary or slightly misplaced386

boundary. Most notably the CV reconstruction appears to have a significant387

amount of within-grain internal misorientations. This is perhaps most clear in388

Fig. 6 which contains a few large grains. The internal misorientations, while389

visually unappealing, appear to match the variation from noise present within390

grains in the physics reconstruction. It is as if the CV model realizes that391

there will be variability in the reconstructed grain but erroneously “spreads”392

the variation over large length scales. In the physics reconstructed grains the393

noise is pixel-to-pixel whereas variation in the CV reconstruction gyrates over394

many pixels.395

In order to test the model’s ability to generalize the learned crystallographic396

spatial patterns we utilized it to reconstruct a completely different martensitic397

system produced via a different process. Shown in Fig. 7 are micrographs398

from 17-4PH fabricated via large area wire-arc AM. IPF maps in x,y, and z399

directions are shown for the observed martensite, physics reconstruction, and400

ML reconstruction. The input image was 1µm resolution and 800× 800 pixels.401

The reconstructions in this case are remarkably good. There are a few misplaced402

grains but in general both the morphology and crystallographic texture of the403

ML reconstruction are accurate.404

The 17-4PH micrographs are again shown in Fig. 8 but this time a 256µm×405

256µm region is magnified to highlight smaller scale features. Furthermore, the406

resolution of the input image is decreased by a factor of 4 and 8 to empirically407

evaluate the efficacy of the model to generalize to coarser images. Again, the408

model performs remarkably well at making predictions on coarser images. This,409

however, is not particularly surprising. Firstly, the model does not know about410

physical scale it simply operates on pixels. What is important is the model’s411

receptive field, that is, how much of the surrounding area the model can “see”412

when making a prediction at a individual pixel. Assume that the receptive field413

of the model is constant e.g. perhaps 100 × 100 pixels. When the resolution414

is decreased then more and more microstructural features will fit within the415

receptive field (∼ 100×100) and so there is more context available for predicting416
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Figure 4: All IPF maps shown out of page orientation. (top) One of four training micrographs.
Highlighted is a 128 × 128 window corresponding to micrographs below. Below are three
realizations of (left) the martensitic child phase and (right) the austenitic parent phase. For
each pair of (child,parent) micrographs each pixel’s rotational representation is randomly
rotated to generate additional synthetic data. Boundary misorientations are preserved through
this transformation while absolute orientation is changed. This emulates the randomization
of the global reference frame.
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Figure 5: Validation data set example including mostly small scale grains.
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Figure 6: Validation data set example including several large scale grains.

15



Figure 7: Test example on large area wire-arc AM 17-4PH material. The micrograph has a
1µm resolution.

16



the value of the central pixel. The model can “look” in the surrounding area417

and identify KS OR grain boundaries or boundaries far from being KS OR.418

It seems intuitive that when there are more features in the receptive field the419

model can more confidently infer the parent austenite grain orientation.420

To demonstrate the importance of the receptive field now consider the higher421

magnification micrograph in Fig. 9. In each image a 128 × 128 pixel box is422

shown for reference. The original image in this case is 1536× 1024 pixels with423

a 0.15µm pixel resolution. The micrograph only consists of fewer than 10 prior424

austenite grains. So in this case, there are very few grains in the receptive field425

of the model and the ML model exhibits poor predictive performance. As the426

resolution is decreased the model prediction becomes increasingly better. From427

this example it is clear that the limitation of the ML model is related to the428

perceptive field which is critical in capturing spatial-orientation patterns that429

drive the reconstruction. However, even in the highest resolution images small430

grains and small features, presumably those which fit inside the perceptive field,431

can still be predictive reasonably well. Even the large green grain is predicted432

reasonably well despite the magenta grain being poorly predicted. Visually it433

seems as though the green grain has many more lathe variants within it and434

so this potentially aids in inference. The magenta grain only consists of one435

martensitic variant. This suggests that the efficacy of inference is dependent on436

the degree of microstructural information present within the receptive field.437

4. Discussion438

In the prior section it was demonstrated that the established ML CV model439

is effective in generating reconstructed prior austenite orientation maps. When440

tested on unobserved 17-PH AM material with large morphologically anisotropic441

grains the model exhibited a remarkable ability to correctly infer the prior442

austenite structure at various pixel resolutions. However, it was empirically ob-443

served that for high magnification micrographs the model’s performance greatly444

deteriorates. It is suspected that this is related to the receptive field of the model445

and the necessity for it to “see” sufficient contextual information for making ac-446

curate inferences.447

Once again, in order to further analyze the performance of the model, we448

consider the full field prediction of the validation micrograph in Fig. 10. Two449

resolutions are shown: the native 0.5µm resolution and the 2µm resolution450

adopted for training. While the 0.5µm resolution estimate captures most of the451

grain structure and orientation it is heavily corrupted by spurious noise. The452

2µm resolution micrograph is much more visually appealing with the exception453

of some internal grain misorientations. Again, it must be noted, however, that454

it seems that these misorientations are not random but rather mimic noise455

present in the physics reconstruction. So even these misorientations indicate456

that the ML CV model is identifying physical patterns which are indeed present457

in the physics based inferred micrograph. 128 × 128 windows are shown in all458

micrographs to highlight the size of training examples used for estimation of459

the model’s hyperparameters. This is relevant because we hypothesize that the460

receptive field must be on the order of 128 × 128 pixels (or smaller) since this461

is all the model had available during training. It seems unlikely that, when462

considering a particular pixel, the model will be able to consider information463
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Figure 8: Micrographs demonstrating the effect of resolution and scale on large area wire-arc
AM 17-4PH material. A selected area is shown to reveal smaller scale features.
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Figure 9: Micrographs demonstrating the effect of resolution and scale on small area wire-arc
AM 17-4PH material.
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Figure 10: Difference in model predictions on the validation EBSD micrograph at resolutions
1µm and 2µm. A 128×128 window, the size selected for training at 2µm resolution, is shown
in each IPF map for perspective.

outside of this window size since such long range information was never present464

during training.465

It is important to acknowledge that microstructural “features” are also nec-466

essary to consider. A pixel in the middle of a large grain will be more difficult467

to predict accurately if the grain is 500 pixels wide or 50 pixels wide. Hence,468

in Fig. 11 a more quantitative assessment of this concept is illustrated. The469

validation micrograph from Fig. 10 was manipulated to produce identical mi-470

crographs but at differt resolutions. We varied the resolution by fifteen factors471

yielding resolutions ranging from 0.25µm to 2µm. Since the high resolution im-472

ages grow large in pixel size not all the images could be processed fully and so473

we randomly sampled 128× 128 patches 100 times at each resolution, predicted474

the prior austenite map using our ML model, and from that computed the GSH475

reconstruction error. The micrograph used for these operations contains 366476

prior austenite grains and so given this, the known resolution of an image, and477

the use of a fixed 128 × 128 field of view, one can compute a summary metric478

which measures the influence of features present in the field of view against479

model error.480

The results of this exercise agree with observations made previously in the481

manuscript; the model is effective in analyzing medium to low magnification mi-482

crographs but poor at high magnifications when there are few features available483

in the receptive field. This behavior was already observed before in Fig. 9 when484

the ML prediction was observed to improve at 0.6µm and 1.2µm resolution. The485

key consideration is the amount of microstructural feature information present486

within the receptive field of the model.487

It may be possible to alleviate some of the model’s deficiencies via adoption488

of alternative architectures or training strategies. There are a host of novel489

ML architectures that may be better suited for expanding the receptive field of490
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Figure 11: Mean error in the GSH representation prediction,
∥∥yG,i − ŷG,i

∥∥2, as a function of
the number of parent α′ grains in a 128× 128 field of view (FOV). The gray region represents
the 95% confidence interval computed from 100 random samples of the validation data.

the model to enable better generalization. Vision transformers are promising491

as they currently exhibiting great success in a number of vision related tasks492

[10]. Nonetheless, this work represents a first for successful application of ML493

CV models towards the analysis of experimental spatial orientation EBSD data.494

Furthermore, we demonstrate that we did not need a voluminous data set to495

effectively train the model; it was all done from only four micrographs. While the496

application of quantitative ML models directly on EBSD data has historically497

been made difficult due to issues associated with the orientation representation498

(Bunge-Euler angles) this complexity is precisely what enabled efficient training.499

The complexity of the data also makes it very dense and rich with information500

suitable for training complex models.501

In order to develop a better understanding of the information flow through502

the model a few select feature maps corresponding to the top left corner of the503

validation micrograph are shown in Fig. 12. The top row corresponds to the504

input IPF map and then down sampled feature maps decreasing in resolution505

(left to right) through the U-net architecture. The bottom row corresponds506

to features in the up sampling portion of the model with resolution increasing507

(right to left) finally reaching the output IPF map. Interestingly, the lowest508

resolution map appears to have no discernible spatial structure. Across images509

and across filters, however, the mean value does change. This indicates that the510

deepest feature map simply captures some mean information. The first feature511

generated in down sampling almost always simply captures small length scale512

grain boundary features. It is likely that these maps are attempting to recognize513

“special” grain boundary relationships which may be related to near-KS OR fea-514

tures. The second down sampled map was empirically observed to capture both515
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(a) Feature maps corresponding to filter 32.

(b) Feature maps corresponding to filter 39

Figure 12: Feature maps produced during evaluation of the ML CV model.

boundary type information as well as grain features. The third down sampled516

maps are more difficult to interpret however they appear to capture long length517

scale features. The up sampling trends are once again similar with the exception518

that the up sampled map closest to the output is nearly entirely made up of519

grain scan features. Intuitively this agrees with the task that the model has been520

trained for; during down sampling select grain boundaries must be identified as521

well as long length scale features and during up sampling this information must522

be distilled into generating the parent austenite grain structure.523

The direct value of this model is that it is incredibly fast. A visualiza-524

tion comparing the two methods, physics and ML models, is shown in Fig.525

13. The physics based algorithmic approach utilized consistently requires sig-526

nificantly more time on the order of tens of minutes for inference. This is527

because the algorithms have to compute pixel-by-pixel misorientations, iden-528

tify grain boundaries, identify martensitic grains, construct a graph connecting529

all martensite grains, etc.. Our ML model alleviates all of this by treating the530

problem much more locally and distilling all of these steps into a single computa-531

tional pipeline. The result is that our ML model performs inference in less than532

a second even on the largest images considered (7682 pixels). Note, however,533

that these comparisons are somewhat unfair as the physics model is evaluated534

using CPU computations whereas the ML approaches takes advantage of the535
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Figure 13: Computation time for physics and ML model.

computational efficiency of the GPU. Nonetheless, the speed of our ML CV536

model suggests that perhaps these reconstructions could be performed in real537

time. The computational efficiency is apparent and this aspect is attractive to538

microscopists and microscopy software developers who may see utility in being539

able to quickly preview the underlying prior austenite structure in-situ during540

imaging.541

More generally, however, this work demonstrates that there is a viable frame-542

work for quantifying and analyzing EBSD micrographs using modern ML ap-543

proaches. While we train this specific model to emulate an algorithmic physics-544

based model the framework can be generally applied towards other quantitative545

tasks. The value, demonstrated in the feature maps shown in Fig. 12, is that546

the GSH representation and CNN architecture are capable of encoding both547

local (grain boundary) and large length scale (shared γ parent grain) spatial-548

orientation features.549

5. Summary550

In this work we present a machine learning based computer vision model for551

reconstructing parent austenite grains from observed martensite EBSD micro-552

graphs. The model structure is based on a convolutional U-net architecture.553

The orientation data is represented using generalized spherical harmonics de-554

scriptors which alleviates issues associated with Bunge-Euler angles. Training555

of the model is performed using only four ∼ 1.0mm× 0.5mm micrographs with556

a resolution of 2µm and this is achieved by utilizing a novel data augmentation557

strategy; randomization of the global reference coordinate system. Since the558
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global coordinate system is arbitrary this allows the model to “see” a much more559

diverse set of grain boundaries which facilitates in learning a more generalizable560

model. The model is shown to perform remarkably well when tested against561

martensitic micrographs obtained from a different alloy with completely differ-562

ent parent austenite grain structure. In addition, the evaluation of the model563

is orders of magnitude faster than algorithmic reconstruction approaches for564

large area micrographs. However, the model does have some limitations demon-565

strated by its poor performance when analyzing high resolution micrographs566

with few parent austenite grains. We suspect that this is related to the amount567

of microstructural information present in the receptive field of the model. This568

could be potentially alleviated by construction of alternative architectures.569
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