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40,000 FASTER...




PREDICTING THE EVOLUTION OF MICROSTUCTURES| @ (4a

Thin-film deposition Grain growth Solidification Phase separation
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CURRENT EFFORTS FOCUS ON LEVERAGING

HIGH-PERFORMANCE COMPUTING ARCHITECTURES

AND ADVANCED NUMERICAL

[Courtesy R. Wixom]



Speed

Accelerated phase-field

?

Current high-fidelity phase-field

Physical experiments

Accuracy




REFRAMING THE MICROSTRUCTURE EVOLUTION
AS A MULTIVARIATE TIME-SERIES PROBLEM

3. LSTM neural

AAAAAAAAAAAAAAAAAA

1. Data preparation

gggago

2. Low-Dimensional representation 4. ML-trained surrogate



STEP |: DATA, DATA,AND MORE DATA
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« Los Alamos
NATIONAL LABORATORY

Spinodal Decomposition Example 1
Spinodal Decomposition Example 2
Spinodal Decomposition Example 3
Timestep 10
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REDUCING THE DIMENSIONALITY

BY A FACTOR OF 26,000
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STEP 3: TIME-SERIES FORECASTING

Now the problem reduces to predicting the
microstructure evolution in reduced space




TIME-SERIES
MULTIVARIATE ADAPTIVE REGRESSION SPLINES

Useful for identifying nonlinear structure in
time series

Non-parametric

Autoregressive: divide time-series into optimal
subdomains to fit splines

Predicting microstructure evolution trajectories
in PC space

Use m most recent time steps to predict N+1,
N+2,...




LONG SHORT-TERM MEMORY NETWORK

1.

6. Use entire history to predict N+1, N+2,...

LSTM is a special kind of a recurrent neural net (RNN):
Network with loops in them allowing information to persist (i.e., memotry)

Looping connect previous information to current: TIME HISTORY!
Uses previous states, and current input

Learn/forget gate (internal structure) used to form long-term memory (known as cell
state)and short-term memory (hidden state)

Predicting microstructure evolution trajectories in PC space

Nomenclature

- Neural network
layer

‘ Pointwise

operation

el \ector transfer

T> Concatenate
< Copy

Current Hidden
input state



WHY Do WE NEED A DEEP LEARNING STRATEGY! @i
TSMARS

o.zpepreciation of Error for TSMARS Model Trained from Timestep 50

| #®¢ TSMARS Test Set Error ®®¢ LSTM Test Set Error
@®¢ TSMARS Training Set Error ; e®¢ LSTM Training Set Error

|
| I
| I
|

| I
| I
| I

. When using TSMARS, error in the
prediction of microstructure
evolution is increasing due to the

. accumulation of error from one time
step to the next

Mean Absolute Relative Error
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TSMARS for data augmentation? LSTM for PF acceleration?




OPTIMUM LSTM ARCHITECTURE

3000
Numbef Of LSTM CellS: Training Loss 2 LSTM Cells

2 Training Loss 4 LSTM Cells
a.) = : >
2000 Training Loss 14 LSTM Cells
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PERFORMANCE OF LSTM-TRAINED MODEL
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High-fidelity LSTM-trained
1 simulation for 5M time steps 96 mins

50,000 simulations ~9 year and 1 month

Our LSTM-trained framework is more than 42,000
faster than the high-fidelity simulation with
comparable accuracy!

=

Opens a promising path forward for
iscovering, understanding and predicting
microstructural phenomena



ACCELERATING MICROSTRUCTURE EVOLUTION PREDICTIONS:
STEP 4: LEAPING IN TIME USING MACHINE-LEARNED SURROGATE

‘—> High-fidelity phase field trajectory

Accelerated trajectory

1. Phase field Accelerated



ACCELERATING MICROSTRUCTURE EVOLUTION PREDICTIONS:
LEAPING IN TIME USING MACHINE-LEARNED MODEL
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Less than 5% loss of accuracy
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MOVING FORWARD

* Reframing microstructure evolution
as a multivariate time-series problem igh-f
Using LSTM to learn long-term | :sr?:gmg'%;
patterns in reduced space ‘

Training
* Performance comparable to . %0% -
high-fidelity PF capabilities BN . v ot torm memony ntcr SRR e
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* Automated workflow (with S. Martin)

Alternatives to PCA:
Autoencoders, GP latent variable model

* Alternatives to ML engine: éﬁimensmnam;
9 reduction
GRU, Independently RNN, plastic NN [ i

Surrogate model trajectory —li
Accelerated phase-field trajectory =l




FREE SCIENCE...

rdingre(@sandia.gov

4 THE OHLY THING WE REGUIRE 15
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nanoscience and nanotechnology capabilities to the TR i ' e
research community.

Access to our facilities and scientific expertise is
FREE for non-proprietary research.
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