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or any agency thereof.
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Call for Position Papers: Workshop on 
Reimagining Codesign 

Important Dates 
● 16th February 2021: Deadline for position paper submission 
● 2nd March 2021: Notification of position acceptance 
● 16–18th March 2021: Workshop 
● SUBMISSION URL: ASCR Workshop on Co-Design - Position Papers 
● WORKSHOP URL: https://www.orau.gov/ASCR-CoDesign/ 

 

Motivation 
On behalf of the Advanced Scientific Computing Research (ASCR) program in the US 
Department of Energy (DOE) Office of Science, we are organizing a Workshop on Reimagining 
Codesign (ReCoDe). Codesign is the process of jointly designing interoperating components of 
a computing system—in particular: applications, algorithms, system software, programming 
models, and the hardware on which they run. The goal is to maximize the overall performance, 
efficiency, and other desirable qualities of the system as a whole. Codesign is a standard 
methodology in the embedded-systems community, where space, power, and cost constraints 
are commonly pitted against execution speed for a tightly constrained feature set. Over the last 
decade, the DOE has invested in codesign efforts to foster the development of exascale 
computing systems for broad classes of scientific and engineering applications. The ReCoDe 
workshop hopes to explore how scientific applications of interest to the DOE can be accelerated 
through close interactions with hardware designers and software-stack developers, in which all 
components adapt to each other’s requirements and constraints. We want to answer the 
question of what are the key tools and methodologies for accomplishing codesign in today’s 
computing landscape, and what will be the highest impact targets for meeting DOE’s emerging 
mission requirements. 

This workshop aims to bring together DOE, industry, and academia to identify opportunities to 
build on past codesign successes and identify new areas that are either emerging or that may 
need reimagining for the future. We want to continue to find opportunities that can be pursued 
as a joint effort and continue to break down the traditional customer/vendor dichotomy with true 
partnerships. From this work, DOE will benefit from increased application performance relative 
to what stock hardware or existing general-purpose roadmaps can provide, and vendors will 
benefit from expanding their hardware’s capabilities to address needs they might have not 
otherwise anticipated and thereby create more widespread interest in their products. 



The workshop will be structured around a set of breakout sessions, with every attendee 
expected to participate actively in the discussions. Afterward, workshop attendees—from DOE, 
industry, and academia—will produce a report for ASCR that summarizes the findings made 
during the workshop. 

Invitation 
We invite community input in the form of two-page position papers that identify and discuss key 
challenges and opportunities in the area of hardware/software codesign for scientific computing. 
In addition to providing an avenue for identifying workshop participants, these position papers 
will be used to shape the workshop agenda, identify panelists, and contribute to the workshop 
report. Position papers should not describe the authors’ current or planned research, contain 
material that should not be disclosed to the public, nor should they recommend specific 
solutions or discuss narrowly focused research topics. Rather, they should aim to improve the 
community’s shared understanding of the problem space, identify challenging research 
directions, and help to stimulate discussion. 

One author of each selected submission will be invited to participate in the workshop.  

By submitting a position paper, authors consent to have their position paper published publicly. 

Authors are not required to have a history of funding by the ASCR Computer Science program. 

Submission Guidelines 

Position Paper Structure and Format 

Position papers should follow the following format: 

● Title 
● Authors (with affiliations and email addresses) 
● Topic: one or more of the following: architectures, applications, modeling and simulation, 

programming systems, emerging technologies, codesign methodologies 
● Challenge: Identify aspects of current codesign that show the limitations of state-of-the-

art practice with examples 
● Opportunity: Describe how the identified challenges may be addressed, whether it is 

through new tools and techniques, new technologies, or new groups collaborating in the 
codesign process 

● Timeliness or maturity: Why now? What breakthrough or change makes progress 
possible now where it wasn’t possible before? What will be the impact of success? 

● References 

Each position paper must be no more than two pages including figures and references. The 
paper may include any number of authors but contact information for a single author who can 



represent the position paper at the workshop must be provided with the submission. There is no 
limit to the number of position papers that an individual or group can submit. Authors are 
strongly encouraged to follow the structure previously outlined. Papers should be submitted in 
PDF format using the designated page on the workshop website. 

Areas of Emphasis 
  
We are seeking submissions along the following general directions: 
  

● Key aspects of codesign across the entire hardware/software stack to include 
applications, algorithms, system software, and system architecture 

● Insights into codesign for workflows arising from scientific experiments, on 
supercomputers, or to support large-scale scientific instruments 

● Methods and tools for quantitative codesign, including both those that inform 
high-level decision-making and those impacting low-level aspects of the codesign 
process. 

● New codesign challenges anticipated over the next decade 

Notional Questions 

Position papers should present a view on how hardware, firmware, the software stack, and 
scientific applications can be codesigned for maximal effectiveness, perhaps taking inspiration 
from some of the following: 

● How to balance breadth of applications versus customization benefit? Does this vary by 
system type? 

● What are the tools and techniques that enable successful codesign interactions and 
where are the gaps? 

● With artificial intelligence and machine learning becoming more widely used in scientific 
workflows and applications, what new challenges and opportunities does this present? 

● New accelerator technologies and chiplets are increasing the possible design space. 
What is the potential of these new technologies and how can codesign be used to take 
maximum advantage of them? 

● How can we further the state of the art in efficient and flexible open-source hardware, 
modeling, and simulation tools that can underpin hardware codesign activities? 

● Is there a performance benefit to codesigning scientific applications and the computer 
systems (hardware and software) they run on, or will the additional time and cost 
outweigh the benefits observed relative to more-or-less portable applications running on 
stock supercomputers?  

● How do scientific applications and supercomputer codesign differ fundamentally from the 
codesign employed regularly for embedded systems (such as in automobiles and home 
appliances)? Can either area learn from the other? 



● What are the lessons learned from DOE’s last decade of exascale codesign 
collaborations among national laboratories, industry, and universities? What should be 
continued? What should be avoided? 

● What are the roles that academia can play in codesign benefiting DOE systems? 
● What do application developers and hardware designers need to do differently when 

beginning to think about codesign? 
● What is the basic timeline for the constituent activities in a scientific-application codesign 

process? How can it be improved? 
● What emerging hardware or software technologies will facilitate rapid development of 

both scientific applications and hardware platforms with sufficiently-flexible components 
to help produce successful outcomes? 

● If codesign of scientific applications and hardware platforms becomes the norm, what 
new skills will be required of application/hardware developers? How will this future 
workforce be trained? 

● What role does system software play in a codesign process? 
● Open Source Software is supported by long-standing DOE policy. How can Open 

Source Hardware support codesign? 
● What is the role of DOE in codesign for edge computing?  
● What programming systems concepts facilitate effective codesign and why? 

Selection 
Submissions will be reviewed by the workshop’s organizing committee using criteria of overall 
quality, relevance, likelihood of stimulating constructive discussion, and ability to contribute to 
an informative workshop report. Unique positions that are well presented and emphasize 
potentially-transformative research directions will be given preference. 
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Introduction 
The DOE has successfully employed codesign as a methodology to improve both the software 
and hardware in advanced high-performance computing (HPC) systems; thereby increasing 
both the mission-relevant capabilities of these computing systems and accelerating the advance 
of science.   The reimagining of codesign contemplates the expansion of codesign in scope and 
ambition to reflect the clear and increasing importance of computing as a foundation for science 
and the broadening scope of where it is critical from HPC platforms to edge computing and data 
processing for experimental sciences.  
 



History 
The computing community has come to expect the doubling of the number of transistors on a 
chip every two years (Moore's Law), which has contributed immensely to improvements in 
computer performance over the past five decades. This expectation has led to a relatively stable 
ecosystem (e.g. electronic design automation tools, emulators, simulators, system software, 
compilers, algorithms, applications) built around general-purpose processor technologies (x86, 
Power, Arm, etc.). This stability meant that developers of each layer in the deep technology 
stack between application users and hardware designers only needed to focus on interface 
requirements for adjacent layers.  This unified view of the computing-technology roadmap 
supported incredible growth in design efficiencies and the development of very 
high-performance general-purpose processors. 

Scope 
However, silicon-based transistors cannot get much smaller than they are today, and pushing 
these physical limits is driving large-scale disruption of the computing ecosystem​1​.  New 
approaches must be explored to ensure continued growth in system performance. 
Transformational technologies are emerging that provide the opportunity for powerful new 
approaches to hardware/software codesign to specialize future computing environments to 
emerging DOE applications in HPC, edge computing, and data processing for experimental 
sciences.  

Opportunity  
In response to the flagging of traditional approaches to scaling, trends in hardware technology 
within the HPC ecosystem are fueling a trajectory toward extreme heterogeneity [1]. Advances 
in fabrication, packaging, and other areas continue to create opportunities [3] for codesigning 
hardware along with software in a wide variety of different domains [2,4]. Large-scale scientific 
computing continues to drive the leading edge in HPC and codesigning the next generation of 
HPC hardware along with scientific software discovery promises to further accelerate scientific 
delivery. Not only have modern packaging technologies, such as chiplets, widened the ways in 
which codesigned hardware components can be integrated into larger systems, but the 
available ecosystem of open-source hardware, open instruction-set architectures, and 
open-source software toolchain components, have changed the potential structure of future 
codesign activities. Simultaneously, the increasing complexity of software, incorporation of AI, 
and use of modern programming languages and parallel-programming models, are evolving the 
software side of the codesign equation. This workshop will explore opportunities to reimagine 
our future codesign methodologies for hardware and software relevant to scientific computing. 

1 Chipmaking is being redesigned. Effects will be far-reaching, Economist, January 23, 2021. 



Trends and Opportunities 
Heterogeneous acceleration and architectural specialization — whether they are commercial 
designs (evolutions of GPU or CPU technologies), emerging reconfigurable hardware or 
bespoke architectures that are customized for specific science applications — optimize 
hardware and software for particular tasks or algorithms and enable performance and/or energy 
efficiency gains that would not be realized using general-purpose approaches. These long-term 
trends in the underlying hardware technology (driven by the physics) are creating daunting 
challenges for maintaining the productivity and continued performance scaling of HPC codes on 
future systems.  However, the opportunity is for powerful new approaches to hardware/software 
codesign to specialize future computing environments to emerging DOE applications in both 
HPC, edge computing, and data processing for experimental sciences.  
 
Overall, there is strong consensus that the tapering of Moore’s Law will lead to a broader range 
of accelerators or specialization technologies than we have seen in the past three decades. 
Examples of this trend exist in smartphone technologies, which contain dozens of specialized 
accelerators co-located on the same chip; in hardware deployed in massive data centers, such 
as Google’s Tensor Processing Unit (TPU), which accelerates the Tensorflow programming 
framework for ML tasks; in field-programmable gate arrays (FPGAs) in the Microsoft Cloud used 
for Bing search, AI/ML and other applications; and a vast array of other deep learning 
accelerators. The industry is already moving forward with production implementation of diverse 
acceleration in the AI and ML markets (e.g. Google TPU, Nervana’s AI architecture, Facebook’s 
Big Sur) and other forms of compute-in-network acceleration for mega-data centres (e.g. 
Microsoft’s FPGA Configurable Cloud and Project Catapult for FPGA-accelerated search). Even 
before the explosive growth in the AI/ML market, system-on-chip (SoC) vendors for embedded, 
Internet of things (IoT), and smartphone applications were already pursuing specialization to 
good effect. Shao et al. from Harvard University tracked the growth rate of specialized 
accelerators in iPhone chips, and found a steady growth rate for discrete hardware accelerator 
units, which grew from around 22 accelerators for Apple’s 6th-generation iPhone SoC to well 
over 40 discrete accelerators in their 11th-generation chip, and Apple’s recent move to the 
Arm-based M1 chip that offers seamless use of many heterogeneous accelerator cores that 
outperforms the leading-edge Intel x86 designs that it replaced. 
 
There have also been demonstrated successes in creating science-targeted accelerators such 
as D.E. Shaw’s Anton, which accelerates molecular dynamics (MD) simulations by more than 
180 times that of contemporary high-performance computing (HPC) systems, and the GRAPE 
series of specialized accelerators for cosmology and MD. A recent International Symposium on 
Computer Architecture workshop on the future of computing research beyond 2030 
(http://arch2030.cs.washington.edu/) concluded that heterogeneity and diversity of architecture 
are nearly inevitable given current architecture trends. This trend toward co-packaging of 
diverse ‘extremely heterogeneous’ accelerators is already well under way. 
 
On the application side, proxy apps are the tool most commonly used to facilitate codesign. 
HPC applications have been well represented in this space.  However, complex workflows are 



becoming more prevalent.  Often mixing many HPC applications, data analysis, and machine 
learning.  In addition, AI and edge computing is growing in importance and making sure these 
applications are represented will be key to optimizing hardware and software tradeoffs at the 
core of codesign engagements. The methodologies used to program portable applications, such 
as using C++ frameworks like Kokkos and RAJA, along with advances in programming 
languages and tools, are changing how even large-scale applications can evolve. These 
changes are also key to understanding future codesign opportunities.  

Emerging Transformative Technologies 
There are a number of emerging technologies that have the potential to dramatically change the 
face of codesign by making it more accessible, affordable, and faster.  
 

● Chiplets​: Conventional SoCs co-integrate heterogeneous circuits onto a single die, 
which is very expensive as die-sizes grow.  A chiplet integration strategy breaks the 
components into pieces that can be fabricated onto much smaller dies and then 
co-integrates those smaller dies onto a common interposer using 2.5D integration 
methods.  The recently emerging chiplet approach offers a faster and less expensive 
way to assemble various types of third-party chips, such as I/Os, memory and processor 
cores, in a package (a silicon motherboard).  This approach can dramatically reduce the 
costs of codesigned specialized designs assembled from a library of pre-made building 
blocks. 

● Licensable IP for Server-class processors (the rise of Arm): ​The dominant cost for 
chip production is the design and verification of the logic design, which traditionally must 
be amortized over the sales of many COTs chips (a large market where the chip is the 
commodity).  However, in the embedded market, the intellectual property (IP) is the 
commodity (the IP being the verified design, which is the most expensive part) and 
creating products involves combining these IP blocks together onto a single chip or 
package.  Traditionally SoC design methods have focused on low-power consumer 
electronics or high-performance embedded applications, but the emergence of 
server-class processor IP (ArmV8 & SVE) is  offering capable double-precision floating 
point, 64-bit address capability, and options for high performance I/O and memory 
interfaces. The growing server-class licensable IP ecosystem could enable a new path to 
affordable flexibility to customize hardware for government processing needs. 

● Open Source Hardware and Open Silicon Compilers: ​ Most hardware design is 
proprietary, so the commodity is the chip.  Licensable hardware IP (such as Arm and 
Cadence) has enabled 3rd parties to create their own customized designs, but licensed 
IP can still be expensive, and even with low-cost academic licensing, the results cannot 
be openly distributed to a broad research community. The emergence of open source 
hardware/IP such as RISC-V and open-source silicon compilers such as OpenRoads 
offer a path to reducing licensing costs for hardware design, accelerating hardware 
development, and democratizing hardware design​2​.  With open source hardware, 

2 ​https://www.eetimes.com/open-source-its-not-just-for-software-anymore/# 



non-commercial entities such as labs and academia can participate in hardware design 
and development. 

● Photonic Resource Disaggregation​:  Disaggregated architectures that decouple 
memory from processors and accelerators allow for flexible node designs and represent 
a promising architecture shift that can meet the demands of next generation HPC and AI 
workloads.  Photonics enables run-time specialization customization by disaggregating 
resources at the node/system scale and enabling custom assembly of nodes at 
application execution time from pools of system-scale resources.  This capability is 
driven by recent technology advances such as Ayar Labs TeraPhy,  ARPAe’s 
ENLITENED, and DARPA PIPES -- continued evolution of these technologies could 
enable disaggregation that is efficient enough for state-of-the-art HPC systems. 

● Standardized Accelerator Interfaces:​ The emergence of CCIX, Coherent PCIe, and 
CXL as an industry standard for co-integration of diverse heterogeneous accelerators 
offers an opportunity for multi-vendor heterogeneous integration to become main-stream. 
This offers HPC integrators the ability to tailor the delivery of heterogeneous accelerators 
at the system integration level rather than having to produce their own custom silicon -- 
reducing cost, time, and risk for delivering specialized hardware. 

● Advanced Hardware Description Languages and Hardware Generators​:  One of the 
dominant costs for hardware development is design and verification.  Emerging 
advanced hardware description languages, such as Chisel, PyRTL, and PyMTL bring 
modern programming language techniques such as inheritance, polymorphism, and 
strong type systems.  Frameworks such as Aladdin[6] and others use automation enable 
more targeted accelerator design. By bringing these modern techniques to hardware 
design, languages can dramatically lower the cost of hardware design for architectural 
specialization for science.  More importantly, these new expressive languages might 
enable hardware designers to bring applied mathematicians into the loop, which is 
essential for guiding targeted specializations. 

● Coarse Grained Reconfigurable Arrays​ (the re-emergence of static-dataflow / 
reconfigurable computing):  Examples include Samba Nova, GraphCore, Cerebras, and 
FPGA technologies in general.  The underlying fabrics are all essentially static dataflow 
graphs, and in some cases, operate at clock-rates and area efficiency of custom silicon. 
However, programming this kind of hardware requires new ways to think about algorithm 
design (e.g., superpipelining). 

● Advanced Packaging Technologies for Heterogeneous Integration (HIR)​:  The 
Heterogeneous Integration Roadmap (HIR) is an industry-led initiative for delivering 
performance improvements for electronic devices in the absence of transistor scaling 
(​https://eps.ieee.org/technology/heterogeneous-integration-roadmap/2019-edition.html​). 
Heterogeneous Integration refers to the integration of separately manufactured 
components into a higher-level assembly (System in Package – SiP) that, in the 
aggregate, provides enhanced functionality and improved operating characteristics. 
Heterogeneous Integration through SiP follows naturally from the conceptual vision to 
build large, complex systems out of smaller functions separately packaged, as described 
in Gordon Moore’s 1965 paper. Heterogeneity and associated integration is far-reaching 
and can relate to materials, component type, circuit type, node, interconnect method, 



and source or origin.  The current roadmap shows a credible path to deliver the next five 
generations of performance doublings through heterogeneous packaging of diverse 
technologies. 

● Open Source and Extensible Compiler Frameworks​: the emergence of open-source 
compiler frameworks with intermediate representations that can be more easily extended 
(e.g. LLVM with MLIR), offer the potential for vendors to more easily accept complex 
HPC programs and transform these into optimized binaries for their heterogeneous 
hardware. Extensions such as MLIR further enable higher-level optimizations that can 
target accelerators while working with existing languages (C, C++, Fortran) that 
dominate the DOE’s HPC code portfolio. 

● Artificial-Intelligence-Integrated Applications​: science applications are increasingly 
integrating AI technologies, especially machine learning, both as part of “outer loop” 
workflows and as part as the “inner loop” of core algorithms. The merging of data-driven 
modeling into core aspects of HPC applications, fed by both experimental and simulation 
results, enables the use of new hardware-acceleration paradigms, such as those using 
reduced-precision arithmetic. Moreover, this integration is opening up new possibilities 
for multiscale modeling, adaptive simulation, and in-situ analysis. 

● Programming Abstractions and Languages​: modern application development is 
increasingly reliant on techniques made possible by modern programming languages. 
Many DOE applications now use C++ frameworks, such as Kokkos and RAJA, to enable 
portability across different accelerator technologies. Increasingly, application teams are 
investigating new paradigms and languages, from Legion to Julia, and some of these 
include use of just-in-time compilation to provide dynamic, high-performance 
specialization. These trends change what kind of design choices are practical in the 
context of future codesign activities. 

Potential Approaches 
Specialization is the most promising hardware technique for continuing to provide the 
year-on-year performance increases required by all users of scientific computing systems, but 
specialization needs to have a well-defined application target to specialize for and may not be 
applicable to all domains. This creates a particular need for the sciences to focus on the unique 
aspects of scientific computing for both analysis and simulation. Recent communications with 
computing industry leaders suggest that post-exascale HPC platforms will become increasingly 
heterogeneous environments. Heterogeneous processor accelerators — whether they are 
commercial designs (evolutions of GPU or CPU technologies), emerging reconfigurable 
hardware, or bespoke architectures that are customized for specific science applications — 
optimize hardware and software for particular tasks or algorithms and enable performance 
and/or energy efficiency gains that would not be realized using general-purpose approaches. 
These long-term trends in the underlying hardware technology (driven by the physics) are 
creating daunting challenges for maintaining the productivity and continued performance scaling 
of HPC codes on future systems. 
 



Co-development of hardware and algorithms​ creates transformative new opportunities by 
cooperatively designing algorithms and hardware together. This requires tighter integration of 
applied mathematics experts with the hardware design teams, but tools that enable them to 
productively collaborate with the software and hardware designers are essential.  The rapid 
disruption and change of the hardware and computing ecosystem admits new opportunities for 
codesign.  These opportunities combine new hardware and algorithms, and can present 
transformative opportunities. In an era where specializing hardware to the application is the only 
means of performance improvement, the economic model for the design of future systems is 
going to need to change dramatically to lower design and verification costs for the development 
of new hardware.  An enabling technology for this is the emergence of agile hardware 
production methods such as using chiplets. Rather than have a single large piece of silicon that 
integrates together all of the diverse accelerators comprising the customized hardware, the 
chiplets break each piece of functionality into a very tiny tile. These chiplets/tiles are then 
stitched together into a mosaic by bonding them to a common silicon substrate. This enables 
manufacturers to rapidly piece together a mosaic of these chiplets to serve the diverse 
specialized applications at a much lower cost and much faster turn-around. However, this 
approach falls down if the desired functionality does not already exist in the available chiplets. 
Perhaps in the future the ‘algorithm-driven hardware design’ and this chiplets approach might be 
able to meet in the middle to bring forth a new economic model that can enable productive 
architecture specialization for small markets, such as Shao’s vision for her Aladdin [5] integrated 
hardware specialization/design environment. 
 
System Level Design for New Workflows.​  Photonics, compute in the network, new node 
types, and emerging complex workflows allow for innovation in system architectures.  As 
emerging workflows incorporate, AI, multiscale approaches, and multiple applications into a 
single workflow machines with a single set of nodes may be suboptimal.  Disaggregation 
enabled by photonics allow more flexibility in allocating compute needs.  System architectures 
using nodes with multiple types, e.g. CPU only, CPU+GPU and AI accelerated all in the same 
system allow pieces of the workflow to run on nodes most efficient for them.  These are just two 
examples of many of how high level system design could adopt new technologies for greater 
efficiency.  While more complex, system design could lead to greater efficiencies, it will also 
require developing a software stack and understanding workflow requirements and high level 
system usage to properly balance a system.  Codesign opportunities between system 
designers, performance modelers, and end users for how best to leverage new technologies 
could lead to more efficient systems of tomorrow. 
 
Improvement in Performance Portability Approaches.​  ​Application developers are already 
struggling to keep their codes running well on multiple flavors of CPUs and GPUs, while 
enabling flexibility to move to other machines.  Improvements in programming techniques to 
efficiently retarget codes with good performance to an increasingly diverse set of architectures 
is a likely emerging issue.  Current approaches, such as RAJA and Kokkos struggle with long 
compile times and rely on programming techniques that require experts to implement. While 
large teams can afford experts, smaller teams often can not.  Maintaining developer and 
scientist productivity and allowing all users to take advantage of the potential performance gains 



from new accelerators, is a challenge that will require rethinking or retooling performance 
portability strategies. Such strategies might include more-comprehensive abstraction 
frameworks; new programming tools and languages; just-in-time compilation technology and 
other mechanisms for dynamic specialization; intelligent runtime systems; and, advances in 
integrated monitoring and profiling. 
 
Quantitative Tools of Codesign (ModSim). ​There is general consensus that the development 
of critical hardware/software technologies require quantitative tools of codesign along multiple 
dimensions. To be successful, such tools have to be applicable to design-ahead (in advance of 
implementation), and follow through to assisting optimizations during execution of complex 
workflows on the target systems. The ModSim capabilities have to be practical (in that the time 
to solutions for full system simulation under a realistic application workload has to be reasonably 
low), be accurate over a broad range of hardware/software architectures, and scalable as the 
system complexity and size increases. Successful tools of codesign need to consider the triad 
performance/power/reliability in an integrated fashion, and capture many of the boundaries up 
and down the hardware/software stack. Model generation done (semi)automatically is a lofty 
research goal, as is the interoperability of models. The nature of the workloads that are 
increasingly data-driven dynamic and irregular, require continued emphasis on dynamic 
modeling methods and tools used for optimization at runtime, introspection for runtime systems, 
or system control, monitoring, and optimization. Development of ModSim tools that are scalable, 
have common interfaces, use models interchangeably, and operate on a scale of 
time-to-solution vs accuracy is a key codesign technology. 

Possible Research Directions (Why and How) 
Here, we call out some of the key outstanding research issues in this space that can be 
addressed via an ASCR research program that would be needed to put these emerging 
technologies to work for DOE science.  This list is not exhaustive, and the purpose of this 
workshop is to solicit community input to refine the research opportunities and their potential 
impacts on DOE computing for science. 

● What programming systems (languages, compilers, runtime systems, hierarchical 
abstraction of software systems, libraries, etc.) facilitate effective codesign and why? Are 
there programming abstractions and paradigms that fundamentally improve the process 
of codesign? 

● What kind of quantitative modeling, simulation and performance prediction tools are 
required in order to guide design choices in order to facilitate the codesign process? 

● How can applied mathematicians be more tightly integrated into the design teams? 
What tools and methodologies can be employed to enable productive collaboration in 
this multi-disciplinary design cycle. 

● How to co-design hardware and software security mechanisms that will allow HPC 
centers to implement security policies such that data providers can give usable access to 
their sensitive data sets to data scientists. 

● What are the open source and community tools that will enable scalable hardware 
development, evaluation and optimization (including performance simulation, verification 



and testing)? To what extent do the tools need to support flexible design strategies, the 
ability to mix/match different components, and be sufficiently easy to use for a broader 
range of the HPC community? 

● What are the key prospective system performance shortcomings for critical DOE 
applications (e.g. memory capacity, microsecond real-time inference, ... ) given the 
projected technology roadmap for the next decade?  What exploration is helpful in 
ensuring there will be viable options? How can they be addressed with codesign?  

● What are the new ways that codesign can create technologies, system designs, and 
work with technology vendors, integrators, and the ecosystem to enable the DOE to 
purchase and deploy systems that better meet its needs?  That is, what are the new 
ways that codesign can be productive for DOE ends, given the rapidly changing 
landscape? 

● How does the broader system and application scope that comprise DOE’s advanced 
scientific computing needs (including stream-based computation, machine learning, 
facilities, etc.) affect the appropriate scope for codesign, critical parties, and opportunity 
for transformative impact? 

● How can methods for rapid hardware generation / integration enable new system-design 
paradigms? 

● Edge-computing application cases such as distributed sensor arrays, 
processing-in-sensor, and processing-in-network may well demand more intensive 
specialization than traditional general-purpose computing due to environmental 
constraints.  How can we create an environment that balances rapid 
codesign/specialization of systems and a productive end-user environment? 

● How does one take advantage of resource disaggregation to serve the needs of HPC 
workloads, and what are the underlying requirements in terms of resource 
managers/scheduling, programming environments and security that is necessary to 
make disaggregation usable and productive for DOE applications? 

● How best do we pull together multi-disciplinary teams to execute codesign successfully? 
● How should we evolve ModSim capabilities to enable this new re-imagined codesign 

with tools that are accurate over a broad range of hardware/software architectures, and 
scalable as the system complexity and size increases? 

 
There are also ancillary meta-questions that are not themselves research issues, but speak to 
the viability and sustainability of the future of computing. 

Alternative Hardware Realizations and their Impact 
The traditional DOE computing model is that DOE laboratories procure and maintain large HPC 
systems with users from other laboratories as well as non-DOE users often able to gain access. 
The “capability” systems at the NNSA laboratories, e.g., Trinity and Sierra, tend to run less 
varied workloads than the NNSA “capacity” systems or any of the supercomputers at the SC 
laboratories.  In general, the more focused the workload, the more opportunity there is to 
employ codesign techniques.  In the limit, systems like Anton and GRAPE target exclusively a 



single domain — molecular-dynamics — and therefore are able to codesign applications, 
system software, and hardware to great benefit. 
 
Although DOE is not in the business of fabricating HPC components, there are numerous 
existing opportunities within DOE data centers to exploit codesign techniques.  At the 
procurement stage, supercomputers can be selected based on how well they match 
applications’ needs, taking into consideration the ability for applications to adapt to the 
hardware.  At the configuration stage, firmware and system software — and sometimes 
hardware configuration such as I/O node placement or network topology — can be tweaked to 
improve the performance of critical applications, and applications can adjust their parameters to 
the capabilities and limitations of the underlying hardware and software.  Looking to the future, a 
number of transformative opportunities exist for DOE to collaborate much closer with hardware 
vendors, such as via processors based on chiplets, for which DOE could design or help design 
a small unit of DOE-centric logic that could be incorporated into a base processor. 
 
DOE operates a number of experimental facilities such as accelerators and light sources. 
Measurements taken on these facilities increasingly require substantial computational power for 
filtering and analysis.  This suggests additional avenues for codesign that have not yet been 
thoroughly explored, involving experimental facilities, supercomputers and data storage, and 
scientific applications.  Similarly, edge technologies such as smart sensors are becoming more 
widely used and may eventually work their way into core DOE usage models.  The 
resource-limited and distributed nature of edge computing implies that this is another form of 
hardware that may be of interest to DOE and that can benefit from codesign of all system 
components: edge devices, back-end supercomputers, applications, and, where possible, 
networking. 
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Topics: Applications and Programming Systems 
 
Over the last several years the authors have worked on a number of projects to codesign 
applications with programming models.  The applications have ranged from simulations (e.g., 
S3D, a combustion chemistry simulation [1]), to data analytics (ExaFEL, a project to build a 
realtime data analytics software stack for future light sources [2]), to machine learning [3].  The 
programming models have all been tasked-based, and mostly (but not exclusively) versions of 
the Legion programming model [4].  While we are fans of task-based programming models, 
most of our points below are more generally applicable.   We relate a number of lessons we 
have learned from our codesign experiences, grouped together into three broad themes:  ​The 
Level of Abstraction, Specialization, ​and ​Interfaces.  ​The first two outline the codesign 
challenges we see, while the last highlights an opportunity to make progress. 
 
The Level of Abstraction.  ​One characteristic of DOE applications is the desire for performance 
portability across multiple platforms.  As a result, a degree of flexibility is needed in codesign 
solutions not found in, say, embedded systems.  Perhaps counterintuitively, codesign for 
portability is usually more successful if the targeted user interface is at a higher rather than 
lower level of abstraction.  Done well, a higher level of abstraction means that fewer details of 
the implementation are fixed in the user specifications (which typically take the form of 
application code), enabling more scope for optimization and more opportunities to codesign 
among the different software and hardware components sitting below that interface.  As an 
example, Liszt is a high-level DSL for mesh computations [5].  One of the key features of Liszt is 
that instead of emphasizing traditional array indexing to express relationships among different 
data elements (e.g., cell[2*i + 3]), Liszt encourages using user-defined fields (e.g., 
cell.neighbor).  The resulting code is easier to write, to read, and for an optimizing compiler to 
analyze, which makes it possible to generate efficient code for both CPUs and GPUs despite 
their significant architectural differences.  It is not obvious that higher levels of abstraction and 
better performance should go together, but in our experiences with codesigning the elements of 
a software stack to work on a variety of very different platforms, raising the level of abstraction 
has been the only approach we have used that has successfully lead to portable performance. 
 
Specialization.   ​The goal  of codesign is to co-specialize multiple pieces of a system for 
maximum mutual advantage.   CUDA has been codesigned with NVIDIA GPUs, and to greater 
or lesser degrees OpenMP has been codesigned with multicore processors, MPI has been 
codesiged with high performance networks, FPGA software stacks have been codesigned with 
FPGAs, and all of these have also been codesigned with applications.  Each is a success within 
its domain, but there are cautionary lessons.  First, a major investment was required in each 
case, which implies that the user community needed to be large for these efforts to be 



successful. For codesign efforts benefiting smaller groups, as would be the case with most 
codesign opportunities in the DOE, codesign costs must be lower; we expand on this point 
below.  Second, the resulting specialization has created a situation where the individual 
components of a full supercomputer (network, nodes, and accelerators) have well-tuned 
interfaces, but because codesign was rarely done across components the interface to the 
complete system is low-level and complex to use.  Thus, the natural evolution of supercomputer 
systems, where each component’s interface has been codesigned only with its associated 
hardware, has resulted in an overall design that applications still struggle to fully exploit. 
 
Interfaces.  ​How can we reduce the cost of codesign to make it realistic to routinely cover at 
least some aspects of an application and the associated system software and hardware?   The 
only answer is to limit the scope.  That does not necessarily mean limiting the potential upside 
of such projects.  We believe that many codesign problems, at least within the DOE community, 
share requirements.  In particular, a set of standardized system software interfaces, at a higher 
level than today’s conglomeration of MPI/OpenMP/CUDA/etc. would both simplify application 
development while expanding the scope for optimization and codesign at lower levels and 
preserving future portability. Now is  the right time to develop those abstractions, as it has 
become clear that a distributed system of multicore nodes with multiple accelerators will be the 
standard computing platform for many years to come.  Task-based abstractions, which are 
already widespread in the data analytics and machine learning communities (e.g., TensorFlow, 
Pytorch, and Spark are all task-based), are one way to provide a higher-level and more uniform 
interface for applications that would also enable aggressive codesign of the layers underneath 
and provide applications with improved portability and performance.  While there may be other 
viable options besides task-based approaches, we believe software abstractions that are 
independent of or at least agnostic to specific underlying hardware technologies are needed to 
allow more codesign across different parts of systems rather than only narrowly within a specific 
component vendor’s hardware and software. 
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The Challenge
Nathan Myhrvold’s Four Laws of Software [1] state that software expands to consume any available compute power. This

phenomenon has enabled the computer industry to create ever more complex and compelling products with fewer software
engineering resources [2, 3]. Recently, Moore’s Law which has enabled this increasing expansion has slowed while the demand for
ever more computing power has not.

The negative impact of previous slowdowns around Moore’s Law on unprepared organizations is documented at [4]. Thus,
forward looking organizations have already started to invest in the creation of hardware accelerator ASICs to tackle this growing
demand. However, the growing cost of IC creation, as shown in Figure 1, and the gap between theoretically achievable transistor
density and the actual realized transistor density, as shown in Figure 2, represent a huge challenge.

Figure 1: The growing cost of IC creation. [5] Figure 2: The growing EDA and Design capability gap. [6]

The Opportunity
Figure 3 and figure 4 demonstrate how Google’s TPU, an ML hardware accelerator ASICs, is able to tackle the increasing

compute demand for ML training at scale [7] and are up to 27x faster at 38% lower cost than GPUs[8].

Figure 3: ResNet-50 Training Speedup (Baseline: 1 V100 GPU). [8] Figure 4: ResNet-50 Training Cost Comparison. [8]

Being able to reproduce and build on top of other researchers’ results is a fundamental aspect required for a reliable
knowledge sharing ecosystem [9] required to tackle challenges in this space. All of [10], [11], and Google’s own research
philosophy [2], reinforce this principle. The fact that research and development in the IC creation space typically has restrictive
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NDAs around data and closed source proprietary tools was highlighted by Andrew Kahng in [6, 12]. Even groups like Google are
mostly unable to publish in a reproducible way, making the creation of hardware accelerators very inaccessible.

To solve this issue, Google is working to fill in the current missing pieces required to develop fully open source IC
development through the release of and collaboration with fully open source code bases and datasets as documented in [13].
Examples of the powerful effect on both research activity and the ability to directly transfer research to productionzation, has
been previously found recently in the ML and ISA spaces.

The current explosion of research in the machine learning space [14] shows the effectiveness of fully open source code and
dataset releases. With Google releasing TensorFlow in 2015 [15] and the open investments from companies like Facebook, Nvidia
and Microsoft, it became possible to use the same technology for research and ML across numerous products. This type of high
speed technology transfer and integration of research and development teams are two areas that the IC design industry has
struggled to achieve as highlighted in [12, 16]. Parallels can be drawn between EDA tooling and TensorFlow, PDK Data and ML
datasets, and IP & Libraries as ML fields of research.

RISC-V is another eloquent example of the success of the aforementioned open dataset and code trend [17]. Freed from the
previous restrictions around proprietary licenses to the instruction set architecture (ISA), legions of designers have contributed to
defining novel implementations and have built on top of each others’ work. This has also led to direct technology transfer from the
research space to industry adoption at an outstanding pace [18].

Why now?
With the slowdown of Moore’s Law and the recent investments to bring IC manufacturing back to the US [19][20], it is the right

time for the Department of Energy to extend the existing policy of supporting open source software solutions to also focus on
open hardware acceleration ICs. The global effort Google is spearheading includes investigators from all of industry, academia,
start-ups, and foundries, and would welcome contributions and collaboration from entities like the US Department of Energy.

Impact of success?
This investment in fully open IC design will help provide a needed push towards the democratization of hardware acceleration

development at bleeding edge manufacturing nodes. This renewed open-source wave to break down the barriers of EDA tooling
and ultimately hardware design will result in a thriving ecosystem with multiple blossoming projects that enable the continued
acceleration of both scientific and commercial possibilities.
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Abstract—Resource disaggregation, enabled by fast optical
interconnects, allows novel design options and flexibility for
future computing systems. Future DOE computing systems can
potentially benefit from disaggregated memory architectures
where various processing elements, perhaps from different ven-
dors, can be seamlessly integrated and use shared memory pools.
Memory disaggregation has the potential to enable interesting
programming models, heterogeneous compute architectures, and
minimize the memory under-utilization issue in existing conven-
tional HPC systems.

Leveraging disaggregated memory architectures in DOE sys-
tems requires a co-design strategy that includes run-time li-
braries, software interfaces, operating system and hardware.
Only with that, future DOE systems can exploit the performance,
reliability and energy efficiency promised by disaggregated mem-
ory architectures. In this white paper, we reflect on our experience
in exploring disaggregated memory systems and identify major
gaps where a hardware/software codesign strategy is most needed
for such a new architecture.
Topic: architectures, emerging technologies, codesign methodology

I. INTRODUCTION

Conventional high-performance computing (HPC) systems
closely couple memory modules with compute nodes. These
architectures are most effective when an application’s data
can be partitioned across nodes, each partition fits well in
the nodes’ local memories, and minimal communications are
needed between nodes. Typically, communication between
nodes is carried over the network interface or fast cus-
tomized interconnects, such as InfiniBand, through explicit
message passing. For instance, in today’s HPC systems, mes-
sage passing interface (MPI) is commonly used to achieve
synchronization and collective operations in applications run
over multiple nodes. However, conventional HPC architectures
suffer from (1) memory underutilization as other applications
cannot effectively leverage unused memory space in nodes
reserved for applications with low memory footprint (2) ap-
plications with memory demand (per node) exceeding node’s
memory capacity will fail to run unless expensive and slow
swapping to/from network-attached storage is enabled (3) data-
dependant workloads such as data analytics are difficult to
partition across nodes and thus can cause significant commu-
nication overheads and data redundancy in conventional HPC
systems (4) Finally, integrating accelerators or different types
of processing elements in conventional HPC systems needs
to leverage explicit message passing to other nodes or tightly
couple it with a CPU that acts as its gateway to other nodes.

The emergence of high-bandwidth and ultra-fast intercon-
nect technologies, such as optical networks, bring in new
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Fig. 1: Example disaggregated memory system.

opportunities to disaggregate memory systems and resources,
and connect them to processing elements (PE) through shared
fabrics. As shown in Figure 1, such architecture allows var-
ious types of processing elements to access shared physical
memory pools. Such memory pools could be petabytes of
non-volatile memories (NVMs), as envisioned by HPE Labs
in ”The Machine” project, or simply a combination of pools
from different memory technologies with various density,
performance and data retention characteristics.

Several memory-semantic protocols and standards, e.g.,
Gen-Z and CXL, define the memory interfaces that need to be
implemented at each PE to allow it to access/request shared
memory pools. Obviously, such architecture enables seamless
ways to integrate different types of accelerators and processors
in new programming models and interfaces that leverage
shared memory pools. In other words, any PE that implements
the memory semantic protocol used can be integrated and
leverage the shared memory pools to cooperatively operate on
shared data. Applications and use cases of such architecture
can vary from data analytics operating on terabytes of data
(e.g., large social graphs) to regular HPC workloads that
can benefit from simple shared-memory programming model
across heterogeneous compute nodes. Finally, operations such
as job migration, snapshotting (for checkpointing), etc., can
effectively exploit such architecture to boost their performance
and reduce the resulting traffic.

However, such disaggregated memory architectures intro-
duce several challenges that are yet to be solved. First, scalable
memory management for such large shared memory pools
is a key for any successful deployment of such systems.
Second, it is important to understand how to port existing
DOE workloads to such a new architecture to best leverage the
large amount of memory each job can be provided with, and
what heuristics to use to identify the best configuration and set



of PEs to use. Third, how to effectively allocate and manage
memory pages from different technologies, and what selection
criteria to use. Fourth, with such shared physical memory
shared between different PEs, possibly from different vendors,
we need to carefully implement external access control to
enforce isolation between nodes such that a malicious/buggy
node (or running malicious/buggy code) cannot compromise
the whole system. Fifth, how to ensure quality of service (QoS)
and guarantee some level of performance isolation between
different PEs, without underutilizing bandwidth or memory
bandwidth due to static partitioning schemes. Finally, with
such an architecture that integrates memory pools with storage
characteristics (i.e., NVMs), how can we leverage these pools
for dual use, i.e., checkpointing/filesystem and regular memory
accesses with the able to distinguish between these traffics
(memory accesses might be of higher priority).

In this white paper, we briefly discuss these challenges and
how a co-design strategy can help exploiting the otherwise
untapped potential of disaggregated memory architectures.

II. CHALLENGE

In this section, we discuss the unique challenges of disag-
gregated memory systems, and how a co-design strategy can
help overcome them.
Scalable Run-time Memory Management: designing a flexi-
ble memory management scheme that allows memory sharing
between different PEs, allocation from different pools, and
run-time monitoring of contention points, requires hardware
support to furnish such run-time information and software
support or library for managing shared pools in a scalable
fashion. It is imperative to provide the ability to parallelize
the implementation of the memory manager and make it scale
for larger rate of allocation requests from different nodes.
Moreover, the memory manager will be partly responsible for
page migration and insertion/eviction policies from scarce but
fast memory pools (e.g., high-bandwidth memory).
Access Control: due to the integration of different types
of PEs, possibly from different vendors, relying on internal
(inside each PE) access control enforcement can significantly
increase the attack surface and the impact of potential bugs
or security vulnerabilities, mainly due to the shared directly-
accessible physical memory[1]. Therefore, it is important to
employ external system-level access control enforcement that
is managed through the memory broker/manager. Moreover, it
is important to guarantee that no PE can directly change its
own access control metadata.
Porting DOE Workloads: to be able to leverage disaggre-
gated memory systems, it is critical to understand the atomicity
guarantees (e.g., to implement barriers and locks) across
nodes, memory consistency model, and coherence support
in disaggregated memory systems. The ability to run DOE
workloads on systems with partial support for such essential
primitives requires codesigning the workloads in the context
memory access parallelism in each PE and across PEs. For
instance, the impact of memory ordering around critical sec-
tions that could be run by different PEs, perhaps with limited
hardware support for coherence, is yet to be understood.

Rethinking Existing Checkpointing Mechanisms: with the
availability of NVM memory pools in such systems, it is im-
portant for future DOE workloads to leverage such persistence
features to optimize current checkpointing mechanisms for
fast recovery from crashes or errors. By leveraging a careful
co-design strategy, checkpointing can occur immediately by
leveraging hardware support that support run-time remapping
for memory pages, in a way similar to copy-on-write (CoW) in
current systems. By doing that, checkpointing can be achieved
with much lower number of writes and hence much faster
execution.
Quality-of-Service (QoS): in addition to the memory-side
support for QoS, run-time environment and resource allocation
frameworks should accurately set the priorities and the class of
services anticipated for particular workloads/tasks. Such class
of service should be considered in both scheduling, and run-
time performance isolation.
Application-Specific Performance Optimizations: applica-
tions with particular needs, e.g., high memory bandwidth,
can potentially provide hints to the memory allocation library.
Similarly, hints for prefetching, access granularity from fabric-
attached memory, cache bypassing, etc., all can be leveraging
the application down to the PE and the disaggregated memory
system.

III. OPPORTUNITY

The development of disaggregated memory has the potential
to profoundly impact DOE’s scientific delivery. The most
valuable assets that DOE owns are our experimental data
sets and the knowledge of its research staff. Disaggregated
memory systems would allow DOE users to build complex,
high performance workloads that can operate on even the
largest experimental data sets without requiring large-scale
filesystem operations that are major bottleneck in existing
HPC systems. By building a new approach to large-scale data
storage including fine-grained access models, advanced pro-
gramming approaches and completely rethinking checkpoint
mechanisms, DOE users will be able to see order of magnitude
or higher improvements in end-to-end scientific workflows, not
just the compute/simulation phases that many users will think
of when discussing codesign. Reimagining hardware systems
means reimagnining how we store, process and compute on
data, disaggregated memory systems are the future for how we
will process vast increases in data from experimental facilities
into the next decade.

IV. TIMELINESS

The emergence of open-source architectures, open standards
for memory semantic protocols (e.g., Gen-Z and CXL), and
fast interconnect technologies make such new architecture
promising. Moreover, due to the heterogeneous nature of work-
loads and the wide use of domain-specific accelerators, flexible
integration and codesign approaches together can make the
best use of such a new architecture.
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Abstract—The emergence of open-source instruction set archi-
tectures (ISA), such as RISC-V, present new opportunities for
rethinking microarchitecture innovations in a hardware/software
co-design fashion. In this white paper, we discuss several micro-
architectural innovations that can significantly benefit from code-
sign activities to lower the total cost of ownership (TCO), improve
the performance, reliability and flexibility in future Department
of Energy (DoE)’s workloads. In particular, we discuss how
several ideas that improve system’s reliability, minimize control
flow hazards, and reduce average memory access time can benefit
from co-design approach, and how can this be tuned for DoE
workloads.

I. INTRODUCTION

Today’s processors overlap the execution for large window
of instructions to hide the latency of cache misses (memory
accesses). However, with such increase in the window of
instructions, the impact of branch mispredictions on perfor-
mance becomes significant. Additionally, with the increasing
gap between processor speed and memory latency, the impact
of memory accesses on performance becomes significant[6].
Prior works in the computer architecture community, such as
Slipstream processors[6], [7] and dual-core execution (DCE)
[9], advocate for a pre-execution strategy which allows early
identification of taken control flow paths and resolve load/store
addresses long before their execution. By relying on pruning
techniques that allow the creation of a lightweight accurate
leader thread, the original/follower thread can leverage the
resolved branch predicates and pre-loaded data to avoid long
delays, which would have occurred otherwise.

The idea of pre-execution can potentially bring in sig-
nificant performance advantages for several DoE workloads,
especially those with irregular memory accesses and hard-to-
predict branches (i.e., as in deeply-nested for-loops in scien-
tific workloads). However, such pre-execution often requires
additional cores to run leader threads, and thus can reduce
the total computational capacity of the system. Understanding
the impact of run-ahead/pre-execution schemes in the con-
text of high-performance computing (HPC) systems and DoE
workloads is imperative. However, since such approaches are
mainly optimized for the common case with a single-node
in mind, applying such schemes for DoE workloads would
benefit from a co-design strategy. For instance, the ability
to opportunistically leverage idle cores in the node by en-
abling/disabling pre-execution where beneficial requires strong

coordination between the run-time environment, compiler gen-
erated hints/primitives, and hardware. Moreover, rethinking
the hardware such that it additionally integrates low-power
tiny cores which can be leveraged for pre-execution requires
support from the run-time library and resource allocation
manager.

As demonstrated in prior work for control flow
decoupling[5], using the compiler to decouple predicates’ pre-
calculation, and expose such predicates to the hardware can
effectively eliminate significant portion of the performance
overheads due to branch mispredictions. We believe that
similar opportunities exist for various runahead schemes, as
also demonstrated in prior work[1], [3]. It is also important
to understand how the compiler optimizations, run-time
environment, and hardware can be co-designed such that it
improves the performance without underutilizing resources
or incurring unacceptable power/area overheads. Moreover,
investigating the unique challenges for implementing such
approaches in open-source instruction set architectures (ISAs)
and the required new instructions (if any), in addition to the
needed support from the software stack (including compiler)
is both timely and important.

In addition to performance improvement techniques, the
reliability of memory systems is perhaps among the most
challenging aspects of DoE’s HPC systems. However, the
reliability guarantees has been always restricted by (1) ex-
isting support in the processor chip; and (2) the reliability
support in the memory module itself (additional chip). Gen-
erally, memory modules equipped with reliability support are
typically much more expensive than their conventional (no
reliability support) counterparts. Most processor vendors avoid
introducing any additional logic for managing and handling
reliability metadata, and thus limiting reliability support only
to memory modules readily provide corresponding metadata
along with the data through additional chips and wide buses.
Such limitation from the processor side limits the options
system integrators can choose the memory modules from; they
must support extra chips for reliability. However, with the
opportunity to redesign hardware, memory reliability can be
provided by processor-side support even when using conven-
tional memory modules. Prior work explored how processor-
only support can provide memory reliability for unmodified
memory modules[8], however without exploiting system-level
optimizations that can be leveraged by the operating system,



e.g., relaxing ECC for fault-tolerant applications. With co-
design strategy, we can explore a software-defined memory
reliability support that can be leveraged by the operating
system and run-time environment to flexibly choose the ca-
pacity/reliability/performance marks.

In this white paper, we will discuss a systematic approach
to rethink the aforementioned optimizations and innovations in
a co-design approach that enables flexibility, low power, high
performance, and reduced total-cost of ownership (TCO).

II. RESEARCH CHALLENGES

Most DoE workloads are multi-threaded and highly-parallel,
thus adopting run-ahead/pre-execution techniques can poten-
tially reduce the number of the threads can run on a node,
while improving the performance of each thread individually.
Thus, a co-design approach can potentially leverage run-time
information and compiler heuristics to decide upon reduced
number of threads for higher performance of each thread
(due to run-ahead/pre-execution) or to disable run-ahead/pre-
execution for the sake of running the maximum number of
threads a node can run efficiently. Moreover, in a heteroge-
neous core micro-architecture, e.g., ARM’s big-little, deciding
upon using tiny cores for running actual threads or helper
threads (in case of pre-execution) requires heuristics about
the potential improvement from pre-execution, and also an
understanding of potential contentions can result from running
other threads/applications in such tiny cores.

While shifting the memory reliability support to the pro-
cessor side allows high-flexibility in choosing memory mod-
ules, hence reducing TCO, it comes at the cost of potential
performance degradation and storage overheads. Similar to
ECC-memory, there must be error correction and detection
codes associated with the protected data, and thus managing
such metadata can add latency and storage overheads that are
proportional to the strength of the reliability support scheme.
Thus, such reliability support should be flexible such that it
adjusts to the level of protection needed (e.g., Raw Bit Error
Rate (RBER) of the protected memory modules), and the
application’s reliability requirement. For instance, if the OS or
run-time environment can adjust the type of protection (hence
its storage and performance overheads) for certain nodes or
workloads, that can bring in significant improvements while
retaining the ability to provide strong reliability when needed.

III. RESEARCH APPROACH

To effectively evaluate codesign options, while able to
explore the design space in a fast manner, we can use a highly-
flexible microarchitecture model in fast simulators, such as
Vanadis in SST simulator[4], to understand the system-level
aspects and policies to manage and adjust such mircoarchitec-
ture features. Moreover, it will help us understand the impact
of compiler or run-time hints enabled through our codesign
strategy. From there, we can adjust our support at system
software and identify the needed information (and effective
heuristics) to expose to the hardware. By modeling hetero-
geneous core architectures, and different allocation policies

and threading options, we can better understand the impact
of pre-execution in such architectures and how to tune it for
DoE workloads. We can also leverage existing frameworks for
automatic generation of synthesizable superscalar cores, such
FabScalar[2], to optionally enable support for pre-execution,
and use such low-level model to calibrate our timing model
in the high-level simulator. In all these evaluations and inves-
tigations, DoE workloads will be used.

For processor-side memory reliability support, we will
leverage existing memory models in high-level simulators such
as SST, and investigate different scenarios for co-running
workloads with different memory reliability requirements.
We will also investigate how to architect software-defined
memory reliability support that can be seamlessly configured
and adjusted by the operating system. Finally, we will show
how the compiler or run-time library can optionally provide
hints for relaxed reliability for particular workloads/functions,
which can lead to higher performance by bypassing the error
correction/detection algorithm, which could be slow for high
reliability systems as in multi-level phase-change memory
(PCM) where strong ECC algorithms are typically used. We
will augment existing DDR IPs with flexible and transparent
memory reliability support.

Note that building new DDR IPs that implement the low-
level timing details is very time consuming, and will be tech-
nology specific, thus a wrapper that implements the reliability
support below the DDR IP will be pursued in this research.
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The growing prevalence of open-source hardware efforts and the ability to combine them with                           
open-source software toolchains (e.g., programming languages, compilers, runtime systems,                 
tools, etc.) provides a unique opportunity for many different approaches to multi-disciplinary                       
codesign activities. For example, there are a growing number of proposals for RISC-V-based                         
CPUs, GPUs, FPGAs, and other various forms of accelerators. Building on this broader trend,                           
we can envision a more cost-effective approach that leverages a chiplet-based design                       
methodology to enable customization, heterogeneity, and use in full-scale systems previously                     
unachievable [1, 6]. 

 
Such designs could consider traditional processor cores, vector units, scratchpad-like sector                     
caches, accelerators, processors-in-memory, etc. A fundamental challenge is selecting                 
components for a given set of applications and a set of constraints (e.g., cost, power,                             
programmability, available chip area, etc.). This is similar to how embedded systems are                         
designed. One significant difference is that the applications running on an embedded system are                           
finite and not general-purpose. Furthermore, embedded systems do not have proxy applications.                       
Proxy apps hide the real applications that will run on the hardware. Working with the                             
application(s) that will run on the system themselves is a significant advantage for embedded                           
system codesign. In addition, the breadth of this exploration space is costly in terms of design                               
choices, development and deployment timelines, and in general, the expertise and size of a team                             
required to consider the cross product of all combinations for an application space as broad and                               

complex as DOE’s. Even though the chiplet approach can simplify aspects of the design, these                             
costs are likely well beyond DOE budgets in terms of both funding and the required “​time to                                 
solution ​”. However, if these costs can be reduced, there is significant value in this approach to                               
improving and optimizing architecture design choices across many mission-critical areas.  
 
Genetic programming (GP) was once used to write programs or search for efficient programs to                             
perform specific functions. With Machine Learning models that can learn through billions of                         
parameters, researchers ask whether humans will need to write code again [2, 3]. GP, by                             



definition, searches for the software. In the context of codesign, we can further push the envelope                               
and explore whether we can co-search for (​i.e., codesign) the hardware and the software together.                             
In other words, we can use tools like GPT-3 [4] or Microsoft Turing NLG [5] for the codesign of                                     
SW and HW together. The idea is that we train a machine learning model with as much code and                                     
parameters as needed so that we would ask it to produce code with the associated hardware that                                 
best fits that code. Since the system would be composed of various accelerators and components,                             

the software would be written for specific components. We could use an intermediate language                           
representation so that it is architecture-independent. Machine learning has come a long way, and                           
probably it is time to use the full potential of machine learning for the benefit of codesign. 
 
This idea is probably a long shot and maybe too far for the current technology. One way to think                                     
about it is to scale it down. Let us reason about it in the context of taking a particular algorithm                                       
that we want to accelerate using some reconfigurable architecture such as an FPGA, a CGRA, or                               
even a GPU. The problem can be formulated as follows: Given the original algorithm and the                               
particular configurable hardware or set of accelerators possible, is there a software solution or                           
design of the algorithm one of the accelerators that can beat all the other choices. Alternatively,                               
which accelerator could maximize the performance gain, and what should the algorithm look like                           
to run on the selected accelerator. This is being solved with the following constraints: choose                             

from the set of accelerators available and optimize the accelerator’s algorithm to maximize the                           
performance gain. 
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Challenges: Heterogeneous nodes, many-core processors, deep memory hierarchies, power and

energy demands, and wafer-scale integration make application and system management on existing

and emerging AI computing platforms an increasingly daunting task. Current codesign strategies

for software stack and application development on AI hardware are mostly static and are often

optimized based on a narrow set of commercial AI workloads. Consequently, such a one-size-fits-all

approach will render several existing, emerging, and future DOE AI applications less performant—

a significant hurdle for the data-driven scientific discovery. To that end, we focus on solving two

critical AI codesign research challenges faced by DOE AI community:

1. How to map the diverse set of DOE AI applications on existing and emerging AI hardware, i.e.

how to o✏oad computations to appropriate hardware with respective tuned configurations?

2. How to design appropriate AI hardware to e↵ectively run these DOE AI applications?

Opportunity: We envision an AI system for AI codesign that leverages reinforcement and super-

vised learning, architectural simulator, analytical performance models, and DOE leadership-class

systems. An automated AI approach for AI codesign will be an ambitious e↵ort that takes a rad-

ically new route compared to the traditional codesign approaches attempted so far within DOE

complex. The proposed technology has the potential to revolutionize ways in which DOE AI appli-

cations will be run on di↵erent hardware to maximize scientific impact, hardware will be procured

for leadership-class computing facilities and edge computing needs, and design choices of the hard-

ware vendors will be influenced by the DOE AI application needs.

We have to develop codesign-centric and vendor-agnostic DOE AI application benchmarks for

evaluating the performance of di↵erent hardware platforms and software stacks. While there are

recent community developments such as MLCommons [1], they lack the capabilities and flexibility

required for DOE AI application codesign methods. We can use MLPerf benchmarks from ML-

Commons as a starting point and expand them to include representative benchmarks from DOE AI

applications. For example, the extended benchmarks will range from storage-intensive, simulation-

enabled training to compute-intensive inference with uncertainty quantification, and involve varying

degrees of retraining, power/energy demands, mixed precision, error tolerance, dense and sparse

datasets with diverse data types such as images, text, time series, graphs, and point clouds.

Existing hardware accelerators such as GPUs, TPUs, FPGAs and emerging AI systems such as

Cerebras, SambaNova and Graphcore provide unique capabilities and exhibit di↵erent characteris-

tics with respect to training time, inference time, latency, power, and energy demands. To map the

diverse set of DOE AI application benchmarks on existing and emerging hardware, we envision a

codesign-aware reinforcement learning (RL) approach, where an agent evaluates di↵erent mapping

strategies and learns to maximize the user-defined, application-specific reward. However, given the

complexity and the degrees of freedom of the decision space of mapping strategies, a naive RL

method is unlikely to be successful. Therefore, we need to develop a hierarchical RL method [2]

that leverages node-level and system-level models, to obtain the optimal mapping strategy. At the

node level, we need multimetric performance models (e.g., for runtime, memory footprint, data

1



movement, power, energy) based on the hardware/software/application configuration options. Tra-

ditional analytical modeling approaches should be adopted wherever possible because of their data

e�ciency and extrapolating power. However, su�ciently rich analytical models are di�cult due to

interactions between di↵erent components within a node (e.g., pipelines, special instructions, order

of executions, memory hierarchy, frequency scaling). At the system level, models for communi-

cation, data movement, load balancing, and I/O are vital, but to-date, such models have proven

too complex to model analytically. Therefore, when analytical performance models become too

restrictive for both node and system level models, we have to develop supervised-learning-based

performance modeling to develop surrogate models. In hierarchical RL, at each level of the hier-

archy, agents try to optimize their level-specific reward functions using the models. Once trained

on the benchmarks with di↵erent accelerators, the RL agent can be leveraged to map the real AI

applications on a given hardware.

To design appropriate hardware for the diverse set of DOE AI applications, we envision architect-

ural-simulation-based RL approach in which agents try di↵erent hardware designs and learn to

maximize user-defined application-specific reward function. Scalable architectural simulators that

emulate novel system designs and that support modification of both programming models and

hardware organization are critical. These architectural simulators need to provide extensible and

parameterized models for the node, interconnect, and storage. In the RL-based design approach,

the RL agent will orchestrate the parameters of the node, interconnect, and storage to maximize the

reward function. We envision a codesign-specific constrained hierarchical RL in which an agent’s

actions are restricted using domain and user constraints. Consequently, agents will be forced to

find design parameters that are not only maximally impactful on diverse set of AI application

benchmarks but also close to vendor baseline and feasible to design/modify. We need to develop

multiobjective RL methods [4] that can generate diverse hardware designs with di↵erent perfor-

mance, accuracy, energy tradeo↵s for the same application benchmark. Finally, we have to scale

the RL methods on leadership-class systems to explore the combinatorial hardware design space

using the hardware simulator as the environment. A promising research avenue is explainable and

interpretable RL methods for codesign that can provide insights on the high-performing RL policies.

Timeliness: The diversity in AI hardware accelerators, DOE AI applications, and programming

models make the AI codesign an expert-driven, iterative, and time-consuming process. This issue

has the potential to hinder the development of AI hardware, software and applications, which

directly a↵ects the promise of AI-enabled scientific discovery within DOE and elsewhere. Recent

advancements in AI methods, in particular, data-e�cient domain-aware RL for design problems

and demonstrations of AI methods for hardware design [3] make the envisioned AI system a novel

and realistic approach to tame the complexities of AI codesign. The proposed approach has the

potential to revolutionize codesign for DOE AI applications by automating the process of mapping

diverse set of scientific applications to emerging AI hardware and test beds and designing hardware

for diverse set of scientific applications.
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Challenge:  The slowdown in technology node scaling has pushed computer architects to explore new 
opportunities and methods in order to provide continually increasing levels of computational 
performance.  Architectural specialization enables emerging systems to provide high performance 
within reasonable power and area budgets.  Specialization has made inroads in the marketplace, first 
with dedicated Graphical Processing Units (GPUs) and more recently with the emergence of dedicated 
Machine Learning accelerators.  While these architectures, particularly GPUs, have penetrated the high-
performance computing landscape to great effect, it is apparent that they are not silver bullets providing 
a single solution amenable to all application types.  As we move into an era in which scientific discovery 
will be driven by workloads containing computational components that span traditional HPC, data 
analytics, and AI/ML, increasingly heterogeneous architectures will be required to support such 
diversity. 

As purpose-designed architectures are conceived and fabricated, potentially using reconfigurable 
programmable logic, assessment will become a driving concern.  Such assessment will have axes of 
performance, power efficiency, and security.  A number of challenges will need to be addressed, 
including developing methods to evaluate composable IP blocks developed by third parties and 
assessment of pre-implementation designs. 
 
Vision:  Performance evaluation of high-performance computing systems has long been used in various 
stages of the design life cycle, from pre-production prototyping to large-scale deployment and has been 
effectively used in large-scale system design and the evaluation of proposed systems.  Various methods 
have been used to great effect, including low-level architectural simulation and coarse-grained analytical 
modeling.  Both approaches have benefit and are appropriate to address different concerns. 

However, reasoning about performance in the context of emerging heterogeneous architectures 
raises new challenges.  The proliferation of device architectures and capabilities makes insight into 
workload behavior difficult.  To address these concerns, the Department of Energy Office of Science 
established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National 
Laboratory (PNNL) in 2016.  CENATE encompasses an advanced architecture testbed capability that 
enables researchers to quantitatively explore performance, power efficiency, and security of emerging 
processing and system architectures. 
 
Position Statement:  A lack of concerted and focused effort dedicated to the integrated evaluation of 
emerging technologies and their impact on DOE mission areas is a notable gap that CENATE is designed 
to address.  We envision CENATE taking a leading role in an evaluation and assessment capability that 
spans the DOE national laboratory complex, as well as partners in academia and industry.  With the 
rapid emergence of new computing technologies, building an understanding of their capabilities and 
potential impacts requires coordination among all players.  Thrust areas in which CENATE has built 
capabilities that can be applied to this challenge include: 



1. Advanced technology evaluations that examine state-of-the-art advances in hardware and 
associated software on a range of testbeds, comprising both component technologies and 
scalability platforms. 

2. Measurement instrumentation for power and performance encompassing state-of-the-art 
measurement, tools, and methods. 

3. Testbed infrastructure that affords rapid evaluation of technologies. 
4. Predictive exploration combining empirical evaluation with modeling and simulation to quantify 

the potential impact of technologies on future systems and workloads. 
 
Opportunities:  A unified assessment and evaluation capability, even one with multiple components led 
by different organizations, can be a mechanism to unify a myriad of point-to-point interactions between 
the DOE, industry, and academia.  A common framework for the evaluation of advanced architecture 
designs, including those for extremely heterogeneous systems, will enable the rapid evaluation of 
architectural concepts developed within the DOE as well as by industrial and academic technology 
developers.  Computing testbeds and tools, including reconfigurable architectures, can serve as 
simulation and emulation platforms for advanced architecture concepts and enable direct evaluation of 
critical DOE workloads.  The definition of key metrics of interest will enable an exchange of assessment 
information and allow organizations across the DOE to benefit from the experiments and assessments 
conducted at a single site.  Finally, the development of methodologies to assess architectural concepts 
from the design stage through implementation will foster collaborations between national laboratory 
and university computer scientists and hardware architects. 
 
Timeliness:  For nearly two decades, the DOE and larger computing industry have grappled with the 
implications of a slowdown in technology node scaling, leading first to multi-core processing 
architectures and later into the widespread adoption of GPU architectures as primary compute engines 
of large-scale HPC systems.  More recently, the DOE Exascale Computing Project (ECP) demonstrated the 
benefit of leveraging vendor technology roadmaps toward the integration of CPU and GPU processors 
into heterogeneous system architectures.  However, with the emergence of new application workloads 
combining aspects of HPC, data analytics, and AI/ML, architectures are being driven toward a finer 
granularity of heterogeneity leveraging emerging and open System-on-Chip ecosystems that are driving 
much of the innovation seen in other computing spaces.  This raises an urgent need to deploy an 
assessment capability that can provide a quantitative understanding of how these emerging 
architectures can best be leveraged by current and future DOE workloads. 
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TOPIC: HARDWARE SOFTWARE CO-DESIGN TOOLS FOR MACHINE LEARNING

Hardware designers and software developers operate in fundamentally different ways. Hardware designers deal with highly
parallel programming constructs, optimize their designs heavily, and spend a majority of their efforts on verification. Software
developers focus on usability, fast incremental development, and integration into complex systems. By and large, hardware
and software communities have operated in isolation by using hardware/software interfaces and abstractions (e.g., ISAs).

In recent years, the line between hardware and software has blurred. “Software” companies are seeing the advantages
of developing their own custom hardware, e.g., Microsoft’s SQ2 chip. Since the hardware is designed for the application
at hand, it provides advantages in performance, power consumption, security, and cost. Furthermore, the emergence of
open-source hardware designs, languages, and abstractions have made hardware design easier. Despite all these in-roads,
hardware design still remains challenging.

Machine Learning (ML) applications exemplify these challenges. ML is a must-have for software companies. For ex-
ample, 70% of Google revenue is from ML targeted advertisements. ML algorithms are highly parallel and good targets for
specialized parallel hardware. But, creating optimal ML hardware designs is difficult because the hardware design space is
not considered during ML algorithm development. The ML algorithm design space is high in dimensions, with many viable
network architectures, hyperparameter settings, and optimization approaches (e.g., pruning and quantization). Traditionally,
software companies meticulously search this space using high level ML frameworks like PyTorch and Tensorflow to meet
their accuracy requirements. These frameworks however largely abstract away and ignore the multi-dimensional space of
hardware architectures (e.g., memory bandwidth and hardware precision). ML developers leave it to the hardware spe-
cialists to take their finished ML applications as they are and optimize their performance for hardware. This approach is
problematic. Because ML frameworks do not take the hardware design space into account, many of the ML models are de-
veloped at the expense of hardware. It is only possible to efficiently design hardware for a ML application if the ML algorithm
design space is co-explored with possible hardware mappings.

The traditional approach of isolated software and hardware development suffers from this major challenge: Since soft-
ware developers have already fixed the dimensions of the ML algorithm design space by the time hardware developers
receive them, the hardware design space cannot be effectively explored to achieve hardware-efficient designs.

CHALLENGE: EFFECTIVE DESIGN SPACE EXPLORATION

State-of-the-art ML applications are complicated, with thousands of dimensions and millions of weight parameters. It is
difficult for application developers to understand the impact of their design decisions on hardware performance. Similarly,
it is difficult for hardware developers to understand the impact of their decisions on algorithm accuracy. Without feedback
between each other, it is not possible to explore the application design space with respect to both the software and hardware
intelligently.

Recent developments have sought to effectively and efficiently map neural networks to hardware. Proposals have been
made by both hardware and software oriented groups, with mixed results. FINN is a open source framework initially de-
veloped by the hardware company Xilinx [5]. FINN is an end-to-end tool that generates hardware accelerated inference
networks for Xilinx FPGA platforms, and is focused on quantized neural networks. The tool is implemented using Python
and Vivado HLS and has interfaces to high level ML frameworks such as pytorch. The benefit of this is that hardware
performance is exposed to the algorithm development environment. Although FINN is capable of generating highly optimal
designs, it is not well suited to design space exploration. Modifying a network requires domain specific hardware knowledge.
In our experience, any modifications took several months for PhD and Postdoctoral students to make.

hls4ml is another end-to-end Python tool for generating accelerated inference networks, but was developed by a con-
sortia of software-centric academics [1]. hls4ml has a broader support for ML network designs compared to FINN. It is also
better documented, leading to shorter development times. However, hls4ml relies on Vitis®to map its generated quantized
network IP cores to a Xilinx FPGA and is less optimal. Conversely, FINN expects the user to manually configure a network
mapping on the FPGA.

Although these state-of-the-art ML frameworks bridge the gap between application and hardware design, the status quo
end-to-end paradigm is limited. Existing tools lack feedback cues between the ML and hardware mapping steps, or lack
knobs to tune hardware mappings. Consequently, the end-to-end flow cannot inform iterative exploration of the complete
design space, costing many development hours on both the software and hardware side. What is needed is a framework
with a more informative feedback loop from the hardware tools to the algorithm developer, with more intuitive (ML-specific)
hardware map tuning knobs.
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OPPORTUNITY: APPLICATION-SPECIFIC FEEDBACK TOOL FOR DESIGN SPACE EXPLORATION

State-of-the-art ML application hardware mapping is done using High Level Synthesis (HLS) compilers. Although HLS has
long sought to bridge high level application specifications to hardware mapping, HLS compilers are unwieldy tools. HLS
primitives are highly granular so that HLS can be applied to a broad spectrum of application classes. Unfortunately, the
consequence is that domain-specific hardware design knowledge is required to describe and schedule ML primitives using
HLS tools. This presents an opportunity to develop ML-focused tools that allow co-exploration of the algorithm and hardware
design spaces.

We want to “lift” the hardware design-space exploration to the software or even the algorithmic level to make hardware
software co-design more commonplace. Without exploring the hardware architecture implementation specifics, design
choices made using high level ML frameworks to improve model performance can turn out to be unexpectedly costly during
hardware deployment. For example, although Resnet-a-like networks have good training speed thanks to gradient highways,
they can cause major challenges when trying to realize efficient hardware implementations. Naive skip connections waste
resources due to large buffers required to accurately represent the network, but the connections may not even be necessary
to achieve acceptable results.

Such pitfalls could be avoided with a tool that gives machine learning developers access to various algorithmic, software,
and hardware knobs that they can tune whilst they develop their ML algorithms using an enhanced end-to-end flow. Some
example knobs follow in Table 1:

ML Knobs hyper-parameters model parameters / topology time to convergence model sparsity quantization

HW Knobs memory bandwidth power requirements resource utilization throughput

Table 1: Hardware Software Co-design knobs that could be exposed to ML algorithm developers

MATURITY: REMAINING GAPS IN ML SPECIFIC DESIGN SPACE EXPLORATION APPROACHES

Recent advances in Neural Architecture Search and adjacent research areas offer steps towards such an all-encompassing
tuning tool [3, 4, 6]. For example, [4] introduced Adaptive Threshold Non-Pareto Elimination (ATNE), which is a design
space exploration framework that uses machine learning to tune various OpenCL-to-FPGA knobs (such as unroll factor and
number of SIMD lanes) to automate finding Pareto-optimal designs for a given high level application. This demonstrates
how a smart Hardware Abstraction Layer (HAL) can optimize hardware using a set of abstract design knobs and insulate
the application developer from needing to understand how to make progress towards an optimal hardware mapping.

Although promising, these works are hampered in ML applications because the HAL is not capable of optimizing the
ML network topology. In other words, they do not provide ML network optimization hints to help the application developer
explore the hardware design space as well.

Neural Architecture Search has recently been extended to find hardware and resource friendly ML network designs, as
seen in [2]’s Lamarckian evolutionary algorithm for multi-objective neural architecture design (LEMONADE) algorithm. In
Elsken’s work, hardware architecture is assumed fixed, and a subset of ML design knobs from Table 1 are explored by the
LEMONADE algorithm. This work represents the “top down” counterpart to “bottom up” approaches such as ATNE that
conversely assume the ML design is fixed and explore the HW knobs in Table 1.

Bridging the gap between works such as LEMONADE and ATNE is an exciting prospect that would enable co-exploration
of the ML algorithm and hardware design space. Success in this area would streamline the development of some of the
most widely used applications today. ML application developers would be provided with the tools they need to develop
hardware-friendly networks, and hardware specialists would be able to make informed optimizations to these networks.
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Abstract—This position paper proposes enhancements to the 

successful codesign methods employed during the last decade of 

DOE programs including the Exascale Compute Project (ECP) 

and related research programs (DesignForward, FastForward, 

PathForward).  

I. INTRODUCTION 

Computing systems ranging from low-power sensors to 
supercomputers require significant advancements in 
performance, power efficiency, and programmability to extend 
innovations in science, manufacturing, medicine, and national 
security into the post-exascale era. The country’s future 
scientific leadership, security, and economic growth depend 
directly on continuing the advancement of our computational 
capabilities and maintaining high-performance computing 
(HPC) leadership. Although computing systems have seen 
significant advancements over the decades, the future of 
American computing leadership has been called into question 
due a combination of the growth of foreign computing 
capabilities, scarcity in the necessary technical human skills, 
exploding software complexity, rapidly increasing power 
consumption, and fundamental physical limits with transistors 
reaching atomic scale [1]. 

The U.S. Department of Energy (DOE) exascale program 
investments were critical in fostering codesign methods that 
address these challenges and maintain rapid innovation. 
Scientists and system architects in DOE and industry have 
shared knowledge, allowing industry specialists to gain deep 
insights into DOE problems at the national labs and to design 
systems that accelerate the execution of unique scientific 
applications. Specialization will continue to be one of the 
methods used for advancing the performance of scientific 
applications in the face of declining performance gains due to 
slowing of Moore’s Law and increasing system complexity. 
Increased investment in codesign can maintain performance 
gains of prior decades by addressing these challenges. 

II. CHALLENGES TO CODESIGN 

After nearly a decade of successfully employing codesign 
with members of DOE, we have identified several challenges 
that need to be addressed to handle the increasing complexity of 
DOE missions and to maintain US HPC leadership into the 
coming decades.  

A. Proxy application overhead and inaccuracy  

Proxy applications have been used to characterize the 
behaviors of scientific applications and datasets without 
exposing potentially sensitive details about individual actual 

applications or their data. Unfortunately, developing proxy 
applications is time consuming and the result has inherent 
inaccuracies as they alter certain characteristics of the actual 
applications. In some cases, a proxy application needs to be 
ported to new accelerators, which comes on top of the cost of 
porting the actual application itself to such accelerators.  

Because the proxy is not the actual application, it will not 
fully characterize the behaviors of the original application. 
Proxy applications focus on the high-cost characteristics of an 
application, and are often biased toward the computationally 
heavy aspects, potentially under-representing the data 
movement, code footprint, and communication overheads seen 
in actual applications. A proxy is intended to quantify 
performance enhancements that would potentially benefit the 
actual application. However, a proxy is only designed to 
measure improvement in the bottlenecks it embodies and will 
fail to show enhancements outside of its implementation. 

B. Pairing expertise 

Furthermore, the needs of application developers are 
increasingly varied, such that no single computing architecture 
can optimally address the diverse set of application 
requirements. Architects need to work with application 
developers tightly and iteratively to design semi-custom systems 
or influence general purpose systems to meet the developers’ 
needs. Pairing the specific application developers with engineers 
who can design solutions becomes challenging due to the size 
and complexity of government and industry organizations. 

III. FUTURE OF CODESIGN 

Addressing these challenges requires increasing the 

investment in codesign to deepen the understanding of 

application behaviors on current and future compute 

architectures. New analytic tools and artificial intelligence (AI) 

can be employed to increase the efficiency of scientists and 

engineers in the codesign of high performing solutions. 

A.  Instrumentation of runtime systems 

Rather than investing time and resources into developing 

inherently inaccurate proxy applications, future HPC systems 

can include additional hardware instrumentation and analytics 

to increase insights without diminishing the performance in 

deployed systems. Through instrumentation within systems that 

are currently deployed, the DOE can capture the actual 

behaviors of existing applications including their computation 

and memory movement patterns and actual resource 

contentions.  



In the past, hardware monitoring via performance counters 
has provided limited insights into “hot spots” where 
performance is noticeably high (or low), but it has been left to 
human architects and developers to hypothesize the cause. 
Increasing the information collected and performing statistical 
and machine intelligence-enabled analysis within the hardware 
itself can increase the fidelity of observed performance and 
identify likely causes and relationships of the observed 
performance phenomena.  

Codesign is needed so that scientists can validate that certain 
behaviors are captured by increased embedded instrumentation. 
In addition, alleviating identified bottlenecks will continue to 
require codesign to weigh the tradeoffs of prospective solutions. 

B. Intelligent application behavior analysis 

Codesign should be facilitated by intelligent software that can 
identify performance problems and likely causes. Tools that can 
predictively characterize an application across a variety of 
heterogeneous architectures would allow codesigners to rapidly 
narrow in on the most promising approaches, and perhaps even 
consider design directions that would not have been initially 
imagined. 

Ultimately, the optimizations that codesigners identified 
may become automated into the runtime of systems. Developing 
intelligent system management will require collaboration 
between component suppliers (processors, memory, networks), 
system integrators, datacenter operators, and possibly 3rd-party 
software operating system and system management software 
suppliers. No single entity can do this alone. 

To keep track of the current state of the hardware and 
software operations, self-managing systems will likely require 
feedback from various levels of the system. We envision a 
hierarchical flow comprising various sensors for fast-changing 
attributes like temperature, power, performance counters, 
compute and data movement intensity, network performance, as 
well as slower loops for reliability, aging, etc. 

C. Simplifying programming complexity 

As systems increasingly combine heterogeneous processers 
and accelerators, the task of programming becomes increasingly 
complex. Developers need to map their applications to data 
models, instruction sets, and compute paradigms for a multitude 
of processors. Codesign teams can alleviate some of the 
complexity by designing micro-architectures, software 
abstractions, and intermediate representations that parallel the 
problem domain optimally. In some cases, instruction set 
architectures (ISA) can be extended to map more closely to 
application paradigms and provide optimal performance or 
facilitate the development of reusable libraries that can benefit 
multiple application domains. For other cases, the introduced 
abstraction layer could map well to the problem domain. For 

certain application domains, the data structures and operations 
of application developers can be facilitated in software as well 
as mapped to hardware via intelligent compilers and runtime 
layers. 

AI tools can also provide a boost in automating or semi-
automating the transformations between a domain 
representation of an application and the machine execution of 
the solution across a variety of different architectures. Such AI 
support systems need to be codesigned to combine the expertise 
of application developers, runtime software and system 
architects. 

D. Open Innovation  

Another element of successful innovation is to embrace open 
innovation across public, commercial, academic, and non-profit 
institutions to expand the pool of ideas that contribute to 
innovation. Open innovation involves the fostering of open and 
non-proprietary standards and interfaces by which components 
can interoperate, allowing suppliers to focus on innovations in 
their specific value-added specializations. Open standards help 
amortize public investments because compatibility with open 
standards enables solution providers to sell into a larger 
ecosystem than a government-specific or otherwise propriety 
standard would provide. Related to open standards, open-source 
software provides an ad hoc form of standardization that can be 
steered by a community of contributors including public entities.  

IV. CONCLUSION 

Codesign has been highly effective in the recent design of 
HPC systems by providing a user-centered approach to identify 
requirements and to prioritize tradeoffs that drive innovation.  

To build on the successful foundation of codesign over the last 
decade, it is vital that funding programs focus on ongoing, 
stable, and long-term efforts. Government funding and planning 
should intercept the planning cycles of both government and 
industry entities to maintain institutional knowledge and 
continuous innovation. The increasing difficulty of achieving 
performance gains in the post-Moore’s Law era will require ever 
more complex solutions and necessitate increased investment to 
produce a codesigned series of increasingly advanced systems 
on a competitive timeline. 
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From mobile phones to supercomputers, we are seeing a
rise in the use of heterogeneous architectures. The mod-
ern systems combine general-purpose processors with
GPUs, FPGAs, application-specific chiplets, and special-
ized hardware accelerators [1, 2]. Application-specific
acceleration in these systems has led to improved per-
formance. However, power consumption continues to
be a major challenge for chip designers [3], and there is
a need for non-traditional innovative design technolo-
gies which can reduce power consumption while main-
taining or improving performance. These approaches
will help design not just energy-efficient application-
specific chiplets for HPC but also resource-constrained
edge devices such as near-sensor processors, both of
which align well with the DOE’s vision.

Majority of the computing systems that we see
around us use a conventional synchronous design ap-
proach, as shown in Figure 1. In these systems, a single
clock drives all the processing elements and the memo-
ries. For years, the designers have relied on increasing
the clock rate to deliver high performance but now
we have hit a power wall, where the clock rates have
saturated [3]. The reason the clock speeds cannot be in-
creased any further is that it leads to significant increase
in chip power (𝑝𝑜𝑤𝑒𝑟 ∝ 𝑐𝑙𝑜𝑐𝑘_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) which in
turn can cause thermal and reliability issues. Another
limitation of conventional synchronous approach is that
the clock rate is determined by the slowest component
of the system, which may not be optimal, especially for
heterogeneous systems where the processing speeds
of different units vary significantly. Finally, as the sys-
tem complexity increases, connecting a single clock to
all the cores of a system complicates physical design
process and drives up the cost.

An alternative to synchronous technology is asyn-
chronous design. Systems using this technology elimi-
nate clock and instead use handshaking between the

Figure 1: Conventional synchronous design

Figure 2: Alternative asynchronous design

various processing elements, as shown in Figure 2. Such
handshaking signals use request and acknowledgement
signals for data transfer. These designs have several po-
tential advantages [4]: (i) low power as there is no clock
switching power as well as due to their data-driven
operation that leads to dissipating power only when
the design is active and not when it is idle. In con-
trast, synchronous designs can burn power even when
idle; (ii) performance is average-case as it is not lim-
ited by the slowest component; and (iii) allows object-
oriented style of integration of a variety of synchronous
processing units, each operating at different clocks,
using an asynchronous interconnect. This paradigm
is commonly called as globally-asynchronous locally-
synchronous (GALS) systems, as shown in Figure 3.



Figure 3: A GALS system

Asynchronous and GALS systems have seen an in-
creased interest recently from both academia and indus-
try. Nvidia’s introduced a 4𝑚𝑚2 GALS chip for internet-
of-things (IoT) applications [5]. Qualcomm showed
that an asynchronous on-chip network can lead to
24% reduction in system latency compared to a syn-
chronous network [6]. A collaborative study between
AMD, Columbia University, and University of Ferrara
demonstrated that an asynchronous on-chip network
router outperforms a state-of-the-art AMD synchro-
nous router in 14nm FinFET technology: 55% area reduc-
tion, 28% lower latency, and 58% lower power [7]. Ful-
crum (acquired by Intel) has produced high-speed asyn-
chronous ethernet switches that support up to 640 Gbps
bandwidth [8]. Furthermore, asynchronous has also
shown promise for emerging neuromorphic chips for
spiking neural networks, such as Intel’s Loihi asynchro-
nous chip integrates 128 cores, each modeling 1024 neu-
rons [9]. Loihi supports real-time learning and has been
used for a variety of applications such as robotics, and
sniffing out hazardous chemicals. Asynchronous and
GALS technology has also been used to develop ultra-
low-power brain-computer interfaces [10]. Finally, a
recent work also showed asynchronous deep neural
network accelerators outperform synchronous DNN
accelerators by 4.7× in terms of energy efficiency [11].

Given the advantages of asynchronous technology
in terms of power and performance, and the recent
uptick in its use in industrial chips, we envision that
the future edge devices, such as near-sensor processors,
as well as computing and networking nodes of the next-
generation heterogeneous HPC systems will benefit
from adopting this design technique. There is a need
for the national labs, industrial vendors, and academia

to come together and explore asynchronous design to
develop highly energy-efficient systems to accelerate a
variety of scientific applications.
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High performance computing (HPC) systems are the
backbone for cutting-edge scientific research. These
systems are used for a diverse set of applications, such
as first principles physics simulations, quantum al-
gorithms, environment research, and drug discovery,
e.g. [1]. HPC applications, already diverse by the na-
ture of the scientific phenomena being modeled, have
become even richer in algorithmic diversity by incorpo-
rating machine learning (ML) models, for example to to
approximate complex physics models [2] or to predict
the candidate antiviral agents for vaccines [1].

To enable fast simulation of a variety of scientific ap-
plications, including ML-integrated workloads, we en-
vision the next generation of HPC systems to embrace
heterogeneity. These systems are expected to encom-
pass not just server-grade processors but also leaner
general-purpose cores, GPUs, FPGAs, as well as special-
ized hardware accelerators for ML [3]. These systems
will also benefit from integration of different mem-
ory technologies, such as non-volatile memory that
can deliver more storage capacity at lower power than
DRAMs [4], beneficial in data-rich ML workloads. In a
step towards heterogeneity, HPC clusters commonly in-
tegrate GPUs [5], and in some cases, FPGAs [6] and ML
accelerators [7]. Some of these systems also integrate
non-volatile memories and high-bandwidth memories
(HBMs) with mainstream DRAMs [5].

Designing the next-generation heterogeneous HPC
systems is a challenging task due to their intractably
large design space. This space will include many de-
sign parameters: number of processing cores per com-
pute node, cache sizes, number of GPUs and number
of streaming processors in a GPU, GPU memory size,
number of multiply-accumulate units and scratchpad
memory size in ML accelerators, amount of non-volatile

vs. volatile memory, intra-node bus bandwidth, and
many more. These systems also need to be optimized in
terms of multiple objectives: performance, power, area,
as well as cost. Manually tuning the design parameters
to find the optimal HPC configurations is not tractable
and would require an intelligent and efficient early ar-
chitecture design space exploration (DSE) approach.

While there has been prior research on DSE for HPC
systems, these works have only targeted a limited de-
sign space. The design parameters focused are either
for processing architecture such as number of cores and
cache sizes [8], or for memory technology that tries to
find an optimal combination of emerging memories for
HPC [9, 10]. However, to design the next-generation
heterogeneous HPC systems, a comprehensive DSE is
required that combines design parameters from com-
pute processors, memories, as well as interconnects.

Given this huge design space and multiple target
objectives, we envision an ML-based DSE approach,
which we call Auto-DSE4HPC, as shown in Figure 1.
This framework will automatically explore the compre-
hensive heterogeneous HPC design space and rapidly
converge to optimal hardware configurations. We be-
lieve that ML algorithms, such as Bayesian optimization
(BO) and reinforcement learning (RL) that have been
widely-used for systems-on-chip DSE [11–13], will be
good candidates for Auto-DSE4HPC. These algorithms
can efficiently tune the various design parameters in or-
der to co-optimize multiple objective functions such as
application throughput, system power, and area. These
objectives can be evaluated using an HPC system archi-
tecture simulation toolkit (such as structural simulation
toolkit or SST [14]) that can run the target scientific
applications for the different ML-selected hardware con-
figurations. Both BO and RL have been shown to be very



Figure 1: Envisioned Auto-DSE4HPC framework:
a conjunction of ML-based optimization al-
gorithms with state-of-the-art HPC architec-
ture simulation toolkit. ML algorithms such as
Bayesian optimization and reinforcement learn-
ing will tune the various design parameters and
learn their effect on the target objective func-
tions, eventually converging to a set of optimal
HPC hardware configurations.

effective for black-box optimization, and can achieve
faster convergence (i.e., requiring less number of ex-
pensive HPC architecture simulations in the loop) com-
pared to other traditional approaches such as Genetic
algorithms [11, 15].

BO typically uses probabilistic models such as Gauss-
ian processes as the learning model to learn the effects
of different design parameters on the HPC power and
performance, followed by predicting the optimal design
configurations. RL, on the other hand, uses a reward-
based system that learns a policy that can predict the
optimal configurations. Recently, there has been a rise
in the use of deep neural networks as RL policies. It will
be interesting to compare BO and RL in Auto-DSE4HPC
in terms of amount of training data required, quality of
solutions found, and convergence time. To build Auto-
DSE4HPC, as a first step, several industrial and aca-
demic BO and RL tools [16–18] are publicly available
that can be interfaced with the state-of-the-art HPC
simulation toolkits.

We expect Auto-DSE4HPC will greatly simplify the
DSE cycle, and help answer the following questions
about the designs of the next-generation HPC systems
for the target scientific applications: (i) what collection
of processors, GPUs, specialized hardware accelerators
in the compute nodes lead to best performance-per-
watt?; (ii) what are the optimal micro-architectures for

these processing units?; (iii) what is the best network
architecture for intra-node, inter-node, and inter-rack
connections; and (iv) does integrating different mem-
ory technologies in the memory hierarchy (both at the
node-level and rack-level) improve application perfor-
mance while lowering power and area? To build this
comprehensive Auto-DSE4HPC framework and use it
to design the future generations of HPC systems, we
will need close collaboration between national labs,
academia, and industry.
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Challenge:
Over the last decade codesign has largely been an engagement between the software (e.g., applications,
compiler, OS) and hardware architecture communities. The middleware that handles system and resource
management, operational data analytics, and resiliency processes, though extremely critical to efficient
system and application operation, continues to face challenges with respect to scale, performance, and
interoperation with the rest of the system. These types of critical middleware need to be included as an
integral part of the codesign process to ensure that next generation systems can best exploit the
advanced features presented by new hardware technologies and application software.

One such example is resource management whose somewhat static nature coupled with the typically
homogeneous nature of HPC computing resources has been largely left out of codesign processes. An
increasingly urgent problem, articulated in the 2018 Heterogeneity ASCR report, is that the heterogeneity
of current and future architectures does not lend itself to efficient utilization when the characteristics of
available resources and the low-level needs of user applications, which may change over execution time,
are not known by the scheduling and resource management software. Current codesign approaches do
not focus on exposing the dynamic needs of applications or resource conditions. Nor do they provide
hooks for feedback that would enable dynamic reconfiguration in the face of faults, degraded
performance, or changes in application demands.

Another example is fault handling which could vastly improve overall system performance and efficiency if
included in codesign efforts. An example might be thresholding timeouts between middleware
components in a sensible way, or allowing them to communicate effectively: If a filesystem high
availability component (e.g. Lustre) is in the process of failing over, there is no guarantee that the next
layer up (e.g. MPI) will wait appropriately before deciding that it will never return. Thus, a mechanism for
the filesystem to indicate “hey - I’m failing over, and will be right back” could preempt a full application run
failure. While this describes just two adjacent layers, such communication and response could extend
down to the hardware and up to the application itself.

Addressing the problems depicted by such examples has predominantly been the domain of the
operations community. Their inclusion in the codesign process would bring unique insights of production
scenarios and approaches to solutions. Improving system management through inclusion of operations
domain knowledge into codesign efforts can yield great returns since even the best hardware-informed
application design will be less performant when impacted by poor resource allocation or suboptimal
resiliency mechanisms. Since typical systems run at 100% capacity, substantially increased throughput
on existing systems can be gained through more intelligent operations.

Opportunity:
Research challenges in this area span a broad range of middleware and edge tools and their interactions,
so there is broad opportunity to innovate new services, APIs, and standards that better help these layers
communicate with each other, the system, and services relaying the system state. Though much effort
has already been poured into capability enhancements of each of these layers independently, it is, in
many cases, blunted by an adjacent layer making ineffective use of a feature, a divergent standard for
communication, or even just poor assumptions coded in that worked at the time of development. The
opportunity exists to take a more holistic approach to improving a system already comprising
interdependent software components that can be made more capable, reliable, and even performant
through more effective communication among these components. This could take the form of earlier
examples such as application-to-resource steering and sensible fault-handling logic, or leveraging metric
and event data to drive intelligent service responses. An example might be as simple as having a



scheduling component pause itself during certain system conditions or events, or as complex as Machine
Learning (ML) pattern identification to help pinpoint misbehaving applications or hardware resources. New
tools and new collaborations among application developers, analytics developers, the modsim
community, hardware developers, and, newly, operations staff will be required.

Significant new capabilities for interaction and response across a broader set of system components and
software than has been addressed in previous codesign efforts will need to be developed. Research is
needed to innovate on designs and to assess tradeoffs. A set of monolithic services may be simple to
design, but may have little flexibility. A loosely-coupled federation of “self-aware” distributed services that
interact directly with each other have more flexibility but will be far more complex to design and validate.

Enabling dynamic adaptation of resource allocation to meet application needs will require a complete
redesign of scheduling/resource management and of application data exposure and feedback potentials.
Resource components do not currently have a system view and have no concept of their inherent
capabilities. Characterizations of resources’ capabilities need a shared language with applications and
may need external measurements to provide them with a view of current headroom and possible
contention through affiliations (e.g., a host may have its resources completely free but be connected to
the system through a congested network switch; a host may have free GPUs but those in use are fully
utilizing other subsystems and thus sharing additional GPUs would result in contention and degraded
performance; likewise, memory capacity may be available while memory bandwidth is completely
subscribed).

Timeliness or maturity:
The scenario of increased component heterogeneity and the desire for a richer environment with support
for dynamic interaction between services, resources, and applications has existed for some time. What
makes this an exciting time for tackling the problem through new and expanded codesign efforts is that
hardware vendors and application programmers/users alike have accepted that we can no longer run
these systems and components as black boxes due to complexities of hardware, system software,
middleware, and application software, especially when coupled with extreme scale. Increases in scale
have also magnified some small, ignorable problems of the past into large problems of the present.

To enable improvements in operational efficiency, both hardware and software developers have vastly
increased the level of instrumentation across all components. HPC monitoring has correspondingly
advanced its capabilities in lightweight and efficient methods of gathering, transporting, and exposing raw
and processed information. These can be leveraged for additional purposes as well. For example,
application data can be exposed by programming abstraction layers and transported by these
mechanisms, as can be feedback directives to new hooks within the layers. Placement of such
communications within the abstraction layer can enable interactivity with a wide variety of applications
without requiring per-application changes. New open source hardware development efforts will provide
new opportunities for the wider community to develop and expose telemetry data and hooks for feedback.

Advances of recent years in analytic methods, including ML, can enable distributed run time
determination of best-fit resources for concurrent applications and of when to most effectively trigger new
application-to-resource mappings from richer and larger datasets. Such analyses can be placed more
broadly throughout the system due to increased capabilities for processing, such as high core counts and
low-latency local storage. Moreover, new ML techniques like transfer learning, may make development of
analytics for different architectures and applications tractable, and increasing emphasis on explainable
ML may make automated architectural and high consequence resource decisions acceptable.

These current and potential advances comprise all of the elements required to create a self-managing
and self-optimizing HPC ecosystem. Success will require developers in all of these areas to work together
to iterate on the details of instrumentation, analysis, communication, and configuration. The impact of
success in this codesign effort will be truly scalable and resilient orchestration of system components, of
applications and workflows that are becoming increasingly complex and dynamic in their demands, and of
resources that have additional constraints, possibly artificial. It will also enable deep insight into how to
optimize resource procurements for next generation systems.
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A. Topics: architectures, applications, codesign methodologies.
B. Challenge: data transition and movement in complex heterogeneous systems.

Coherent cache memory has been indispensable in multi-core architectures for many decades. The
cache subsystem facilitates multi-core system programming and allows developers to focus on other
crucial aspects of parallel system performance. However, due to the extensive protocol-related traffic and
lack of explicit data movement management, cache memory scalability as well as its use in extremely
heterogeneous systems is a big concern. Moreover, the complexity of coherence protocols makes it very
hard to evaluate data transition and movement using the existing tools, and inhibits our ability to make
significant advances in the future.

Figure 1 shows an example of the data state transition and movement from a small scale (Figure 1.a)
to a large scale (Figure 1.c) scenario. Even in the single-CPU system, data can exist in mutiple states
across the system and constantly changes over time depending on algorithm nature, hardware resource
utilization and various data movement protocols. Tracking these changes to better understand the patterns
and use it to improve system performance and efficiency is an extremely challenging task that cannot be
done without complex codesign tools.
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Fig. 1: AI-enabled control for Data State Transition and Movement: a) Simple single-CPU system. b)
Cache Data States with MOESI coherency protocol. c) Complex heterogeneous multi-PU system. d)

Data States changes over time, AI analysis and control for enhancing protocol and interconnect traffic
for complex systems.

C. Opportunity: open-source hardware and software, advanced ML and AI techniques.
Over the past decade, various open-source hardware projects, e.g. the Rocket Chip Generator [1], ap-

peared and changed the landscape of the architecture research and academia-industry engagement. Namely,
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Open Cache Coherency (Open2C) [3], demonstrates a novel methodology for architecture exploration of
cache coherence mechanisms. Open-source hardware gives access to the low-level data for detailed analysis
and control. Thus, the data transition and movement challenge in the era of extreme heterogeneity and large
systems can be addressed using novel approaches, i.e. Machine Learning (ML) and Artificial Intelligence
(AI), creating new opportunities for software-hardware codesign.

ML and AI is a known method to finx patterns in complex data sets. Moreover, novel AI techniques,
such as deep reinforcement learning (DRL) [5] can be used for complex decision-making in an uncertain
environment. An artificial agent may learn by interacting with its environment, similarly to a biological
agent. Using the experience gathered, the artificial agent should be able to optimize some objectives given
in the form of cumulative rewards. Recent studies describe how ML can improve on-chip communica-
tion [6] that shows growing interest and potential for significant impact of ML/hardware combination in
the future.

Figure 1.d illustrates an example of AI-enabled analysis and control for data transition and movement
with the cache data state (e.g. tag array cache line state according to the coherency protocol) that change
over time. AI can detect hotspots in data states and provide feedback to the protocol improving inter-unit
communication and hardware resource utilization.

D. Timeliness or maturity
The development and codesign of open-source hardware only recently become possible thanks to recent

advances in high-level Hardware Description Languages (HDL) such as Berkeley Chisel [2] or PyRTL [4].
Until recently, HDL models have been considered extremely time-consuming because of the language
complexity and amount of effort required for model implementation and debugging. New languages offer
additional functionalities coming with functional- and object-oriented programming paradigms. With the
novel capabilities, these tools can be integrated into complex software-hardware codesing workflows
together with the ML and AI tools.
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Topic: Architectures, Emerging technologies 
 
Challenge 
Data movement in high performance computing (HPC) continues to be a challenging issue today and is 
on track to become even more complex in future systems. HPC systems are becoming increasingly 
heterogeneous in their compute elements with CPUs, GPUs, and special-purpose FPGAs. As a result, the 
memory locations that buffer for data for processing are intrinsically heterogeneous. In addition, storage 
devices themselves are becoming heterogeneous, with new non-volatile and memory-class memories, 
although traditional parallel file systems are here to stay as capacity storage. Software that manages each 
of these memories and storage devices are diverse, i.e., memories are managed by processor hardware and 
operating systems, whereas storage devices are managed by parallel file systems.  

Applications are not currently designed with this complex memory/storage hierarchy in mind and 
typically offload data to persistent storage in a generic manner, very similar to their traditional 
interactions with POSIX-based file systems.  Needless to say, the lack of information from the application 
about how important and persistent its data is presents challenges to storage system stack. High- and low-
level I/O middleware, such as HDF5 and MPI-I/O, attempt to gather enough information to perform I/O 
operations efficiently, but are not able efficiently leverage the storage system without more information 
about the data from the application, as well as more information about the storage stack from the system.  
All these layers, applications, memory management, I/O middleware, parallel file system, and the HPC 
system itself, must collaboratively build better models of where, when, and how to move data to satisfy 
the needs of application users. A co-design effort is essential to utilize the capabilities of heterogeneous 
memory and storage devices to their full potential. 

Opportunity 
Future application co-design must focus on data movement as much as compute efficiency. Energy costs 
for data movement are a growing factor in system design, and are projected to be the dominant factor in 
the future as benefits from Moore’s Law decrease density increases per silicon die and future system 
performance gains will likely be made through adding more cores, with corresponding increases in 
interconnections and therefore data movement [1, 2]. 

We propose three areas of focus for data movement co-design: 
1. Application Guidance and Input - Applications, whether simulation, experimental / observational 

data focused, or AI-based, must add more information to their data movement requests.  No 
longer can an application just make a POSIX ‘write’ call to send a buffer to persistent storage.  
The application should describe the importance and persistence of the buffer to the data 
movement middleware and participate in negotiating shared ownership of system resources like 
compute-local memory, system interconnect, node-local storage, and in-network compute with 
the storage middleware. Interfaces are needed for applications to express the data movement 
irrespective of heterogeneous end-points.  

2. Data Movement Middleware - High- and low-level data movement middleware, similar to 
today’s I/O middleware such as HDF5 and MPI-I/O, must expose a more flexible set of options 
for applications to choose from. These could include synchronous vs. asynchronous I/O, 
borrowed, shared, or transferred ownership of memory buffers, mechanisms for recognizing data 
importance and persistence priorities, etc.  Storage middleware must also query a system’s 
configuration: What layers are there in the memory and storage hierarchy?  How much space is 
available in them?  How are those layers connected and how fast are those connections?  Only 



when these questions can be answered will the storage middleware be able to optimize data 
movement for the application.  

3. HPC Runtime Systems -  Runtime systems that schedule data movement, manage available space, 
and place data closer to analysis capabilities can achieve high efficiency, but the systems’ 
memory/storage hierarchy must also become “introspectable” and “programmable”.  Data 
movement middleware must be able to retrieve the system’s configuration, both statically (to 
know maximum capabilities) and dynamically (to adjust data movement according to current 
system load).  In addition, flexible and programmable capabilities to transfer data between all 
layers of the system’s memory/storage hierarchy must be exposed for the storage middleware to 
leverage as needed. 

 

As the diagram above shows, future HPC systems’ memory/storage hierarchy will have many “moving 
pieces” and will need careful optimization in a concerted and organized way.   Application developers 
alone will not wish to invest the required effort involved to wring the best performance possible from 
complex storage systems as their changes will require rework when porting to a new system.  System 
vendors also don’t have a vested interest in building portable data movement middleware that might 
benefit competitors in the field. 

Instead, this era will see the rise of data movement middleware that provides a rich and flexible interface 
for application developers to express their data movement desires and will also query the system’s 
memory/storage hierarchy for all the information needed to fully carry out those requests.  Indeed, the 
“data movement middleware” that is required to help application teams and system vendors extract the 
maximum benefit from the underlying system will no longer be focused on merely accessing “stored” 
data - it will instead be tasked with the entire, complex, data movement process, from RAM to tape and 
the cloud, and all steps along the way. 

Timeliness: These data movement codesign efforts will turn the typical compute-focused codesign effort 
on its head - compute may play a secondary role to the overall optimization of getting data back to 
science teams in an efficient, timely, and easy-to-manage way.  Only now, in the last days of Moore’s 
Law, are the costs and importance of optimizing for data movement being revealed and coming to the 
forefront of codesign. 
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Open, Modular, Flexible and Composable 
Domain Specific Computing


TOPIC : Hardware Architectures

Challenge 


As the computing industry transitions to “Domain Specific Architectures”1 we’ve seen the industry 
explore disaggregation and composability at both the 19” Rack Level and the Chiplet Level. However, 
innovation is seriously lacking in between these two extremes. 


The 19” rack will be 100 Years old next year after AT&T established the standard in 19222 and during 
those 100 years, we’ve seen technology relentlessly shrink. Today we see the “Domain Specific 
Architecture” challenge addressed with disaggregation of  the Compute, Memory, Networking and 
Storage at the 1 or more Rack Unit, U, level. 


At the other end of  the scale we are seeing the Silicon industry tackle the “Domain Specific 
Architecture” challenge with multiple Chiplets in a substrate with 2D, 2.5D and now 3D innovations. 
These devices are significantly increasing Power In and Thermal Management requirements, as well as 
delivering IO speeds >100Gbits/s/lane with their associated signal integrity and power challenges. 


It has become increasingly stark that our industry requires new system level modular solutions that truly 
allow for full composability with the highest performance, best efficiency and lowest cost possible. The 
biggest challenge the industry faces in achieving this is in how to collaborate across the entrenched 
industry standard Silo’s that have been established with today’s large incumbent players. Our industry 
needs to Reimagine how to CoDesign across these Silo’s in order to innovate revolutionary hardware 
architecture solutions that are correctly tailored to the needs of  a “Domain Specific Architecture” world. 


Opportunity

We have an opportunity to restate the physical building blocks of  computing such that we can 
dramatically improve Performance while simultaneously reducing Power and Cost. We can address this 
by taking a step back and analyzing the modularity, flexibility and composability needs from a holistic, 
clean slate, Systems Engineering perspective. To be successful, a CoDesign approach will be required 
between experts in the following areas : Systems, Silicon, Packaging, Signal Integrity, Power, Thermal 
and Mechanical. 


The ideal architecture would allow a Systems Architect to quickly design and build architectures with the 
right balance of  resources that suit any particular application in a Lego Brick fashion. Ideally, one could 
easily construct architectures that would have any mix of  the classic compute ratio of  Ops : Bytes/s : 
Bytes Capacity, be it 100 : 1 : 0.01 or 1 : 1 : 1 or 0.01 : 1 : 100 etc. 
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A measure of  success would be that a range of  differing applications with different resource needs could 
all be specifically built and would deliver Best In Class Performance, Efficiency and Cost for every build 
scenario. Additionally, Systems could be easily constructed such that they were easily tailored to Data 
Center, On-Prem, or Edge implementations. 


The architectural building blocks would be fully Open so that providers of  the computing components 
from startups to incumbents could provide the interoperable modules that would allow the systems 
architects to construct the most efficient solutions from a multitude of  “best in class” suppliers. 


When it comes to composability, the SerDes Transceiver has become the most common level of  
interconnect that all components support. The SerDes is also the point of  transition from electrical to 
optical communications. So true composability at the interconnect level is now within reach. 


The Open Compute Project4, OCP, who’s core focus is open hardware architectures would be the ideal 
home for this effort.  


Timeliness

The timing is excellent as the industry sees a proliferation of  innovation in all aspects of  computing from 
a diverse range of  processors to new memory and storage technologies. The latest Top500 HPC 
Machines, Fugaku and Summit, demonstrate very different implementations5 that could potentially be 
built out of  a common set of  open and modular building blocks.  Modularization is happening at the 
Rack Unit level but the higher speeds are needing retimers to be used like confetti in order to build 
reliable and stable communications channels even for the shortest of  hops. e.g. the latest 112Gbps 
SerDes channels don’t have the budget to reach across a traditional Server Motherboard PCB3 without 
using a Retimer that consumes power; adds latency and cost without providing any utility! 


The theme of  modularization has been around for a while and 
Module / interconnect standards like OAM6 and EDSFF7 are 
gaining traction, while still being constrained by the 19” rack 
traditions of  our industry. We have an opportunity to both be 
inspired by these efforts as well as leveraging them to Reimagine 
and CoDesign them for a significantly improved Industry Standard 
Modular, Flexible and Composable Computing Architecture for 
the future. 
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As conventional systems saturate in power efficiency, innovations in both architectures and algorithms are required
to meet the computing needs of the future. With the slowing of Moore’s law and the recent popularity of deep neural
networks there has been renewed focus on emerging technologies, such as neuromorphic computing. Inspired by the brain,
neuromorphic architectures leverage properties such as massive parallelism, sparse activity, and event-driven computing.
Neuromorphic computing has the potential to be impactful for machine learning, scientific computing, modeling cognitive
tasks as well as applications at the edge. Codesign tools are critical for the adoption of such novel technologies. If
designed into a heterogeneous system with other accelerators and conventional computing platforms, this technology has
the potential to augment the capabilities of High Performance Computing (HPC) platforms (1). This paper highlights the
need for new heterogeneous tools and architectures through the lens of neuromorphic computing.

Figure 1: Developing Heterogeneous Architectures will require codesign tools that span algorithms and hardware. The future of computing
will likely be extremely heterogeneous with different accelerator types. Image reproduced from (1)

Incorporating different classes of processors on single HPC node has been key to moving towards exascale computing.
The scientific computing ecosystem is also changing with data collection outpacing theory in many fields like neuroscience,
medicine, and, climatology. There has been explosion of different accelerator approaches in industry like TPUs, Cerebras
(wafer-scale), Mythic (analog ), each with a unique approach to overcoming performance bottlenecks. It is evident that
future HPC approaches will be highly heterogeneous, where HPC system could include both conventional (CPUs, GPUs),
and non-conventional approaches (neuromorphic hardware, Processing-In-Memory). Digital neuromorphic chips like Intel’s
Loihi have shown 100x efficiency gains compared to GPUs and CPUs and can be scaled to build larger systems (2).
Analog neuromorphic architectures promise even further savings in energy efficiency, area, and latency than their digital
counterparts (3; 4).

Current Challenges While a lot of progress has been made in codesign methodologies and their adoption, a major gap
exists in the integration of novel computing paradigms like neuromorphic computing in heterogeneous computing. This is
in part due to the lack of a cohesive codesign tool and also due the diverse nature of neuromorphic backends which range
from digital, analog, mixed-signal to beyond-CMOS approaches.

Challenge#1: Codesign tools that support novel architectures. A lot of work is being currently done to
incorporate GPUs, FPGAs to build heterogeneous systems. This is in part due the API and prototyping tools that are
made available, as well as the ease of access to these devices for testing and validation. Such a framework is missing for
neuromorphic processors– which are still evolving and have diverse approaches to the architecture and devices used.

Challenge#2: Developing applications for neuromorphic from HPC to the edge. Challenge 1 plays into
challenge 2 in that, lack of codesign tools and ease of usability limits the different applications users can develop for these
novel architectures. Thus, the barrier of entry is high, which hinders adoption.

Challenge#3: Exploration of next-generation heterogeneous neuromorphic architectures. We need to
explore complex neurons and connectivity mechanisms that would make neuromorphic systems even more capable and apply
to diverse set of problems. This will also include exploring novel devices, new integration techniques (3D architectures,
photonics) and novel algorithms that exploit their characteristics.
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Opportunity: The identified challenges present many opportunities through new tools and techniques, new technologies,
and groups collaborating through open-source tools in the codesign process.

Codesign tools for Heterogeneous Neuromorphic Architectures: Accelerator tools have democratized the
ability to test and validate different dataflow architectures. The neuromorphic field needs such open-access codesign tools
available to the larger community that supports varied backends. This could entail analytical tools, cycle-accurate tools,
as well as tools that enable exploring integration of neuromorphic accelerators with conventional processors. We can
leverage deep learning accelerator modeling tools like Timeloop(5), MAESTRO (6), and NVDLA to explore heterogeneous
architectures by extending them with different analog and digital neuromorphic kernels. Analytical tools work through
computing energy related operations (number of memory read/write, number of MAC, NOC communications) given a
certain technology node. These tools are beneficial for rapid testing and architecture prototyping. Such tools can feed into
cycle-accurate explorations, e.g. Sandia’s Structural Simulation Toolkit (SST) that can yield cycle-accurate simulations.
Other tools that account for the performance of emerging device technologies are CrossSim and PUMA (3; 7). High level
tools like Sandia’s Fugu, are also needed to enable designing spiking neural networks while being hardware agnostic. A
modular approach to codesign tools is also important, especially tools that enable integration of new architectures and
device characteristics. This requires not just looking at non-Von Neumann architectures but also novel non-CMOS devices.
While the software space is constantly evolving, building tools that can be re-usable, open, adaptable will be crucial to
adoption.

Impact diverse set of applications: Many applications have been demonstrated for neuromorphic systems. Ex-
amples include solving PDEs using random walks on a neuromorphic platform (8), and a spiking implementation of
Locally-competitive algorithms (LCA) (9) that implicitly solves the LASSO optimization problem with improved energy
costs compared to conventional solvers (10). Our hypothesis is that multi-precision networks using neuromorphic proces-
sors will perform better than conventional computing approaches for scientific computing and machine learning algorithms.
Recent programs like DARPA FENCE, focus on neuromorphic event sensor and processors that will bring low SWaP ad-
vantages to the edge. Thus, diverse applications will facilitate the development of new architectures that support a diverse
set of algorithms and create an eco-system where users inform neuromorphic hardware developers. There is a tradeoff
in codesigning applications and hardware, but applications are no longer immune to the hardware they run on, to gain
performance benefits. This requires a strategic investment in codesign tools and approaches. Perhaps, the development
of useful mini-apps for such heterogeneous architectures will be a good first step in this direction. Collaboration between
industry, academia, and research laboratories is also important. Efforts like Intel’s Neuromorphic Research Community
and outreach by IBM (TrueNorth) for academic and research partners are good examples of this.

Next-generation extremely heterogeneous architectures: While we need novel neuromorphic devices to acceler-
ate computation, we also need novel algorithms and architectures. A lot of current neuromorphic hardware uses simplified
neuron models that can be scaled to billions of neurons. However, we hypothesize that designing complex neurons will
augment the capabilities these systems currently offer. For example, introducing dendritic processing will introduce non-
linear summation, spatio-temporal processing, and increased connectivity. Techniques to do brain-inspired local learning
is another area of active research that could impact the use of neuromorphic processors as not just inference but training
engines. Next-generation neuromorphic circuits and systems based upon nonlinear dendritic processing and local learning
will balance the trade-off between scalability and the biological complexity. Novel approaches in fabrication like three-
dimensional architectures and wafer-scale technology as well as in-memory computing devices could further alleviate current
communication and connectivity bottlenecks. This would require synergistic collaboration across devices, architectures,
software, and algorithms.

Timeliness or Maturity Neuromorphic architectures have the potential to have an impact in the next 5-10 years
as implementations in silicon exist today (Loihi, TrueNorth, SpiNNaker, offerings from BrainChip, GrAI Matter Labs).
Non-CMOS approaches are promising and industry trends (Imec/Global Foundries) show that these architectures will be
available for mass production soon. Neuromorphic accelerators can impact the efficiency of machine learning, scientific
computing, and edge applications with two-three orders of magnitude improvement in energy and speed. Codesign tools will
enable algorithm and hardware designers to account for novel accelerators in their design flows better. Hence, developing
open-source codesign tools that include a wide variety of novel backends like neuromorphic processors is imperative to
achieve extreme heterogeneity in the future.
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Bridging   the   Co-Design   Gap   
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Topics:   codesign   methodologies,   applications,   programming   systems,   modeling   and   simulation   
  

Challenge:  The  current  trend  towards  hardware  specialization  has  created  an  increasingly  diverse             
landscape  of  architecture  choices  for  co-design  [1].  With  this  complexity,  it  is  becoming  difficult  for                 
domain  experts  to  effectively  reason  about  the  hardware  design  space  without  first  developing  a  deep                 
knowledge  of  computer  hardware  and  architecture.  Similarly,  architecture  experts  do  not  always              
understand   all   of   the   algorithmic   degrees   of   freedom   and   constraints   in   each   application   domain.   
  

A  review  of  co-design  strategies  found  that  they  can  typically  be  categorized  as  either                
architecture-centric  or  application-centric  efforts  [2].   Architecture-centric   efforts  are  commonly           
framed  around  optimizing  specific  mini-applications,  where  the  algorithms’  performance           
characteristics  remain  relatively  static.  However,  such  an  approach  significantly  limits  the  flexibility  of               
design  decisions  at  the  level  of  the  application.  Since  algorithmic  advancements  have  been  as                
important  as  hardware  and  architecture  advancements  in  driving  long-term  computational            
performance  [3],  it  is  critical  to  develop  co-design  methodologies  that  are  flexible  enough  to                
incorporate  different  algorithmic  approaches  to  solving  computational  problems.  In  contrast,            
application-centric   co-design  efforts  typically  consider  optimizing  applications  over  a  subset  of             
potential  architectures.  An  example  of  this  would  be  high  order  finite  element  discretizations  which                
arose  from  the  need  for  higher  arithmetic  intensity  algorithms  to  match  the  flop/s-bandwidth  balance  of                 
current  supercomputers.  Work  in  this  area  has  made  tremendous  advances  in  improving  the  stability                
of  these  algorithms,  but  not  all  applications  exhibit  the  required  solution  smoothness  to  fully  profit  from                  
these  approaches.  Future  co-design  approaches  should  consider  a  wide  variety  of  hardware              
accelerator  archetypes,  balancing  algorithmic  advances  against  practical  application-driven          
constraints   to   further   optimize   scientific   output.   
  

Ideally,  co-design  would  involve  optimization  across  all  layers  of  computing  abstraction  (see  Figure               
[4])  to  maximize  performance;  however,  since  it  is  very  difficult  for  any  human  to  simultaneously                 
master  all  layers,  we  require  new  tools  and  techniques  to  facilitate,  automate,  and  accelerate  those                 

interactions.  The  challenge  for  the  co-design  community  is          
to  provide  a  mechanism  to   bridge  the  gap  between  the            
architecture-centric   and   application-centric  co-design      
patterns,  providing  a  path  for  domain  experts  who          
understand  the  application  design  space  to  navigate  the          
architectural  design  landscape  in  a  meaningful  way  that          
does   not   overconstrain   the   algorithmic   approach.   
  

Opportunity:  The  envisioned  research  would  build        
methodologies  and  tools  to  make  architectural  co-design         
exploration  easier  for  domain  scientists  to  investigate         
application  or  algorithmic  reformulations.  A  key  research         
topic  is  to  identify  the  appropriate  programming  models  and           
software  abstractions  that  can  both  enable  scientists  to          
express  their  algorithms  at  a  high  level  and  also  interface            



with  hardware  performance  modeling  and  simulation  tools  to  estimate  their  performance  with  various               
hardware  parameterizations  (speeds,  capacities,  etc.)  With  such  an  interface  established,  the             
hardware  acceleration  techniques  could  then  be  cleanly  hidden  behind  software  abstractions,  e.g.              
hash-tables   for   vertex   matching   or   task-based   programming   models   for   message   queues.   
  

An  accelerated  hardware  simulator  could  then  apply  the  appropriate  cost  models  to  each  of  the                 
primitives  as  they  are  executed.  The  abstractions  would  provide  interception  points  for  the  modeling                
tools,  and  may  occur  at  the  individual  instruction  level  (e.g.  fast  atomic  support),  library  call  level  (e.g.                   
accelerated  hash  table  operations),  or  even  implicitly  at  the  programming  model  or  runtime  level  (e.g.                 
accelerated  task  dependency  handling  or  message  queues).  The  methods  used  to  estimate              
performance  may  rely  on  a  combination  of  hardware  simulation  and  performance  modeling              
techniques,  depending  on  the  scale  of  the  problem.  This  approach  would  also  yield  the  benefit  of                  
having  runnable  programs  that  the  developer  can  use  to  verify  program  correctness  and  evaluate                
numerical   accuracy   in   conjunction   with   estimated   performance.   
  

Timeliness:  Recent  successes  in  algorithmic  optimization,  performance  modeling  and  simulation,  and             
architectural  optimization  will  help  guide  the  identification  of  these  flexible,  productive  programming              
abstractions  between  the  domain  experts  and  the  underlying  hardware  design  space.  For  example,               
using  content-addressable  memory  to  implement  index  matching  in  hardware  for  sparse  graph              
applications  [5];  using  software-assisted  hardware  prefetching  to  accelerate  iterative  solvers            
commonly  used  in  conservation  laws  [6];  and  using  hardware  message  queues  to  accelerate               
DAG-based  programming  models  for  sparse  direct  solvers  [7]  have  shown  substantial  speed-ups  over               
state-of-the-art   implementations   for   current   general-purpose   computers.   
  

Given  their  demonstrated  benefits,  we  believe  that  accelerator  technologies  have  enormous  potential              
to  improve  the  performance  of  many  applications,  and  by  allowing  domain  experts  to  more  easily                 
explore  new  algorithms,  we  will  maximize  their  impact  and  increase  their  rate  of  adoption.  The  end  of                   
Moore’s  law  foreshadows  the  emergence  of  domain-specific  architectures,  and  with  chiplet-based             
hardware  designs,  it  may  be  possible  from  a  techno-economic  standpoint  to  assemble  these               
architectures  in  the  near  future.  By  giving  domain  scientists  the  means  to  express  their                
application-specific  hardware  needs  and  conveying  what  tools  are  available,  they  will  be  able  to                
improve  scientific  output  through  novel  algorithms  that  efficiently  leverage  future  specialized             
hardware.   
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1 Challenge

As we continue to approach the end of traditional performance scaling we see a rise in specialization as key to
maintaining continued performance gains. To influence the direction of this specialization significant investments
have been made in commercial vendors, such as the PathForward and FastForward programs, for development of
features beneficial to science and HPC. However, these programs are still strongly tied to existing vendor roadmaps
and do not provide sufficient differentiation from what is available as standard COTS offerings. These programs
demonstrate the recognition that the HPC community needs solutions that differ from what is available in the
commercial market. While the PathForward and FastForward programs have produced demonstrably positive
outcomes they also represent a missed opportunity as the HPC community should be driving hardware innovation
not reacting to it. The scientific community has, arguably, already driven innovations that are now critical parts of
commercial products. An argument can be made that GPGPU was first driven by the HPC market and perhaps
more importantly, was deployed, debugged and used by a broad community of expert developers who worked closely
with vendors to tailor the software needs and act as effective beta-testers.

Even with these investments in vendors, we see certain applications, such as climate and bioscience, are not
benefiting from current system architecture trends and are increasingly left behind by HPC centers focused on
utilizing GPU-based accelerators to achieve performance. The trend towards performance optimization of lower-
precision arithmetic driven by the rise of AI algorithms is at odds with the needs of many science applications. As
fewer customers request double precision support, or become concerned with the performance of double precision
processors, vendors will need incentives to keep these features in place.

If the HPC community wishes to continue to enjoy the year-over-year performance gains that have continued over
decades it is no longer sufficient to simply fund the existing vendors to produce tweaked versions of their existing
products, the DoE and the larger HPC community must begin to take on the co-design challenge in earnest.

2 Opportunity

There is an opportunity to create not just one, but multiple HPC systems each tailored to a subset of HPC
applications. Much like the commercial cloud vendors are beginning to differentiate themselves through various
hardware offerings, future HPC centers could distinguish themselves by being particularly optimized to a subset of
applications. This diversification of hardware architectures may result in a decrease in code portability, but these
trends are already emerging. At a simple level, there is the CPU vs. GPU code base, but, due to differences in both
hardware and software architectures, code that runs well on one vendor of CPU, and even more so on GPUs, will
not always seamlessly port to the hardware of another. By tailoring systems to classes of applications we may lose
code portability but this loss can be more than offset by gains in code efficiency, programmability and developer
productivity.

The DoE should invest in leading edge technology - both software and hardware, to drive innovation and per-
formance - especially for applications and users who have been left behind by current technology scaling. This is
not to say application developers should not continue to take advantage of the latest technology, but more that
the DoE should engage in true co-design. In a more aggressive co-design strategy the DoE can first articulate
the scientific challenge(s) to be addressed then procure targeted machines to address each of the science areas.
While representative benchmarks are certainly used in present day machine procurements, many systems outside
of those targeted at specific national security interests are of a one-size-fits-most design, inevitably leaving users
with diminished performance scaling.

This shift towards specialization should be accompanied by a model that views the various DoE datacenters
as an aggregate compute resource rather than a collection of independent centers. This aggregate model allows
each center to deploy hardware solutions that target a subset of application domains. This trend away from a
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one-size-fits-most model will place additional demands on connectivity between centers to allow data to freely
move between sites. This specialization by center is already being observed in the cloud space with Google offering
TPU-accelerated nodes as well as the FPGA and ARM offerings from Azure and AWS. The DoE has an advantage
over the siloed commercial cloud providers in that users can be encouraged to utilize resources across centers; a
further extension to the Superfacility concept.

3 Why now?

Many are familiar with the ASCI Program where the DoE co-designed systems with vendors such as Intel and IBM.
The world is certainly different than what existed 20 years ago, however, specialization of computing remains one of
the best methods for maximizing performance-per-watt. It is possible today to begin engaging with vendors, such
as those producing ARM or RISC-V based cores, to begin designing systems better tailored to the HPC community.
The DoE can be a driving force for computing innovation through targeted investments in both science optimized
hardware and the software required to effectively utilize these new machines.

There is an explosion in availability of open source hardware led by the RISC-V foundation. Even more im-
portantly, there is a robust software ecosystem to support these hardware designs. Going further there are now
complete open source hardware design and synthesis flows that allow a designer to go from concept to GDSII
and fabrication for little to no cost. We can begin to leverage these flows to redefine the traditional relationship
DoE has had with system vendors. Investment in robust, community supported, open source technologies will
strengthen their capabilities and can allow the DoE to drive innovation by producing prototype systems- possibly
serving as a demonstration vehicle and leading to more productive relationships between vendors and HPC system
architects.

As impressive as these existing open source flows are, processor design, simulation and manufacture remain
daunting tasks. Few open source flows rise to the standards of performance and reliability that a production HPC
center would feel comfortable deploying racks of such a device. Furthermore, processor design remains a hard
problem with challenges going beyond the many technical hurdles to include legal/IP issues and basic economics.
We are still relatively early in the open source hardware movement and there is ample opportunity to begin to engage
with this community and improve these design flows and drive features important to the scientific community.

The DoE and larger scientific community is no stranger to building custom electronics. One only needs to look at
the custom sensors created for the cosmology or high energy physics community. We know how to build incredibly
complex and bleeding edge solutions tailored to the needs of scientific discovery, however, we have considered
the commercial offerings to be sufficient for our scientific computing needs. We are not alone in needing custom
computing solutions and an opportunity exists for the DoE to once again become a leader in computing by leveraging
a robust, community supported, open source hardware ecosystem to produce multiple tailored, co-designed systems
suited to the needs of the scientific community.
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Let Co-design be About Co-design
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The word co-design in my mind implies that persons with diverse knowledge
and expertise come together to design systems that are interdependent on one
another in such a way that the outcome is superior to what it would have been
had they not “designed” together. From all that I know of the embedded systems
community this is how their co-design works. There is design on both sides, there
are negotiations over trade-offs carried out in good faith, and the final goal is well
defined. That implies that the constraints on the design space are understood.
The operative words here are “design”, “trade-off”, “known outcome”, and
“constraints”. In the context of DOE, co-design has meant different things at
different times, but the words above could not fully be applied to any of them.
Not least because we have yet to acknowledge the need to investment in software
“design” without which co-design becomes more of a one way process.

Additionally, In a real co-design all parties come to the table prepared to
give up something important, and that is decision making autonomy. They
start from a place of trust that the other parties have similar commitment to
the process. Obviously, they also assume that all parties are prepared to do
their homework in terms of understanding each other’s work, taxonomy, and
possibilities and constraints. These concepts are at cross purpose with the
siloed culture that prevails in research environments in general, and to a large
extent in the DOE labs in particular.

The first iteration of co-design funded by the DOE, between specific appli-
cations and platforms, revealed that clever hardware features do not become
available to applications because layers of system software and other supporting
software sit between the application and the hardware. And little is to be gained
by trying too much specialization at the level of what application wants from
the hardware. In my mind the main lesson learned was that co-design is best
between two adjacent layers in the computational ecosystem. Perhaps others
agreed with this, because the second iteration, in the ECP project, focused on
software infrastructure co-designed with the applications that use it. There are
no intermediate layers between the two so the concerns of the applications can
be directly translated into features that the corresponding infrastructure imple-
ments. The developers of the infrastructure ensure that these desired features
also make good use of the underlying hardware.
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The contrast between the two iterations of co-design also points to path
forward. If one views the entire computational eco-system as composed of lay-
ers, then deep co-design makes sense between two consecutive layers. While
that is a necessary condition, it is not sufficient. Information also needs to per-
colate out to the layers that are further apart. For example, while the ECP
co-design centers have successfully abstracted out some platform details from
their client applications, they cannot completely eliminate the interaction be-
tween the application and the hardware. This is because the services provided
by the co-design infrastructure may not cover all needs of an application. There-
fore co-design is not a single overarching process, instead, there may be a place
for hierarchy and nesting within the co-design process.

To fully unlock the potential of co-design, however, the entire culture of re-
search in DOE must adapt to the changing world of scientific discovery. The old
structure of siloed research is fast becoming untenable in many areas of mission
critical work. Breadth of knowledge in a research team is becoming at least as
important as depth has been in the past and continues to be. However, breadth
is more difficult to achieve because it requires that a subset of team members
have cross-cutting knowledge and expertise and can contextualize research dis-
cussions for those who do not. Additionally, team leaders have to be cognizant
of different cultures that team members come from and work towards keeping
the team coherent. The essential elements of a successful co-design endeavor
require that DOE teams begin to resemble the teams in embedded systems.
While it is true that an end goal cannot be defined as concretely in research en-
vironments, greater clarity of where the co-design effort is headed will certainly
help. Similarly, trust building among people working together is as important
as the technical knowhow in the team to ensure that genuine give and take can
flourish. It is important to keep in mind that teams fail more often for socio-
logical reasons than due to lack of technical expertise. As long as individuals
have incentive not to share their best ideas, or be prepared to give up on them
on them if needed, co-design will continue to give suboptimal outcomes.
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Challenge: Resilience, i.e., obtaining a correct solution in a timely and efficient manner, is one of the key 
challenges in extreme-scale high-performance computing (HPC). Extreme heterogeneity, i.e., using multi-
ple, and potentially configurable, types of processors, accelerators and memory/storage in a single compu-
ting platform, will add a significant amount of complexity to the HPC hardware/software ecosystem. 

The notion of correct computation and program state assumed by users and application developers 
today, which has been based on binary bit-level correctness, will no longer hold for processing elements 
based on some emerging technologies, such as neuromorphic computing elements. The diverse set of com-
pute and memory components in future heterogeneous systems will require novel hardware and software 
resilience solutions. Errors and failures reported by heterogeneous hardware will need to be handled by the 
appropriate software component to enable efficient masking, recovery, and avoidance with little burden on 
the user. Similarly, errors and failures reported by the software running on heterogeneous hardware need to 
be equally efficiently handled with little burden on the user. 

This requires a new approach, where resilience is holistically provided by the HPC hardware/software 
ecosystem. The key challenge is to codesign extreme heterogeneous HPC systems with (1) wide-ranging 
resilience capabilities in architecture, system software, programming models, libraries, and applications, 
(2) interfaces and mechanisms for coordinating resilience capabilities across diverse hardware and software 
components, (3) appropriate metrics and tools for assessing resilience, and (4) an understanding of the 
performance, resilience and energy trade-off that eventually results in well-informed system design choices. 

The current state of practice for HPC resilience is global application-level checkpoint/restart, a single-
layer approach that burdens the user with employing a resilience strategy at extreme coarse granularity (the 
job level). Part of the current state of practice for HPC resilience are also hardware solutions at extreme 
fine granularity, such as SECDED ECC for main memory, caches, registers and architectural state, Chipkill 
for main memory, and redundant power supplies and voltage regulators. RAS management systems are 
deployed for monitoring and control. The state of resilience research is more advanced and includes a num-
ber of technologies, such as fault-tolerant programming (fault-tolerant MPI, re-execution of failed tasks and 
containment domains), proactive fault tolerance using migration of computation away from components 
that are about to fail, and resilient solvers with recovery, compensation or self-stabilization properties. Re-
cent work made inroads in understanding the fault, error and failure models of HPC systems. Some work 
in understanding the performance/energy and performance/resilience trade-offs exists as well. Other recent 
work pioneered the concept of design patterns for a structured approach to HPC resilience. 

Hardware/software HPC codesign for resilience is mostly nonexistent at this point! There are a few 
concepts, models and tools, investigating and comparing individual resilience technologies and their per-
formance/resilience trade-offs, such as for checkpoint/restart and redundancy. There are no design space 
exploration tools investigating the performance, resilience and energy trade-offs of different compute node 
or HPC system hardware/software designs. As a result, HPC resilience research solutions are not adopted 
in practice, as it is unclear if their benefits warrant adoption costs. Another result is the inability to mitigate 
unexpected reliability issues in HPC systems with the employed resilience technologies. A prime example 
is the impact of unexpected GPU failures on ORNL’s Titan. The system was never designed to handle the 
resulting MTBF of 2 hours, requiring replacement of 11,000 out of 18,688 GPUs. 
 
Opportunity: Coordinated cross-layer and adaptive resilience solutions can offer efficient error and failure 
masking, recovery, and avoidance at the appropriate hardware or software component and compute or data 
granularity. While the various heterogeneous compute and memory components will have hardware resili-
ence mechanisms, software-based solutions to fill gaps in detection, masking, recovery, and avoidance of 



errors and failures will require coordination between the multiple layers of the system by design. Based on 
the underlying execution model and intrinsic resilience features of the hardware, the various components 
in an extreme heterogeneous system may be organized into predefined protection domains. Coordinated 
resilience solutions will handle errors and failures in specific components and granularities where it is most 
appropriate to do so and in coordination with the rest of the system, which prevents errors from propagating 
and failures from cascading beyond the protection domains. 

This approach also removes some of the complexity that is introduced by extreme heterogeneity. Adap-
tive strategies can leverage the unique capabilities of heterogeneous protection domains, since the perfor-
mance, resilience and energy profiles of each domain are different. Programming models and runtime en-
vironments may dynamically configure an application to use specific components in the heterogeneous 
system based on performance, resilience and energy costs. For example, critical computation may be exe-
cuted on more resilient components; computation on less resilient components may be checked for errors 
with computation on more resilient components. Critical data may be stored solely or at least backed up on 
more resilient storage. Holistic cross-layer and adaptive resilience essentially provides efficient end-to-end 
resilience by design for computation and data. 

Resilience needs to become an integral part of the HPC hardware/software ecosystem through 
codesign, such that the burden for resilience is on the system by design and not on the operator or user 
as an afterthought. Understanding the performance, resilience and energy trade-off is key to solving the 
resilience challenge for extreme heterogeneity, which is to design a reliable system within a given cost 
budget to achieve an expected performance. Design choices are based on a detailed understanding of this 
trade-off, which is HPC system and HPC application specific. Future research in hardware/software HPC 
codesign for resilience needs to address the following aspects: 
 
• Develop an understanding of the error and failure characteristics of hardware and software components. 
• Identify protection domains, interfaces and mechanisms of resilience capabilities in hard- and software. 
• Design interfaces and mechanisms for coordinating resilience capabilities and quality of service require-

ments across hardware and software components. 
• Define uniform metrics for assessing performance, resilience and energy across heterogeneous compo-

nents to enable design trade-offs. 
• Create design space exploration tools to understand the performance, resilience and energy trade-offs 

between different node and system designs. 
 
Timeliness or maturity: The state of research for HPC resilience is rich in mechanisms that can be utilized. 
However, a longer-term and coordinated codesign effort is required to enable wide-ranging resilience ca-
pabilities in practice and to make them an integral part of the HPC hardware/software ecosystem. Research 
in defining, communicating and matching HPC resilience capabilities with quality of service requirements 
is required as we transition to extreme heterogeneity, including creating best practices and standards for 
resilience. Recent work in fault models, trade-offs and resilience design patterns can form the basis for 
solving the challenges. However, more research in (1) uniform metrics, (2) performance/resilience/energy 
trade-offs and (3) design space exploration tools is still required. 

Simply put, if resilience by design is not done now, in the early stages of extreme heterogeneity, the 
current state of practice for HPC resilience, global application-level checkpoint/restart, will remain the 
same for decades to come due to the high costs of adoption of alternatives later on. The prime example 
for this is MPI, for which, 25 years after its first standardization, resilience is still not part of the MPI 
standard, despite 20 years of research in fault-tolerant MPI, numerous research prototypes and a 10-year 
discussion in the MPI standardization body. PVM, MPI’s predecessor, was fault tolerant in 1993! In con-
trast to the MPI standardization effort 25 years ago, the current state of research for HPC resilience is far 
beyond the current state of practice. The existing knowledge, experience and prototypes serve as a founda-
tion for making resilience an integral part of the HPC hardware/software ecosystem. 
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Challenge: The latest-generation scientific imaging systems generate data at an exceedingly high 
volume and velocity. These trends are due to increasing spatial and temporal resolutions achievable with 
new imaging technology. For instance, recent scanning electron microscopes can produce up to 50 GB/s 
of data [1]. To make the most of these new technologies, scientists must be able to process imaging data 
quickly, extract scientific insights, and rapidly incorporate them into new imaging settings or 
experiments. This means data need to be ingested, analyzed, and results returned back to the user in near 
real time. These analysis tasks can range from simple denoising or image processing to machine learning 
(ML) workloads to numerical simulations. For example, in electron microscopy, it is of interest to 
employ experimental data as an input or boundary condition to molecular dynamics simulations used to 
monitor sample degradation during imaging. 
 
To reach the level of throughput necessary for this tight coupling of experiments and analyses, there 
must be close coordination between experimental hardware (edge computing), storage, and computing 
systems—at both lower (systems/hardware) and higher (algorithmic) levels of the hardware-software 
(HW-SW) stack. This can range from tuning buffers and storage placements on high-performance 
storage systems to mapping compute kernels to cores of artificial intelligence (AI) accelerators to 
choosing the right size of ML model that can meet latency constraints placed on the analysis by the 
interested scientist. Furthermore, experiments can be dynamic and involve changing conditions, which 
have important implications for analysis. Different experiments, or even specific parts of a single 
experiment, may call for disparate imaging settings (e.g., spatial resolution or frame rate) and distinct 
algorithm settings (e.g., accuracy) that place diverse requirements on latency. Thus, a single mapping of 
SW onto HW will not suffice. Although there has been some work on data-driven approaches to 
mapping ML workloads onto HW for optimal performance, existing approaches, such as device 
placement [2] or methods of resizing neural networks [3], remain mostly static in nature, i.e., they 
determine a mapping of SW to HW a priori. However, dynamic approaches that can find new mappings 
or placements on the fly as conditions change or as new criteria (e.g., latency, accuracy, or criteria of 
scientific interest) are introduced are needed. 
 
Opportunity: Codesign should not be interpreted only as a static process, where we, for example, 
design a processor that optimizes the performance of a tailored application workload. Instead, the need 
for dynamic (or real-time) codesign is an imperative for the now dominant data-driven workloads and 
heterogeneous architectures that require optimal mapping to system resources for optimality. Under this 
definition of codesign, there is a significant opportunity for model-based codesign of the HW and SW 
architectures. Such model-based codesign would extend from the experimental apparatus to analysis and 
storage system and back to the experiment through feedback loops that are actionable as they allow the 
reconfiguration and optimization of the experiment in vivo. A key opportunity that may be enabled by 
pushing the envelope from the current state of the art is the ability to codesign in a dynamic regime. One 
ingredient of the codesign methodology is a dynamic runtime system that is model-driven and relies on 
information gleaned from available monitoring data from the HW path and the SW. In a nutshell, this 
complex codesign can coordinate HW, SW, and experimental equipment to meet the shifting 
requirements present during scientific experiments. To illustrate, consider three factors in the case of 
monitoring degradation of a protein sample in an electron microscopy experiment. In this case, higher 
electron doses give better imaging fidelity but can lead to sample damage. However, a scientist wants to 



use as high a dose as possible while incurring minimum damage. To assess damage, one approach would 
be to leverage simulations to compare observed data with data from an ideal undamaged specimen. The 
HW settings that impact simulation performance may include sizes of buffers, storage placement, and 
assignments of threads to cores. Relevant algorithm settings can include time step intervals and spatial 
resolution. If the workflow involves ML, settings such as model complexity and device placement are 
also important. Finally, the runtime system also can control performance by providing inputs to the 
experimental HW, including frame rates and resolution. These factors all impact performance, yet they 
have complex interactions that imply a dynamic model-based control system that can tune them rapidly 
is needed to extract the best performance. Notably, performance in this case is not limited to 
computational criteria, like latency or throughput, but also includes the experimental requirements, such 
as image quality, sample integrity, and beam stability. Therefore, we posit there is a place for a dynamic 
codesign to coordinate HW, SW, and experiment settings in real time by reacting to recent performance 
data and adjusting the various settings appropriately. 
 
The envisioned model-based codesign system potentially can be developed using ML by observing 
performance data for different algorithmic and system settings. The resulting models then will be used to 
select actions judged to produce good performance. Importantly, this training can occur online while 
experiments are being conducted, and actions can take effect immediately, leading to a coupling of the 
experiment and codesign system.  
 
Timeliness: Success in this area means scientists can perform more informative experiments, and 
process the results quicker, leading to a faster research cycle. They also will be able to glean insights 
from experiments at higher spatial and temporal resolution than ever before. This can motivate new 
theoretical models and generate more accurate quantitative information in important problems. Even 
small changes in latency can mean huge advantages, enabling rapid iterate-and-test research cycles.  
 
Of course, the general approach of dynamic codesign to jointly control HW, SW, and experiments can 
be applied to many optimal experimental design settings beyond electron microscopy. Intelligent 
resource management and new methods of performance prediction and modeling are both important for 
getting optimal performance out of heterogeneous systems [4]. With next-generation high-throughput 
detectors already being put into production, development of a dynamic codesign to coordinate HW, SW, 
and detector is an urgent problem that can lead to immediate benefits. The same frameworks and 
accelerators that run the scientific ML workloads supplementing the experiment also will be suitable for 
implementing a model-based codesign. Recent advances in ML approaches, such as deep reinforcement 
learning and maturing SW frameworks, mean the tools for this problem already may be close at hand.  
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Topic: Applications  
  
High performance computing has continued to advance infrastructure with multi-core heterogeneous 

nodes connected by fast networks with extensive storage capabilities in order to enable the ever-growing 
resource demands of large-scale applications. However current HPC systems were envisioned to mostly 
run large scale parallel calculations, and the emerging trends where scientists both augment their 
applications with machine learning techniques and run large scale analytics for processing experimental 
and observational data has often been overlooked. The next-generation systems need to be co-designed 
with these new types of applications to reduce the data management effort within this new class of 
machine learning applications. One of the co-design goals is to create semi-autonomous computational 
experiments which can keep up with the unpresented volumes and velocities of data being generated at 
science facilities by co-designing data management middleware with next-generation hardware.  

The scientific community is experiencing unprecedented amounts of data sets in the orders of 1 TB of 
data per second and within the next 10 years, facilities are already predicting rates of up to 1 PB/s. Due to 
the speed of data, analysis must be automated by the use of machine learning techniques, such as deep  
learning methods. There is no surprise that deep neural networks have gained more and more traction in 
the scientific community since this accumulation of varied and detailed data creates great learning 
opportunities. This is the case for a wide range of scientific areas: bioinformatics, fusion energy, medical 
research, computational fluid dynamics, lattice quantum chromodynamics using deep learning networks 
for a large variety of projects, such as classifying galaxies types [1], analyzing large image datasets to 
characterize disease structure and function in biomedical research [2], reconstructing the 2D plasma 
profile [3] and predicting protein structure properties [4].  

Development of deep learning models often involves iterative processes and neural architecture 
searches in which datasets are analyzed multiple times with different deep neural network configurations 
to find accurate, reliable and efficient deep learning models. In addition, an application may carry out 
analyses of a dataset with multiple deep learning models in order to detect, classify and predict features 
and patterns at multiple scales. These analyses may execute a chain of deep learning workflows where 
data is streamed from one to another or run multiple independent workflows each working on the same 
input data mapped on different spaces or sliced in different formats. This is the case, for example, for the 
workloads used by the Stony Brook digital Pathology group where DNN models are trained on whole 
slide images in research efforts that target cancer biomarker development [7]. These tasks involve 
complex workflows that can be carried out in several different ways involving multiple DNN branches 
with classification applications that require different parts of the same input image divided in patches of 
different shapes and sizes. While several specialized hardware and software have been developed to 
optimize DNN performance, they are all focused on computation and not data management.  

The data management co-design challenge is two folded:   
1) On the training side, massive quantities of multi-dimensional training data are needed for DNN 

models, which increase the accuracy and allow for greater amounts of parallelism. In many cases the 
same dataset needs to be traversed many times during model selection and training. Hyper parameter 
optimization and network architecture search can both involve the need to make multiple sweeps through 
the same training data. The training applications are often composed of many tightly coupled processes 
that are distributed across the large-scale HPC system and that need to exchange data throughout their 
execution. Workflow modifications, dataset restructuring and systems software that supports caching of 
3D data subsets in quickly accessed memory hierarchy layers is likely to yield major improvements in 
performance. Because different models may work with different data sizes, partitioning data into smaller 
batches and moving these across the HPC resources should be done carefully to minimize I/O and 



computation overheads. Moreover, predictions in the form of labels and segmentation masks should be 
collected and written out to disk efficiently to minimize I/O overheads and the overall execution time of 
the neural architecture search. As new technologies allow for efficient reduction, a careful co-design can 
be done with these use-cases to move data to the network, reduce data on the network with a given 
accuracy, and move the data. Furthermore, the speed of the reduction plays a crucial role in this method, 
so algorithms need to be designed to allow for higher latencies. 

 2) On the analysis side, the same model is read by all the applications while the access patterns for the 
input data vary greatly with workflows often passing data in some form between each other and to/from 
the storage system. Typically, the usage of the input data is done in a non-uniform fashion with some 
portions being of more importance than others based on predefined parameters well known in advanced 
or on results generated by other processes in the pipeline. Under such circumstances, and due to the 
massive amount of data together with the complexity of the application behavior, the fundamental data 
management abilities required by these applications become highly challenging to implement in a 
scalable and efficient manner in existing data management solutions. In this case, it is clear that Software 
Designed Storage can play a central role to reduce, re-organize, and possible refactor the data from 
storage to allow for it to stream faster to the application. In addition, the repetitive nature of data access 
patterns for model prediction has great potential to optimize preplanned data movement. A co-design 
study can allow in-transit computations to prepare the data to the format and accuracy required by the 
application and to adapt to requirements determined by the network architecture or discovered at runtime. 

The data access patterns for both training and analysis can be leveraged by data management systems 
to fetch in a more efficient way the required input data in the format and order given by the needs of the 
application and optimize the data path between collaborative processes. For this to happen, the 
community needs to rethink how to represent and manipulate these scientific datasets at large-scale in a 
scalable and efficient manner to be able to adapt to the new access patterns introduced by the current and 
future generation large-scale applications that are starting to heavily rely on machine learning algorithms. 
Co-designing data management middleware with next-generation hardware is key in achieving this goal. 
With compute power increasing at a much higher rate than storage or network technology, new hardware 
technologies are already being developed to speed-up common access patterns over the network. One 
such example is the Mellanox Bluefield set of switches that enable reduction in-the-network [5] or the 
Seagate RISC-V system on a chip technology design primarily to optimize IO for edge computing [6]. 
Fetching the data directly in the required format, adapting the reduction and/or precision of each piece of 
requested data, staging or streaming data where/when is needed as well as deciding what resources in the 
software/hardware stack (or what specialized hardware) to use for each IO task need to be reevaluated 
based on the new patterns introduced by future scientific applications. Understanding the needs of these 
applications and the benefits and limitations of their interaction with current specialized hardware systems 
can shape the future hardware and middleware IO landscape.  
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Challenges: ​With increasing acceleration of computations, memory accesses are rapidly becoming the            
primary bottleneck even in traditionally compute-bound applications. This is even more the case for              
irregular and sparse computations that underlie many problems in science and engineering: solutions of              
PDEs, graph algorithms, and machine learning. There have been tremendous strides in algorithms for              
such problems. However because sparse computations have irregular data access patterns, they are             
challenging on both CPUs and GPUs, FPGAs or other accelerators. Recent efforts on co-designing              
architectures, systems, and algorithms for both dense and sparse computations have focused mostly             
on specialized computational kernels and less on end-to-end workloads that require composition of             
such kernels at variable granularity levels. At the full, end-to-end system level, data movement among               
system components becomes an even greater challenge. Addressing these algorithmic and           
architecture challenges requires algorithm designers and architects to work closely. However, for them             
to do so, corresponding tools need to be available. Specifically, there is a need for full-system,                
end-to-end modeling and simulation tools to enable such codesign research.  
 
Opportunities: ​As a highlight of the codesign challenges, we report on our experience in [1] in which                 
we studied performance and energy saving benefits of hardware acceleration for N-body methods. Our              
results showed that unless carefully managed at the software level, acceleration benefits are limited by               
data movement costs, where far or near memory placement of accelerators makes little difference.              
Only with careful algorithm and architecture co-optimizations can acceleration benefits be unlocked. But             
even then, a performance floor set by the data-intensive processing steps around the accelerated              
kernel remains. Our experiences also showed the limitations of existing simulation tools for such              
studies [2]. Similar research is needed to generalize co-design approaches and tool development for a               
broader range of algorithms and architectures specifically targeting data-intensive aspects.  
 
Algorithms: ​Most DOE applications involve sparse computations. Examples include multiphysics and           
multiscale partial differential equations, atomistic simulations in materials science, and machine           
learning methods like construction of nearest neighbor graphs, clustering, graph analytics, and graph             
neural networks. Many of these applications employ sparse computation kernels like domain            
decomposition and multigrid methods, sparse tensors, Fast Fourier Transforms, stencil computations,           
finite-element and finite volume methods, N-body and hierarchical matrix algorithms, and pointwise            
nonlinear physics kernels. For example, the workflow in [3], involves sorting, projection, sparse and              
dense factorizations, and data reshuffling kernels in the context of building a hierarchical sparse              
approximation to a neural network Hessian. A novel computer architecture should enable the efficient              
composition of such kernels. A key question is, ​what technologies will allow us to achieve an ASIC-like                 
performance ​for real end-to-end applications? Research is needed to identify core fundamental            
primitives, e.g., sparse matrix-vector and matrix-matrix multiplication, exact and approximate sparse           
factorizations, data operations (reduction sort, gather, scatter) that have to be composed efficiently.             
Furthermore, research is needed for communication avoiding algorithms, again in the context of             
composing several such kernels to achieve performance. A set of benchmarks, workloads, and metrics              
need to be established to guide algorithmic and architectural codesign.  
 
Architectures​: Heterogeneous, accelerator-rich architectures will integrate a variety of general-purpose          
and specialized components including CPUs, GPUs, FPGAs and ASIC accelerators. A key question,             



however, is how such systems should be composed for a certain application domain. What are the right                 
combinations of accelerators and memory hierarchies, and, more        
importantly, how can data movement between heterogeneous       
components and memories in the system be optimally        
orchestrated and supported? The latter is crucial for        
memory-bound irregular and sparse workloads. To reduce data        
movement, accelerators can be moved into or near memories.         
However, this presumes that data is already stored there. If data is            
produced or consumed by other components, it may be more          
beneficial to keep accelerators closer to data sources/sinks but         
provide support for direct dataflow in hardware, e.g. through the          
caches. Research is needed to identify optimal system        
architectures including hardware support for computing in-memory       
(CiM) and efficient orchestration or elimination of data movement (Figure 1). This includes             
programming and OS abstractions for efficient offloading and management of data and computations.             
Such architectures will increasingly look like distributed systems within a node, and corresponding             
algorithms need to be developed to optimally map onto and exploit architecture capabilities.  
 
Modeling and Simulation Tools​: Co-design necessitates a common tooling platform for algorithm            
developers and architects to collaborate. Traditional analytical or simulation-based modeling and           
simulation (ModSim) tools are too inaccurate or too slow to support end-to-end evaluation of              
architectural decisions for complete applications. Research is needed to develop full-system ModSim            
tools that support modular composition of different component models at varying speed/accuracy            
tradeoffs depending on the use case, including the ability to easily integrate new component models,               
e.g. CiM simulators as well as new ModSim technologies, e.g. machine learning-based models.  
 
Timeliness or maturity: There are many reasons why this is the right time for this research. There                  
have been many advances on sparse computation algorithms that explore memory hierarchies; new             
approaches for specific kernels like sparse matrix-vector multiplication; new programming tools like            
Kokkos [4] that enable performance-portable algorithm development and several main codes are            
redesigned to support such applications. Similarly, a large number of activities have appeared at the               
architecture level including new accelerator designs for specific sparse operations as well as new              
in-memory processing and in-memory circuit designs. Finally, new modular tools for modeling and             
simulation such as SST that allow assembling full-system simulations with plug-and-play of different             
component models have appeared. This is the right time to pull together such algorithm, architecture               
and tool approaches to enable end-to-end co-design research for this domain.  
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CHALLENGES
artificial intelligence (AI) has the potential to revolutionize the
way scientists solve challenging problems and accelerate the rate
of scientific discoveries. For example, AI/machine learning (ML)
techniques are being used in domains of interest to U.S. Depart-
ment of Energy (DOE), including power grids and cyber- and
national-security applications. As general-purpose architectures
(CPUs, GPUs) face challenges due to the trade-off between perfor-
mance and power consumption, ML for image recognition tasks
are beginning to use special-purpose accelerators such as NVIDIA
Deep Learning Accelerator (NVDLA), Cerebras, Samba Nova and
field-programmable gate array (FPGA)s (Xilinx Versal). Data-flow
has emerged as a common paradigm to program many of these
accelerators, as it allows for significant reduction in data movement
and requires considerably lower energy through the reduction of
instruction fetch and decode hardware stages. However, employing
ML/deep learning (DL) accelerators in scientific and engineering
domains brings additional complexity. Current AI/ML accelerators
are designed for dense, regular computations and do not provide
efficient support to execute sparse, irregular computations com-
mon in ML for DOE applications (e.g., weight pruning, physics-
constrained ML), graph analysis, and sparse linear algebra. Also,
the DOE software ecosystem needs to be adapted to leverage these
heterogeneous resources effectively. Understanding how novel data-
flow architectures can be leveraged by DOE workloads and their
impact on performance and power efficiency is paramount.

OPPORTUNITY
The Center for co-design of ARtificial Intelligence focused Architec-
tures and Algorithms, ARIAA, is focused on developing data-flow
accelerators for sparse, irregular computations that can enable
novel, scalable solutions to DOE applications. ARIAA brings to-
gether hardware architects, programming model designers, and
applications and algorithms experts to explore co-design of (1)
novel hardware capabilities, (2) programming models and runtimes,
and (3) algorithms and applications. A major focus of ARIAA is
ML, including computational kernels and mini-applications for
data-flow architectures, and ML applications for cyber-security and
electric power grid operations. To achieve full hardware/software
co-design, ARIAA leverages and extends several key technologies,
including simulators and emulators for data-flow architectures and
ModSim tools, runtime and programming models, compilers and
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Figure 1: ARIAA co-design technologies

languages, and algorithms and motifs. As shown in Figure 1, we be-
lieve when combined together, these technologies enable scientific
applications to adopt to new architectures.

Data-flow architectures and ModSim Tools Data-flow archi-
tectures have been studied for many years and some emerging
data-flow accelerators are already available to the scientific commu-
nity. When designing novel data-flow architectures it is important
to 1) evaluate the novel hardware concepts in the context of full
applications and software stack, 2) understand similarities and dif-
ferences with current and near-future technologies, and 3) follow
an agile process to quickly evaluate new concepts but retain the
possibility of deeper evaluation. ARIAA leverages and is developing
several technologies to simulate and emulate data-flow accelerators:
Structural Simulation Toolkit (SST) [10] is highly-efficient suite of
hardware component models designed to work together and permit
extension with ARIAA hardware models; MAESTRO is an analyt-
ical model to determine the performance and energy-efficiency
of deep neural network (DNN) data-flows; Marvel is an optimizer
for searching through and recommending optimal mappings of
the workload on hardware; STONNE is a cycle-level simulator for
flexible data-flow accelerators; FPGAs provide a convenient way
to evaluate hardware prototype in a context of a system-on-chip
(SoC). Several building blocks for data-flow accelerators have also
been developed, including MAERI [6] (a dense GEMM/CONV2D
engine), SIGMA [9] (a sparse GEMM engine) and MINT [8] (a spar-
sity format converter). Additionally, through the DOE Center for
Advanced Technology Evaluation (CENATE) [1], ARIAA can access
novel data-flow architectures developed for AI workloads.

Compiler Extracting data flow computational graphs from com-
plex applications and re-configuring data-flow accelerators require
a sophisticated compiler. ARIAA leverages the COMET compiler for
tensor algebra [7]. COMET consists of a Domain-Specific Language
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(DSL) for tensor algebra computations, a progressive lowering pro-
cess to map high-level operations to low-level architectural re-
sources, a series of optimizations performed in the lowering process,
and various Intermediate Representation (IR) dialects to represent
key concepts, operations, and types at each level of the multi-level
IR. COMET is based on the Multi-Level Intermediate Representa-
tion (MLIR) framework, which supports the compilation of high-
level abstractions and domain-specific constructs and provides a
disciplined, extensible compiler pipeline with gradual and partial
lowering. COMET extracts data=flows from scientific applications
developed with DSL and/or ML frameworks (e.g. TensorFlow) and
produces various IRs. At each level or the IR stack, COMET per-
forms different kind of optimizations: high-level, domain-specific
optimizations are performed at the highest levels, where operations
resemble language-level constructs (e.g., convolutions, tensor con-
tractions) while low-level architecture-specific optimizations are
performed at the lowest levels. Currently, COMET can generate
binary code for CPU and GPU architectures as well as synthesizable
Verilog for FPGA. Work is in progress to produce code for novel
architectures, such as Samba Nova and Xilinx Versal architectures.

Parallel Runtime ARIAA enables the execution of complex
scientific workflows on extremely heterogeneous systems through
Minos Computing Library (MCL) [5]. MCL is a modern task-based,
asynchronous programming model for extremely heterogeneous
systems. MCL aims at abstracting the low-level hardware details
of a system, supporting the execution of complex workflows that
consists of multiple, independent applications (e.g., scientific simu-
lation coupled with in-situ analysis or ML frameworks that analyze
the results of a physic simulation), and performing efficient and
asynchronous execution of computation tasks. In the context of
ARIAA MCL enables execution on 1) current accelerators and 2)
emulated/simulated novel hardware designs. MCL seamlessly or-
chestrates the execution of application tasks on CPU and GPU
devices, but also on NVDLA and FPGA accelerators. Users need
not manually manage data transfer to/from accelerators nor have
to port their applications. MCL can also drive the execution of com-
putational tasks on custom hardware designs implemented using
hardware simulators or emulators, such as SST or FPGA imple-
mentations. Importantly, MCL facilitates execution on emerging
data-flow accelerators, such as Samba Nova and Cerebras.

Applications and Motifs ARIAA mainly focuses on four ap-
plication areas: cyber-security, chemistry, power grid, and graph
and optimization kernels. Within these domain areas, several ker-
nels and application motifs have been extracted and mapped to
data-flow architectures. Examples includes graph convolutional
neural networks, physics-informed neural networks, linear alge-
bra, graph, and optimization kernels. ARIAA scientists developed a
hybrid approach to solve the Alternating Current Optimal Power
Flow (AC-OPF) problem in powergrid simulation [4]. This approach
leverages multi-task neural network to provide better initial condi-
tions for the computational solver used in the back end and achieves
up to 3.28x improvement over traditional solvers. ARIAA has also
developed a set of mini-applications called Mantevo-DF to evaluate
emerging data-flow hardware.

TIMELINE AND MATURITY
As DOE and the scientific community at large embrace novel data-
flow architectures, it is paramount to understand how those emerg-
ing technologies can be used in scientific applications and evaluate
their expected impact before these accelerators become mainstream
and difficult to modify. ARIAA seeks to provide informed answers
to these new challenges and support the execution of complex
scientific workflows on future systems that feature AI accelera-
tors. While the work in ARIAA is still ongoing, several technolo-
gies are already available to the scientific community. SST [3] and
MAERI/MAESTRO are publicly available and the new hardware
designs produced in ARIAA will be progressively uploaded to the
respective repositories. The COMET compiler will soon be released
as open source and several of the lowering steps are been pushed to
the standard MLIR. MCL [2] have been open-sourced and are avail-
able to the community while Mantevo-DF will soon be released.
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     The reduced impact of Moore's Law and end of Dennard scaling has led to an explosion of special 
purpose acceleration architectures that gain performance by utilizing narrow, purpose-built circuits 
tailored to high payoff applications such as deep learning. Examples abound such as the Google Tensor 
Processing Unit, Intel offerings such as Gaudi, and Cerebras and Samba Nova, to name just a few of 
interest to DOE. While attention in the commercial sector focuses on acceleration architectures for deep 
learning and ML workloads, opportunities for incorporating heterogeneous architectures likewise exist in 
scientific and national security applications. Architectures exhibiting heterogeneity and specialization 
appear to offer promise to the seemingly conflicting goals of energy reduction and high performance.  
However, selecting, designing, and evaluating purpose-built acceleration units is particularly challenging 
in the ASCR space, due to the wide diversity of scientific and national security applications. Even for a 
particular problem there are multiple approaches to simulating the physics as exemplified by the 
collection of mini and proxy apps that have been provided to vendors and the research community.  
     There is a vast design space not only of potential acceleration units of interest but concomitantly of 
potential insertion points in a computing system. Examples of design choices include specialized 
processing element arrays; multiple forms of floating point units and their controllers; inclusion, size, and 
placement of scratchpads; placement of units on-CPU die, near memory, storage, network endpoint, 
router. In addition to selection, design, and configuration of hardware Intellectual Property (IP) blocks, 
interaction of cache hierarchy and heterogeneous function units is subtle and complex. The 
memory/storage hierarchy includes on-chip (cache/scratchpad), on-package, on-node, and remote 
(network-attached) memories.  
     Simulating and modeling heterogeneous architectures is actively being conducted by vendors and the 
research community. While proposed architectures can be transcribed relatively quickly into software 
simulation modules, conducting meaningful, comprehensive simulations is slow, laborious, and time-
consuming. Not only is software simulation slow when capturing the low level cycle accurate behavior of 
a hardware block, but evaluating that block in context leads to many orders of magnitude increase in 
turnaround. If the proposed unit is to sit at a non-traditional point such as memory, storage, network, and 
sensor, it is necessary to model the effects of distributing and partitioning compute among these disparate 
elements. With the surge of heterogeneous accelerator designs currently being proposed, there is a 
compelling need for tools that can provide fast turnaround in addition to quantitative, comprehensive 
evaluation of potential processing units.  
     As a concrete example, consider a proposal to include a custom floating point unit in an architecture. 
Questions to arise include: how many units; how are they interconnected; how are they connected to the 
rest of the compute infrastructure, be it a core, a CPU, cache, scratchpad, network on chip, external 
memory, interconnection network element or even scientific instrument. These are the factors that 
ultimately determine the worth with respect to performance, cost, programmability, and overall utility of 
the proposed new hardware element. Even when the design space is trimmed down through analytic 
modeling, individual software simulation runs can take hours to days. As an example, a recent experiment 
in our group to simulate GPU traces captured from a run of XSBENCH (small, default parameters) through 
AccelSim had to be terminated after two days when the job’s allocation expired. 
     Design space exploration is maddeningly slow, particularly to those of us who have come to expect 
instant turnaround from our snapchats, instagrams, tweets, and Jupyter notebooks. Unfortunately, there 



isn’t a silver bullet to this problem, but there are a collection of thrusts that can speed up the evaluation 
cycle.  
     The first line of inquiry is measurement of potential impact. Probes and instrumentation from a 
representative collection of algorithms run on existing hardware provide a baseline to gauge potential 
impact. Next comes analytic modeling to extrapolate parameters and establish bounds. These tools 
provide a reality check that might result in discarding an idea or greatly modifying a unit’s design. 
     The next step is fast simulation through very high level behavioral simulation. Here it is important to 
have a simulation infrastructure with a large library of support hardware units. There should be a choice 
of level of fidelity of a unit, with all presenting a consistent API and simulated timing. For example one 
module could simulate the whole internals of a floating point unit while another equivalent module could 
simply do a bit accurate floating point calculation, but they would have the same data format and (model 
of) latency and pipeline characteristics. It’s important to promote open source tools with well defined and 
copiously documented interfaces, lowering the effort for external contributors to expand library 
elements. Clang/llvm is an excellent example of such a tool in the compiler community.  
     Investigation typically starts with evaluation in local compute complex, but has to move quickly to more 
and more encompassing system level evaluation. This includes expanding scope to accurately model in a 
realistic environment, i.e. with full software stack including OS and drivers, and out to network. This may 
be infeasible with software simulation, but is particularly valuable to uncover interface, configuration, and 
compatibility issues. For example, we discovered a 2X – 5X slowdown between using the same accelerator 
under Linux compared to “bare metal no OS” mode. Through deeper investigation, we discovered an OS 
interaction disabling cache when using the accelerator in a Linux environment, whereas cache was 
enabled in bare metal mode. 
     For heterogeneous compute unit evaluation at a system level it is particularly advantageous to 
eliminate the dichotomy of hardware and software by using the same language to describe both. C++-
based hardware description languages are well suited to system level evaluation of scientific workloads 
since most scientific applications are written in C++ or C. This can be accomplished through supporting 
industry standard hardware simulation languages such as SystemC, which is widely used for ASIC 
development, and through the use of High Level Synthesis tools that translate suitably annotated C/C++ 
to hardware pipelines and state machines. Following the iterative refinement path, high level behavioral 
hardware descriptions can be lowered to RTL in the same language and the same tool framework. In 
contrast, switching from software behavioral description to a different Hardware Description Language 
requires development of new testbenches for the hardware version and breaks the ease of switching 
between equivalent functionality hardware modules that interact with the software application. 
     In previous work, we have found targeted emulation on FPGA to be very effective for full system 
emulation, reducing run time from 1000’sX slowdown typical of software simulation to 20X over real time. 
FPGAs or specialized hardware emulators are typically employed by vendors for CPU emulation. We have 
found that multiprocessor System on Chip FPGAs are particularly effective in providing cache coherent 
interface from multi-core ARM CPU to proposed accelerators in programmable logic. For certain types of 
acceleration units, mapping the software stack to the hard CPU complex allows fast turnaround in the 
order of seconds to minutes, enabling greatly enlarged design space exploration over either soft 
processors or software simulation. 
     For the success of heterogeneous hardware research, fast turnaround of design space exploration is 
needed. A combination of techniques, including multiple levels of description with consistent interfaces, 
seamless path to hardware, and targeted use of FPGA for fast emulation, will contribute to realizing this 
goal. 
 
Relevant tools: 
AccelSim, gem5, ZSim, Dynamo Rio, SST, RISC-V related extensions, Logic in Memory Emulator, Open Cores, SystemC 
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I. TOPIC

Topic: Architectures, Emerging Technologies, Codesign
Methodologies

II. CHALLENGE

Current codesign approaches focus on aligning applications,
system software and hardware to make the most efficient use
of a supercomputer possible. However, the base architectures
of the hardware are heavily influenced by markets such as
commercial cloud computing. Rarely is there an opportunity
to design a system component from the ground up for a new
supercomputer. For example, GPUs were not designed with
the supercomputing market in mind; they were originally a
consumer market product for graphics display. GPUs have
also evolved to an important component for large markets
such as machine learning/AI and cyptocurrencies. In practice,
this limits codesign opportunities because many markets are
competing to use the spare silicon area of these devices to
accelerate their own particular use cases. As a result, designers
of supercomputers for scientific computing are forced to figure
out how to exploit existing hardware products and features
to get the best possible performance out of scientific and
engineering applications..

The one component that has been consistently designed
specifically for supercomputers is network hardware. The
performance of scientific and engineering applications is un-
doubtedly bound by the network performance of a system;
poor network performance means poor application perfor-
mance. Fortunately, high-performance network codesign has
been a successful endeavour for many years (e.g., Bull’s BXI
interconnect [1] incorporates Portals 4 [2]). However, there
are new challenges facing network codesign for the future.
Network codesign is not only about high performance data
movement, it is also critical that the network be designed to
efficiently support the system software interface for applica-
tions. Practically, this means that networks must efficiently
support MPI message passing semantics.1 We have seen sev-
eral recent efforts to codesign network hardware to improve
MPI performance, including explicit hardware support for MPI
message matching [3] and collectives [4]. However, major new

1Support for SHMEM semantics is desirable, but perhaps not required.

challenges that will impact the entire approach to codesign are
on the horizon.

Codesign efforts have historically focused mainly on appli-
cation needs, system software, and specific hardware support
that are operating within a central control point in the system
(i.e. the CPU). Recent developments have led to a new chal-
lenge: integrating intelligent networks into supercomputers by
introducing general-purpose programmable NICs (i.e., Smart-
NICs and Data Processing Units (DPUs)). SmartNICs and
DPUs are a byproduct of the increase in network performance
over the last few decades. The package size of a NIC has
expanded to be much larger than the NIC logic requires
because the silicon die size is determine by electrical engi-
neering concerns about pin pad sizes and support for very high
serializer-deserializer (SERDES) speeds. Therefore, we are
presented with a unique codesign challenge and opportunity.
Network hardware vendors [5] have begun releasing new NICs
that use this extra silicon area to build additional compute
resources. Given the emergence of these new devices, we are
faced with an important question: How can we effectively
exploit the compute resources on SmartNICs and DPUs to
accelerate scientific and engineering applications?

The novel challenge presented by the codesign of Smart-
NICs is that they present the rare case where we are not
attempting to incorporate existing hardware designed for
another primary purpose (e.g., GPUs). Instead, SmartNICs
present a blank slate that we have the opportunity to codesign
specifically for scientific applications; an opportunity unlike
any we have seen since the vector computing era. However,
with this great opportunity comes great challenges. We have
not had recent opportunities to influence hardware direction.
Therefore, our existing approach to codesign must adapt to
account for this change. However, it is not yet clear how we
can effectively exploit SmartNICs to improve the performance
of scientific and engineering applications. For example, should
we use them to offload elements of system software from
the compute units in the system? Should we use them for
intelligent data steering and filtering? Can we use them for
AI acceleration? Should application developers design their
programs to explicitly target parts of their code for Smart-
NICs? Will SmartNICs become the new central control point
for system software and even hardware in a system, usurping



the CPU’s long held role? Will they have separate operating
systems (OS) or will they integrate with the OS on the CPU?
Will CPUs even be needed in the future or will SmartNICs
attached to GPUs become the new node architecture?

The vast possibilities for SmartNICs are part of the chal-
lenge for codesign. As we explore possible roles for the
SmartNIC, we will be able to assess what roles it is most
capable of performing and what roles are needed most in future
generation systems.

III. OPPORTUNITY

The challenges facing the codesign of SmartNICs and DPUs
present numerous opportunities. For the first time in many
years, we have the chance to tackle known problems that
supercomputer users have had to learn how to live with. For
example, with SmartNICs we can help address some of the
problem of performance predictability by offloading known
sources of OS/System “noise” from the compute units to a
environment that is not executing application code. Significant
effort has been devoted to minimizing the impact of OS noise
on supercomputers. However, offloading services to a Smart-
NIC or CPU may further reduce noise. Moreover, moving
system software tasks so that they are not competing for
resources with the application code may provide opportunities
for complex, run-time optimization of system software tasks
where it was not previously possible due to the cost of
computing the optimizations.

SmartNICs are the ideal platform to use to optimize data
movement off of the node by scheduling movement to and
from the I/O subsystems and other nodes during intervals when
the network is not needed for latency-sensitive applications
communication. For example, SmartNICs provide the oppor-
tunity to intelligently schedule and independently perform
application checkpoints to burst buffers and the parallel file
system. The application merely needs to note the location of
the checkpoint data in memory and when it can be copied.
The SmartNIC can then copy the data locally and move it
out on the network when it will not interfere with application
data traffic. SmartNICs also offer the possibility of seamlessly
coordinating data movement on heterogeneous nodes (e.g., to
and from GPU memory) without perturbing application code
executing on the host CPUs.

SmartNICs also provide opportunities to integrate first-of-
a-kind hardware into supercomputing systems. For example.
SmartNICs could easily be designed with Tensor Processing
Units (TPUs), or custom matrix-multiply units to enhance
application performance or provide high performance ML/AI
compute capabilities to the system as a whole. SmartNICs
offer the possibility of a new kind of distributed system
software that can be augmented with AI capabilities to offer
a truly distributed, globally-coordinated system management
ecosystem. This capability would provide the opportunity for
entirely new types of distributed system software that were
not previously possible or practical to be developed. For
example, a distributed system software solution for network
scheduling could be developed that would help applications

that were completely unaware it existed. By coordinating with
the system resource manager/scheduler, applications can be
run with their communication schedules in mind to avoid
network congestion based on previously observed behavior.
An online distributed system running on SmartNICs could
use AI to predict future traffic during application execution
and adapt network settings on-the-fly to optimize performance.
PVFS systems can be speculatively primed to deliver data to
intermediate buffers in anticipation of the application’s needs.
The opportunities for new approaches to system software
design in this space are vast and intriguing.

IV. TIMELINESS

This work is ideally timed as industry is undergoing efforts
to find the best uses for SmartNICs and infrastructure support
is minimal. As such the hardware is at a prime point to be
influenced as are opportunities to influence system software
and the interfaces for such hardware. Common interface efforts
have been started [6] but as the architectures are still widely
varied and in flux, a standard interface still needs guidance as
to what role the SmartNIC will play in future supercomputers
before it can be used to unify the interface in a useful manner.

ACKNOWLEDGMENT

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineer-
ing Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

REFERENCES

[1] S. Derradji, T. Palfer-Sollier, J.-P. Panziera, A. Poudes, and F. W.
Atos, “The BXI interconnect architecture,” in 2015 IEEE 23rd Annual
Symposium on High-Performance Interconnects. IEEE, 2015, pp. 18–
25.

[2] B. W. Barrett, R. Brightwell, S. Hemmert, K. Pedretti, K. Wheeler, K. D.
Underwood, R. Reisen, A. B. Maccabe, and T. Hudson, “The Portals 4.0
network programming interface,” Sandia National Laboratories, 2012.

[3] W. P. Marts, M. G. Dosanjh, W. Schonbein, R. E. Grant, and P. G. Bridges,
“MPI tag matching performance on ConnectX and ARM,” in Proceedings
of the 26th European MPI Users’ Group Meeting, 2019, pp. 1–10.

[4] R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock, G. Shainer, G. Bloch,
D. Goldenerg, M. Dubman, S. Kotchubievsky, V. Koushnir et al., “Scal-
able hierarchical aggregation protocol (SHArP): A hardware architecture
for efficient data reduction,” in 2016 First International Workshop on
Communication Optimizations in HPC (COMHPC). IEEE, 2016, pp.
1–10.

[5] Mellanox. (2018) Mellanox BlueField SmartNIC. [Online]. Available:
https://www.mellanox.com/products/bluefield-overview

[6] B. K. Williams, W. K. Poole, and S. W. Poole, “OpenSNAPI: Toward
a unified API for SmartNICs,” Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), Tech. Rep., 2020.



Edge computing at synchrotrons: co-design for data reduction,
monitoring, and real-time analysis

Marcus Hanwell1, Line Pouchard2, Yihui Ren2, Wei Xu2, Anthony DeGennaro2 and Christine Sweeney3

1: NSLS-II, Brookhaven National Laboratory 2: CSI, Brookhaven National Laboratory
3: Los Alamos National Laboratory

{mhanwell, pouchard, yren, xuw, adegennaro}@bnl.gov and cahrens@lanl.gov

Topics: Applications, Codesign methodologies

Challenge
Synchrotrons, such as the NSLS-II, are large user facilities, funded at the national level, to serve the scientific
community with some parallels to supercomputing facilities. They offer extremely bright beams of photons
impossible to produce at smaller facilities. These national user facilities enable scientific discoveries from
designing new quantum materials to revealing protein structures. Beamlines are positioned around the
electron storage ring and use the high intensity beam at specialized end stations. These beamlines are
equipped with different types of sample mounts and a variety of sensors that range from diffraction, imaging,
and computed tomography increasingly with dynamic measurements. These sensors are improved with
each iteration, producing higher resolutions often at greater acquisition rates that couple with accelerator
upgrades that enhance beam brightness, size and other characteristics. This represents a huge downstream
data and computation challenge for synchrotron facilities. It is estimated that data rates will be on the order
of exabytes in the next 10 years!

Thanks to brighter light sources, improved sensors and heightened user interest, it is increasingly impor-
tant that facilities operate around the clock. Recent events around the global pandemic have highlighted
the growing need for greater automation at user facilities and increased the urgency of doing so. Particu-
larly, beyond real-time remote monitoring, we would like to improve automatic sample movement and sensor
adjustment by utilizing robotic arms in increasingly difficult experimental arrangements. As robotic arms
operate, samples must be tracked, and all relevant information, such as beam position, sample-stage align-
ment and anomalies (e.g., possible collisions), must be recorded. As multi-modal experiments, where the
same sample is moved and analyzed across multiple beamlines, become more important, such autonomous
sample moving, tracking and registration will be a key goal for national user facilities.

As the challenges of increased data rates and fully autonomous operation become more pronounced—to
enable better science at national user facilities [1, 2]—it is critical that we seize this co-design opportunity
to tackle these challenges.

Opportunity

We have identified three main challenges at our synchrotron: 1) high data rate that requires real-time
compression and online analysis; 2) remote experiments monitor and autonomous control; 3) a holistic and
modularized system design and integration of hardware, software and users. Although these challenges are
motivated by day-to-day operations at our synchrotron, we believe they are ubiquitous to other facilities.
We envision the co-design has at least three levels from top to bottom: 1) modularized abstraction and API
design to boost reusability and portability, 2) integration of low-latency artificial intelligence (AI) solutions
at the edge close to detectors, and 3) selection and programming suitable compute devices.

Abstractions—Software-Hardware Interfaces

Co-design at the edge for experiments at user facilities requires a common understanding between exper-
imental scientists and electrical engineers in addition to the traditional teams of computational scientists,
computer scientists and computational hardware designers. Well-designed abstractions allow edge device,
sensor, network, storage and compute hardware designers to understand needed capabilities. These abstrac-
tions may involve one or more middleware layers that are intermediate (usually) between Python or facility
control languages (e.g., EPICS) and lower-level languages or libraries.

Some important abstractions include those for robotics, metrics and workflow. Interfaces can generalize
robotic capabilities (movements, goals, constraints) across devices that may differ between experimental
setups locally or across facilities. Cross-cutting definitions of metrics can be applied to data collection
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and quality monitoring (noise characteristics, data throughput and latency, ranges of data values, data
value variance, timing) that can be used at the edge, online or for offline replay. Workflow, processing
and/or analytics pipeline abstractions can allow for ordering operations to help co-design in optimizing or
parallelizing sequences or groups of tasks.

Experiment Visualization and Inspection Co-design

On one hand, experiment data that are usually heterogeneous and multidimensional introduce the visualiza-
tion and evaluation challenge that demands the co-design with users. A visualization framework with user
interactions presents potential opportunities including: 1) the pre-screening of those data before delivering
to the followup analysis; 2) the evaluation of the results generated by the adopted analysis modules; and 3)
the understanding of the analysis modules themselves, especially the deep learning approaches.

On the other hand, the front-end visualization and back-end imaging framework, once combined, can
enable coupled analysis, processing, display and visualization acceleration on various hardware, such as
GPUs/TPUs. This presents another co-design opportunity with hardware that could significantly improve
interactive and real-time interaction as data are acquired.

Low-latency AI Inference on New Hardware

Deep learning approaches have been very effective for complex pattern recognition tasks, such as image
classification, pedestrian tracking, object detection and instance segmentation in computer vision. Scientific
communities are embracing AI solutions in many aspects, from replacing expensive simulations with neural
network surrogate models to segmenting electron microscope images. Most of these achievements have been
reached in an offline fashion, either on a powerful workstation equipped with GPU cards or sometimes on
high-performance computing (HPC) systems. Integrating a trained model with experimental facilities and
impacting the way scientists conduct experiments are the natural next steps. The computation in neural
network inference differs from that in training. Unlike neural network training, which consists of both
forward phase (to compute activations) and backward phase (to compute gradients and update the model),
neural network inferencing only has the forward phase and can operate in a streaming fashion. Therefore, a
co-design problem emerges. On the hardware level, besides GPU-like devices (streaming compute unites with
small local cache but vast global memory) such as AGX, newer hardware designs invoke non-von Neumann
architecture, such as GraphCore IPU, Cerebras CS-1, SambaNova, Xilinx AI-Core, Intel Loihi, etc. How to
pick the right inference hardware for specific scientific applications and design a neural network that works
well on the specific hardware and meets the bandwidth or latency requirement is a co-design opportunity.

Specific to the challenges in our synchrotron applications, can we design and fit traditional algorithms
on new AI-motivated hardware, so we can repurpose the same hardware at different stages of experiments,
for example, data reduction and compression during the experiment and AI-driven collision detection and
sample tracking during the sample staging period by robotic arms? Will industrial edge devices with the
design goals of wireless connectivity and low power consumption fit into a scientific environment where
devices are exposed to strong radiation and energy consumption is not a concern? Should the scientific
community define their own requirements for ideal “edge” devices?

Timeliness
The light sources are brighter, and the sensors used are faster with greater pixel densities, creating huge
challenges as the data rates produced by these facilities increase. Existing solutions are showing their
flaws, and the area would benefit greatly from increased collaboration using co-design to develop specialized
solutions to improve capabilities at these national user facilities.
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Challenge: Combine Chiplet Configurability with High Levels of Trust

Intellectual Property (IP) reuse has emerged as a way to reduce device development’s time and cost. With the
slowdown of Moore’s law, building systems by integrating smaller hardware functions can be cheaper and more
viable than manufacturing complex systems in a single chip. This idea is at the basis of the “chiplets” technology.
Chiplets are modular chips that can be assembled in a package and connected using a die-to-die interconnect. Recently
Intel has developed an open-source, royalty-free standard called the Advanced Interface Bus (AIB) for connecting
multiple semiconductor dies within a single package (Fig. 1, left). The AIB specification has been adopted by
DARPA’s Common Heterogeneous Integration and IP Reuse Strategies (CHIPS) program. Chiplets and the AIB
interconnect technology are also used in the Intel Stratix 10 and Agilex FPGA families, where the AIB interface is
used to couple an FPGA die to multiple transceiver and HBM2 stacked-DRAM tiles.

While offering significant opportunities, integrating 3 rd-party chips in a single system creates security risks, calling
for validation and information assurance measures. We propose leveraging FPGA fabric to add separation kernel-like
and other assurance guarantees to chiplets-based Systems in Packages (SiPs), and deploying our solution on an Intel
chiplet-based device (Fig. 1, center). Our framework will allow adding security domains with specific information
flow constraints to an existing system, and including the existing chiplets to them.

Introduction
The semiconductor industry has been on a decades-long quest to place as much 
functionality as possible on a single die. For most of that time, a monolithic 
implementation has provided the best combination of performance, power, and 
capability, as compared to connecting two chips together using the packaging and 
interconnect technologies available at the time.
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Heterogeneous Integration 

But new integration technologies involving silicon bridges, interposers, aggressive 
geometries, and micron-scale microbump connections have changed the calculus. 
Back in 1965, Gordon Moore noted that, “…It may prove to be more economical to 
build large systems out of smaller functions, which are separately packaged and 
interconnected.” More than 50 years later, we’re achieving Moore’s heterogenous 
integration vision.

Many of today’s SoCs resemble each other in core processing while differing 
in specific peripheral functions. One application may need vision processing; 
another application requires taking signals directly from an antenna; yet another 
application needs more memory than was possible on an SoC. Part of the value of 
separating these functions out is in mixing and matching capabilities, but another 
important part is that each function – processing, analog, memory, digital signal 
processing (DSP) – may be better optimized on a different process from the one 
used for the core computing.

Figure 1.  An example of AIB application, where the analog front-end, signal 
pre-processing, and SERDES are connected, all by AIB, to an FPGA 
implementing classification and object tracking.
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Figure 1: (Left) Intel’s Advanced Interface Bus (AIB) [7]. (Center) Spider can express Separation Kernel-like
Assurance Guarantees to Intel’s Chiplet Ecosystem. (Right) Flexible Security Policy Enforcement for (a) Chiplet-
based SoCs with policies including (b) information flow control, (c) access control/monitoring, and (d) quarantining
of faulty/malicious chiplets.

Opportunity: Functional Language HLS for Configurable, Verifiable Chiplet Security.

High-level synthesis can support both software process levels of configurability and high assurance capabilities [4, 6, 8,
5], and the toolchain we envision exploits this duality to full advantage. For this reason, we propose an HLS language,
Spider, for programming security envelopes to manage Chiplet applications. Spider will be an HLS language whose
programs (“spider webs”) enforce security properties through the configuration of the AIB interconnect technology.
Furthermore, Spider language design will support high assurance through the re-purposing of tools and techniques
from software formal methods to FPGA fabric—specifically those based in functional programming languages like
Haskell, Coq, and Agda. We envision a reconfigurable system where security constraints can be configured using a
high level programming interface, which can be also used to perform formal reasoning on the system’s properties.



AIB interconnect technology can support configuration of security policies (e.g., flow and access controls) within
reconfigurable FPGA fabric, although there are currently no high-level programming abstractions for defining, imple-
menting, and enforcing such security policies. The goal or the proposed research is to design and implement a security
policy language to simplify and accelerate the development of flexible, effective, and correct security envelopes for the
Chiplet ecosystem. Powerful policy language abstractions can take full advantage of AIB configurability to lower the
development cost of security infrastructure while increasing its capabilities. We will call this security policy language
Spider and refer to the security envelopes it produces as webs.

We envision Spider as analogous to the P4 network programming DSL, although webs will be implemented
within the AIB interconnect rather than on network devices. The P4 domain-specific language is for programming
the controlling packet forwarding planes of networking devices (e.g., routers and switches). P4 is implementation- and
protocol-independent, meaning that it abstracts aways from details of particular target architectures and protocols
to provide a uniform approach to programming network devices. A programming language-based approach can
yield both software engineering benefits (e.g., comprehensibility, modularity, and ease of development/refactoring)
and high assurance by leveraging of software verification techniques [9, 2]. The proposed research combines P4 like
programmability for the AIB interconnect as a functional high-level synthesis language.

Multiple Independent Levels of Security (MILS) systems [1] (sometimes called separation kernels) are a US
Department of Defense architecture for securing DOD mission-critical embedded systems amid increasing levels of
resource sharing. MILS kernels enforce multiple security “domains” so that all communication/interaction between
processes at different security levels obeys the prescribed security discipline. Major vendors provide MILS-like secu-
rity enforcement in hardware [3]; these systems include Apple’s Secure Enclave Processor (SEP), ARM TrustZone
technology, and Intel’s Trusted Execution Technology (TXT). These vendor technologies all focus on security enforce-
ment at the hardware-software boundary to support cryptographic algorithms, access control to memory subsystems,
and the integrity of system software. By contrast, the proposed research has an analogous, albeit purely hardware,
goal of enforcing verified MILS-like security for the Chiplet ecosystem. Fig. 1 (right) illustrates the kinds of secu-
rity capabilities this research will provide to the Chiplets ecosystem. These include MILS-style (“no-write-down,
no-read-up”) flow policies (Fig. 1 (right, b)) in which the permissible flows are programmed directly into the AIB
interconnect. Access control policies (Fig. 1 (right, c)) such as conventional memory protection capabilities are
possible as are memory scrubbing and dynamically set bandwidth limitations. Isolation primitives (Fig. 1 (right,
d)) will support graceful degradation of functionality in the presence of faulty or malicious chiplets. These primitive
include power-control capabilities to either conserve energy and/or turn-off malicious/faulty chiplets.

Timeliness/Maturity.

There is no such thing as a secure system without secure hardware. To produce trustworthy hardware/software
systems, it is our position that security must be a first-class concern throughout the entire codesign process. Our
position is that recent advances [4, 6, 8, 5, 9, 2] in applying functional languages to high assurance hardware
development enables codesign of systems with whole-system security guarantees and that exploiting these advances
will revolutionize the trustworthiness of codesigned systems over the next decade.
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As we approach the first exascale computer deployments, it is imperative that we 
reexamine the concepts behind co-design for the next generation of systems. Codesign for the 
last decade has focused on an effort to “redesign” applications to conform to a predetermined 
path in hardware and systems designs which are almost solely focused on floating point 
performance, power consumption and costs. Applications and their figure of merits (FOM) are 
defined at procurement time, which may not reflect the latest changes on the application and the 
programming environment, the new algorithms developed, and challenges encountered by 
domain scientists on new emerging workloads like machine learning or converged HPC+AI 
applications. The process of co-design lacks user interactivity and doesn’t have the right tools 
and methodologies to best communicate application requirements to hardware manufacturers. 
Most of the work done by the vendors focuses on predicting performance of applications on a 
new system, but domain scientists often don’t understand the methodology used to verify these 
projections. 

 
We propose that co-design efforts should support tools that include a user-driven and 

code-focused methodology. Application developers and domain scientists should play an active 
role in co-design via a set of tools that allows them to transparently do design space exploration 
for upcoming systems with a focus on overlooked features like data movement and network 
communication. This proposed set of tools would require characterizing and capturing 
application requirements that can be passed to system software and hardware designers, and it 
would also necessitate multi-precision or multi-modal simulation techniques to allow for 
simulating and tweaking future architectures to match application characteristics. 

 
Challenge: As an example of the current crisis for co-design, the GESTS application[2], 

is a turbulence code that has been ported to multiple supercomputers including ORNL’s Titan 
and Summit  with good performance and in the near future to Frontier. GESTS is a code that 
makes extensive use of large 3D FFTs that require transpose operations and all-to-all 
communications between processors. While the core FFT kernel is well-represented by existing 
mini-apps and benchmarks, the usage of these kernels at scale causes complex issues when 
porting to new architectures. Their choice of algorithm depends on the number of accelerators 
per node, the amount of memory available on the devices, the compute vs network bandwidth 
availability, and asynchronous executions strategies to hide data movement costs. Early access 
systems might include a relatively close approximation of system accelerators, memory, and 
FLOPs but they have no way to represent cluster-scale networking, data movement 
requirements, and application mappings across the near and far communication domains of a 
large supercomputer. 

 
Existing profiling tools like NVProf, Vampir, and Tau are designed to help application 

developers tune their applications to a current set of hardware. They were not designed to guide 
the developer to focus their code-design efforts other than telling them where the bottlenecks 
are on an existing system. This limits the design space exploration options for architects and 
limits the ability of domain scientists to improve applications or to determine which regions of 
code are important to co-design for other platforms. Tools like NVProf are also vendor specific 
and do not capture any porting effort knowledge. Also, if a site changes vendors, the old tools 
are no longer useful, which limits continuity of tool knowledge and of techniques used in the 
porting experience itself. Currently, there is limited guidance for these experts to decide how to 



algorithmically change their code to obtain the best performance on a future system. Future co-
design tools must be able to handle applications at system-level scale, which requires a much 
different approach to the design of related simulation and emulation tools to guide users of their 
regions of interests and the design exploration space for system software and hardware. 

 
Opportunity: One approach could be to use trace-driven or application-driven 

simulators (as with gem5, MUSA, or DynamoRio tools) for specific components like memory or 
CPUs while focusing on more accurate modeling of key system-level components such as the 
network or accelerator. While these approaches can work well for well-known workloads and 
current-generation hardware models, they are currently limited in terms of mixing models with 
different fidelities (e.g., combining an ML cache model with a detailed CPU). One potential 
opportunity is to better target these tools towards application users and to provide user-driven 
feedback to target specific code regions or specific architectural features of interest. Other 
features could then be replaced with a lower-fidelity model.  

 
Definitions of these code regions of interest (ROI) are currently limited by the complexity 

and speed of finding significant ROIs and relating them to common figures of merit (FOM) like 
time to solution, simulation cycles/real-world seconds, and data movement (B/FLOP). A second 
huge opportunity is the use of newly developed compiler and runtime tools that can improve the 
characterization process for these ROI, detect code patterns and develop a classification 
system to allow for user-based scoping of ROI, and help map these ROI to scalable system-
level simulations.  

 
Why now? It takes 10 years to do a true application-centric co-design effort, as is 

evidenced by RIKEN’s efforts with the development of Fugaku. We see recent improvements in 
compilers, runtime analysis tools, and simulation that enable us to fully address our ideal set of 
tools that 1) identify patterns that contribute to specific application FOM, 2) allow for mixed-
fidelity simulation, and 3) incorporate learning and user feedback. Compiler analysis tools built 
on LLVM now allow for similarity analysis and classification of complex code patterns [1] and 
machine learning techniques to classify similar code regions [4]. At the same time, runtime 
analysis tools like DynamoRio and the OpenMP and Kokkos Tools API allow users to design 
simple tools to analyze code at runtime and to provide more robust information about ROI for an 
entire application. Finally, we are starting to see improved efforts for mixed-fidelity simulation 
using full application stacks with simulators like MUSA or gem5 with ROI-based techniques like 
BarrierPoint [3].   

 
While these new techniques and tools allow for improved co-design, we suggest that 

further work is needed to create a comprehensive system-level characterization and simulation 
framework that can target challenging application patterns that are not addressed by today’s co-
design and application porting efforts.  
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1. CHALLENGE 
With very few exceptions data acquisition systems used for nuclear physics experiments are based on 

assumptions and architectures that have changed very little over the last quarter century. The primary 
assumption is that the raw data rate from the detector is too large to acquire without reduction at source. This 
is achieved by using custom electronics and firmware to make real-time decisions on which data contains 
interesting physics. This trigger is fed back to the digitizing electronics and selected data is read out and passed 
to the data acquisition chain. Typically, an “event builder”, implemented in hardware or software, merges data 
belonging to the same trigger to form an “event” which contains all the data associated with the physics 
interaction that the trigger chose. The output of the process is a time ordered sequence of events, that contain 
the raw output of the digitizers, typically written to files. This impacts the workflow by which the data is 
processed to generate physics results. There are several challenges: 

• The trigger throws away data and may bias an experiment. 

• The trigger is implemented in hardware, is inflexible and hard to debug. 

• The event builder is an intrinsic bottleneck, complex, and a point of failure. 

• Data generation is driven by the trigger, which has random timing. 

• The output of the data acquisition is raw digitized signals from the electronics. It must be converted 
to physical values such as positions, times, energies, in a software process called reconstruction. 

• Reconstruction requires detector calibration which requires running the detector under well 
understood conditions and comparing the data taken with simulations. 

 An example is the CLAS12 detector at Jlab. This detector is read out by approximately a hundred VXS 
chassis of electronics [1]. The trigger is implemented in custom built hardware using the serial lanes of the 
VXS backplane and optical links to transfer trigger data to the decision-making global trigger hardware [2]. 
Data from all 100+ data sources is merged in real-time in software at data rates of around 1 GByte/s and 90kHz 
event rate. The output is a series of data files with approximately one file generated every minute. The 
experiment runs 2/3 of the year with a daily uptime of 60-80%. This generates thousands of files of data each 
of which must be run through reconstruction using a detector calibration that was valid when the data was 
taken. Calibration drifts over time and special calibration data taking runs must be repeated several times each 
day. Converting this data into an accurate calibration is a time-consuming process, often reconstruction can 
only start weeks or months after the data is taken. 

2. OPPORTUNITY AND PROGRESS:  
The previous section began with the statement that data acquisition architecture and analysis workflow are 

driven by assumptions that have not changed in a long time. It was impossible to acquire all the data without a 
trigger to cut down the rate, even if it could all be acquired the dataset would be too big to store, even if it could 



 

 

be stored the computational cost of the reconstruction step would be prohibitive. In parallel several groups at 
different laboratories are independently realizing that these assumptions are no longer true [3]. The key factor 
that breaks these assumptions is rapid technology advance in FPGAs, optical network links, memory devices, 
and computing over the past years. It is now possible to use FPGAs to read out detectors with minimal filtering 
to remove background noise but without resorting to a physics-based trigger. The data can then be streamed in 
parallel from the various component detectors over optical links into memory. The data flow will be 
deterministic since the detector will be read at fixed rate rather than on a random trigger. Given adequate fast 
memory to temporarily buffer the data, there is no need for a complex real-time event builder. These last two 
factors eliminate many of the failure modes faced by triggered systems. These streaming readout systems are 
expected to be the dominant architecture in the future. 

A streaming system makes no physics-based trigger cut on the data. The data is clean and unbiased allowing 
the possibility of calibration and reconstruction in real time. To reduce computation and storage cost it is likely 
that, post acquisition if not post reconstruction, the experimenter would opt to implement a software trigger 
that would reject uninteresting data. A software trigger would be more flexible than one implemented in custom 
electronics and firmware. A streaming system acquires time sequenced data from all parts of the detector in 
parallel resulting in a multi-dimensional dataset, with one dimension being time. It is possible to implement 
software that resolves interactions that occurred very close together in time that a traditional trigger could not 
resolve. There is also the possibility of novel data processing techniques that are not possible with the files of 
linear sequences of events output by a traditional NP data acquisition. An example is use of AI/ML to infer the 
physics either at the event level, by recognizing events, or at a higher level by recognizing hit patterns. In the 
former case we skip the calibration and reconstruction step by using pattern recognition to recognize particle 
tracks through the detector and infer the parameterization of the track. In the latter case we skip most of the 
traditional NP workflow, calibration, reconstruction, and statistical analysis, and infer the physics directly from 
patterns in the raw data.  

To realize the full potential of streaming detector readout we require a heterogeneous and flexible computing 
environment. We need to integrate a data source using a mix of software and firmware into a high-performance 
data processing system. This system must provide an environment that can evolve as new techniques and 
technologies appear. For example, if we follow the path of using AI/ML to infer physics it may be appropriate 
to make use of hardware inference accelerators. Also, existing trigger systems have led to the development of 
firmware that very efficiently processes NP data. This could be taken advantage of by making FPGAs available 
in the data processing systems. Currently NP makes minimal use of GPUs but this is changing, not only through 
user written code but also use of GPU enabled AI/ML tools and other packages. 

If successful, the effort to optimize compute for a streaming NP data source will greatly accelerate the 
workflow between running an experiment and publishing a result. It will also tighten the loop between a 
development in theory and testing it with experiment. The use of a streaming readout is critical to experiments 
planned at JLab as well as to the joint BNL-JLab EIC project [4], where a traditional trigger system would be 
expensive to implement and possibly compromise the science results. 
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I. CHALLENGE

Many state of the art scientific and engineering workflows
follow the familiar pattern of batch computation for running
codes and processing data. The sheer amount of data combined
with complex computations necessitate large, centralized su-
percomputers and other high-performance-computing (HPC)
systems at remote or cloud facilities. This requires a multi-stage
approach of collecting all data for a given experiment or applica-
tion, transferring it to compute facilities, executing the analysis
codes, and interpreting results. Traditional science workflows
at Department of Energy (DOE) experimental facilities such
as the Spallation Neutron Source (SNS) require co-designs
that effectively and collaboratively utilize computing facilities
like Oak Ridge Leadership Computing Facility (OLCF) [1].
Other DOE scenarios, including modernized smart grids, must
also process significant amounts of sensor data on large scale
systems.

This batch processing paradigm limits the overall produc-
tivity of users due to the constraints of remote compute and
instrument resources and is inefficient in both time and cost.
For example, users at the SNS must estimate duration of data
collection, hoping it is sufficient to produce adequate results.
This is inefficient in two ways: either 1) too little data is
collected requiring users to later re-run the experiment, or 2) too
much data is acquired that consumes expensive instrument time
that could be used for finer granularity or additional sample
environment collections. In another example, monitoring the
effect on the smart grid of distributed power generation from
consumer-owned systems, users are limited to post-processing
and can only derive conclusions for historical events; there
is no ability to enable real-time analytics that drive active
control decisions for power generation services to improve grid
stability. The objective of our approach is to re-imagine batch-
based processing into streaming-based systems and develop
frameworks that enable persistent, high-throughput, and low-
latency scientific and engineering workflows.

II. OPPORTUNITY

The rise of edge computing drives a fundamental shift in
thinking within the scientific community towards deploying
computing capabilities at the instrument edge rather than only
centrally located facilities, reducing the gap between the data
and the code [2], [3]. Connecting instruments, edge computing,
and HPC facilities into larger science federations will be a
key approach that enables the future of cutting edge scientific
discovery and will result in more efficient experiments. These
federations are possible due to improvements in embedded

and edge hardware and as high-bandwidth connections such
as 5G and fiber become ubiquitous [4]. They will also support
brand new capabilities such as streaming workflows that
will lead to smarter experiments with real-time control and
inference, enabling the discovery of new paradigms to derive
understanding from data[5]. This shift to streaming closes
the feedback loop for scientists as details of experiments are
available immediately as the instrument collects data, and for
engineers as the sensor data of entire smart grids are integrated
for state assessment and control. Building this capability of
streaming and real-time control will require re-imagining
how workflows are formulated since current workflows and
leadership class computing facilities are not designed with this
type of use-case in mind [6].

We propose a co-design framework for supporting streaming
workflows that enables experiments-in-the-loop running over
software federations consisting of distributed, heterogeneous
compute resources and wide-area networks (Fig. 1) [7]. Future
science experiments and smart grids will produce increasing
amounts of data; workflows must support high-throughput
pipelines while maintaining overall low-latency for real-time
control and analytics. As computational resources become
geographically dispersed, the complexity of these workflows
increases and wide-area networks become an integral part of
design. The federations’ resources must be persistently available
and connected for the lifetime of the experiment, requiring sig-
nificant coordination between the data generation, data transfers,
and computation throughout the entire federation. Enabling
these capabilities requires rethinking the traditional scientific
workflow from end-to-end and developing the infrastructure and
software to best use resources throughout the entire federation,
including edge computing, data reduction, and heterogeneous
architectures.

A streaming workflow co-design will require three main
focuses: 1) understanding the limitations of existing batch work-
flows and re-mapping them into discrete processing blocks that
can be computationally distributed in a stream, 2) orchestrating
processing over the entire workflow on distributed resources in a
federation, and 3) automating the creation of persistent network
pipelines to provide high-bandwidth, low-latency connections
between nodes in the streams and enabling pre-processing and
data reduction to accommodate bandwidth restrictions while
still meeting application requirements.

A. Re-mapping Workflows to Streaming Architectures

The key to enabling streaming workflows is identifying
the smallest unit of experiment data that can be streamed
through the system and decomposing the overall workflow into
individual computational blocks that process those units of
data. Once identified, existing workflows can be re-imagined



Fig. 1. An example hierarchical streaming workflow providing real-time analytics and control for the smart grid including smart sensors,
heterogeneous sensor gateways, utility edge systems, and the overall grid controller and power generation control interfaces.

as a series of data flows where processing is done in-situ while
data is transferred from the source to computational resources.
This is a cross-disciplinary effort between experimental sci-
entists, computer scientists, and engineers to analyze existing
workflows and co-design these streaming computations.

B. Orchestration and Scheduling

Shifting towards streaming architectures also requires re-
thinking how computational resources are scheduled and
policies defined to support these persistent applications and
streams. Unlike cloud environments that are designed for multi-
tenancy and easily support persistent applications, traditional
HPC systems do not readily fit this use-case. Careful thought
is needed to understand how to adapt traditional accounting,
policy enforcement, check-pointing, and failover on leadership
HPC systems to support these workflows.

Heterogeneous system architectures pose interesting chal-
lenges for streaming workflows. Accelerators like graphical pro-
cessing units (GPU), field programmable gate arrays (FPGA),
and neural processing units (NPU) increasingly used in super-
computing systems are not integrated and tuned for stream
processing. Alternate and more intelligent scheduling systems
must be considered for optimally scheduling these resources
based on pending tasks and availability.

C. Persistent Network Pipelines and Data Reduction

Streaming workflows will heavily rely on persistent network
connections and can benefit greatly from innovations such
as SmartNICs [8]. These incorporate onboard compute cores
that can process data either in or out of band. Possibilities
for pre-processing data in the stream (such as compression,
reduction, and translation) exist before it is transmitted over
a connection. Additionally, SmartNICs can directly transfer
data to other accelerator cards without requiring host processor
interaction. This combined with Software Defined Networking
(SDN) would be a key contributor for enabling streaming
workflows.

III. TIMELINESS

Advances in different disciplines provide the building blocks
that can eventually enable streaming workflows. Improvements
in embedded and edge hardware, network connectivity, and
distributed computing frameworks are the main enabling
technologies that are beginning to provide the structure required
for streaming workflows. This connectivity in turn increases the
demand for real-time control over experiment and engineering
workflows.

Our approach will build on these advances including: edge
computing, SDN, Digital Signal Processing (DSP), Software
Defined Radio (SDR), and science federations. Both DSP
and SDR applications are two domains that map well to the
streaming paradigm and require high-throughput, low-latency
processing and as such provide a strong basis for which to
build streaming scientific workflows. The vision for streaming
workflows is to provide immediate visualization of experiments,
real-time control for sensor systems, and to usher in the fourth
paradigm of science: obtaining understanding from data.
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Challenge:

As the silicon based computing system approaches its physics limitation, the quantum
computer is one of the possible routes to provide next generation high performance computing
to advance the science and DOE mission. The overall quantum computing is still in its early
stages and the scalable qubit control system is one of the challenges and opportunities for the
hardware/software codesign.

Quantum bit (qubit) control system is the classical electronics together with the firmware
and software running on them to bridge the quantum algorithm and low level quantum
hardware. The control system generates and measures the radio frequency (RF) pulse, DC
signal or  laser pulse to implement the quantum gates and readout for different low level
quantum hardware.

Typical qubit control system consists of analog hardware, digital hardware and software.
The analog hardware determines the signal performance seen by the quantum hardware,
including the noise, the bandwidth etc. The digital hardware is typically implemented on/around
a field programmable gate array (FPGA). On the FPGA, domain specific soft core or hard core
can be utilized to accomplish more flexible signal processing. Basic software API is essential to
interact with the upper layer code or operators. As the technologies emerge,  the boundaries
among the layers are getting blurry, e.g. more and more logic can be implemented on the FPGA
to achieve lower latency, the system on chip (SoC) design simplify the system design. For an
integrated system, the overall system architecture needs to trade off among multiple dimension
requirements. The system needs to be expandable to control hundreds to thousands of qubits in
the near future while maintaining flexibility, performance and also a reasonable budget and
footprint.

The control system complexity is proportional as the number of qubits increase. Tens of
qubits or even hundreds of qubits control systems can be achieved by bruteforce duplicating
current control systems, but beyond that, the system architecture must be reconsidered to
accommodate the emerging technologies. A full stack understanding of the overall design is
essential to the architecture level design and optimization crossing the analog domain and the
digital domain.

The major industry leaders, such as IBM1, google2, ionQ3, rigetti4 etc, built their qubit
control system for their quantum hardware. These systems successfully operate tens of qubits
and demonstrate quantum supremacy5. The low level control stacks of these are not open
source to the community. Research groups developed smaller systems based on the standard
lab instruments and in-house developed software to support advanced research. These
systems are flexible to implement experiments on the small scale while expanding them to the
next stage is a challenge.

1 ghuang@lbl.gov



Opportunity:
Distributed compact control modules allocated right next to the device will be ideal for

the system integration. That is still far from the current reality of racks of electrons controlling
few qubits, so more development and evaluation are required to properly specify the system in
the right architecture. Along the path, the R&D will generate hardware, firmware and software
design as well as develop the market of quantum computing.

Several emerging transformative technologies have the potential to change the qubit
control system. The chiplets approach might integrate the analog and digital modules faster and
less expensively. The open source hardware such as RISC-V provides an opportunity to
develop instruction set architectures suitable for classical quantum integration. RTL level design
and verification with the systemverilog to further modularize the hardware and the digital signal
processing.

To meet the flexibility and performance requirements together, the system can be further
modularized using the codesign methodologies. Combining the open hardware and open source
gateware modules, together with the upper level software to build a system.

It is a great opportunity to team up the national laboratory, the university research group
and the industry partners, to design and build open source stack, from the hardware to the
firmware and software to support multiple quantum platforms.

Timeliness of maturity:
In the last decade, the quantum bit coherence time and achievable circuit depth has

been significantly improved on the superconducting, trapped ion quantum hardware platform.
The continuous improvement of quantum hardware makes it possible to develop larger scale
quantum systems and create the requirement of larger, expandable control systems.
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Challenge 
The post-exascale era in computing will look much different from today’s landscape, requiring 
heterogeneous node and system architectures to achieve power, cost, reliability, and usability 
requirements while maintaining the rate of increase of application performance. Investments made 
through the Department of Energy’s (DOE) Advanced Scientific Computing Research (ASCR) and Advanced 
Simulation and Computing (ASC) programs have produced strategies for porting applications to 
heterogeneous nodes comprised of well-understood components (CPUs/GPUs). However, the slowing of 
Moore’s law is driving the computing community toward more specialized forms of compute to achieve 
performance, leading to an explosion of accelerator designs from both industry and academia. At the 
same time, open source hardware is democratizing co-design of domain optimized silicon. Leveraging the 
new types of compute that these devices bring will require new co-design methods to realize their 
potential and will be critical to the success of DOE’s computing mission. 
 
The current co-design approach assumes that new systems will be well-aligned with previous 
technologies. However, application- and domain-specific accelerators have been shown to provide 
significant speedups [1, 2]. If the design space is less constrained, when there are options to incorporate 
novel types of compute, such as dataflow, neuromorphic, analog or application-specific accelerators, then 
we must rethink how we approach co-design and system procurements. It’s likely that there will be 
options to incorporate multiple types of these accelerators at both the node and system level. The 
question of how to effectively exploit these resources is an open question. Moreover, power and cost 
constraints will limit purchases to a subset of the available accelerators, making it critical for DOE to 
identify architecture requirements that represent the largest possible subset of its workload. 
 
Identifying common patterns across the DOE application space and automatic offload will lead to better 
co-design efforts and more targeted procurement activities, becoming an integral part of the co-design 
feedback loop. Many of the emerging accelerators require domain specific languages (DSLs) or vendor-
optimized libraries to achieve performance [3, 4]. Recent experiences migrating applications to GPUs have 
shown how difficult it is porting even a few kernels to a new architecture. Isolating profitable offload 
targets in million-line applications or across the breadth of the DOE application space for multiple 
accelerators is not feasible. And although the DOE has invested heavily into performance portability tools, 
like Kokkos and RAJA, these would still require input from domain experts for each accelerator. Moreover, 
compiling for all possible machine targets can still lead to long compile times and binary bloat. Compile-
time substitution and runtime JIT compilation [5] can solve this problem if common application patterns 
can be identified and automatically mapped to the appropriate heterogeneous hardware.   

Opportunity 
Addressing the problem of mapping low-level application behavior to heterogeneous accelerator 
functionality is a non-trivial problem that spans multiple expertise domains – the fundamental physics 



required for simulation informs the algorithms and data structures; algorithm scalability, multi-physics 
coupling, and workflows inform the communication and storage requirements; and together these 
determine the optimum hardware configuration. The DOE national labs, with their industry and academic 
partners, may be the only stakeholders capable of addressing this problem in a way that will benefit the 
nation, from national security to commercial products. 
 
Combining expertise in devices, hardware, software, and compilers, it is possible to develop a framework 
capable of performing in-depth static and dynamic analysis of application behavior, mapping those kernels 
to the appropriate accelerator or even developing accelerators customized for a given set of behaviors. 
The reduced development time provided by such a framework would save the DOE billions of dollars in 
development costs and open the accelerated compute space up to a wider range of applications, leading 
to greater scientific discoveries. Providing facilities and procurement teams this information will lead to 
more targeted procurements and to better direct NRE funds to influence vendor roadmaps. 

Timeliness: 
The DOE must position itself to reap the benefits of the availability of a wide range of computational 
accelerators and the opportunities presented by open source hardware. The multi-layer co-design stack 
that has served the DOE in the past are no longer sufficient. A multidisciplinary approach to extend HPC 
computing into post-Moore’s Law technologies, is critical for applications spanning larger demands on 
scientific and embedded computing capabilities and increased use of specialized compute accelerators 
enabled by: 

• The widespread adoption of open-source compiler technologies, such as LLVM, is broadening the 
research into high- and low-level optimization 

• The RISC-V ecosystem and assorted RTL development tools are democratizing co-design of 
domain-optimized silicon 

• Advances in material science and fabrication technology is opening the door to the integration of 
exotic computing devices with traditional von Neumann architectures   
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Challenge​: Conventional codesign methodologies face many challenges integrating quantum information          
processing (QIP) into a large-scale, scientific computing infrastructure. QIP, which uses the principles of              
quantum mechanics to design new algorithms, relies on fundamentally distinct devices to offer dramatic              
advantages in computing performance. Early examples of quantum advantage have found quantum            
computing devices can already outperform modern supercomputing systems in terms of time, accuracy,             
and power [1,2]. These niche demonstrations underscore the potential of QIP to yield computational              
speed ups for problems in chemistry, materials science, high-energy physics, and artificial intelligence             
among many others [3]. 

Over the next decade, we expect QIP to mature rapidly from the current noisy, intermediate-scale                
quantum devices to fully fault-tolerant quantum computers. These transitions in technology will afford             
new opportunities for the interplay between hardware capabilities and application goals. QIP, including             
quantum computing, will support several foreseeable goals in the future of computing [4,5]. As              
special-purpose computing systems, quantum computers can support new use cases of edge computing for              
modeling and simulation. As computational accelerators, quantum computers can offer novel platforms to             
design HPC systems. As networked nodes, fault-tolerant quantum computing systems can enable new             
paradigms of large-scale data processing capabilities.  

How will QIP transition from today’s disconnected HPC and experimental, prototype quantum devices              
to tomorrow’s integrated quantum-HPC systems? Integration alongside heterogenous technologies will          
require well-articulated memory and execution models, each imposing requirements on devices,           
languages, and algorithms. Reimagining codesign must account for the changes brought by the new              
quantum computational model and identify the frameworks by which to build and evaluate such systems. 

Opportunity​: The effort to reimagine codesign affords an opportunity to include quantum computing in              
the design and eventual development of the most performant computing systems. By including quantum              
computing in codesign now, we can foster the development of the technology itself and ensure future                
compatibility with industry standards and practices. Quantum computing technology embraces the           
principles of heterogeneous computing by necessity and separate, independent development would           
splinter the remarkable capabilities offered by combining multiple computational models.  

Several efforts are already underway to identify early co-design opportunities for QIP. This includes               
multiple research programs from DOE ASCR to build 1) new software and programming frameworks for               
quantum programming [6], 2) test and evaluate the performance of isolated quantum computing devices              
[7], and 3) prototype quantum-accelerated applications for multiple scientific domains [8,9,10].           
Additional industrial development efforts from IBM, Google, Honeywell, Quantum Brilliance and Rigetti            
among many others are enabling early commercialization opportunities for these technologies that are             
generating demand for better interfaces and applications.  

New tools to design and evaluate the integration of QIP with future computing systems are needed. This                  
includes tools to support “Open Source and Extensible Compiler Frameworks” through the design and              
evaluation of programming such as compilers, numerical simulators, program debuggers, and syntax            
checkers. Co-design efforts that integrate QIP with future heterogeneous architectures will require the             
ability to quickly prototype and adapt compiler, debugging, and framework software technologies. As             
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quantum hardware continues its technological advance toward available fault-tolerant architectures,          
quantum software must quickly adapt and enable research and development of quantum algorithmic             
implementations. New tools to design and evaluate the execution of quantum-accelerated applications            
using program simulators, system simulators, timing, and resource estimation. This includes the            
development of “Standardized Accelerator Interfaces” and “Quantitative Tools of Codesign (ModSim)”.           
Finally, new tools and standards are needed to design and evaluate quantum-accelerated applications             
including performance measures and benchmarks. 

At ORNL, we have begun prototype work that leverages the extensible LLVM and MLIR frameworks                
for relevant quantum compilation tasks [11]. We anticipate that the MLIR will play a vital role in future                  
quantum-classical hardware-software co-design efforts due to its unique language dialect extensibility,           
modular and reusable design, and connection to lower-level assembly language dialects, thereby            
promoting tight integration with classical heterogeneous architectures. We also have a growing repertoire             
of methods for the evaluation of quantum computing devices that can start the development of full-fledge                
benchmarks for quantum computing systems [12]. 

Timeliness or maturity​: Although current QIP devices generally lack the resilience and performance to              
directly rival conventional computing systems, they are expected to mature rapidly. This emphasizes the              
urgency of early engagement that naturally addresses the “Co-development of hardware and algorithms​”             
using quantum computing devices. It is also timely to pursue “System Level Design for New Workflows”                
for quantum computing that clarifies the quantum advantage that may be afforded to future computing               
systems. These approaches are also certain to enable new opportunities for DOE user facilities to integrate                
the advantage of quantum computing more quickly and efficiently into future designs, but only if               
sufficient early insights are available for planning that advances. 
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Challenge: Quantum computing has the potential to provide transformational computing capability to many 
scientific domains. Our view is based on developing the control stack for the Berkeley Advanced Quantum Testbed[7] 
and our in-house quantum processors. Programming and controlling a quantum processor require deploying a 
complex hardware execution pipeline in conjunction with a complex software stack. Figure 1 depicts the interaction 
between components in a holistic view of the programming and execution environment. On the top of the figure is 
software flow of program representations at different levels of abstraction while the program is compiled and 
executed. Note that intermediate steps are optional, e.g. an application can be compiled directly into pulses.  

Hardware flow on the bottom depicts the hardware processing pipelines that generates pulse level representation 
of the circuit. The first observation is that due to these highly complex interactions, co-designing the 
software/hardware control stack can provide large benefit. The main challenge here is that we still do not have one 
good qubit “implementation” or QPU architecture able to scale to a “quantum supremacy” system size. Thus, we 
are still developing a sophisticated control stack for “under-specified” hardware, which increases the importance of 
codesign in the development of software/hardware control for quantum computing.  

 

Opportunity: Opportunities are abundant and feedback/codesign loops can be identified between components 
at any level of abstraction.  Examples of co-development of hardware and algorithms include: 

• Algorithm-QPU codesign for error mitigation [1].  When hardware operations are noisy, ideal algorithms need 
to be reimplemented as noise aware. On the other hand, the structure of the algorithm (circuit) itself determines 
hardware noise. Can we build chips that respond better to the noise profiles for applications in a given science 
domain? Can we build approximate implementations for an algorithm given a noise profile? Note that this can 
be also viewed as “codesign for improvement in performance portability”. 

• Hardware design exploration [3]. Our recent work in circuit synthesis provides methods to generate an optimal 
depth (depth = performance) circuit from an algorithm description. Optimality enables predictive power for 



hardware design exploration and we’ve been using this approach to propose hardware gate-sets and chip 
topology to maximize “performance” for classes of algorithms. 

• Algorithm-ISA-QPU co-design for performance [4]. Our recent work in characterizing space-time circuit structure 
introduces metrics that guide hardware control pipeline (ISA) and QPU design in terms of required internal 
parallelism when executing gates.  

Compiling and optimizing quantum programs provides a rich opportunity for “system level design for new 
workflows”.  Given the short chip coherence times, we have severe restrictions on circuit depth and optimal 
implementations are paramount. Optimal compilation is compute-intensive and generates interactive and elastic 
(large scale) workloads and workflows that can benefit from hardware acceleration. Our recent work [5] showcases 
the (high) computational needs for circuits of 100 qubits or less. This need is likely also to be perceived by 
applications that use hybrid quantum-classical approaches. 

Furthermore, the field is rife with opportunities for “quantitative tools of codesign (ModSim)” in the area of 
building [2][4] the hardware control pipeline. 
 
Besides the obvious benefit for feedback loops in the hardware/software control stack for quantum processors, 
there are many other feedback loops enabled and synergy with methods employed in other domains. For example, 
in our recent work [3,5,6] we’ve been using numerical optimization in synthesis, as well as for hybrid quantum-
classical algorithms.  This is an example of “co-development of algorithms”, as we can see huge benefits from 
specializing the numerical methods for the quantum domain specific objective functions.  We have several other 
inter-disciplinary examples. 

Timelines and maturity: Quantum computing is one of the few emerging technologies that requires a deeply 
embedded codesign development process in order to succeed. The qubit technology keeps improving and current 
demonstrations on systems containing tens of qubit show promise. The challenge is building larger scale systems 
while tracking somewhat rapid changes in qubit technology. For example, we are working with commercial 
companies (arbitrary waveform generators manufacturers) that embraced the concept and update their 
hardware/software environment based on feedback for our physics experimentalists. The field is young, has 
tremendous potential and we expect the need for codesign only to increase for the upcoming decade and after.  
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Challenge:    Collection   and   quantitative   analysis   of   appropriate   metrics   across   the   High   Performance   
Computing   (HPC)   ecosystem   is   of   critical   importance   to   codesign.   Its   impact   spans   the   whole   spectrum   of   
stakeholders.   Whether   providing   hardware   architectures,   system   software,   application   programming   
environments,   or   production   run-time   environments,   having   the   appropriate   knowledge   to   optimize   the   
interaction   of   all   of   these   critical   components   as   well   as   the   evolution   of   the   HPC   ecosystem   is   critical   to   
continued   growth.     
    

Today,   HPC   computing   centers   collect   a   wealth   of   information   on   the   health,   usage,   and   efficiency   of   our   
machines,   workflows   and   programming   environments.   While   collection   and   analysis   of   this   information   
has   evolved   and   improved   over   the   years,   there   are   still   severe   gaps   that   have   left   us   unable   to   provide   
the   knowledge   that   is   needed   by   hardware   and   software   vendors,   system   operations   staff,   application   
developers,   and   user   groups   to   create   and   operate   highly   efficient   large   scale   HPC   systems.   Would-be   
users   of   this   information   face   significant   challenges   in   obtaining   effective   analysis   in   a   timely   manner   and   
efforts   to   provide   it   are   currently   fragmented   across   centers.   The   infrastructure   to   collect,   store,   share   and   
analyze   the   volumes   of   available   information   is   a   core   capability   —   yet   many   challenging   barriers   remain   
due   in   large   part   to   the   many   stakeholders   and   insufficient   coordination.   With   many   new   potential   
information   sources   in   future   systems,   it   is   urgent   that   we   identify   and   address   critical   requirements   and   
gaps   across   the   various   ASCR   stakeholders.   Doing   so   will   enable   us   to   create   collective   and   collaborative   
solutions   that   address   both   existing   challenges   and   emerging   needs   and   effectively   support   our   upcoming   
ASCR   environments.   Design   solutions   that   rely   on   intelligence   derived   from   the   data   collection   and   
analysis   processes   described   above   are   henceforth   referred   to   as    Quantitative   Codesign .   
    

Opportunities   abound.   Making   progress   at   the   highest   end   of   HPC   without   access   to   the   needed   data   can   
be   compared   to   being   asked   to   fly   an   airplane   at   night   without   sufficient   instrumentation.   Vendors   are   
provided   with   example   applications   to   target   but   often   lack   a   true   understanding   of   where   inefficiencies   
manifest   on   full   scale   workloads.   Furthermore,   architectural   simulators   do   not   incorporate   the   critical   
performance-killing   attributes   of   current   generation   technologies   and   their   integration.   Hence   the   vendors   
miss   opportunities   for   improvement.   Moreover,   users   often   only   have   feedback   on   operating   efficiency   at   
the   granularity   of   total   application   execution   time.   Low-level   interactions   frequently   cause   substantial   
performance   degradations   that   users   are   unable   to   explain.   Likewise,   operations   staff   often   lack   
knowledge   of   application   resource   utilization   and   cannot   diagnose   the   longer   run   times   experienced   by   
the   users.   Since   root   causes   go   undiagnosed,   next   generation   systems   also   fail   to   address   the   problems.   
    

Opportunity:    First   and   foremost,   we   seek   a   coordinated   effort   to   bring   together   the   pertinent   data   from   
each   shareholder   in   the   codesign   space   into   a   framework   where   data   discovery   and   access   is   
straightforward   regardless   of   data   source.   The   envisioned   Quantitative   Codesign   environment   would   pull   
together   data   traditionally   held   by   disjointed   communities   (e.g.,   sysadmins,   application   teams,   vendors,   
and   so   on)   into   a   framework   where   the   needed   data   is   easily   accessible.   This   framework   would   provide   
mechanisms   for   data   providers   who   wish   to   share   their   data   with   others   including   application   teams,   
vendors,   facilities,   operations,   and   system   software   researchers.   In   many   cases,   we   seek   to   bring   
together   data   that   is   currently   being   produced   although   not   generally   known   or   utilized   for   a   variety   of  
reasons;   in   a   few   instances,   we   seek   to   extend   and   provide   new   data   collection   capabilities.   
  

For   example,   one   area   that   is   ripe   for   integration   with   Quantitative   Codesign   processes   is   the   intersection   
of   application   development   and   run-time   environments.   In   the   past   few   years   Continuous   Integration   (CI)   
has   been   widely   adopted   by   development   teams   to   continuously   test   development   efforts.   As   part   of   
these   CI   efforts,   developers   test   across   a   variety   of   platforms   on   a   daily   basis   and   typically   provide   a   
pass/fail   result   for   each.   Introducing   targeted   run-time   data   collection   (e.g.,   mem,   mpi,   program   counters,   
omp,   gpu,   IO)   and   quantitative   analysis   into   this   process   would   enable   feedback   to   users   and   identify   
issues   within   applications,   compiler   capabilities,   runtimes,   and   differences   across   platform   architectures   
that   ultimately   would   drive   improvements   across   the   spectrum   of   stakeholders.   
  



Integrating   Quantitative   Codesign   capabilities   with   existing   design   processes   will   enable   more   effective   
solutions   across   the   computing   stack.   Information   derived   from   monitoring   and   analysis   would   provide   
valuable   insight   for   users,   application   developers,   and   system   architects   as   to   how,   and   why,   applications   
make   use   of   the   underlying   system   resources.   Furthermore,   by   identifying   the   appropriate   stakeholders   
and   introducing   them   to   information   originating   from   diverse   collection   regimes,   this   initiative   would   
facilitate   the   discovery   and   sharing   of   potentially   useful   intelligence   among   larger   teams   and   communities.   
In   doing   so,   this   approach   also   has   the   potential   to   spark   further   discussions   and   research   on   how   to   
collect   and   employ   this   information   more   effectively.   Thus,   there   is   significant   opportunity   for   discoveries   
that   will   not   only   increase   application   performance,   but   also   benefit   the   broader   HPC   and   scientific   
communities.   
    

Timeliness   or   maturity:    Over   the   past   decade,   there   has   been   a   growing   awareness   of   the   multi-faceted   
benefits   we   can   derive   from   data-driven   strategies   like   Quantitative   Codesign.   This   increasing   awareness,   
along   with   improvements   in   Machine   Learning   (ML)   technologies,   have   driven   vendors,   operations   staff,   
and   application   developers   to   espouse   integrating   an   ever-increasing   level   of   instrumentation   into   their   
products.   The   time   is   ripe   for   turning   this   vast   trove   of   available   information   and   the   incredible   advances   
in   analysis   technologies   it   represents   into   appropriate   knowledge   and   understanding.   Doing   so   would   
create   a   feedback   loop   that   could   assist   vendors   and   software   developers   in   their   designs.   The   recent   
National   Strategic   Computing   Initiative   Update   Report   has   recommended   that   we   promote   timely   access   
for   developers   of   technologies,   architectures,   and   systems   to   carry   out   the   research   needed   to   create   the   
future   computing   software   ecosystem   [1],   and   Quantitative   Codesign   provides   a   solution   to   the   ‘access   
problem’   of   these   extremely   rare   machines.   If   the   future   envisioned   by   the   CSESSP   report   [2]   is   to   be   
realized,   our   software   base   will   require   significant   investment   in   both   modified   and   new   code   —   an   activity   
enormously   assisted   by   Quantitative   Codesign.   There   is   no   disagreement   that   more   knowledge   is   good   
though   there   is   still   lack   of   concurrence   across   HPC   stakeholders   as   to   the   cost/benefit   tradeoff   for   
varying   fidelities   of   information   collection   and   long   term   storage.   The   benefits   of   Quantitative   Codesign   
will   come   through   integrating   design   processes   with   more   detailed   knowledge   of   the   interactions   of   the   
various   components   within   the   HPC   ecosystem.   
    

Quantitative   Codesign   is   also   essential   for   addressing   challenges   brought   about   by   the   recent   trend   of   
increasing   heterogeneity   in   HPC   architectures   [3].   For   example,   many   HPC   machines   now   incorporate   
alternative   types   of   memory   alongside   conventional   DDR   SDRAM.   Technologies   such   as   "on-package"   or   
"die-stacked"   DRAM   as   well   as   non-volatile   RAMs   can   provide   distinct   advantages   compared   to   
conventional   DRAM,   including   higher   performance   as   well   as   cheaper   and   more   energy   efficient   storage   
per   byte.   Each   of   these   technologies   also   comes   with   its   own   limitations,   such   as   smaller   capacity   or   less   
bandwidth   for   reads   and   writes.   Further   complications   arise   because   some   of   these   new   technologies   can   
interface   directly   with   processor   caches,   while   others   can   only   be   accessed   through   peripheral   devices,   
such   as   GPUs   or   other   accelerators.   
  

Quantitative   Codesign   could   mitigate   many   of   the   current   problems   with   allocating   and   managing   such   
heterogeneous   resources   effectively.   Detailed   knowledge   of   application   demands   will   enable   architects   to   
make   better   decisions   about   how   to   select   and   organize   computing   hardware.   This   approach   can   also   
help   system   software,   including   operating   systems,   compilers,   and   runtime   software,   distribute   the   
available   hardware   resources   among   applications   more   effectively.   Integrating   high-level   profiling   and   
analysis   with   low-level   resource   management   routines   will   enable   these   systems   to   implement   new   
policies   that   respond   flexibly   to   changes   in   application   demands,   and   could   potentially   expose   powerful   
new   efficiencies   on   platforms   with   heterogeneous   hardware.   
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Introduction 
A highly successful co-design effort from 2000 was the design of the QCDOC supercomputer [1] co-
designed for efficient simulations of lattice Quantum Chromodynamics (LQCD) between Columbia 
University, the RIKEN-Brookhaven Center, and by the UKQCD Collaboration and IBM corporation. The 
system was designed alongside the BlueGene/L supercomputer and shared several common 
components including the structure of the serial internode fabric, and the 3-way memory controller. 
Very similar in spirit to the solicitation for this proposal, the QCDOC utilized: an embedded PowerPC-440 
core customized with SoC components from a library of intellectual property components from IBM 
including an eDRAM scratch pad memory, floating point processors, high speed serial links, and an 
ethernet adaptor. The software stack included a customized version of the GNU C and C++ compilers, a 
cut down version of GLIBC, a minimal operating system that allowed the system to be booted, and 
programs to be executed, and a lean runtime that provided access to the communications links, and 
calls to allocate memory in the scratchpad. QCDOC was successful in the domain of LQCD with systems 
at Brookhaven National Laboratory, and Edinburgh University. The BlueGene series of supercomputers  
also became highly successful and lasted through two further generations with the BlueGene/P and 
BlueGene/Q models, which were legendary for their low latency, high bandwidth fabrics. 
 
Challenges of Customized Systems 
A key challenge for custom built systems such as QCDOC is the software stack which was purposefully 
lean, both to not get in the way of the application and because QCD applications of the time needed no 
other major dependencies, and also due to resource constraints. There was no real queueing system, 
nor a full MPI[2] stack, nor other common libraries, or high level languages such as Python [3]. 
 
User facilities require more generality, especially considering a future where simulations are expected to 
be combined with machine learning, analytics and possibly quantum and neuromorphic computing.  
Architecturally, several classes of system appear to be required: strong scaling systems, weak scaling 
systems and analysis farms and Edge nodes featuring different tradeoffs between communications 
capability, memory-size and bandwidth, floating point performance and I/O. As an example strong 
scaling systems emphasize the highest performing fabrics while weak scaling systems can trade off 
network performance and emphasize higher performance on-node (e.g. using accelerators).  
 
In terms of software stacks, bringing together the future of simulation, data analysis, and AI methods 
poses challenges for application developers. Many AI oriented applications utilize high-level frameworks 
in languages such as Python or Julia[4], while simulations tend to be carried out using C++ and Fortran. 
Accelerator programming models vary from corporately owned solutions (e.g. CUDA[5]) to open source 
copies (HIP) to ones based on open standards (SYCL[6] and OpenMP[7]). Interoperability solutions exist 
(e.g. Python and C interfaces, Julia and C/C++ interfaces) to bring these models and languages together. 
 
When considering a future chip the following key questions arise for application and library developers: 
a) which programming models (PMs) will be available? b) will there be a single PM to control all the 
heterogeneous hardware or will separate PMs need to be used? c) will the PMs interoperate? d) what is 
the timeline for the availability of the PMs? e) are there good proxy systems to develop on right now f) 
where will there be performance bottlenecks? The answers can influence the application design and the 
algorithms used. 



 
A facility may have other questions: a) Is it better to operate several different systems or an extremely 
heterogeneous system in a variety of modes? Who will provide the software infrastructure (compilers, 
libraries for simulation, analysis, learning etc.) for such novel hardware. Who has the capability? Does 
the facility need to contract out e.g. PM development? 
 
Opportunities for Facilities 
Facilities have a crucial role to play in co-design activities. Knowing their application base they can 
brainstorm with vendors on what heterogeneous components on a chip would be most useful to the 
facility, and would have a good idea of the impact of bottlenecks. Facilities can also proactively partner 
with applications in co-design activities providing staff and expertise. They can provide the vendors with 
both traditional mini-applications, and potentially ‘mini-workflows’ that can simulate how an application 
plans to utilize different systems (e.g. for simulation at one stage or for machine learning at another). 
Liaisons at facilities can usefully engage with vendors to test and harden early PM implementations as 
well as to explore interfaces between the PMs. Facilities already have experience in these areas. 
 
The SYCL programming model and the Julia programming language hold some future promise as do re-
targetable models such as Kokkos and Raja. SYCL is a parallel programming model standard from the 
Khronos Group based in C++ and can currently support a variety of accelerators (GPUs, FPGAs). Julia is a 
high level, high productivity language used in data intensive applications and AI. Kokkos and Raja 
provide portability to C++ codes via back ends (e.g. in SYCL, CUDA, HIP or OpenMP). Implementations of 
Julia are tied in heavily with the LLVM compiler suite[8] for Just-in-Time compilation whereas one of the 
prominent SYCL implementations (the open source one from Intel) is also based on LLVM. The support 
in LLVM for heterogeneity comes through its Internal Representation (IR). Compiler front-ends generate 
IR, which after optimization passes is lowered by the ‘back-end’ into the target representation. The 
latter is either a binary or another kind of IR such as NVIDIA PTX[9], or SPIR-V[10] which can be executed 
(e.g. by just-in-time compiling into binary and loaded) by the device driver. The efficacy of a driver 
consuming an intermediate assembly (such as PTX) has been amply demonstrated by the success of 
CUDA. Facilities could play a role in a) fostering the continued development of LLVM working with 
vedors on the back-end for new accelerators and build up relevant expertise, and in the area of Fortran 
(FLANG) b) foster the development of IR standards, again especially for new accelerators c) serving on 
standards bodies (C++, Khronos SYCL, OpenMP, MPI etc.) and encouraging vendors to adopt these 
standards.  
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Challenge– Given an application program, achieving optimum performance/energy-efficiency requires a
careful selection of hardware-mix to employ and corresponding code-data layout restructuring. We identify
four important challenges that have to be addressed when developing a co-design framework that satisfies
the performance and energy-efficiency constraints of applications that are of interest to DOE:

Hardware Heterogeneity Challenge: The problem of ’hardware heterogeneity’ is how best to exploit the sig-
nificant diversity likely to exist in tomorrow’s data centers and supercomputers for the benefit of complex,
data-intensive HPC applications. Such diversity will be found along multiple dimensions. For example,
how might we best exploit the strengths of special-purpose accelerators (e.g., GPUs, TPUs and FPGAs) as
well general-purpose CPUs? As another example, how might we combine emerging non-volatile memories
(e.g., Intel Optane) alongside conventional DRAM, flash SSDs, and magnetic drives? Solving the hardware
heterogeneity problem would allow HPC applications to be easily compiled to effectively exploit diverse
hardware types. Thus, a critical challenge is to address this growing hardware heterogeneity.

Systems Software Challenge: Over the years, system software has become increasingly more complex to of-
fer more functionality. However, this comes at a price. Many resource management decisions taken by
systems software are application agnostic and can even, in some cases, conflict with individual application-
level objectives, as they optimize for system-level objectives. In particular, from an application viewpoint,
systems software tends to be a black box, which makes it difficult for the application to fully control its
runtime behavior in desirable ways, leading eventually to inefficiencies. Therefore, an important challenge
is to retain the programming/management benefits enabled by systems software while removing sources
of inefficiency arising from the information gap between applications and systems software.

Disconnect Between Hardware and Software: Current application optimization and mapping frameworks do
not adequately take critical architecture-specific information into account in optimization/mapping, e.g.,
important characteristics of CPU/GPU cores, interconnect information, and memory system parameters.
This prevents applications from fully exploiting the potential offered by the underlying hardware with this
problem becoming even more acute for environments with higher hardware heterogeneity and specializa-
tion. Hence, an important challenge is to bridge this (growing) gap between hardware and software.

Mapping/Remapping Challenge: As both the degree and magnitude of heterogeneity increase, a key challenge
will be to port HPC applications written originally for today’s heterogeneous hardware (e.g., CPU+GPU)
using currently-popular programming paradigms (e.g., MPI+OpenMP+CUDA) into versions suitable for
the even higher diversity possessed by tomorrow’s hardware (e.g., CPU+GPU+FPGA+ASIC) and program-
ming paradigms (e.g., MPI+OneAPI+serverless functions). Unfortunately, this challenge is magnified by
the previous three challenges and, as a result, porting applications (and performance) for each generation
of new hardware becomes increasingly difficult. This problem is further magnified by emergence of task-
specific hardware (ASICs) that can be used to expedite select portions of an application.

If all these four challenges can be addressed properly, we would be able to lower the burden of re-targeting
a given application for new hardware significantly. To our knowledge, there is no existing framework that
responds to all these challenges when targeting large-scale DoE workloads.

Opportunity– We envision three pieces that can be integrated to address these four challenges:

Hardware Abstraction: Identifying the right hardware abstraction to expose to software is key to enabling
software to be hardware-aware. In one extreme, one can imagine a very high level abstraction that hides
most of the hardware details (as most current approaches do). While this option certainly makes application
porting easier, it will leave a lot of performance on the table, given the increase in variety of complexity of
heterogeneous hardware components. In the other extreme, one can consider providing every detail of
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architecture to hardware (e.g., number and types of CPUs and GPUs, details of on-chip and chip-to-chip
networks, number of memory controllers, memory system details). In addition to the difficulty of providing
this information, it is not clear whether it is possible to design any code optimizer to take advantage of it.
We believe a right abstraction is between these two extremes, and needs to be explored.

Systems Software Abstraction: Exposing the details of system software to application is as equally important
as exposing hardware details to application. As in the case of hardware, deciding the right level of system
software abstraction for application is key to achieving the right performance-energy efficiency tradeoffs.

Vertical Integration: With the right level of architecture and systems software abstractions in place, a three-
way integration would be needed to achieve a successful application-architecture co-design: (i) user input (in
the form of code annotations/pragmas capturing application/execution environment constraints), (ii) an
optimizing compiler that takes application code, architectural description, system software description, and
user annotations as input and can generate optimized output code, and (iii) a malleable systems software
stack including cloud software (virtualized services) that can interact with the compiler-generated code.
In other words, vertical integration is about defining interfaces using which application, systems software,
and hardware can effectively cooperate with one another. It is important to emphasize the role of the
compiler here. The compiler will perform all major co-design decisions which will at the end result in the
minimum amount of carefully selected heterogeneous hardware-mix to run the application on (e.g., select
GPU types, right amount of DRAM/NVM capacity, and right FPGA resources) and accompanying code
and data layout restructuring, that satisfy the specified performance and energy-efficiency constraints. It
will do so by considering the information provided by the systems software and architecture abstractions.

A Novel Co-design Strategy Based on Architecture Abstraction, Systems Software Abstraction, and Vertical Inte-
gration: We propose to explore a novel application-architecture co-design strategy, combining architecture
abstraction, systems software abstraction, and vertical integration, described above. More specifically, one
needs to (i) decide the minimum amount and types of hardware to use (to address energy-efficiency con-
straint), (ii) restructure the application program code and it data layout in memory and storage to adapt to
the decided hardware (to address performance constraint), and (iii) choreograph interactions among hard-
ware, application, and system software. If the targeted/specified performance and/or energy-efficiency
constraint could not be satisfied in the first attempt, (i), (ii), and (iii) should be iteratively re-invoked.

Timeliness or Maturity– The vision presented above is possible due to the significant strides achieved in
algorithms, architecture, compilers, and system software over the last decade, including some of our own
work, e.g., [4, 3, 6, 1, 2, 5, 7]. We are also encouraged by the confluence of expertise, we developed over
the years, in systems, performance, machine learning, architecture, and compilers. Successful execution
of the proposed research will facilitate effective porting of complex, data-intensive HPC applications to
different platforms whose underlying platform has different types/amounts of special purpose devices.
More importantly, the framework will be flexible enough to target new accelerators that the DOE systems
can incorporate in the future.
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CHALLENGES
Custom hardware accelerators may signi�cantly increase perfor-
mance, area, and energy e�ciency of high-end compute systems. It
comes as no surprise that hardware acceleration is widely employed
in many domains, including mobile, automotive, high-performance
computing, and machine learning. In U.S. Department of Energy
(DOE) environments, GPUs have been widely used to speedup sci-
enti�c computation but, as new workloads, computation paradigms,
and power/energy challenges arise, researchers are exploring new
energy-e�cient accelerator designs to place next to CPU and GPU
cores in the same system-on-chip (SoC). However, designing cus-
tom accelerators traditionally requires computationally-intensive
simulations using software or FPGA-based tools, which may limit
the scope to very small kernels. On the other hand, DOE applica-
tions are complex, large, and distributed. To understand the impact
of novel hardware designs on DOE applications it is paramount to
evaluate the performance, area, and power/energy impacts on the
entire application at scale. New tools are required to perform an
agile co-design cycle where novel hardware designs can be easily
swapped in and out while executing a full-scale application.

OPPORTUNITY
Compiler technologies have considerably evolved during the last
decades and now support sophisticated code analysis and transla-
tion methodologies as well as e�cient code generation for target
heterogeneous systems. In the context of co-design, a compiler-
based tool is desirable because it o�ers the possibility of automati-
cally generate code that leverages new hardware concepts without
or with little code modi�cations in the applications. We developed
COMET [3, 7], a tensor algebra compiler and Domain-Speci�c Lan-
guage (DSL) for chemistry applications and extended the original
design to support co-design of application algorithms and hardware
accelerators.

COMET consists of a DSL for dense and sparse tensor algebra
computations, a progressive lowering process to map high-level
operations to low-level architectural resources, a series of optimiza-
tions performed in the lowering process, and various Intermediate
Representation (IR) dialects to represent key concepts, operations,
and types at each level of the multi-level IR. COMET is based on the
Multi-Level Intermediate Representation (MLIR) framework [2], a
compiler infrastructure to build reusable and extensible compilers
and IRs. MLIR supports the compilation of high-level abstractions
and domain-speci�c constructs and provides a disciplined, extensi-
ble compiler pipeline with gradual and partial lowering. Users can
build domain-speci�c compilers and customized IRs (called dialect),

∗Corresponding Author

Algebra

Tensor Algebra (TA) DSL Sparse/Dense 

TA AST

Tensor

Async

Structure Control Flow

LLVM IR

LLVM IR

Standard

Linear Algebra

Sequential 
execution

TTGT, multi-operand 
expressions, tiling, loop 
reordering for transpose 
op, micro kernel

Async
LLVM 

Coroutines
Parallel 
execution

SparseDense

Sparse tensor operations, 
support for important 
storage formats, data 
reordering

Front/backend 
dialect

Optimization 
dialect 
External 
representation

Figure 1: COMET execution �ow and compilation pipeline

as well as combining existing IRs, opting into optimizations and
analysis. Figure 1 shows the COMET’s compilation pipeline and
the lowering through the various MLIR dialects.

Tensor contractions are high-dimension analogs of matrix multi-
plications widely used in many scienti�c and engineering domains,
including deep learning, quantum chemistry, and �nite-element
methods. For example, the perturbative triples correction in cou-
ple cluster CCSD(T) [4] methods used in the NWChem computa-
tional chemistry framework [1] originates a 6D output tensor from
two 4D inputs tensors. Tensor contractions are computationally
intensive and dominate the execution time of many computational
applications. A way to perform the above computation is to di-
rectly lower to a nested-loop implementation of the problem. Such
implementations have been shown to be ine�cient due to poor
data locality. A more e�cient approach, commonly used in mod-
ern high-performance tensor libraries, leverages highly optimized
GEMM hardware engines and/or architecture-speci�c implementa-
tions. This approach, often referred as transpose-transpose-GEMM-
transpose (TTGT), performs the permutations of the input tensors
followed by a high-performance matrix-matrix multiplication and
a �nal permutation to reconstruct the output tensor.

COMET provides an opportunity to perform hardware/software
co-design and design space exploration (DSE) e�ciently and to
assess the performance of the entire application, instead of only
the innermost kernel. For example, researchers may want to ex-
plore the use of hardware GEMM accelerators and repalce the
architecture-speci�c GEMM kernels in the TTGT reformulation
of a tensor contraction. In order to perform co-design for a target
accelerator and measure the impact of realistic tensor contractions,
we replace the micro-kernel with a timing model of the hardware ac-
celerator and execute the entire contraction at native speed. To this
extend, we pair COMET with Aladdin [5], a pre-register-transfer
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Figure 2: COMET’s performance comparison against the
hand-optimized TCCG [6] benchmarks on x86 (solid lines)
and emulated platforms (dashed lines).

level (RTL), power-performance simulation framework that targets
rapid prototyping of data parallel accelerators. Aladdin speci�ca-
tions are essentially C representations of the functionalities that
need to be implemented in hardware. From these representations,
an LLVM-based tracer extracts a dynamic data dependence graph
(DDDG) that describes the accelerator. Next, Aladdin applies vari-
ous optimizations and resource constraints, therefore generating a
realistic design. Finally, Aladdin estimates power and performance
from dynamic traces obtained from a driver program. Performing
DSE for the hardware accelerator design with Aladdin takes order
of minutes (instead of hours as in traditional FPGA-based DSE)
while executing tensor contraction with COMET is performed at
native speed. The entire process, thus, can be completely automated
and executed within minutes.

As an example, Figure 2 shows performance comparison of vari-
ous tensor contractions from multiple scienti�c and engineering
domains. The main goal of this experiment is to identify the best
data-parallel accelerator to perform GEMM operation in the TTGT
method to solve tensor contractions. We leverage COMET modeling
capabilities and combine the code generated by our compiler frame-
work with the timing estimates produced by Aladdin models of the
GEMM designs. In particular, we replace the x86 micro-kernel used
for normal code generation with a delay that represents the execu-
tion time of the innermost GEMM computation on the hardware
accelerator. We analyze three possible scenarios: small (16 ⇥ 16),
medium (64 ⇥ 64), and large (256 ⇥ 256). Table 1 reports the hard-
ware characteristics of the three designs in terms of performance,
area, and average power. For comparison, consider that an Intel
Ivy Bridge measures 160 <<2 while an NVIDIA Volta GPU die
measures 815<<2, which are 2,867x and 14,606x bigger than the
16x16 accelerator. Figure 2 reports the performance of a system that
features custom GEMM hardware accelerators (dashed lines). The
plot shows that hardware accelerators may substantially increase
performance for compute-bound tensor contractions, such as the
last 11 contractions, and achieve up to 156 GFLOPS, 3.1⇥ speedup
over the same code employing a “soft” AVX512 accelerator.

The plot also shows a critical point for hardware/software co-
design analysis: while it seems intuitive that larger accelerators

Table 1: Characteristics of the emulated GEMM hardware.

16x16 64x64 256x256
Perf. (cyc) 131 1026 32770
Avg. Power (mW) 5.077 13.639 73.7972
Avg. Area (uM2) 55827 224068 4.097e+06

provide higher performance, this is not always the case in our exper-
iments. There may be several reasons for this behavior, including
large carry-over loops, computing GEMM for non-square matrices,
caches that are not large enough to contain all the data, etc. Figure 2
does show that tensor contractions that are compute-bound with
smaller hardware accelerators become memory-bound with the
largest GEMM design. We infer that the lowest-level cache does not
have su�cient storage to feed such large accelerators or to support
data reuse. The actual point of co-design is, indeed, to �gure out
those trade-o�s and select the best accelerator for the particular
workload (64 ⇥ 64) instead of the best accelerator from the single
operation (256 ⇥ 256).

TIMELINE AND MATURITY
While the COMET compiler was initially designed as a research
compiler for chemistry applications, it has evolved into a more
general compiler framework for other domain areas, including
arti�cial intelligence (AI), graph analytics, and powergrid, as well
as including capabilities for hardware/software co-design. COMET
currently supports various projects, such as the PNNL Data Model
Convergence Initiative, the DOE co-design of ARti�cial Intelligence
focused Architectures and Algorithms (ARIAA), and the PNNL
High-Performance Data Analytics project. COMET is now looking
to expand to support additional programming framework beyond
the native DSL as an embedded DSL for host languages such as
Julia, Python, and Rust. COMET will soon be open sourced and
available to the scienti�c community.
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Topic 
Modeling and simulation 
 
Challenge 
To date, DOE investments in exascale computing codes and high performance computing resources have 
largely focused on growing the size or complexity of problems that can be simulated. Recent 
advancements in differentiable programming, in-situ learning, and visualization offer new pathways for 
scientific insight beyond running ever larger simulations; however, obtaining these additional outputs 
introduce new hardware challenges regarding coordinating heterogeneous computing resources for 
simulation and learning, careful communication and inspection of training data, and new programming 
paradigms for differentiable computing that must be overcome in a coordinated fashion. 
 
Opportunity 
We propose to expand conventional notions about the outputs of scientific simulations.  We believe 
that design gradient information, trained machine learning models, compressed data representations, 
and streaming visualization are all equally important outputs that ought to be considered as first class 
citizens when designing future computational workflows and computing architectures.  With careful 
hardware co-design, these additional outputs would make insights from exascale simulations portable 
through the use of ML surrogates, interpretable through the use of advanced visualization, reproducible 
from compressed representations, and directly translatable to gradient-based design optimization. 
 
Differentiable Programming 
A new progamming abstraction, called differentiable programming (dP), is emerging to help automate 
the process of obtaining outer loop design gradients in a scalable fashion1.  This approach is inspired by 
the success of backpropagation in deep learning, where neural networks are a composition of many 
smaller differentiable operations.  Exemplified by emerging languages like Julia, each function in a piece 
of scientific software is constructed to be differentiable, allowing for backpropagation or reverse mode 
automatic differentiation across entire program by applying the chain rule to each object.  This paradigm 
shift has important ramifications for hardware, compilers, memory management, and floating point 
precision.  Depending on if the dP framework uses static or compiled graphs, new compilers, operator 
overloading, callbacks, checkpointing schemes and a library of differentiable functions are required.  
Furthermore, even basic reading and writing to memory must be reinterpreted to be a differentiable 
operation where all memory locations are accessed instead of a single address.  Incorporating design 
gradients will maximize the information extracted from exascale simulations, and provide many ancillary 
benefits to optimization, UQ, machine learning, surrogate modeling, model calibration, and sensitivity 
analysis.  Having readily available design gradients is a key breakthrough as physics-informed deep 
learning can then be embedded seamlessly into scientific software and trained on the fly, providing a 
pathway to true hybrid methods that fuse data-driven and physics-informed computing2.   
 
In-situ Machine Learning 
The growth in deploying Machine learning (ML) models to provide a range of insights into scientific data 
and simulations has profound implications on computing hardware if these are to be used efficiently in 
exascale systems. These challenges revolve around dealing with large increases in data storage 
requirements, enabling efficient utilization, and minimizing communication between compute, 



visualization and ML nodes. In-situ transfer training during exascale simulations can adapt a pretrained 
machine learning (ML) model to recover critical insights from these large computational studies and 
decrease the need for saving large datasets. FPGAs and other specialized hardware inform by ML 
sampling techniques can enable efficient utilization by selecting the appropriate data to be streamed 
between nodes and processed rapidly at the compute endpoints. Mixed precision communication 
arithmetic from novel hardware, e.g., NVIDIA’s A100, has the potential to decrease the number of bytes 
communicated throughout the HPC system. 
 
Compressive ML frameworks, e.g., autoencoders, learn reduced embeddings of data into latent space 
representations by leveraging the so-called information bottleneck. Computing architectures mimicking 
this framework can reduce communication overhead by aggregating distributed data tensors to fewer 
and few hardware processing units at each layer in a network. Coupled with mixed precision arithmetic, 
in situ analyses can be performed alongside expensive exascale simulations. Compression for simulation 
checkpoint also improves simulation resiliency and benefits dP schemes3. Furthermore, these reduced 
representations enable scientific perceptual losses, computed through latent space data 
representations, that can further inform mixed precision analysis as well as dynamic sampling and 
visualization. Finally, dynamic surrogates developed on these reduced latent spaces can allow exascale 
insights to inform decision-making outside of an HPC environment or even on edge devices. 
 
Visualization  
Visualization should be integrated into the AI learning process to increase the understanding and trust 
of the ML surrogate and dP design gradients. We can enable critical insights into the model design by 
visualization of the states, sensitivities, and uncertainty, creating more explainable and interpretable 
models. In situ visualization has been at the core of exascale research to make data analysis and capture 
tractable from simulations that produce more data than can be moved or stored. Looking forward, we 
need to consider how we can integrate visualization techniques into ML-specific hardware, enabling us 
to visualize the reconstructions from the ML surrogates and leverage visualization to expose the 
underlying AI processes. As ML takes a more central role in these exascale simulations, it will be critical 
embed visualization that can characterize principal reasons for specific decisions, and uncertainty in 
crucial model behaviors.  
 
Timeliness or Maturity 
Scientific machine learning (SciML) and differentiable programming are rapidly maturing to the point 
that they can be unified into a coherent computational science framework that splits computing, 
learning, and visualizing across different hardware elements in specialized and heterogeneous 
architectures.  Ready access to gradients of all terms in a model (both traditional PDE and modern data-
driven terms) allows for an integrated simulation, training, and compression paradigm.  Increasing the 
space of outputs from an exascale run to include trained ML models, gradients, and compressed 
representations can actually result in reduced computational demands to achieve the same scientific 
insight, while better utilizing increasingly heterogeneous and specialized hardware. 
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Topic: architectures, modeling and simulation, emerging technologies 

Challenge:  Neuromorphic computing is one of the fastest growing beyond Moore computing paradigms 

that has shown its potential in implementing efficient systems for a diverse set of applications [1]. However, 

the main challenge faced by this research community is that there is no generic hardware platform or a 

stable software framework that can be used to design spike-based event-triggered systems. There have been 

several demonstrations of spike-based systems using the industry built neuromorphic platforms such as 

Loihi, TrueNorth, etc. [2], which are based on the digital CMOS technology. However, going forward, the 

technologies post Moore’s era will focus more on platforms other than CMOS, such as resistive non-volatile 

memories (NVM), optoelectronics, bio-molecular membrane, etc., that have fundamentally different 

characteristics compared to the conventional implementations. Some of the characteristics of these 

emerging devices have been shown to be suitable for realizing neuromorphic algorithms [3-6]. However, 

with the existing programming paradigm, there is no way to leverage those characteristics to build a 

complete programmable neuromorphic system. 

 
Figure 1. Opportunities to bridge different levels in the neuromorphic computing stack 

Opportunities: As shown in Figure 1, while most co-design efforts follow a top down or bottom up 

approach along the computing stack, there are also a lot of unexplored areas between the non-adjacent 

levels in the stack. The question to be pursued is, can we build algorithms that take advantage of device and 

material physics, and can we map the operations in the existing algorithms onto the existing device physics? 

The main inspiration for this pursuit is the multiple demonstrations of the bio-inspired STDP phenomenon 

emulated in memristive devices and using that to build trainable neuromorphic systems [4,5]. Some spin-

based devices have also been shown to emulate the dynamics of biological neurons [7]. Similarly, there are 

opportunities to engineer devices and circuits that mimic several signal processing and learning behaviors 

observed in the brain that can in-turn influence the process solving a given computation task [4].  In this 

regards, relatively less explored domain is the computing domain itself, where efforts like temporal 

computing machines, oscillator-based computing, etc. [8,9], that have strong dependence on the device 

behaviors, can offer improvements in performance and efficiency. Hence, there is an opportunity to develop 

programming models that are aware of the underlying device physics and circuit-level dynamics.  



Timeliness or maturity: Most of the computation workloads of interest to the Department of Energy 

(DOE) are complex and require heterogeneous mix of accelerators in the HPC framework [10]. 

Neuromorphic computing has shown its potential in various HPC tasks such as scientific data processing, 

large-scale data modeling, etc. [1], which makes neuromorphic hardware a suitable platform for future 

heterogeneous HPC systems. To build a generic neuromorphic computer that takes advantage of broader 

range of characteristics of these emerging technologies, we need a robust software framework that allows 

visibility at different levels of the stack. This framework would need to be able to provide the algorithm 

developer the device/circuit level details and at the same time be scalable and flexible to accelerate the 

development process. The TENNLab neuromorphic framework is mature to a certain extent that it allows 

the algorithm developer several different back-end hardware to map and optimize algorithms [11,12]. 

However, it is not aware of the underlying device physics or circuit level features that can be used at higher 

levels. The efforts towards designing neuromorphic hardware are also less mature to date, with major focus 

being on designing digital CMOS based architecture. Hence, the co-design effort, towards building a 

scalable software programming model that is aware of the device and circuit dynamics is crucial. This could 

also allow a designer to parameterize these low-level design components for designing an optimal system.  
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Introduction
As researchers in the computer architecture community have designed approximate hardware realizations for CPU cores,
ALUs, memories, and accelerators, approximate computing (AC) has become an important emerging research area [1].
AC relies on the applications’ ability to tolerate some loss of accuracy in the output results to trade-off for better perfor-
mance and energy efficiency. Some approximate software techniques, such as code perforation via loop iteration skipping
in image processing applications, have reported 3× performance gains with less than 10% accuracy loss [2]. While
AC methods have been demonstrated mostly outside of scientific applications, we believe that co-designing approximate
hardware along with system software and applications could provide significant benefits to DOE scientific workloads.

Challenges
Challenge 1: Advanced Numerical Hardware Support
Low-Precision Arithmetic. Scientific applications rely heavily on floating-point arithmetic to perform numerical cal-
culations, and as a result, co-designing floating-point hardware is of significant importance. Within the AC domain,
lower-precision floating-point arithmetic is a promising technique to improve performance in exchange for increased er-
ror [3, 4]. As accelerators promote the use of lower-precision numerical units, such as half-precision units, the ability of
applications to use these units efficiently is critical.
Low-Cost Co-Design of Efficient Type Conversion. Due to the use of lower-precision arithmetic, applications require
frequent type conversions of variables and data structures. Hardware support for efficient (possibly low cost) type con-
versions (possibly in-memory) can significantly enable broader use of mixed-precision approaches. Also, help from the
hardware and system software to represent data layouts efficiently would be handy.
Alternative Numerical Representations. There has been a recent development of several number representations [5] as
an alternative to IEEE-754 floating-point. They particularly make efficient use of bits (e.g., wider dynamic range than
IEEE with a similar number of bits), have less potential to incur overflow/underflow with fundamental operations (e.g.,
+, ∗), and enable the use of 32-bit representations in place of IEEE double precision without altering application’s per-
formance [6]. There is a challenge designing and or demonstrating the efficiency of alternate representations in hardware,
such as Posits.

Challenge 2: Hardware-Level Compression
HPC applications use 64-bit (double) precision by default to prevent finite-precision round-off errors. However, not all
the bits store valid information as many of these 64 bits represent error coming from rounding. As memory bandwidth
and data transfer are becoming the dominating factors for an application’s performance, researchers are exploring ways
to reduce this bit’s over-allocation. Compression is a suitable technique to address this challenge, which will reduce
the amount of data and time for data transfer. A consorted effort between the programming model and the compression
hardware unit can enable selective use of compression hardware for achieving performance while using the high-precision
computing hardware when accuracy needs to be maintained. A significant challenge is the hardware implementation of
floating-point compression/decompression algorithms that can significantly reduce the overhead by leveraging dedicated
hardware units.

*This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344 (LLNL-TR-819497).
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Figure 1: Overview of the challenges to co-design AC applications. The challenges include (1) hardware support for multiple
levels of floating-point precision and new numerical representations, (2) hardware-level support for numerical compression,
and (3) Improved tools and compilers to apply multiple AC methods automatically.

Challenge 3: Tools and APIs Co-design
Tools to Analyze Error Propagation. The ability to track down round-off errors and algorithmic-level errors is critical
for adopting AC methods. A significant challenge is co-designing tools to enable error propagation at different granularity
levels (e.g., function level versus code line level).
Co-Design of Compiler Support for AC. The hardware can support approximations using different techniques such
as approximate adders and multipliers or aggressive voltage scaling. However, leaving to the programmer the task of
developing software to specific AC hardware is not an effective solution. A crucial challenge is designing compiler
support for automatic translation of certain computations to specific AC hardware.

Opportunity
Several new computer science trends suggest that addressing the above challenges now becomes feasible. These include:

1. The proliferation of open-source compilers and standardized intermediate representations (e.g., LLVM) that allow
sophisticated static analysis of software and exploration of numerical variability in several architectures.

2. Co-designing AC applications and hardware is now more feasible than before as there is a trend on domain-specific
accelerator technologies that can be modeled and simulated using DOE workloads more quickly.

3. Advances in the machine learning and AI fields that could be applied to speed up automated modeling, characteri-
zation, and search for optimal solutions across the large search space of floating-point and numerical requirements
of DOE workloads.

Timeliness
Addressing the above challenges would have more impact on DOE scientific codes than before. There are many opportu-
nities for return on investment in co-designing AC techniques for scientific applications. These returns fall into short- and
long-term time scales. As short-term investments, we propose supporting the extension of existing research software tools
for production use and integrating AC ideas from the non-HPC world into HPC applications. As long-term investments,
we propose a research agenda to understand better using practical AC methods into production applications along with
co-design activities with vendors to develop the required hardware support.
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1 Introduction
Future HPC reosurces are predicted to exhibit large de-
grees of resource heterogeneity in order to maintain per-
formance improvement despite the loss of performance
scaling in general purpose processors. While the form fac-
tor of these system architectures is uncertain, it is likely
that they will exhibit a significant number of discrete
components managed using traditional mechanisms based
on a combination of kernel level device drivers and OS-
bypass I/O channels. The viability of these approaches
has been demonstrated on previous system generations
and have a proven track record of providing performant
access to both network and accelerator based devices.
While conceptually this approach is amenable to a wide
range of use cases, our past experiences with OS/R re-
search has exposed a number of limitations. At the heart
of the issue is that fact that current hardware and device
driver architectures do not support sufficient flexibility in
their usage models due to their reliance on complex and
centralized control interfaces. While a significant amount
of work has been made in the area of OS-Bypass I/O, un-
fortunately this has almost entirely focused on the data
plane and not the control plane. The end result is that
while it is possible to create OS-Bypass I/O channels in an
application context, the interface to do so requires that the
application adheres to a set of assumptions in the driver
that limits how applications can be deployed on a system.

The limitations imposed by the driver based interfaces
has implications for novel application architectures as
well as the viability for application deployment tech-
niques. For instance, these driver requirements make it
very difficult to employ alternative OS/R environments
such as virtual machines [1], co-kernels [2], user level
driver frameworks, and containerization. In our expe-
rience the three most common issues are the following:
centralized address space management, non-partitionable
control interfaces, and firmware/driver version dependen-
cies. Each of these problems arises from the selection of
a monolithic architectural approach that centralizes de-
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Figure 1: A partitionable I/O interface

vice management into a single complex driver architec-
ture. This allows the internalization of many fundamental
environmental concepts exported by the driver’s hosting
OS kernel, which in turn propagates those assumptions
up to any application that wishes to access the device.

Our position is that in order to allow future HPC sys-
tems to adapt to novel workloads and changing deploy-
ment mechanisms, the system must support flexible re-
source management at the hardware and driver layer. Fur-
thermore, this support needs to be developed using a co-
design based approach so it can incorporate feedback
from the OS/R community to specify the interface re-
quirements necessary to support a wide range of software
architectures. We contend that future discrete hardware
resources should support resource partitioning in terms of
both functionality and performance, or, in simpler terms,
that existing OS-Bypass mechanisms should be extended
to the control plane. At a high level breakdown of the ar-
chitecture is shown in Figure 1. What has been lacking
is the development of portable hardware and driver inter-
faces that enable resource partitioning in a flexible and
portable way that does not require large development ef-
fort and system support due to driver complexity. Ideally,
device partitioning would enable flexible OS/R environ-
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ments without extensive driver support or complex sub-
systems needed by specialized driver components.

2 Challenges
We claim that a co-design effort is necessary in order to
ensure that future discrete hardware resources support a
wide range of potential OS/R configurations and envi-
ronments. In order to achieve this it will be necessary
to support dynamic resource partitioning such that multi-
ple independent driver instances can simultaneously man-
age partitions of a given hardware resource. These driver
instances would then be deployed in multiple potential
configurations including virtual machines, co-kernels, and
user level I/O subsystems. To achieve these require-
ments, a number of challenges must be addressed includ-
ing distributed memory mapping and address space man-
agement mechanisms, partitionable control channels, and
driver/firmware version compatibility.

Memory mapping is the single largest obstacle to re-
source partitioning seen in the last generation of HPC I/O
devices. In particular this problem has presented itself in
the high performance network devices that are the cor-
nerstone for large scale high-end supercomputers. Fortu-
nately the solution to this problem is already seen in the
form of IOMMUs, that allow IO address space virtualiza-
tion. IOMMUs are readily available on commodity sys-
tems and have been adapted to serve many roles in mod-
ern device driver frameworks. While simply integrating
IOMMUs would go a long way to solving the partitioning
issue, there are a number of challenges that remain. For
instance, what granularity of resource partition should the
IOMMU function at? Modern IOMMUs virtualize the ad-
dress space at the PCI end-point granularity using SRIOV,
which places a dependency on PCI based hardware and
might be too course grained for future devices.

The second challenge that needs to be addressed is the
design of the control interfaces to support partitioned op-
eration. This challenge presents a significant opportunity
for a co-design effort, since it needs to balance exposing
enough functionality to allow efficient operation while not
being so complex as to require large and extensive driver
architectures. Ideally, this interface would allow small
and lightweight drivers that can be easily developed and
embedded into a variety of OS/R environments. To fully
address this challenge will require insight into both hard-
ware and system software capabilities, requirements, and
goals.

The third challenge concerns version compatibility
across software device drivers and hardware firmware.
During the operational lifecycle of HPC resources, it is
common for the system to undergo a number of software

and firmware updates to improve performance and ad-
dress bugs. Oftentimes these updates consist of simul-
taneous changes to the firmware and driver stack which
need to be applied in unison, otherwise the hardware will
often fail to function correctly. The result of this places
considerable difficulty in supporting OS/R flexibility be-
cause it requires ensuring that each potential OS/R con-
tains an updated driver version. It is also not uncommon
for these version changes to propagate upwards to higher
level libraries, creating problems for portable software
packaging and container based systems. Ensuring cross
version compatibility will be a requirement for any system
hoping to deploy a distributed driver architecture. In addi-
tion the architecture will need to ensure that an OS/R with
an outdated driver is able to operate concurrently with an-
other version of the driver in a separate OS/R. Address-
ing this challenge will require the development of inter-
faces and driver architectures that minimize the overhead
of tracking changes to firmware versions as well as ensur-
ing compatibility when multiple driver versions are active
in the system.

3 Opportunity
As the move towards heterogeneity increases in the com-
ing years, many new hardware architectures will be de-
veloped and integrated into existing systems. These ef-
forts present an opportunity to rethink OS/R integration
of discrete resources and build in mechanisms to enable
OS/R flexibility from the beginning of the design phase.
In addition, many new advances in hardware prototyping
are coming online with widely available FPGA architec-
tures capable of supporting prototype hardware designs
(i.e. RISC-V). This presents an opportunity to rapidly dis-
tribute design prototypes to OS/R researchers without the
need for complex simulation environments or expensive
hardware fabrication.

References
[1] LANGE, J., PEDRETTI, K., HUDSON, T., DINDA, P., CUI,

Z., XIA, L., BRIDGES, P., GOCKE, A., JACONETTE, S.,
LEVENHAGEN, M., AND BRIGHTWELL, R. Palacios and
kitten: New high performance operating systems for scal-
able virtualized and native supercomputing. In Proceedings
of the 24th IEEE International Parallel and Distributed Pro-
cessing Symposium (April 2010).

[2] OUYANG, J., KOCOLOSKI, B., LANGE, J., AND PE-
DRETTI, K. Achieving Performance Isolation with
Lightweight Co-Kernels. In Proc. 24th International ACM
Symposium on High Performance Distributed Computing
(HPDC) (2015).

2



Codesign for the Masses

Cannada Lewis (canlewi@sandia.gov)*, Simon Hammond, and Jeremiah Wilke

February 16, 2021

1 Topic (Architecture & Codesign Methologies) In this position paper we will address challenges and op-
portunities relating to the design and codesign of application specific circuits. Given our background as computa-
tional scientists, our perspective is from the viewpoint of a highly motivated application developer as opposed to
career computer architects.

2 Challenge It is no secret that major breakthroughs in computational sciences are often reexaminations
of previously proposed ideas, in the context of either new algorithmic techniques or new developments in compu-
tational capability. In the last 15 years adoption of GPUs and their programming models [9] has given new life to
old ideas in a plethora of disciplines from quantum chemistry [4, 13] to—most famously—deep learning [12]. These
are examples of approaches that have won the hardware lottery[6], where technological developments have favored
certain application and algorithmic choices at the expense of others; often irrespective of their theoretical merits.
What if we could partially solve the issue of the hardware lottery? Because it is not possible to fully decouple modern
computational sciences from the specifics of hardware design, what if we could give the application developers bet-
ter tools to design and understand hardware, instead of forcing them to pick between a few mostly general purpose
designs? This is the very essence of codesign.

The current paradigm forces applications to optimize for either a specific architecture or a narrow band of similar
architectures, none of which were specifically tailored to the exact problems the application faces. As extreme
heterogeneity becomes the norm, between CPUs, GPUs, FPGAs, reconfigurable hardware and combinations of all
of them, ideally application developers would have an easy way to design and iterate on their own accelerator
designs. This goal presents great challenges though; while modern approaches provide significant quality of life
improvements for hardware designers, creating an application specific accelerator is still very much the domain
of hardware experts. For example, it is a great achievement that open source CPU cores require only thousands
of lines of code[15], albeit in unfamiliar (to application developers) hardware description languages (HDL), such
as Verilog, VHDL, pyRTL, or Chisel. But, their design at the HDL level is still out of reach for all but the most
dedicated application programmers.

The main alternative to HDL is high level synthesis (HLS) of programming languages like C and C++. HLS
of C++ can require less effort than a similar HDL design [11], but it is not a panacea; much like high-performance
linear algebra routines, the code required for performant HLS rarely resembles the initial high level implementation
and demands the developer have a deep understanding of how the code will be synthesized. All is not lost though,
reference [11] suggests that there are quality of life and time to solution improvements available via HLS.

Finally, there is the issue of hardware simulation, the efficient and accurate modelling of general purpose accel-
erators is a non-trivial task. Many tools exist in this space, but they can be vendor dependent or difficult to use for
novices. Work must be done to simplify the design, simulate, and iterate cycle if we want to empower application
developers to embrace accelerator design. Other position papers will most likely address this topic in more depth.

The challenges to bring hardware design to the masses (application developers) are great. Computational sci-
entists do not have HDL experience, hardware simulation and the use of FPGAs is unfamiliar, and they may be
sceptical of the expected value their applications would ultimately receive. But, there also exists a great opportu-
nity to achieve success that could only come via codesign of algorithms and hardware. Ultimately to truly enable
codesign, we require new approaches via software engineering, programing models, and compilers to bridge the
gap between software and hardware engineering.

3 Opportunity The end of Dennard Scaling and the inevitable demise of Moore’s law dictate that fu-
ture performance gains for scientific applications are likely to come from a combination of software engineering,
algorithmic improvements, and hardware specialization [8]. In many cases these are multiplicative, which itself

*Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-NA0003525.
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speaks to the value of codesign. The oppportunity for DOE is to lead the creation of a suite of tools that bring these
kind of improvements to the broadest possible user base—not just the determined few which has arguably been
the situation for some large-scale HPC architectures. The result could be vast increases in scientific delivery and
broad families of codesigned accelerators or SoCs for entire computing communities. The piece that is missing to
enable this future is the tooling to give developers the ability to explore the space of interactions between algorithms
and hardware. One need look no farther than deep learning to see the transformative effects that having access to
domain specific hardware can achieve.

By providing the tools required to enable application developers to steer the process of codesign themselves,
DOE will be able to initiate a new era of computational science that mirrors the explosion of successes in deep
learning. Performance improvements of more than 30X are not out of reach [7], but achieveing this will require
deeply coupled codesign of the hardware and software. No one knows better than the domain scientists where the
opportunities for codesign lie, but to date, they have not had the technology to make hardware exploitation feasible.
As we progress into a post Moore’s era this needs to change.

4 Timeliness We have precedent that application developers are willing to explore the interplay of algo-
rithms and hardware, as evidenced by the rise of parallel programming models such as CUDA [9], SYCL [1] and
Kokkos [5]. Adopting these models for parallel programing requires significant investment from applications, but
in the end the performance gains are often worth it. Before these libraries and languages existed, it was simply too
difficult for the vast majority of application developers to attempt to target GPUs, limiting GPU adoption. Cur-
rently, software hardware codesign is in a similar state, but the tools are beginning to become available to allow
scientist to explore the hardware landscape. Similarly, to how CUDA helped to bring GPU programming to the
masses new compiler tools and domain specific languages for HLS from both academia and industry [2, 3, 14, 10]
will help empower application developers to explore domain specific architectures for their problems. But this
work is still in its infancy and DOE should invest now, both to help develop the tools and abstractions needed to
make high level codesign a reality and also to connect application developers with these tools. In some sense we
have the opportunity to codesign the future generation of codesign tools.
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I. CHALLENGE

The spectrum of high-performance computing (HPC) ap-
plications that are memory bound rather than compute bound
include not only a broad swath of traditional scientific simu-
lation applications, but also emerging machine learning (ML)
and data analytics applications. To optimize their performance,
data layout organization optimization is a key ingredient.
Optimized data layout alone can significantly improve data
locality and reduce unnecessary data transfer between memory
hierarchies. It also opens the space of algorithmic optimiza-
tions.

However, optimizing data layout is a complex endeavor due
to the interplay between heterogeneous hardware and applica-
tion development. Architectural trends suggest the increment
of both accelerator number and diversity in future HPC
systems. Different accelerators have specific memory designs.
Therefore, they prefer varied data access patterns and layouts.
For instance, general CPUs require data layout to be optimized
for the cache hierarchy (i.e., locality). GPUs prefer coalesced
accesses across contiguous threads to leverage its memory
bandwidth while mostly ignoring the cache performance due
to limited cache capacity per thread. Static random access
memory (SRAM)-based accelerators (e.g., Cerebras) prefer
compact data layouts due to limited memory capacity, and
processors with persistent memory will benefit from data lay-
outs that reduce the number of fine-grained stores. There also
is memory heterogeneity existing in a single accelerator. For
example, a GPU’s main memory prefers coalesced accesses,
while its scratchpad memory (i.e., shared memory in NVIDIA
GPUs) does not require it but is sensitive to bank conflicts.

There are also great challenges for application developers
to make use of data layout transformation. Because there are
limited data layout supports in available HPC programming
models and they are tightly coupled with computation, most
existing HPC applications feature hard-coded data layouts.
Hard-coded layout contributes a huge portion to the perfor-
mance portability hurdle as computation is often organized
around the data layout. To facilitate the utilization of data
layout transformation in HPC applications, corresponding
innovations of programming models and software tools are
required. If there is a common programming model to specify
the data layouts and required transformations, performance

portability can be greatly improved and programming efforts
can be saved.

In summary, the data layout implication of future HPC
includes: 1) a general data representation and transformation
framework will be required because manual data layout opti-
mization will not be a viable option and impedes performance
portability, 2) such a framework should support a broader
range of transformations than what are presently available, 3)
more frequent data layout transformation will be required as
data flow from one memory to another (either inter- or intra-
accelerator), and 4) more performant data layout transforma-
tion will be required because of the increasing demand.

II. OPPORTUNITY

To address these challenges, a universal data layout trans-
formation infrastructure (DLTI) would be both valuable and
useful. Furthermore, the resultant infrastructure should have
the following properties:

• Flexible and User Friendly Programming Interface. The
desired infrastructure should support a wide range of data
layout transformations required by scientific applications
and be flexible enough to support future extensions. It
should also provide friendly interfaces and be easily
integrated into existing codebases.

• Portability across Processors and Memory Devices. Be-
cause different processors and memory devices have
distinct data layout and transfer preferences, the desired
system should consider these diverse requirements to
ensure its portability across various HPC systems.

• Performance and Efficiency. Performant and efficient
data layout transformation is crucial because it must be
performed frequently and dynamically.

• Modeling and Tuning Support. The system should pro-
vide interfaces for users/tools to reason about the benefits
and overheads of particular transformations.

A thoughtful co-design approach is key to the success of
DLTI. Particularly, DLTI includes three components: a hard-
ware transformation accelerator, a data layout programming
model, and an optimized compiler. Achieving the flexibility,
portability, performance, and modeling goals requires to care-
fully co-design all three.

Transformation Primitive. Scientific applications often
organize data in the form of multidimensional arrays. Across
dimensions, transposition, packing, splitting, and tiling are
commonly needed transformations. Transposition changes the
order of dimensions. Packing refers to combining multiple



dimensions, while splitting is the opposite operation to split
one dimension into multiple ones. Tiling blocks the array
across multiple dimensions to improve locality. Data shuffling
within a dimension is also required in some scenarios. A set
of primitives should be defined to support all these transfor-
mations as the hardware-software interface.

Computer Architecture. The desired accelerator should
support all transformation primitives. Design-wise, such ac-
celerators should locate near the source and/or destination
memory to be efficient, as well as prefer to have low area
and power footprints. Complexity of the architecture, such as
the memory hierarchy, should be managed transparently in the
hardware to reduce the burden on programmers.

Programming Model. Some recent HPC programming
models have introduced data abstractions, and it is more
economical to embed the data transformation functionality into
them to leverage existing work. For instance, Kokkos [3] intro-
duces View as an abstract representation of multidimensional
array and supports to specify its memory layout statically.
However, it does not allow dynamic layout transformation and
is limited to C++ applications. Another example is OpenMP
that enables data mapping between different accelerators [1].
The OpenMP offloading model is a proper interface for data
layout transformation, and existing data mapping features,
such as OpenMP map clauses and user-defined data mapper,
can be extended to support transformation.

Compiler. LLVM compiler infrastructure provides an ex-
cellent framework to bridge the gap between the data layout
transformation accelerator and programming model [4]. The
recently introduced multi-level intermediate representation
(MLIR) [5] can help optimize these operations in a high level
to generate efficient hardware transformation instructions.

The design of DLTI is inspired by the ML ecosystem,
which is a great co-design example. Programming model-wise,
domain-specific languages, such as TensorFlow and PyTorch,
are defined for users to construct ML models easily. At
the hardware level, various accelerators have been designed,
such as TPU and GraphCore. To bridge the gap, compiler
technology is widely applied on performance optimization,
e.g., by combining computation operations and optimizing
data flow. As a result, ML applications can often achieve
sustainable performance close to the hardware peak without
much effort from end users.

III. TIMELINESS OR MATURITY

Timeliness. Considerable research has been done for data
layout transformations in the software space [2], [7], [9].
They tend to have relatively low performance as software-
only solutions and are not adequate for handling challenges
introduced by increasing heterogeneity. Recently, several hard-
ware engines have been proposed that can perform some
transformations, such as scatter/gather [8], [6]. They cannot
be easily utilized by applications and also need to support
more general data layout transformations.

In recent years, the cost of specialized hardware has
decreased significantly, while architectural diversity has in-

creased manifold thanks to open source hardware and standard
interfaces. In addition, the availability of high-performance
open source compilers, such as LLVM, makes it easier to
capture the boundary between software and hardware for
optimal co-design. The confluence and availability of these
requisite links points to the timeliness of a co-designed DLTI.

Feasibility. Although it involves considerable effort to co-
design a system for the scientific computing community, which
is much smaller and has more diverse requirements, it should
be feasible to do so for data layout transformation. Initially,
it is a more constrained scope and will require much less
effort. Secondly, most scientific applications need data layout
transformations. Thus, it is worthy to co-design such a system
that could benefit the broader scientific community.

Potential Impact. The resulting data transformation system
will have significant impacts on the development and optimiza-
tion of scientific applications. First, thanks to the hardware-
accelerated transformation engine, many data-layout-related
algorithmic optimizations can be explored and applied, which
are not beneficial presently with expensive software-based data
layout transformations. Second, application developers will be
able to specify and transform between various data layouts
with ease, using the proposed programming model. Third,
such a system will facilitate the performance portability across
diverse HPC systems that have distinct data layout preferences.
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Challenge​:   Designing and implementing HPC programming systems requires a wide range of 
diverse knowledge about multiple layers of software/hardware stack, including science 
disciplines, application domains, compilers, runtime systems and hardware. For example, 
understanding and communicating high-level domain and application semantics related to data 
dependence can enable a wide range of compiler and runtime optimizations aimed for 
improving parallelism and reducing unnecessary data movement.  However, such knowledge 
has been either implicit or expressed in an ad-hoc manner in each domain. People from difficult 
domains may not even talk in the same vocabulary for semantically identical concepts. Different 
programming systems and compilers have to develop different interfaces or annotations to 
redundantly encode the same information. The ad-hoc management of heterogeneous 
information from multiple layers of HPC stack causes unnecessary burden for both developers 
and users of the programming systems. It also makes co-design of HPC systems difficult in 
general.  
 
Opportunity​:  What if as a community, we can collectively and systematically accumulate, 
share, and reuse formally defined, machine-readable, and human-friendly knowledge across 
multiple layers of software/hardware stack? If such a vision is realized, it will enable 
stakeholders from different backgrounds to easily collaborate.  Different software and hardware 
components in the HPC stack will also be interoperable. A variety of programming systems can 
be designed and tested on top of a reusable knowledge base of different science disciplines, 
application domains, software packages, and hardware platforms.  
 
Advances in the knowledge representation community may already generate sufficient 
techniques and tools to help HPC researchers create a formal and machine-readable 
knowledge base across different layers of software/hardware stack. For example, a starting 
point for any group of people to collaborate is to have a common vocabulary, taxonomy and 
properties to describe one or more domains. Ontology techniques define a systematic approach 
to capture and represent concepts, instances and their relations for a domain. The Resource 
Description Framework (RDF) data model[6] encodes knowledge in the form of 
subject-predicate-object expressions. These techniques are very relevant for building HPC 
programming systems since a key driven factor for HPC optimization is the extracted software 
and hardware properties.  
 
On the other hand, this vision of course has its unique challenges.  For one, no single person 
can understand all the domains of HPC. It requires organized efforts to start from a smaller 
domain then incrementally aggregate smaller vocabularies and knowledge bases into more 



comprehensive ones.  Another challenge is knowledge engineering, including domain 
knowledge gathering and verification, is still a labor intensive process. 
 
Timeliness or maturity​:  
 
Knowledge representations and knowledge bases have been studied for decades. They have 
increasingly been used in many domains as the related techniques such as Web Ontology 
Language[4], Resource Description Framework[6], and JSON-LD[5] mature. For example, 
Schema.org[2] is a collaborative vocabulary started by Google, Microsoft, Yahoo etc. to 
annotate the Internet with structured data. Wikidata[3] is another collaboratively edited 
multilingual knowledge graph managed by the Wikimedia Foundation (who runs Wikipedia). 
More recently, Yago 4[1] builds one of the most comprehensive knowledge bases on top of 
crowd-sourced wikipedia articles. Linked Open Vocabularies (LOV)[7] gathers more than 700 
vocabularies from different domains and provides popularity statistics and a searchable 
interface for users to find the right choices.  
 
With all the aforementioned efforts going on, It is a good time for the HPC community to 
investigate these techniques and build our own common vocabulary and shared knowledge 
base to facilitate co-design of programming systems and even the entire HPC systems.  
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Challenge We need agile iteration of software and hardware changes in order to achieve hardware-software
codesign. As such, we require accurate, modular, and high speed simulators to enable this iteration. Current
simulation techniques are either too high level, too inflexible, or too slow to enable codesign for exascale and
post-exascale HPC architectures.

As Moore’s Law continues to fade, future performance improvements are going to need to rely more
on codesign between multiple layers of the hardware-software stack [3]. Codesign, by definition, involves
modifying many levels of the hardware-software stack, such as the architecture, the application runtime, the
operating system, compilers, computer networks, and the batch scheduler. Traditionally, many of these layers
have relied on proprietary, closed source components, which makes research on next-generation solutions
difficult, if not impossible. There is a new opportunity for researching codesign with modern open source
platforms such as RISC-V, LLVM, and Linux. These platforms make it possible for researchers to modify
every level of this stack. However, when making these modifications, researchers need a way to predict
their performance impact before undergoing the long and costly process of engineering real-world hardware.
We therefore need simulation and modeling which can capture these full system effects as the benefits
of codesign can only come from understanding the underlying interactions between different parts of the
hardware-software stack.

Unfortunately, current modeling and simulation techniques suffer from poor performance, insufficient
detail to capture cross-stack optimizations, and are difficult to modify and extend. Full-system cycle-level
simulators like gem5 [4] can capture the hardware-software interactions since they support all levels of the
stack including the OS, runtime, and unmodified software, but cycle-level simulators are slow (at least
10,000× slowdown) and incapable of simulating large-scale applications in a reasonable time frame. Other
systems such as SST [5] scale to modeling full HPC centers, but do so at the cost of modeling detail, often
falling back on trace-based or analytic models which do not have enough detail to model important codesign
components like the application runtime. Finally, fast FPGA-accelerated simulators like FireSim [2] are
capable of running full-systems and mitigate some of the performance issues with software-only simulation
systems, but are inflexible, often requiring fully implemented RTL designs. These FPGA-based simulation
systems can be useful for tweaking current designs, but are not flexible enough to explore entirely novel
architectural designs (e.g., new accelerators, which HPC systems are widely adopting).

Opportunity We need to develop new modeling and simulation techniques to understand the performance
impact of novel codesigns at an HPC-center scale and that provide accurate performance predictions in
tolerable timeframes. Since no single methodology can provide the required accuracy, detail, or scale, we
believe the path forward is through “multi-fidelity simulation.” We aim to leverage multi-fidelity simulation
in two axes: over time and over space. We envision a unified simulation framework which integrates the best
in class models—the fastest with good high-level behavioral accuracy and the most detailed with cycle-level
accuracy—in the same simulation instance in both time and space.

Leveraging different fidelity simulation over time has been a popular technique to improve the perfor-
mance and energy of detailed simulation techniques. Examples include SimPoints, SMARTS, and the Bar-
rierPoint sampling methodologies. Recently, researchers have leveraged analytical models to improve cache
warmup time which dominates most of the sampled simulation techniques, and used hardware virtualization
platforms to fast-forward simulators at native speed (i.e., with no slowdown) to the region of interest or the
sampling location. Although many of these techniques have been published, few have been integrated into
any widely-used simulation system in a straightforwardly useable fashion. Thus, there is an opportunity to
provide codesigners with easy-to-use simulation frameworks which natively support multi-fidelity simulation
over time.
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While multi-fidelity simulation over time has been previously explored, combining different fidelity models
at the same time in a single simulation is a new research direction—which we define as multi-fidelity over
space. For instance, to simulate an entire compute rack running one application, it is likely unnecessary
to simulate all systems at a high fidelity (e.g., cycle level). Instead, we can simulate one or two systems
at a cycle level and use higher level models (e.g., trace based or analytical models) for the other systems
in the rack. This technique can also be applied within a single node. For instance, we can simulate the
processors with a high-level “simple” out-of-order model which instead of providing detailed representation
of every structure, provides simple configuration options for components like the instruction window and
commit width, while at the same time uses a cycle-level memory system design to investigate the impact of
software-cache coherence codesign.

To enable multi-fidelity simulation, we must have a modular, composable, and standardized simulation
framework. This framework will allow codesigners to combine different fidelity models in both time and
space. There is an opportunity to develop a simulator backplane which will allow modular simulators
to share “best in class” models which may operate at different fidelities. We believe that building off of
today’s modular simulation infrastructures such as gem5 or SST is a viable direction to create this simulator
backplane. There is evidence that these simulator systems can integrate other models such as gem5-gpu which
integrates GPGPU-Sim with gem5, Emerald which integrates graphics simulation with gem5, gem5-Aladdin
and gem5-SALAM which integrate auto-generated accelerators with gem5, and many others. Similarly,
SST Elements provides a broad set of simulator integrations for SST. However, these integrated models are
not readily available in a centralized easy to use and access location. Additionally, we need to improve
the usability and composability of current simulation platforms and expand the availability of multi-fidelity
models.

Timeliness or Maturity It is now assumed that future gains in performance are going to come above the
level of silicon [3] and performance improvements will increasingly come from hardware-software codesign.
Now is the time to build the vital infrastructure to make this possible. This infrastructure will, in large
part, consist of simulators which can deliver reliable simulations in acceptable time scales. Without such an
infrastructure, it will be extremely difficult for future generations of system designers to develop their ideas,
without resorting to time consuming RTL designs or relatively expensive chip tapeouts. Thus, developing
this next generation simulation infrastructure will enable system developers to rapidly prototype, test, and
iterate on their ideas while being confident that the infrastructure is representative of modern HPC systems.

Work has already began in this area. In 2020 gem5 released it’s first stable version as part of an ongo-
ing effort to improve the stability of the project. Documented APIs have been added with guarantees of
stability between versions, thereby making a start on the engineering effort necessary for a common archi-
tecture backend which other tools may integrate with. This stability will help foster and support a common,
community-based infrastructure. Getting value out of this backend will require forming collaborations be-
tween open source architecture projects, and ensuring common standards and processes are agreed upon.
Moreover, developing such an infrastructure with common standards and processes will enable additional
projects, such as those that enable accelerated simulation of RTL [1], to easily integrate into the infras-
tructure. While difficult to achieve, such an effort would be of immense benefit to researchers investigating
codesign and beyond.
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Challenge: Machine learning, in particular, deep learning methods are increasingly being used
in scientific applications [1] in addition to the more ubiquitous non-scientific data. These models
are traditionally trained on large computing clusters and deployed elsewhere for inference. Once
trained, these inference models are primarily used for prediction-only tasks and often they cannot
adapt to the changing environment. This limits the scope and usability of the model since the new
data might differ significantly from the statistical properties of the training data. To this end, online
continual learning addresses the scenario where a system has to learn and process data that are
streamed continuously and mitigate catastrophic forgetting. Many real-life scientific applications
such as adaptive data collection at the edge, temporal sequence mining for anomaly detection in
manufacturing, control and continual reinforcement learning for chemical synthesis or autonomous
steering of manufacturing processes can benefit from online continual learning. However, in some
cases, such as on-chip AI at the edge, additional considerations such as resource limitations in
the hardware, data privacy, or data security, limit the ability to implement these algorithms at
scale. The challenges in the online continual learning scenario are therefore two-fold: first, resource
constraints impose limitations to algorithms, the extreme case being learning just from streaming
data with no control of when and how this data is presented. Second, systems need to learn new
tasks from data that may have not been seen before deployment.

Specialized neuromorphic hardware that take inspiration from principles of brain computation,
have grown in popularity as they promise distributed and power efficient computation on silicon
chips in addition to application-specific customization and continual learning. Numerous neuromor-
phic architectures either based on analog, digital or mixed-signal approaches have been successfully
proposed and demonstrated emulation of both supervised and reinforcement learning environments,
hence provides a promising ground to implement application-specific customization and online
learning. However, since the neuromorphic architectures are not as solidly grounded in theory as
the Von-Neumann architectures, achieving optimal application-specific configuration that lead to
design decisions for fabrication is more empirical and discovery-driven. Hence, a software-hardware
codesign of algorithmic learning and neurmorphic hardware design is crucial to achieve efficient
and custom hardware for online and continual learning.

Opportunity: Design and fabrication of application-specific custom hardware that maximize
the efficiency and power/performance profile can be achieved by a careful codesign of the learning
algorithm and neuromorphic hardware design. One approach to achieve this is through the design
of biologically-inspired network architecture [3] that incorporates heterogeneous and local synaptic
plasticity that can emulate the adaptation and consolidation in biological neural networks and
mitigate catastrophic forgetting. Formally, given a stream of inputs u(t) and potentially sparse
modulatory signals xm(t), the learning can be defined by:
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x0(t) = F (u(t),xm(t);S(t))

S(t+ 1) = Fs (S(t),u(t),xm(t),x0(t))

where S(t) represents the internal state of the system. To make this amenable for software-hardware
codesign, we can decompose this into four coupled systems:

xe = Fe(u,We)

xo = Fl(xe,Wl)

W (t+ 1) = f (xe,xo,xm;W (t), βk(t))

β(t+ 1) = fβ (xe,xo,xm;W (t), βk(t))

subject to the initial conditions W (0), β(0). The first two equations represent the feedforward
inference system, broken into a feature extraction and a learning modules, and the last two equa-
tions represent the synaptic plasticity mechanism and the evolution of the state of the network,
represented by the evolution of hyperparameters β. In contrast to conventional machine learning
approaches, there is no separation between architecture and learning algorithm: the ability to learn
is defined by the choice of f , fβ, and their hyperparameters.

Design choices to fabricate an application-specific neuromorphic hardware can be obtained
through a careful optimization of the f , fβ, and their hyperparameters. The design space de-
fined by the learning rules f and fβ are extremely large, can be chosen from several possible
biological learning mechanisms and theory, and can have a tangible impact on the performance of
the learning algorithm.

This equivalency between the learning algorithm and design choices for a neuromorphic chip
fabrication, modularity, and well defined interfaces between components provides a unique oppor-
tunity to applying mixed-integer optimization tools to general architecture design in a way that
is driven by the final application or performance. Scalable optimization frameworks [2] designed
to utilize state-of-the-art leadership class high performance computing systems can be adopted to
our advantage in this co-design approach. A key advantage of abstracting architecture design as
a mathematical problem is that the same codesign methodology can be applied both to software
and hardware implementations. Each hardware implementation will introduce different constraints
that will impact functionality, performance, and observables such as speed or power consumption.
Consequently, beyond optimizing a specific architecture, our approach can provide a way of explor-
ing the impact that the physical layer has on the specific optimal configuration for each application.
Successful demonstration of the neuromorphic hardware design with these principles has also been
shown recently [4].

Timeliness: Scientific Machine Learning is a core component of artificial intelligence which has
been identified in a recent DOE report [1] as a key technology to enable tranformative science and
energy research. On the other hand, research and advancement on materials and processes for
neuromorphic hardware design has brought us to the crossroads where the time is ripe to develop
the scientific application driven custom hardware/software co-design. This has the potential to
enable science at the scale and pace that was not possible earlier.
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I. CHALLENGE 

Exascale Computing and Artificial Intelligence will bring 
transformative change to the scientific community and foster 
novel discoveries. This change will largely be fueled by the 
scientific applications that would operate at the intersection of 
problem and solution space across varied domains, including 
nuclear, materials, neutrons, and energy. Although never 
pursued together, both Codesign and Artificial Intelligence (AI) 
has separately been an active interest among the scientific 
community and DOE for more than a decade now. While 
successes have been achieved by applying AI, albeit, owing to 
its complexity and technological difficulty, AI is still limited to 
its domain experts and core practitioners. With the arrival of 
Automated machine learning (AutoML), there is now an 
unparallel opportunity to democratize the use of AI across all 
scientific domains and give its power in the hands of non-
practitioners too. AutoML is the process of automating the 
process of applying machine learning to real-world problems[1], 
[2]. AutoML covers the complete pipeline from the raw dataset 
to the deployable machine learning model. Scientific 
Applications powered by AutoML will be an ideal scenario for 
deriving new insights and pursue data-driven discoveries 
reliably faster. Investing in Codesign efforts of scientific 
application with a focus on bringing AutoML into the decision-
making process[3]. To that end, author proposes hybridizing 
Codesign and AutoML for the next generation of Scientific 
software to maximize the overall performance, efficiency, and 
other desirable qualities of the system as a whole. However, 
there are certain challenges before the community can realize its 
full potential. Some of these challenges are listed below: 

A. AutoML focused on automating and improving ML 

pipeline: 

The current state of AutoML is narrowly focused on 

improving model building that includes feature selection 

and engineering, model selection, hyperparameter 

optimization, and stacking. While important, the state of art 

AutoML still struggles with complex ML problems 

involving high-dimensional data and imbalanced classes. 

Besides, current focus is on supervised learning problems 

and not on unsupervised or reinforcement learning type of 

ML problems. Scientific software development that 

combines Codesign will envision both supervised and 

unsupervised class of research problems to generate optimal 

solution.  

B. AutoML is limited to non-scientific applications: 

Current trends and need for AutoML are driven by 

enterprise application requirements. Scientific research 

involving mathematical tractability and solutions requires 

additional considerations that are currently unavailable.  

C. AutoML is data-intensive, while Codesign is compute-

intenstive: 

AutoML best works when the applications have very large 

quantities of raw data. It is purposefully made to deliver data-

driven and data-intensive solutions. Most Codesign is focused 

on optimal utilization of compute-intensive resources. This 

dichotomy has to resolved before realizing the potential of 

AutoML in scientific applications.  

D. AutoML is implemented in high-level programming 

languages: 

The implementation of AutoML is done in contemporary high-

level languages such as Python or Java. The use of high-level 

programmatic constructs is driven by the need for productivity 

and not performance. Besides, interpreted and dynamic 

languages are difficult to optimize. Also, Python has an inbuilt 

global interpreter lock making it difficult to parallelize the code. 

Finally, these language designs and implementation are made 

without considering the realities of HPC. 

E. AutoML is hardware agnostic  

Since AutoML is implemented in high language constructs they 

assume unlimited raw power and rarely focus on optimization 

and efficient use of hardware resources. For scientific 

applications, it is critical to have bounds on execution. Also, 

Codesign are implemented in-silico for optimization 

considerations. It is important that AutoML and underlying 

hardware understand each other, while model selection 

processes, bring underlying hardware for performance. 

II. OPPORTUNITY 

There are several opportunities and advantages that make it 
feasible to envision AutoML driven scientific software 
Codesign. Majority of the innovation is occurring in open-



source community, providing access to source code and open 
license agreement for further development and customization.  

Exascale computing project has already recognized the need 
for high-level constructs and therefore welcome and like to 
support Codesign that support Python development in HPC 
environment via a combination of tools and libraries such as 
Cython[4], mpi4py[5], and PyFr[6]. AutoML can be developed 
on the top of these packages.  

A wide range of feature selection and hyperparameter 
optimization approaches exists making it uniquely positioned to 
benefit HPC community. Besides, the Codesign community is 
currently under the process to develop frameworks and 
workflow which is apt for the current development stage of 
AutoML, thereby getting involved at an early stage. 

Despite current approaches are agnostic, the DOE should 
consider this a need for immediate attention to developing 
programmatic urgencies surrounding the development of in-
silico approaches and programs.  

Research and opportunity in AI Systems Hardware/Software 
Co-Design is being felt across industry and academia, creating 
powerful support in the effort to develop distributed training, 
energy-efficient architectures, scalable communication, high-
performance and fault tolerant communication, among others. 
Some custom frameworks for scientific applications are also 
under an active development[7], [8].      

III. TIMELINESS OR MATURITY 

 There is no better timing than now to establish research 
around hybridization of AutoML and Codesign for several 
reasons.  

• Data-intensive computing is continuing to grow, and, 
in any research, AI will be cornerstone for novel 
discoveries. Making AI easier through recent advances 
in AutoML for non-practitioners could be a game 
changer.      

• It makes sense for future scientific applications to be 
AI-enabled. Thus, for effective and efficiency it is 
pertinent to explore R&D opportunities that combines 
AutoML and Codesign for optimal utilization of 
resources. This has not been done yet.  

• Both these areas are currently under active 
development across industry and academia separately. 
The DOE office should consider this an important 
priority and develop funding programs surrounding 
this combined scientific challenge.  

• A recent DOE AIML working group has noted lack of 
a system in place to share AI models, algorithms, and 
lessons learned across the DOE. Investment in 
AutoML and Codesign can also enable a guidance 
towards this.  

 The computing effort surrounding reimagining Codesign 
initiative has successfully pursued foundation scientific 
software that can run on Exascale hardware, the next logical step 
would be to develop joint research portfolio for Codesign that 

enables the use of new hardware-acceleration paradigms and AI. 
The author hopes this integration will open novel possibilities 
for artificial intelligence integrated scientific applications. 
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Challenge. Scienti�c exploration and hypothesis generation is increasingly dependent on the convergence of
scienti�c modeling, data analytics, and AI/ML. The result is work�ows, composed of multiple stages of compute and
communication between distributed and rapidly increasing heterogeneous and distributed computing resources. Data
movement between devices, memories, and storage is the most signi�cant bottleneck. Many analytics and AI/ML methods
fundamentally rely on large amounts of data, which is costly to move; they employ algorithms whose data structures
and access patterns are detrimental to performance. Work�ow modules are usually written in software packages
using multiple computing paradigms and assumptions, yet performance requires careful orchestration of tasks and
data �ows on hardware and networks with diverse characteristics.

The problem will likely be exacerbated by trends in hardware and networking. Hardware is becoming increasingly
fragmented, with new CPU architectures and domain accelerators abounding, targeting specialized kernels. Memory
systems are far more complex and commonly include multiple distinct memory pools. Networking latency growth is
�at, meaning the mismatch between data movement and compute will remain large for the foreseeable future.

Vision. These problems are not new, but a perfect storm of new computing paradigms in the HPC space, paired
with increasing heterogeneity –driven by limits in Moore and Dennard scaling – as well as integrated, federated
work�ows – including edge computing, in the loop computing – nudge us to learn insights gleaned elsewhere.

DOE’s exascale codesign e�orts with industry – Fast, Path Forward – developed some capability within this
important technology segment but it has become clear that further performance and power e�ciency gains will
require less hands-o� codesign outsourcing, with the labs picking up a larger share of the codesign mantle.

The embedded world has dealt with specialization and extreme heterogeneity for much of its existence. The
result has been a �urry of HW/SW codesign tools to accelerate the product development cycle. Although it might be
attractive to adopt the processes developed in the embedded space, there are some caveats for the HPC community:

• First, most of the existing codesign tools are HW centric, as they were developed bottom-up by HW designers.
The programming models are limited, lacking the programmability sophistication HPC practitioners have
grown accustomed.

• Second, due to their HW centricity, the tools operate on design cycles that are reasonable for HW designers but
are almost unworkable for SW coders, accustomed to incremental or RAD design cycles.

• Third, governing metrics that drive optimization in the embedded space are not necessarily aligned with the
HPC space – e.g., performance, power, memory/storage capacity.

• Fourth, embedded codesign tools tend to include memory considerations in a phased approach, whereas the
execution engine is designed a-priori and memory is dropped in a-posteriori. Such an approach in the HPC
domain would negate much of the promise codesign would hold.

Position statement. We posit that codesign in the HPC space has to take these shortcomings of the embedded
space into consideration and propose that a new crop of codesign tools need to come to the forefront to be applicable
to the HPC community. These codesign tools need to satisfy the needs of SW and HW developers in equal measure,
by emphasizing SW developer needs towards programmability, design cycles and metrics, and most importantly,
emphasizing memory shortcomings detrimental to HPC performance. These tools should interface with HW and
SW design tools in order to be integrated into the corresponding design �ows of each domain. They should serve as
seamless platforms over which HW and SW developers exchange metrics and constrains.



Tackling the fourth problem will require reassessing existing tools in existence. Today’s codesign methods utilize
performance models that are useful only for simple data access patterns or throughput performance [14, 13]. They
fail for data-intensive analytics with sparse structures, irregular accesses, etc [4]. The HW approach of simulation
provides high accuracy, but requires enormous resources, even for less-than realistic inputs. Analytical modeling
methods either require signi�cant human labor; or use automated methods that focus on limited domains such as
throughput. ML modeling performs well for easier problems such as throughput performance, but performs poorly
on noisy data with heavy tails, which is characteristic of latency-sensitive bottlenecks and resource congestion.

Opportunities. The opportunities to develop these next-gen codesign tools within the HPC community derive
from the con�uence of its expertise with high performing work�ows [3, 4] running on cutting edge technology. This
body of knowledge should drive data-centric measurement and analysis tools that characterize how tasks a�ect and
use data. These tools should highlight toxic data layouts and access patterns that cause performance penalties across
storage [2, 1], memory [5, 8, 10, 9], and network [12, 15].

Steeped in the HPC ModSim tradition, model-generation and evaluation techniques should provide for concise
and elastic data-centric models that enable reasoning about data representations, layouts [7], task compositions, and
run-time data policies.

Finally, these tools should provide execution guidance and runtime support for runtime data partitioning,
task placement, data layouts, and polices for data-movement in order to coordinate data object interchange and
movement [6], enabled by introspection, control and adaptation based on guidance from template predicates and
models [11].

Timeliness. As to the timeliness of such endeavor, several aspects come into play. As mentioned above, the
HPC community and industry at large are at a juncture to provide performance and power e�ciency gains beyond
technology node scaling.

Furthermore, over several decades of pursuing the holy grail of High Level Synthesis (HLS), the Electronic Design
Automation (EDA) industry has come to an understanding of what is practically feasible.

Fortuitously, some ML driven novel architectures realized as static- and or dynamic- data�ow lend themselves to
EDA, easing the HLS burden by restricting generality. In the same spirit, the HPC community should heed the cue of
the EDA industry and constrain its problem formulations accordingly.
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Challenge
Specialization is slowly coming into focus for future HPC systems as a strategy to preserve performance scaling for
key applications. The diversity of important HPC applications creates the concern that future non-specialized systems
will contain tens or hundreds of different types of compute units from general-purpose such as traditional CPUs,
compute units that are efficient for specific types of computation such as GPUs, fixed-function accelerators such as
for FFT, or even reconfigurable compute units such as FPGAs. Likewise, future systems may also have a variety of
memory resources to better fit specific data access patterns or provide non-volatile storage.

Even without specialization, today’s HPC systems overprovision resources in order to satisfy a few important
applications. For example, previous studies have shown that at the majority of the time, nodes use less than 25% of
their memory [1,2]. Because applications reserve resources in units of nodes and the configuration of nodes is
uniform and rigid, in today’s systems applications that do not have high memory requirements have no choice but to
reserve enough nodes to satisfy their compute requirements and subsequently idle most of node memory, leading to
overall resource underutilization. On the other hand, if we reduce available memory in nodes, this will penalize few
but important applications.

This has led to a push towards resource disaggregation. Resource disaggregation is the
ability of the system to allocate resources to applications in a fine-grained manner. This
way, an application can reserve only the resources it requires, without being bound by
pre-decided node configurations. In some sense, resource disaggregation allows the
system to pool and compose resources according to each application’s requirements
(figure 1). There are numerous approaches on how to provide this capability from the
hardware such as using optics or placing resources of the same type at different parts
of the system instead of distributing them [3].

However, even if we assume a perfectly disaggregated hardware, currently we have no
strategy on how to best extract each application’s resource requirements, especially
without any assumptions on prior knowledge from the application. This cannot simply
rely on the programmer to express such requirements in the application code because more resource types
combined with different missions of different systems means that future HPC systems are likely to differ significantly
in terms of what compute and memory resources they have available. Therefore, if we devise a solution that is based
on the application code making use of system-specific API, the application’s code would have to be modified to run
efficiently in another system. This significantly hinders code portability. Finally, even if we have perfect knowledge of
each application’s resource requirements, the next question is how to communicate those requirements to the job
scheduler and how scheduling policies should adapt, taking into account resource utilization as well as application
performance.

Efficient use of future hardware requires eliminating resource underutilization while assigning the most suitable
resources to each application and avoiding re-writing application code when porting to a different system.



Opportunity
Addressing this challenge warrants a multi-disciplinary and collaborative approach. The first challenge is how to
accurately extract an application’s resource requirements without having to rely on the programmer to explicitly
specify them. For this, there are several approaches such as: (i) task the compiler with extracting information such as
a dataflow graph and then match the computation and data access patterns to available hardware resources (for
instance, graphs that resemble FFT will be paired to an FFT accelerator), (ii) create an abstract API that HPC
systems share, and (iii) allow applications to execute on the system but monitor their compute and memory usage in
order to match them with available resources using methods such as reinforcement learning or graph matching.
Another relevant question is which parts of the application are best to specialize.

This exploration has to consider cost versus accuracy tradeoffs. That is, observing an application is less invasive to
the system, but at the same time will produce an optimal matching to specialized resources less frequently. This
leads towards a cost model that includes the penalty to an application’s execution time from suboptimal assignments.
In addition, assigning an application to a specialized resource has more costs such as the delay and energy to
transfer data to and from it, that should be taken into account to offset the benefit of using a specialized resource.

In tandem with extracting an application’s requirements, the complexity of job scheduling will grow. This means that
job schedulers now should strive to increase the utilization of all the different types of resources available in the
system, but at the same time balance this goal with “traditional” goals such as preserving high application
performance and low energy usage. In addition, the job scheduler should be more aware of the hardware architecture
of a particular system such as to estimate the various costs and potential contention scenarios between applications
for different application placement options it is considering. Ideally, this should all be happening abstractly from the
user who may not understand or do a good job at manually picking specialized resources for his applications.

This effort produces more opportunities with synergistic technologies. For instance, FPGAs or other reconfigurable
fabrics could be adapted to this trust by being reconfigured by the job scheduler as part of the step of finding
specialized resources for each application. In other words, while setting up a job to initiate in the system, the job
scheduler, knowing the computation or data access characteristics of the application, can program an FPGA, all
abstractly from the user.

Timeliness or Maturity
This research trust is made timely by the constantly-increasing research focus on hardware to enable resource
disaggregation, the projected slow down of traditional technology performance scaling, and the constant desire for
more performance. Already industry is investigating resource disaggregation but not necessarily for applications
important to DOE. Still, by doing so, industry is setting up an ecosystem friendly to resource disaggregation.

Since we are slowly gaining more understanding on how hardware in future HPC systems will look like, it is becoming
easier to co-design software to go along. In addition, synergistic technologies such as photonics, reconfigurable
networks, different types, and a variety of specialized compute units are maturing, giving this research trust a clear
benefit not just to the system but to each application as well.

If successful, this research area will not only improve application performance and reduce resource underutilization
and thus cost of future HPC systems, but it will also make application code portability easier, which is otherwise sure
to only become harder with future heterogeneous hardware.
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Challenge: 
The rate of new data is outpacing advancements in performance and energy efficiency, and 
machine learning techniques continue to proliferate throughout Department of Energy (DOE) 
research domains. In order to support this growing computational need, it is necessary to 
consider new approaches beyond today’s CPU and GPU dominated systems. Because DOE 
applications often have unique requirements, custom architectures deployed on reconfigurable 
computing platforms offer one possible solution. Today, some techniques, such as HLS4ML 
[Duarte], exist to help map deep learning networks to Field Programmable Gate Arrays 
(FPGAs). However, there is a challenge in considering emerging or nontraditional technologies 
such as Field Programmable Analog Arrays (FPAAs). FPAAs may offer compelling efficiency 
advantages as shown by [Suma], but there is not currently sufficient tooling for researching and 
deploying application specific machine learning accelerators. 
 

 
Figure 1:​ High level diagram of application-specific accelerator framework 

 
Opportunity: 
Machine learning offers a set of abstractions and constructs which allow for various optimized 
implementations. Techniques like deep learning can be formulated into a static dataflow graph of 



math operations like matrix multiplication which may be efficiently implemented in both digital 
and analog domains. Other emerging technologies such as neuromorphic computing may also be 
readily implemented as digital or analog. By developing a digital and mixed-signal codesign 
framework for methods like deep learning and neuromorphic computing, researchers can 
examine the tradeoffs of customized implementations for FPGAs and FPAAs. These tradeoffs 
include metrics such as mathematical precision, prediction accuracy, energy efficiency, and 
inference latency. This framework should ideally allow the user to explore a range of algorithms 
and algorithm parameters in conjunction with hardware implementations. Accelerator 
architectures can be built by composing and parameterizing logical components like matrix 
multiplication or spiking neuron models. By leveraging reconfigurable platforms, design 
decisions can be tailored to a specific application’s needs. A high level view of this methodology 
is shown in Figure 1. 
 
Timeliness or maturity: 
FPGA hardware is very mature and is currently used at many DOE user facilities. However, 
FPAA hardware exists primarily in academic environments. Recent works provide optimism that 
FPAAs can scale to newer process nodes and achieve the necessary density and efficiency for 
practical applications [Hasler]. Utilizing insights from a codesign framework, new FPAAs could 
be developed assuming sufficient funding for fabrication. Many machine learning methods such 
as convolutional neural networks, decision tree ensembles, and support vector machines are very 
mature and currently being utilized. Other methods such as spiking neural networks are a hot 
topic of research with a wide range of digital and mixed-signal implementations [Schuman] 
which naturally lends itself to reconfigurable computing to allow research flexibility. 
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Introduction

Surrogate models can greatly simplify otherwise complex components of multi-scale and multi-physics scien-
tific models. While there is a growing volume of research in Machine Learning (ML) surrogate models that
take advantage of current (and likely future) HPC architectures, many scientific domains and applications
are slow to apply these advances. To alleviate scientific hesitations in using ML surrogates, we need novel
AI architectures and workflows that:

1. Improve domain science confidence and interpretability for practical production-level use;
2. Adapt to changing data in the middle of an ongoing simulation campaign as data diverges from the

training set; and
3. Robustly handle noisy and often discontinuous input-output mappings in domain science data.

Further, improving domain scientists’ willingness to integrate ML surrogates into production-level envi-
ronments requires identifying candidate simulation codes and working closely with them to better understand
what issues need to be addressed.

Scientific Confidence

Current Limitations: The possibility of ML surrogates producing unrealistic results often leads domain
scientists to distrust using them in production-level environments. The inability to interpret most of the
internal logic of a ML prediction also gives scientists pause in using them.

Opportunities: An approachable way to improve scientific confidence in ML surrogates is to project
Neural Network (NN) architectures onto already known and vetted models with parameters that have known
bounds for realism and/or stability. As an example, suppose a surrogate model for unresolved sub-grid-scale
(SGS) effects from a high-resolution fluid model is desired. One could directly predict those fluid tendencies
from high-resolution model data. However, there is no guarantee that when used in practice, that the
tendencies will be bounded to realistic and stable values. If, however, one projected these tendencies onto a
known model such as dynamic Smagorinsky scheme [2] or a novel combination of SGS mixing and transport,
then one can bound the learned parameters to known stability limits during both training and inference
stages. Further, this injects a layer of easy interpretation to the ML prediction, although the prediction of
the used constants may still elude easy interpretation. Significantly more research needs to be performed
into how to project existing ML models onto more interpretable models where resulting parameters can be
monitored and bounded during production use.

NNs are also differentiable, giving easy access to adjoints for error estimation and uncertainty quantifi-
cation in the learned models. We need more research into how to perform these processes to give scientists
greater understanding of the behavior of ML surrogates.

Further, there is growing research in understanding Neural Network behavior more robustly, but often,
this research is not well-understood by domain scientists, limiting their inclusion in production codes.

Adaptability

Current Limitations: Another hurdle in real-world application of ML models is their inability to smoothly
adapt to data that diverges from the training regime. As an example, climate simulations that project changes
as they evolve in time due to the influence of anthropogenic forcings and feedbacks will inevitably create
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novel flow regimes that haven’t been seen before. In fact, scientific simulations are expected to produce
never-before-seen data. ML surrogates must find ways to adapt to this inevitability.

Opportunities: One mitigation is to apply surrogates at much smaller (less monolithic) levels in simula-
tions. Research needs to be performed into how seemingly irreducible operators might be broken down into
more manageable pieces that are easier to train in a robust way.

Another approach is to construct realistic workflows that can manage unexpected surrogate model inputs.
This requires the ability to determine if a given input is “sufficiently” similar to the training set, with a
contextual definition for what “sufficiently” means. For instance, the “detector” of a General Adversarial
Network (GAN) [3] could be used to determine how similar an input is to the training set. Furthermore, a
fluid in-situ workflow is needed for aggregating and exporting inputs for further training as well as training
and deploying new surrogates – all during the scientific simulation. Novel transfer learning techniques and
system-level software are likely needed to make this both possible and convenient.

Robustness

Current Limitations: A significant limitation for traditional NN architectures is that largely linear math-
ematical basis functions are used. Somewhat large dense linear algebraic operators are wrapped in relatively
infrequent non-linear “activation” functions, which are the sole means of fitting NNs to arbitrary non-linear
input-output mappings. While mathematically, NNs are able to be trained to emulate any non-linear op-
erator with a finite number of discontinuities [1], in practice, when the input-output mappings are noisy or
discontinuous, NNs tend to give poor accuracy, e.g., increasing Reynold’s numbers in Computational Fluid
Dynamics [4]. While Random Forests often perform well in noisy or discontinuous regimes, they are based
on graph traversals, which do not perform particularly well on accelerators.

Opportunities: There is significant need for more research into novel ML basis functions that inject
discontinuities and non-linearity at a much more fine-grained level. This way, the ML model is more likely
to be able to adapt to significant discontinuities in the internal state space. Moreover, we need to merge this
research with the constraint that the models perform well on accelerator devices that increasingly reward
floating point operations and penalize reliance on data movement and large amounts of cache. This is a
relatively under-investigated aspect of ML, even though it has the potential to fundamentally change the
level of accuracy we should expect from a surrogate model. New mathematical basis functions for ML may
also influence the specialized hardware created by vendors for AI workflows.

Timeliness

The recent confluence of advances in ML effectiveness and new AI-specific hardware motivate an increased
push to ensure domain science applications take full advantage of these maturing technologies. For many
domains, there still remains a disconnect in using ML surrogates in production environments, often related
to uncertainty in behavior when encountering new inputs. This provides an opportunity to bridge that
disconnect with advances in ML intepretability, HPC workflows, I/O capabilities, and ML mathematical
basis functions.
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1 Challenge

While past co-design efforts were focused on a single solution that was broadly optimized to tackle the
vast majority of high-performance computing relevant to DOE, we argue here that such a path to solution
provides for only modest gains for the majority of users at significant cost. To be truly transformational,
we should not think of one, uber, co-design effort, but of multiple co-design programs grouped by similar
underlying algorithmic and science challenges which will result in several different, highly-optimized, compute
capabilities. The time is right for such an effort as the both the size of the next generation exascale machines
and the emerging market for the creation of optimized hardware is such that one could envision smaller,
focused programs driving this market in several new directions rather than settling for a single machine driven
by the largest next-generation commodity computing. For this effort, we are focusing on the modeling of
the emission from astrophysical transients. From shock breakout to late-time emission, modeling radiation
arising from astrophysical explosions requires a broad suite of multi-physics, multi-regime and multi-scale
modeling. This challenge is similar to those faced by several other simulation efforts in the DOE portfolio
and is driven by a desire to balance needs in both memory and speed.

1.1 Radiation Transport across Different Simulation Regions

In astrophysical transients, conditions vary across time and space in such a way that the required fidelity
of the radiation modeling can also vary significantly. At one extreme, local thermodynamic equilibrium
between the radiation and matter can be safely assumed and the radiation field is adequately described
by a single equilibrium temperature. At the other extreme, the full six-dimensional phase space must be
evolved, requiring an enormous number of degrees of freedom. These conditions, and the full spectrum
of intermediate conditions, often occur in the same problem, leading to inappropriate approximations that
sacrifice fidelity for the sake of computational expedience or a lack of progress because solving the problem
at full fidelity is orders of magnitude more costly than feasible. Meanwhile, emerging facilities will yield
observational data that demand numerical models well beyond the current state-of-the-art if they are to
be appropriately interpreted. A particularly timely and challenging problem concerns shock breakout in
supernovae and subsequent interactions with complex environments. Early-time observations of supernovae
have the potential to place strong constraints on properties of the supernova progenitors including the
companions of thermonuclear supernovae and the immediate surroundings of core-collapse supernovae set by
the explosive activity of its progenitor just before collapse. However, understanding and learning from these
observations requires codes that can capture the radiation hydrodynamics across all regimes and resolve the
physics on a wide range of scales. With the appropriate capabilities, we can both better understand existing
data and support the case for proposed missions focused on observing these early-time transient signals.

1.2 3-D, Time-dependent, NLTE Radiation Transport

Local thermodynamic equilibrium refers to a system where all of the particles and (e.g. electrons, ions,
radiation, atomic level states) are in equilibrium where they can be described by a single temperature. Non-
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LTE refers to any situation where there is a break in this equilibrium. The simplest situations, electron/ion
decoupling (but still represented by individual temperatures) or radiation decoupling (and even radiation
deviating from a simple temperature blackbody) have been worked on for decades. But modeling electron
or ion energy distributions, or solving a series of rate equations to determine the level populations for a
selected set of ionic species, remains in its infancy. For our application, calculating the electron energy
distribution and its effect on the level populations is important. Given a finite piece of the atmosphere, these
effects include both non-thermal ionization due to the local γ-ray deposition and the effects of the impinging
radiation field. One solves for the level populations of every important, ionic species. This includes solving
both radiative and collisional rates, which are a function of the impinging radiation field and electron energy
distribution. The rate equations are non-linear with respect to the population densities and the system
of equations is closed by the conservation equations for the nuclei and the charge conservation equation.
Typically these are solved via an iterative, operator splitting method.

As both the understanding of thermonuclear supernovae progenitor systems and their explosion mecha-
nisms have been pushed by new observational data, the ability to have theory confront these observations is
the only way to rule out certain scenarios and even offers a path to reduce systematic uncertainties in cos-
mology. A major issue for 3D NLTE calculations are the memory requirements for storing the relevant data.
For each voxel we need to store (at least) the number of ions, line profiles, the radiative rates (up/down),
the rate operators (one up/down pair per considered interaction), the general equation of state data (partial
pressures for all species), and the data needed for the solution of the 3D radiative transfer equation at every
wavelength point. For very modest supernova atmosphere calculations (with ∼ 300k voxels, 5k NLTE levels,
80k transitions, and 165k explicit coupled rate transitions), this amounts to over 1.2 TB. Thus effective
domain decomposition methods must be employed. Time-dependence just exacerbates this issue. Here cal-
culations of realistic supernova atmospheres require ∼70M cpu-hours for one atmosphere. In addition to
optical spectra of supernovae, this work also impacts our understanding of radio/x-rays observations, rela-
tivistic jets, SN remnants, and the thermalization of radioactivity in kilonovae - the result of the recently
observed neutron-star neutron-star mergers.

2 Opportunity

Simultaneous breakthroughs in both numerical methods and computational hardware, purpose-built in tan-
dem, are required to tackle these and related problems. A multi-scale, multi-fidelity method for radiation
transport and material coupling, that dynamically adapts the representation of the radiation field in space
and time and seamlessly links disparate regimes of radiating flows, may appreciably reduce the overall cost of
adequately modeling these systems. However, advances in hardware that accelerate the operations required
for radiation transport, but are tolerant of the variable workload associated with an adaptive method and
support dynamic load balancing, will likely prove as vital. Together, these developments could qualitatively
redefine the state-of-the-art and enable unprecedented predictive modeling and new 3-D modeling workflows.
For nuclear reaction networks, the challenge is in solving ODE’s where the bottlenecks for GPU-based ar-
chitectures are all memory-based. Issues with thread-level parallelism, load balancing and fast access to a
shared memory pool are key hurdles to overcome.

3 Timeliness

This work is particularly timely because of the wealth of transient telescopes being developed in the as-
trophysical community spanning an energy range from radio to gamma-ray wavelengths. The current hot
topic of multi-messenger astrophysics is primarily focused on astrophysical transients and the electromag-
netic radiation is crucial for much of the science done in this field. Given the impending launch of both new
satellite missions (JWST, Roman) and ground-based telescopes (Rubin, ZTF, LS4), as well as proposed new
missions (AMEGO, LOX, Athena, Altena, ULTRASAT, SIBEX), there is an urgent need for complementary
advances in modeling capabilities.
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Challenge: 
Current CMOS-based microelectronics technologies are designed, developed, and manufactured from 
integrated contributions of bottom-up disciplines (layers) such as materials, physics, devices and circuits, 
architectures, algorithms, and finally applications. Each layer is modeled and built largely independent of 
the next layer [1]. However, in the Beyond Moore’s era, it is necessary to rethink the sequential stacks and 
instead develop and codesign each layer connected to all other layers with multi-directional information 
flow.  

 
There are, however, several key challenges involved in the fully connected multi-directional layers 
codesign: 

1. What type of information should be transferred from one stack to another? 
2. What is the performance metric of interest that affects the design of one layer based on the feedback 

received from another layer? 
3. How frequent should the information be transferred between different layers? 
4. How should we lead the codesign to the optimum performance so that all layers are co-optimized? 

In addition, the diversity of the extremely heterogeneous architectures and various performance definitions 
among the layers add to the complexity of the software-hardware codesign in the fully connected approach 
discussed above. 
 
Opportunity: 
One of the leading theoretical frameworks in the area of neuroscience is “Bayesian Brain hypothesis”. This 
hypothesis is based on believing that the brain implements statistically optimal algorithms by combining 
prior knowledge with new observations and evaluating quantities of interest with respect to posterior 
distribution [2]. Prior distribution, likelihood model (observations), and posterior distribution are the 
taxonomy of Bayesian optimization. A key opportunity exists in the area of software-hardware codesign to 
mimic the human brain and use Bayesian optimization to govern the codesign by learning from current 
performance of software and hardware (prior), observe the performance change from various interactions 
between materials and chemistry, physics, device and circuits, integration, architecture, and algorithm 
(likelihood), update the performance of the co-design (posterior), and finally decide on the best co-
optimized design(s) leading the system to the optimal performance. In the context of hardware-software 
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codesign, examples of the performance metric are software productivity (accuracy, speed), hardware 
productivity (energy consumption, and area requirements), execution-time productivity (such as efficiency, 
time, and cost for running scientific workloads), and workflow and analysis productivity (effort, time, and 
cost for the overall cycle of simulation and analysis) [3]. There is the opportunity to leverage Multi-
Objective Bayesian-based Optimization that governs this fully connected multi-directional layers of 
software-hardware codesign, where objectives are the several aforementioned performance metrics. 
 
Timeliness or maturity:  
To achieve higher performance and avoid human driven optimization, significant efforts have been placed 
on automating model selection. A powerful method for obtaining the best performance neural architecture 
designs is Neural Architecture Search (NAS) [4]. The objective of these techniques is to automate 
architectural engineering to discover a network design which provides maximum performance. Hardware-
aware NAS [5, 6], and Bayesian-based multi-objective hyperparameter optimization [7, 8], are among the 
available techniques for tuning hyperparameters of a neural network where accuracy is not the only 
performance metric. It is already shown in [7, 8, 9] the sensitivity of performance (in terms of accuracy, 
energy, size, and latency) in neuromorphic computing to the application and underlying hardware. 
Therefore, the relative maturity of multi-objective Bayesian optimization techniques in software-hardware 
codesign in neuromorphic computing today, provide the opportunity to establish a Bayesian AI that governs 
software-hardware codesign beyond neuromorphic computing. 
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Challenge Our main research question is how to co-design hardware and software security mechanisms
that will allow HPC centers to implement security policies such that data providers can give usable access to
their sensitive data sets to data scientists. Data useful to science is not shared as much as it should or could
be, particularly when that data contains sensitive information. Examples of this include protected health
information (PHI); IP addresses or data representing the locations or movements of individuals, containing
personally identifiable information (PII); the properties of chemicals or materials, and more. Two drivers for
this reluctance to share are concerns of data owners about the risks of sharing sensitive data, and concerns
of providers of computing systems, including HPC centers, about the risks of hosting such data. And yet,
as emphasized widely in scientific communities, finding ways to make sensitive data available is vital for
advancing scientific discovery and public policy.

At the largest scale, scientific computing is characterized by massive datasets, distributed, international
collaborations, and HPC centers such as those sponsored by DOE SC/ASCR. And, for HPC centers, when
sensitive data is used, secure computing options available are limited in scale and access [4]. The problem
can be particularly acute for HPC centers because such centers host and process data at the largest scale
and therefore assume commensurate risk [6, 7, 3]. Today, where remote access to data is permitted at all,
significant technical and procedural constraints may be put in place. However, even with these security
protections, traditional enclaves still require implicitly trusting system administrators, and anyone with
physical access to the system containing the sensitive data, thereby increasing the risk to and liability of
an institution for accepting responsibility for hosting data. This security limitation can significantly weaken
the trust relationships involved in sharing data, particularly when groups are large and distributed.

Opportunity We must consider mechanisms for providing security guarantees as the next generation of
leading-edge DOE facilities’ hardware and software are designed. There is nascent support for hardware
trusted execution environments (TEEs), but further co-design will allow compute providers to significantly
change approaches to trust relationships involved in secure, scientific data management. TEEs can be used
to maintain or even increase security over traditional enclaves, at minimal cost to performance in comparison
to computing over plaintext. TEEs can isolate computation, preventing even system administrators of the
machine in which the computation is running from observing the computation or data being used or generated
in the computation, including even from certain “physical attacks” against the computing system. They can
implement similar functionality as software-based homomorphic and mutiparty computation approaches, but
without the usability issues and with dramatically smaller performance penalties.

Common commercial TEEs today include ARM’s TrustZone, Intel’s SGX, and AMD’s Secure Encrypted
Virtualization (SEV). In addition, there now exist RISC-V-based open-source hardware efforts such as Key-
stone [2], which give DOE Labs the opportunity to co-design and demonstrate alternative TEE concepts
that overcome the limits of current practice to meet DOE/HPC needs. Keystone, and related efforts, carry
both the promise of broadening the scope of processors that contain TEEs, while also being open source and
possible to formally verify. However, RISC-V based TEEs have not yet been developed that target scientific
computing. Most likely, an entirely new TEE architecture tailored for HPC will be needed, which is our aim.

We aim [5] to develop new approaches to addressing shortcomings of existing processors that make the
use of TEEs in HPC an obvious and natural extension to the way that data is secured in HPC environments,
and leverages a hardware/software co-design effort to accomplish, because solutions will clearly require
modifications from architectures, operating systems, runtimes, and communication libraries.

Limits of Current Practice The Linux Foundation’s Confidential Computing Consortium [8], Mi-
crosoft Azure’s Confidential Computing, AWS’s Nitro Enclaves, and Google’s recent “Move to Secure the
Cloud From Itself” demonstrate the interest in TEEs. However, current TEEs are not yet available that are
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appropriate for the performance requirements and vendor and protocol-specific hardware and software stacks
used in HPC. We have been empirically evaluating commercial TEEs for their performance under typical
HPC workloads, including both traditional MPI benchmarks, ML/AI benchmarks, and real-world ML/AI
applications. Our results [1] show that Intel’s SGX has significant performance limitations, but AMD’s SEV
imposes minimal performance degradation on single-node operation. However, low-latency communication
between SEV nodes is currently impossible, making most HPC also impossible. Further, SEV requires using
virtual machines which can impose high virtualization overhead.

Current hardware TEEs and TEE software environments are designed for either client and IoT devices
or cloud systems; whereas HPC systems have different programming environments and system constraints
which should be exploited to co-design a higher-performance and easier-to-use secure environment. More-
over, current TEEs are restricted to just a single CPUs, whereas HPC infrastrastructures are increasingly
heterogeneous with CPUs, GPUs, FPGA, and domain-specific accelerators.

Our Approach We argue that the dichotomy between the usage model (software view) and the imple-
mentation on today’s hardware architectures (hardware view) is the fundamental obstacle to designing secure
HPC systems that needs to be overcome. Software has a single (unified) view of data with an understanding
of what is sensitive, whereas a hardware implementation of an application results in data distributed across
multiple, fine-grained “silos” in the form of cores, memory, and communication and I/O subsystems. En-
forcing isolation, the core functionality of a TEE, involves restricting the ability to share with a combination
of hardware/software mechanisms such as physical memory protection registers, security monitors, different
“modes” of operation, etc.. This bottom-up approach is problematic when an application runs across multi-
ple nodes (especially accelerators) and third-party network and I/O subsystems. The semantics of sharing in
the OS on a core cannot be extended to a heterogenous computing infrastructure, which means we need to
replicate parts of the OS at different places. This becomes cumbersome with third-party hardware/firmware.

Our insight is that HPC applications do not benefit by fine-grain resource sharing via time-multiplexing
that is offered by today’s hardware and OSes. We envision a data-centric approach to secure HPC that is
based on co-designing the hardware, software, key exchange and attestation protocols around encrypted data
domains, that delineate data sharing boundaries in memory. Capability-based approaches, such as CHERI,
try to isolate different pieces of software. Our key idea is to replace fine-grain software compartmentalization
with an alignment of architectures around a data-centric view, or how data moves through the system and
enforces checks. Unlike CHERI, this naturally extends to heterogeneous computing.

Timeliness or Maturity HPC centers have made it clear that there is a need for enabling processing
of sensitive data with the appropriate security protections. Current technical and procedural approaches
are functional but leave large gaps both in security and usability. TEEs represent a valuable solution for
enabling computation, including computation previously relegated to slow cryptographic operations, such
as multi-party computation, without trusting system administrators. Commercial TEEs exist and are used
in the cloud but have significant performance limitations for HPC use. Open-source hardware, such as the
RISC-V-based Keystone represents an opportunity to design and build new solutions specific to HPC needs.
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New accelerators and chiplets are increasing the pos-
sible design space of next-generation supercomputers.
Future HPC systems are likely to leverage specialized
hardware to accelerate specific algorithms in scientific
applications. Specialized accelerators can be more cost-
and power-efficient for accelerating suitable algorithms,
while scaling up the clock frequency of general proces-
sors are becoming prohibitively expensive. Today, GPUs
have proven effective in boosting dense linear algebra.
However, a substantial portion of applications critical
to the DOE is inherently sparse, data-dependent, and
irregular, which are known to perform inferior on GPUs.
They require different types of accelerators. For instance,
accelerators with logics in-memory or logics packed near
memory, target to accelerate many memory-intensive al-
gorithms. Besides, neuromorphic chiplets could speedup
brain-inspired neural networks that feature low-power,
resilient, and unsupervised local optimization. Recon-
figurable hardware like field-programmable gate array
(FPGA), supports flexible deployment of accelerators
that can adapt at runtime and coarse-grained recon-
figurable architecture (CGRA) could provide energy-
efficient acceleration of data-flow graphs.

Architectural options of incorporating various types
of accelerators on a computer system can be explo-
sive. Future systems are likely to employ heterogeneous
nodes, in contrast to the homogeneous nodes on exist-
ing supercomputers. Today, even on GPU-accelerated
supercomputers, nodes are still homogeneous – each
consisting of a fixed configuration of resources, e.g., two
CPUs, six GPUs, and 256 GB RAM. Imagine if now
each node is equipped with multiple types of acceler-
ators. The majority of jobs are unlikely to utilize all
these provisioned resources in each node concurrently.
Hence, overprovision and under-utilization become a
significant problem if future computer systems continue
with homogeneous nodes. Two disruptive directions may

Fig. 1. An example of resource reconfiguration for two jobs

address this challenge: allowing multiple jobs to share
a node or employing disaggregated architecture. Both
require tremendous efforts for revamping programming
systems. Instead, a moderate architectural option is to
have heterogeneous nodes – each node may be equipped
with a different type of accelerators and resources, e.g.,
large memory or small memory capacity, slow or fast
network switches – and supporting reconfiguration of
resources based on jobs. Such architectral options have
already been adopted in the Cloud [2], which provides
experience and lessons for codesign HPC systems. Fig-
ure 1 illustrate one exemplar scenario of reconfiguring
resources for two jobs.

Reconfiguration of resources requires rethinking per-
formance monitoring when codesign between hardware
and software stack. On current systems, resources are
bound to the job once a job is launched. Thus, no
special design considerations on performance monitoring
are needed for resource reconfiguration. However, a
computer system that supports reconfigurable resources
will need a new set of performance counters and metrics
to guide resource reconfiguration. For instance, if system
monitoring detects that a job has low utilization of
memory resources, the unused memory resources can
be reconfigured for other memory-intensive jobs. Also,



system-wide monitoring is needed to identify unbalanced
configurations of different resources, e.g., if system
monitoring discovers that computation on accelerators
is throttled by a low influx rate of data packets on
the network, the job may be reconfigured with nodes
with faster network switches. Moreover, codesign would
produce an efficient software stack that speeds up the
path from performance counters to the reconfiguration
procedure.

I. RESEARCH OPPORTUNITIES AND CHALLENGES

1) There is a need to use realistic system-wide usage
data to guide design space exploration for accu-
rate prediction. Today, many HPC facilities have
already been equipped with system monitoring
capabilities and capture system-wide usage data.
For instance, LDMS [4] provides low-overhead
monitoring capability and the LLNL Sonar project
provides a centralized database of these realistic
datasets. Realistic usage data on current supercom-
puters can provide a picture of how applications
utilize different resources, including accelerators,
CPUs, memory, I/O, and network. However, the
challenge is that the collected data reflects the
current architectural choices. Thus, performing
informed extrapolation for new architectural op-
tions at the system-level becomes necessary. One
direction is to identify metrics that are needed
for reconfiguring the resources of a job. Another
direction is to identify the appropriate scope for
collecting these metrics, which trades off the data
volume and coverage for reconfiguration decisions.
Therefore, new methodologies must be developed
to extract such metrics from the raw usage data and
extrapolate them onto new architecture choices for
design space exploration.

2) There is a need to codesign performance moni-
toring and software stack to handle performance
monitoring data. Tremendous datasets could be
generated from additional counters that come with
new accelerators and devices on heterogeneous
nodes and also from new metrics added for re-
source reconfiguration. The codesign should target
two performance objectives – first, the massive
amount of data needs to be processed in time to
assist the reconfiguration timely, second, process-
ing the data should not interfere with other tasks
on the computer system. One possible research
direction is to have streamlined software stacks
that ‘fast-fuse’ the data path from performance

counter to reconfiguration procedure. For instance,
expose low-overhead interfaces to OS and soft-
ware stack. Another direction is to explore in-line
compression to reduce the data size or employ an
out-of-band network to avoid interference on the
shared network. As the number of counters and
metrics grows, new opportunities like including
dedicated hardware for in-transit analysis/inline
compression of performance metrics to accelerate
software decisions are emerging.

3) New methodologies for leveraging performance
monitoring data for resource configurations need
to be developed. The codesign needs to determine
the number of different node types and the spe-
cific resources configured in each node to meet
the performance target of most applications on
a system. For instance, if the target workloads
have more memory-intensive applications than
compute-intensive applications, more nodes should
be configured with near-memory accelerators and
large memory capacity. The realistic usage data
would guide the selection of such configurations
so that the selected architectural options can satisfy
the performance requirement of a targeted portion
of works, e.g., 95% of jobs would be configured
with their preferred resources while all jobs should
be able to make progress on available resources.
New methodologies could also be derived to bal-
ance the benefit and overhead of resource reconfig-
urations. Such use cases are common on cloud and
data center, e.g., re-routing in fat-tree networks de-
pends on network traffic statistics that are collected
at the device level [1] and reconfigurable fabrics
reconfigure routing when faults are detected [3].
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I. CHALLENGE

With the slowdown in technology scaling, domain-specific
hardware accelerators will play a major role in improving
the performance and energy-efficiency of computing systems.
In their Turing Lecture, John Hennessy and David Patterson
make a strong case for this trend, and predict that it will lead
to a new golden age of computer architecture [6]. However,
because the applications that run on these systems, such as
image classification, speech recognition, language modeling,
recommendation systems and scientific computing, are evolv-
ing rapidly with advances in machine learning, the accelerators
must be programmable, to avoid quickly becoming obsolete.
Such accelerators require a complete compiler system in order
to be useful, and this compiler must get updated as the
accelerator hardware evolves. The methodology for evolving
accelerators, and more importantly their compilers, is more
or less a completely manual process today, where large en-
gineering teams study the accelerator architecture in detail
and make the necessary modifications to the compiler and
the low-level libraries to leverage the accelerator. Because of
the large overhead of maintaining the entire software stack,
real-world usage of an accelerator lags far behind its design.
A key challenge, therefore, is to automate the co-design
of programmable accelerators and the compilers that map
applications to them, for fast-changing application domains.

II. OPPORTUNITY

We propose to tackle this challenge with CGRA accelerators
and compilers that adapt as the hardware evolves.

A. CGRA as an Accelerator Template

Our approach to solving this problem has been by using
coarse-grained reconfigurable arrays (CGRAs). A CGRA is
similar to an FPGA but with larger compute and memory units,
and word-level interconnect as shown in Fig. 1. By tuning
the amount of configurability in these units and the intercon-
nect, we can create more specialized (closer to ASICs) or
more general-purpose accelerators (closer to FPGAs). Thus, a
CGRA provides a standard accelerator template for a compiler
to target. For example, a CGRA specialized for neural net-
works would look similar to a hand-designed neural network
accelerator like TPU [7] with compute units implementing
multiply-accumulate operations, and the interconnect support-
ing systolic connections between them. To map applications
to CGRAs, we have created a compiler shown in Fig. 2,
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Fig. 2: End-to-end hardware generation and software compilation
flow, starting with programs written in PEak, Lake, Canal, and Halide.

which takes applications written using a high-level library
such as Halide [10], lowers it to a dataflow graph based
intermediate representation (IR) called CoreIR [3], and then
maps, places and routes the graph onto the CGRA. Using
this compiler, we can accelerate a wide range of dense linear
algebra applications, such as those in image processing and
machine learning, on our CGRA and achieve 7 to 25× lower
energy than an FPGA.



B. Accelerator-Compiler Codesign

The key insight to our approach is that, unlike previous
work, our compiler automatically updates as the CGRA hard-
ware evolves. We achieved this by creating mini specification
languages—PEak for processing elements, Lake for memories,
and Canal for interconnects—for formally specifying the hard-
ware units, and then from those specifications automatically
deriving both the hardware implementation and the collateral
needed by the compiler as shown in Fig. 2 [1].

For example, the compiler for PEak, which is our spec-
ification language for processing elements (PEs), generates
RTL Verilog, a functional model, and the rewrite rules the
application compiler needs to map applications, all from a
single PE specification. One of the primary enablers of PEak
is its ability to leverage advanced SMT (Satisfiability Modulo
Theories) solvers [2]. The PEak compiler synthesizes a col-
lection of rewrite rules from a compiler IR (like CoreIR) to a
PE ISA by finding an instruction in the ISA that is formally
equivalent to one or more instructions in the IR. Similarly,
from Lake specifications we generate memory hardware with
programmable addressing logic, and the collateral needed by
the compiler to map access patterns from applications to these
memories. We perform this mapping from access patterns to
configuration of address generators also using SMT solvers.
Finally, Canal takes a set of (potentially heterogeneous) PE
and memory cores and a specification of the interconnect.
It generates the hardware, the routing graph that place-and-
route tools need to map the dataflow graph onto the generated
hardware, and the configuration bitstream that implements the
routing result on the hardware, from the specification. As a
result, a change in the design of any component automatically
propagates through the flow to affect dependent components
without manual intervention, and the compiler continually
updates with the hardware.

C. Large-Scale Automated Design Space Exploration

Architects often explore many alternatives when designing
an accelerator to achieve the best performance, power and area
trade-offs. They analyze application kernels to find common
sequences of operations that they can make faster or more
energy-efficient. This is often done incrementally by propos-
ing a design change, implementing it, then reevaluating the
efficiency. A major impediment to design space exploration
is implementing the software changes needed to compile the
application to the new accelerator. The techniques we describe
make it easy to modify an accelerator using PEak, Lake
and Canal, and automatically derive a code generator so that
the application can be compiled. This enables quick iterative
design. Using such hardware-compiler codesign approaches,
there is an opportunity to automate large-scale design space
exploration (DSE) of accelerator architectures.

As a step in this direction, we are creating a PE DSE
framework, that analyzes application graphs using subgraph
mining [4] and maximal independent set analysis [5] and
generates an ordered list of frequent subgraphs. It then uses
subgraph merging [9] to merge several frequent subgraphs to

generate a candidate PE graph, which it automatically converts
into a PEak specification. From this, the PEak compiler gen-
erates both PE hardware and the rewrite rules required by the
application mapper as described before. Finally, it synthesizes
the CGRA with these specialized PEs and evaluates it using
the mapping produced by the compiler. Using this method, we
show that optimizing the PE for image processing reduces area
by 29.6% to 32.5% and energy by 44.5% to 65.25%. Building
on this initial work, given a set of applications in a domain, we
hope to automatically produce an accelerator specialized for
that domain. Finally, reinforcement learning techniques like
[8], in conjunction with such a system, are very promising for
performing fast DSE.

III. TIMELINESS

With the slowdown of Moore’s law, hardware specialization
is the most promising technique for continued improvement
of scientific computing systems. The lack of a structured
approach for evolving the software stack, as the underlying
hardware becomes more specialized, has been one of the
biggest impediments to its adoption. Our approach provides
a systematic way of thinking about accelerators as specialized
CGRAs and employs a combination of new programming
languages and formal methods to automatically generate the
accelerator hardware and its compiler from a single source
of truth. Furthermore, it enables the creation of DSE frame-
works that automatically generate accelerator architectures that
approach the efficiencies of hand-design ones, with a signifi-
cantly lower design effort. This has the potential to massively
improve productivity of hardware-software engineering teams
and enable quicker customization and deployment of complex
accelerator-rich computing systems.
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I. INTRODUCTION

Current high performance computing applications are reliant on GPU accelerators with the host CPU orchestrating
the communication. With the exception of Fugaku, the top supercomputers are all accelerator-based systems that
support application needs by exposing massive amounts of concurrency and some mechanism to reduce memory access
overheads (e.g. coalesced memory access). The emergence of societal uses for machine learning (e.g. recommender
systems, natural language processing) and recent successes in the scientific applications (e.g. protein folding) is
resulting in the rise of special-purpose hardware that can accelerate such applications. It should be noted that not
all applications are able to exploit current accelerators equally well. The disruptive changes in the architecture space
provide an opportunity for such applications to benefit by taking advantage of the new spatial or data flow hardware
emerging for machine learning use cases, or by using an FPGA or CGRA style accelerators. As a result, we envision
a heterogeneous node architecture where several of these compute units are present on a single compute node (as
IPs on a chip or as separate chiplets on a package). Such a heterogeneous node will benefit current accelerator-
based applications, applications that do not do well on current accelerators, and emerging applications that combine
traditional science use cases with machine learning. The rest of this short paper describes our vision for such an
heterogeneous node, potential problems we foresee from a co-design perspective and one idea for a future heterogeneous
node. This white paper will touch on several topics that are appropriate for the workshop.
Topics : Architectures, programming systems, and emerging technologies.

II. CHALLENGE DESCRIPTION

Office of Science’s Advanced Scientific Computing and Research funded projects such as ARIAA are focused on
developing and modeling novel data flow accelerators, specialized algorithms for such accelerators, and programming
models for them. There are hundreds of millions of dollars of venture investments that are also focused on developing
machine learning accelerators. We begin with the premise that such efforts are going to be successful in developing
such accelerators. Our focus is to look beyond the challenge of designing special-purpose accelerators and instead how
to design a future heterogeneous node that has more than one such accelerator in it.

If we extrapolate the current developments in hardware specialization for performance/energy-efficiency, and chiple-
tization for reducing manufacturing cost, we might end up with a heterogeneous node as shown in Figure 1a. This
shows several components developed from different vendors assembled together to arrive at a heterogeneous node.
This is not an extreme use case as we already have CPU/GPU systems, special purpose accelerators and NICs with
their own memory. While such a node design will still offer tremendous benefits to current CPU/GPU systems, such
a design will have several disadvantages as well.

• The number of available memory spaces and the requirement to move data/instructions back and forth between
them could dominate the performance and could seriously limit the benefits from using special-purpose accel-
erators. For example, the latency cost of launching several thousand kernels, reconfiguring the accelerators for
them and/or returning to host communicate through a NIC is not a scalable approach.

• Efficient use of all the available compute resources concurrently will require significant changes to programming
models and applications. In addition, maintaining an application that can explicitly manage data in all different
memory types will be challenging. For example, applications currently explicitly use four different memory types
in the CPU/GPU accelerator systems (CPU memory, GPU memory, Unified Virtual memory, and host pinned
memory).

• The asymmetric view of memory and network where some compute units are “closer” to certain memory or
network creates scaling bottlenecks.

• Coherency issues arising out of having multiple memory spaces have to be managed explicitly in hardware or
software.

a Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.
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(a) Disparate Memory View (b) Unified Memory View

FIG. 1: ASCR Co-design vision for a heterogeneous HPC node built using CPU/GPU/FPGA/Accelerator/NIC
chiplets: where we don’t want to be (left) and where we want to be (right).

• Network communications become even more expensive when there are several levels of data movement from an
accelerator to a host CPU and then to a smart-NIC before actually touching the wire.

III. OPPORTUNITIES FOR CODESIGNING AN UNIFIED MEMORY-CENTRIC NODE
ARCHITECTURE

An important research direction is to focus on the co-design of a node architecture that will be centered around an
unified memory, where all compute units and the NIC will have a “symmetric” view of the memory. One idealistic
view of such a node is shown in Figure 1b. The ideal characteristics of such a node will be:

• Low latency costs in launching a kernel on an accelerator with no copies of data/instruction needed from one
memory to another

• To be able to setup and communicate from any compute unit without the requirement to go to a host and do
it with minimal latency

• Ability to avoid multiple coherence domains

• Ability to program all the compute units on the node seamlessly without explicitly managing multiple memory
spaces

We see significant challenges and opportunities in co-designing such a heterogeneous node. The primary problem is
that the right accelerators to mount on such a platform might vary significantly based on the target applications. The
rise of open-source hardware designs provide a significant opportunity for Department of Energy (DOE) to participate
in efforts to influence design of accelerators that serve the needs of DOE applications and not just rely on industry
developed solutions. A second opportunity that naturally arises out of such a co-design effort is to arrive at a node
architecture with the right mix of CPUs, GPUs, FPGAs and special-purpose accelerators that is targeted towards high
performance computing use cases. Leveraging interfaces such as TileLink being developed by RISC-V or Arm’s AXI
might play a role in building scalable chiplet-based platforms (similar to IP-based SoCs today). This is not entirely
orthogonal to industry interests in developing customized compute nodes for cloud services. The node design that
arises out of such an effort can also influence other co-design activities in microelectronics and other use cases such
as embedded system design for constrained applications. Such a system could be made easier to program with a task
runtime that can schedule tasks on all the heterogeneous compute units. This will result in an opportunity to lead
next-generation node programming systems. These efforts could benefit from DOE’s tools in simulations, expertise in
co-design of micro-architecture, programming models, compilers, algorithms and HPC applications. Another challenge
relates to scaling out to larger number of HPC nodes. Here, emergence of technologies like photonics offers promise
in potentially extending the shared memory paradigm across several nodes.
Timeliness: This idea is timely for co-design work to start right away as hardware technologies such as special
purpose accelerators, programming models, simulation tools and applications are getting ready for a heterogeneous
node. Such a co-design effort could directly benefit the science workloads of next decade in two aspects. They will
benefit from the improved performance of such a node and the ease of programming a node with unified view of
memory.



Domain Specific Co-Design beyond Exascale

Sanjay Rajopadhye (CSU) & Nirmal Prajapati (LANL)

HPC suffered a huge disruption 30 years ago when supercomputer manufacturers moved
away from custom designed chips to commercial, off-the-shelf (COTS) microprocessors. It was
as if Formula 1 race cars no longer had the most advanced custom designed engines, but
were “merely assembled,” albeit in very clever ways, from the same components that went
into mass produced cars. Although many supercomputer vendors went out of business, the
HPC user community was not significantly affected. The surviving supercomputer vendors
switched to COTS, and focused on advanced engineeding for building supercomputers from
them (primarily the interconnection networks). Twenty years ago the end of Denard scaling
caused another disruption, starting the trend towards increasing on-chip parallelism, and to
programmable GPUs. HPC users were again shielded, and simply rode the rising tide of
improved performance.

The previous decade has seen another disruption, but with a few new twists. HPC no
longer dominates large scale computing as it used to. The global cloud computing market
crossed $10B in 2020, surpassing the HPC market. Its size was valued at USD 266.0 billion
in 2019 and is expected to expand at a Compound Annual Growth Rate (CAGR) of 14.9%
from 2020 to 2027. The AI/ML deep learning (DL) revolution, enabled by the extrapolation
of increasing on-chip parallelism (GPUs and accelerators) triggered this exponential growth,
and this segment stands today at over $1400B. Moreover, typical HPC workloads are very
different from cloud computing, although AI technology is being increasingly integrated into
HPC scientific algorithms and applications.

HPC is also unique in another sense. The end users do not pay for their resource usage.
Rather, because of high stakes of “national importance” in most indistrialized countries, it is
the taxpayers that pay, regarless of where they live. Although users always seek efficiency
in order to best utilize public resources, they do not have as much “skin in the game” as say
programmers writing applications on commercial clouds, data-centers and/or users of private
clusters in industry, where performance that is significantly poorer than that of a competitor
may lead to bankruptcy.

In light of the above context, the question is whether a relatively small market, albeit
one with deep pockets, can drive the dominant marketplace to a specialization of the entire
computing stack, geared specifically towards its particular needs. Our position is that this is
possible if HPC carves out enough of a niche in the ecosystem. We outline the key elements of
one possible scenario.

• First, the emergence of chiplets indicates that it is possible to envision specialized accel-
erators specifically for HPC (e.g., those for full-precision convolutions).



• Second, and at the other end of the spectrum, it is essential to involve algorithm design-
ers and applied mathematicians into the loop, and this can only be done by raising the
level of abstraction to more mathematical formalisms (e.g., equations, tensor notation,
etc.) as complete, declarative specification of what is to be computed.

• Third, bridging this gap requires a complete tool chain involving better programming
language abstractions, extensible compiler frameworks, and standardized accelerator in-
terfaces. Much of this was envisaged and accomplished in previous DoE codesign efforts,
but the above two elements render the challenge more difficult. This necessitates extreme
domain specificity.

Because this is such a deep stack, the challenge is how to fit the choices at all the lev-
els seamlessly (note that raising the level of abstraction requires a very sophisticated and
fully automatic toolchain). Architectures are constantly evolving, leading to a corresponding
evolution of performance optimization strategies. The target platform affects not only the
parallelization methods but also the tool-chains used. Even within a narrow domain such as
dense stencils there is a huge design space (see Figure 1): algorithms/applications may have a
wide range of parameters, making them either intensely bandwidth bound or heavily compute
bound, limited only by the hardware’s operational throughput. This significantly affects the
algorithms used to obtain the best solution.
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Figure 1: The Domain-Specific Design Landscape for the “stencil” motif. Programs (a) are described by
a small number of features. Similarly the mappings/transformations (b) thet we apply are drawn form a
small set, each one parameterized by a set of features. Architectures (c) are also drawn from a similarly
small set, also parameterized by their features. In each plane, the features may be hierarchical.

ReCoDe faces too many design choices in too many dimensions. We posit that the way
out of this very tall stack is by making it narrow, i.e., through domain specificity, namely
the use of techniques suitable for specific domains of computational patterns, or what we
call “sub-motifs.” One benefit of extreme domain specificity is that it would be possible to
develop accurate analytical cost (Time/Power/Area/Energy) models for performance prediction
and optimization.
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I. THE CHALLENGE

Science workflows are executed by composing and au-
tomating complex scientific computations and experiments
to support collaborations among researchers. They enable
scientists to remotely execute codes, and collect measurements
and steer experiments [1]. Department of Energy’s (DOE)
science workflows often require large computations executed
as batch jobs at remote supercomputer facilities, such as
Argonne Leadership Computing Facility (ALCF) and Oak
Ridge Leadership Computing Facility (OLCF), and experiments
conducted at science facilities such as the Advanced Photon
Source (APS) and Spallation Neutron Source (SNS). For
example, a tomographic workflow consists of multiple cycles,
each requiring measurements and code execution to generate
parameters for the experiment in next cycle.

The productivity of current workflows, however, continues to
be impeded by the “stop-and-go” steps needed to utilize these
geographically separated resources via disparate mechanisms.
There is a current trend to mitigate these effects by enhancing
the computing capabilities at the instrument edge to (i) locally
execute smaller to jobs that do not need remote supercomputers,
and (ii) close the latency gap between computations and
instruments in collecting measurements and steering exper-
iments. These systems range from specialized NVIDIA EGX-
AI systems, to multi-core, hybrid memory systems, to generic
micro Data Centers (mDC) at the edge. This development
signals a paradigm shift from “flops provided at a distance” to
“edge-core stretched computing”, but also increases the diversity
and heterogeneity of computing platforms. Furthermore, DOE
facilities are spread within and across the sites, which adds
to the challenge as wide-area networks are now an integral
part of both computing and experimentation. Indeed, these
computations that span heterogeneous, distributed computing
platforms and experimental facilities require an effective
ecosystem to make them transparently available to science
users that use them and facility providers that federate them.

We propose a co-design framework for integrated computa-
tions and instrument operations over an ecosystem of edge-core
computing systems, wide-area networking and experimental
facilities, for science environments. Under this framework, a
science user will be able to develop and execute codes that (a)
transparently stretch across computing systems at the edge and
remote High Performance Computing (HPC) systems, and (b)
access instruments for collecting measurements and steering
experiments at science facilities (experiments-in-the-loop). This
capability enables an effective use of DOE science facilities by
providing a transparent, performance-integrated programming
and runtime environments and tools to science users.

II. ENABLING CO-DESIGN COMPONENTS OF ECOSYSTEM

Developments in multiple areas contribute to the proposed
ecosystem, including: increasing proliferation of computing
systems at instrument sites, expanded reach of HPC core
capabilities such as MPI and file systems, and increasingly
sophisticated instrument control software.

A. Expanding Computing at Instrument Edge
Increased deployment of edge systems, including specialized

DGX/EGX machines and generic mDCs, facilitate computa-
tions that range from smaller jobs at the edge, e.g. tomographic
reconstruction, to large computations at remote HPC systems,
e.g. radiation transport simulations for a 3D printed reactor
pressure vessel. They also support access to instruments to
collect measurements and steer experiments, e.g. neutron
scattering images by positioning targets at end stations.

A mDC is a small, modular data center designed to be
deployed on location to support compute workloads that do
not require the full capabilities of traditional HPC or cloud
computing facilities. These vary in size and configuration to
match the computing needs: they can be scaled from one to
tens of servers and can also integrate heterogeneous accelerator
cards such as FPGAs, GPUs, and SmartNICs. A custom mDC
may consist of (i) a cluster of dedicated compute nodes with
virtualization and container support, (ii) dedicated server with
clients for instrument access at the edge facilities, and (iii)
dedicated Data Transfer Node (DTN) servers with wide-area
networking capabilities, multiple 10GigE connections, and
GridFtp services.

Within a computing system, core specialization techniques
provide effective executions of complex computations by
keeping the computing near the edge to the extent possible and
mitigating the latency effects due to remote systems via task-
specific core assignment techniques [2]. They are increasingly
viable at the edge with the advent of many low-powered
processors with multiple cores and increasing core counts.

B. MPI and Lustre at Round the Earth Distances
Current HPC facilities are typically deployed within a

site and are supported by core technologies with limited
reach, such as MPI and file systems over IB connections.
They do not scale well to computations stretched between
facilities distributed across the country, e.g. BNL and NERSC
separated by thousands of miles; in particular, 2.5 ms IB latency
limit restricts its reach to tens of miles. Recently, Lustre file
system has been extended to round the earth distances using
LNet routers[3], and MPI codes have been shown to scale
similar distances [4]. These are indicators that programming
elements and file systems can be scaled to support stretched
computations, and similar solutions may be co-designed by
taking into account the entire ecosystem.



Fig. 1. Co-design framework for ecosystem of edge-core
computing and instruments.

C. Target Control Using EPICS

Experimental facilities, such as accelerators and telescopes,
run the Experimental Physics and Industrial Control System
(EPICS) [5] software, which is an open-source control toolkit
for distributed control systems of scientific instruments. It
supports application interfaces and networking protocols for
hardware components of instruments, such as sensors, motors
and detectors. Command line and graphical interfaces provide
controlled access for science users to collect measurements
and supply configuration parameters for targets used in science
workflows.

III. CO-DESIGN FRAMEWORK AND APPROACH

We propose a co-design framework to support efficient
code development and execution environment for stretched
computations and instrument operations, as illustrated in Fig. 1,
over a time-frame of next few years.

A. Edge-Core Computing Architecture

The architecture will be designed with customized edge com-
puting systems deployed at instrument sites with custom local
connections to the instruments and connections to core comput-
ing facilities over both local- and wide-area networks. These
systems will be specially designed to meet the requirements
of computations pushed to the edge and provide instrument
control. Large data transfers will be supported by edge DTNs
with dedicated network connections for the transfer. Within a
computing system, this architecture supports task-specific core
assignment by exploiting the locality of information and users
by focusing on three main components: computation, memory
and processor orchestration, and networking [2].

B. Programming and Runtime Environments

Transparent software environments will allow uniform ac-
cess to resources over heterogeneous compute, storage, and
instrument systems, by extending basic computing operations to
ensure workflow performance over the edge-core architecture.
Extended programming primitives enable the development of
application and workflow codes in a similar manner to current

HPC systems by incorporating complementary co-design of
individual computing systems. The run-time environment will
support unified execution of application and system codes
across the distributed resources.

C. Integrated Instrument Access using EPICS

Programming and runtime constructs will be augmented with
EPICS command line and graphical interfaces custom designed
for the site facility instruments and access policies. Specifically,
access to EPICS process variables of target instruments will
be provided for measurement collection and target parameter
specification by science users.

D. Networking and Analyics

The wide-area networking performance will be explicitly
incorporated into the co-design to support large and agile
data transfers needed for computations and instrument control.
Measurement and analytics modules will be developed using
machine learning methods [3], [4] to estimate throughput and
latency variations to support the optimization and customization
of network-enabled primitives and services. Resulting analytics
help inform compute and data transfer scheduling decisions to
optimize the overall science workflow.

E. Virtual Design and Test Environment

Assessing the design options of the ecosystem and the
development and testing of its software would require allo-
cations of significant resources and coordination among the
sites. It is impractical and ineffective, particularly during early
development, to carry out these tasks over production facilities
due to the expense and potential for disruptions. We propose
a digital twin that replicates the ecosystem by emulating its
hosts, networks and instrument systems to assess the ecosystem
designs and software stack. It will be based on enhanced
Virtual Federated Science Instrument Environment (VFSIE)[6]
that emulates a federation using a combination of containers
and virtual hosts connected over an emulated network. For
computing systems, we will employ simulators (e.g. gem5) and
micro-benchmarks to study combinations of efficient memory
and networking cores that target communications tasks and
more performant cores that target computations.
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Codesign And Computational Methods

Robert Robey, Nathaniel Morgan, and Jeffery Kuehn

1 Introduction

New hardware can be designed to quickly calculate ex, tanh(x), and other highly non-linear functions. Such
hardware can accelerate existing methods such as machine learning and benefit new methods. Given this, we
seek to develop novel hydrodynamic methods that can leverage these new hardware designs to yield robust
and more accurate solutions to shock dynamics problems.

2 History and Background

At the start of the computer era, there were both digital and analog computers. Analog computers are an
old technology, which consisted of basic electrical components laid out on a large board, programmed by
manually adding plug-wiring to connect the components into a circuit designed to have the same governing
equations as the physical system the programmer was solving. Because the circuit shared the governing
equations of the physical system, it captured the full complexity (functions and derivatives). However, analog
computers were limited by: (1) scaling (component count), (2) complexity (designing/wiring the circuit), and
(3) component quality vs ideal. Digital technology quickly overtook analog technology with advancements in
scale and program-ability. While digital computers are flexible and fast for basic mathematical operations,
complex functions and operators must be algorithmically constructed (often with series approximation) from
basic operations, constraining both performance accuracy. In the context of a hyperbolic first-order partial
differential equation, numerical methods use a linear polynomial across a cell to yield up to second-order
accuracy or use a quadratic polynomial to give up to third-order accuracy. However, linear and quadratic
polynomials may not accurately approximate the underlying physics, generally driving piecewise fits with
discontinuities in one or more derivatives. Improving this requires an increase in the number of polynomial
terms at the risk of becoming more prone to overfit. We know that most physics arise from and give rise to
differentiable functions. Looking closer, we are generally interested in two shapes. The most common is the
”S” or sigmoid shape shown in Figure 1. This sigmoid gives a smooth, differentiable function that is well
behaved and avoids the numerical problems that occur with a sharp if-then-else conditions (i.e., 1 or 0). We
are also interested in accurately handling the abrupt transition and expansion wave that occurs with shock
waves. This physics waveform can be described with a class of functions similar to the Friedlander equation
shown in Figure 2.
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Figure 1: Sigmoid waveforms
mimic physical processes such as
energy release from combustion
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Figure 2: Friedlander equation
for a shock wave is based on an
exponential form

Figure 3: Fitting Sigmoid and
Quadratic (P2) functions to a
shock wave.

What if digital computers also provided faster transcendental functions such as exp, log, tanh, or even a
derivative? Similar to other mathematical operations, multiple functional units for each of these could allow
the ”retiring” of the operators at a higher rate for work on an array. What could we do with them? We have
to go back to the derivation of numerical methods. Mathematically, methods are based on a Taylor series
expansion into a polynomial function.

1



3 Impact on Numerical Methods

A diverse range of models and numerical methods rely on transcendental functions; likewise, new numerical
methods can be developed that use these functions. As such, we propose to create a new finite volume (FV)
cell-centered hydrodynamic (CCH) method based on sigmoidal reconstructions that can leverage the new
hardware for timely simulations with improved accuracy.

The FV CCH method evolves cell-average fields Ū by discretizing the integral form of the governing
physics equations. In these methods, surface fluxes f∗ are calculated using a Riemann solver that takes
as inputs the discontinuous polynomial fields at the cell surface. Higher-order accuracy is achieved by
reconstructing the fields using higher-order polynomials that are built by fitting the neighboring cell-averages.
A Taylor-series polynomial is,

P (x) = Ū + (x− xc)a1 + (y − yc)a2 + (z − zc)a3... (1)

Here, the coefficients a1, a2, a3, ... are found by least-squares fitting neighboring cell averages. The subscript
c denotes the centroid of the cell. To ensure robust solutions, the higher-order terms in the polynomial
are limited toward zero to ensure that the polynomial remains within the bounds defined by the local and
adjacent cell averages. The limiting process delivers robust solutions but can substantially degrade the
accuracy. As an alternate approach, we propose to research and develop a revolutionary new FV CCH
method that builds bounded reconstructions using a Sigmoidal function given by

S(x) = Ūmin +
(
Ūmax − Ūmin

)( 1

1 + e−a1(x−x̃)

)(
1

1 + e−a2(y−ỹ)

)(
1

1 + e−a3(z−z̃)

)
(2)

The min and max cell average values are Umin and Umax. The coefficients a1, a2, and a3 are found by non-
linear least squares fitting of the neighboring cells averages, and x̃, ỹ, and z̃ is found so that 1

Vh

∫
Vh

S(x)dV = Ū ;

in other words, the Sigmoidal reconstruction is conservative. The merit of a Sigmoidal reconstruction lies in
the improved representation of the spatial variation of a physical shock. As an example, Fig. 3 compares a
quadratic polynomial (P2) to a Sigmoidal function that are fit to the cell-average values over [-1,1]. In addi-
tion to remaining in-bounds, the Sigmoidal reconstruction is significantly more accurate at representing the
spatial field variations whereas the the quadratic (P2) polynomial performs poorly near the sharp transition.
The challenges that we seek to solve are to (1) create technologies that quickly build a Sigmoidal reconstruc-
tion, and (2) create new FV CCH schemes that are robust and accurate using these reconstructions. This
work fits within co-design effort by creating new numerical methods (based on Sigmoidal reconstructions)
that can leverage novel chip designs for timely calculations.

Beyond the new hydrodynamic schemes, fast transcendental functions also benefit machine learning
(ML) which makes heavy use of exponential-based activation functions and suffers under non-differentiable
approximations. A recent paper by Google identified significant improvements to training performance and
classification accuracy by replacing the ReLU activation with a continuously differentiable sigmoid-based
”drop-in” replacement function: swish(x)=x*sigmod(x). Swish fixes defects in both sigmoid and ReLU
while preserving the strengths of each: it is more robust against the vanishing derivative problem which can
plague sigmoid in deeper networks and unlike ReLU, it is continuously differentiable leading to faster and
more stable training.

4 Path Forward

We have already seen some improvement in the performance of transcendental performance. Vectorized
versions of these functions have recently become available in the standard system library. But hardware
vendors have not optimized the functions extensively because they are not used. And they are not used in
calculations because they are not optimized. If we could get some of these functions down to 10-20 cycles,
we would find the exponential form to be superior to the traditional Taylor series polynomial expansion.
We propose developing some numerical methods for testing for simulation fidelity in comparison to existing
methods and projecting performance on potential hardware designs.
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Challenge 
The architectural design space for HPC systems is becoming increasingly complicated. Existing processors 
such as CPUs and GPUs will be augmented by custom accelerators, FPGAs, and coarse grain reconfigurable 
processors. These will be integrated with increasingly sophisticated on-chip networks, off-chip optical and 
electrical networks, and a dizzying array of 2D, 2.5D, and 3D packaging options. This growing complexity 
in turn requires increasingly complex design space exploration and architectural simulation tools to enable 
predictive performance analysis. However, while simulators exist for some of these options individually, 
they do not work together and thus do not enable full system design space exploration. Currently, we lack 
unified simulation options for many of the hardware architectures and software stacks we need to 
simulate. 

These complicated systems will grow in scale. They will be comprised of more nodes, each with 
more sockets, more cores, and more threads than ever before. With disaggregated memory, processing-
in/near-memory, and advanced packaging, the traditional barriers between node, socket, and core that 
enable isolated development will break down. Embarrassingly, many simulators for these devices are still 
serial [1]. Currently, simulation and modeling tools lack the speed and flexibility to address these 
systems at scale. 

Designing these complex heterogeneous systems will require exploration of large design spaces 
using models at large scale and multiple levels of fidelity. Cycle-level pipeline simulation of a single 
processor core can incur a slowdown of 1,000-10,000x [2]. Lower-level RTL simulation, necessary for 
detailed design, can be another one to two orders of magnitude slower. Device-level simulations, which 
may be required for emerging technologies, will be even slower. Currently, detailed simulation is both 
necessary and impossible to perform at scale.  

Codesign requires open tools and interfaces for both hardware and simulation which cross 
industry, lab, and academic boundaries. Codesigning these systems will necessarily involve close 
collaboration between DOE, vendors, and other agencies. Without a common framework for exploration, 
meaningful collaboration on hardware and software will be curtailed. Currently, the architectural 
modeling and simulation landscape is a hodgepodge of incompatible tools which do not support close 
collaboration between multi-lab and multi-vendor partnerships [3].  

Opportunity 
The DOE is uniquely poised to address these challenges. Already, the DOE National Labs have an 
acknowledged multi-decade leadership in parallel multi-fidelity physical simulations across a wide range 
of domains. We have, both in-house and through existing external collaborations, access to a wide range 
of hardware simulators spanning system- and node-level to circuit- and device-level.  

With this foundation, it is possible to build a simulation framework which is unified, open, multi-
fidelity, and scalable. The labs are well suited to building this framework. We have existing expertise in 



developing parallel simulations to address scale and have developed simulators across the necessary 
levels of fidelity. We also have a long history of creating complex open software.  

The primary new technique which needs to be developed is how to seamlessly transition between 
multiple fidelities of simulation and how to better understand and quantify the tradeoffs between the 
different levels. Though there are several simulators that can switch between simulation granularities and 
simulators which can combine low-level and high-level models, the community lacks a rigorous 
quantitative understanding of the performance/accuracy tradeoff.  

Critical to this success is the network of inter- and extra-lab collaborators which DOE has built 
from decades of architectural leadership. Gaining support from vendors and academics is required to 
make this infrastructure useful and sustainable. Luckily, there has been substantial interest across the 
community for these sorts of tools. Many vendors use open simulators such as gem5 and Verilator, but 
are recognizing the scalability limits they impose. 

Timeliness: 
There are three major changes that now make a unified framework possible and achievable: 

1. A critical mass of open simulators and simulation frameworks which have a growing acceptance 
within industry, government, and academic settings. Tools such as gem5, SST [4], Chisel, Verilator, 
ESSENT [5], and BigSim will provide the building blocks for a unified simulation framework. 

2. Addressing scalability is a large enough problem that it cannot be ignored and cannot be tackled 
through existing serial simulation models. The need to simulate at scale means a unified parallel 
framework is not just preferable, but required.  

3. A spate of new tools for hardware design (HLS languages, HDL languages like Chisel), new 
packaging approaches (e.g., chiplets), and new economic models (AMD semi-custom) make 
custom hardware design more accessible than ever before. The DOE has an unprecedented 
opportunity to take advantage of these trends to increase compute efficiency and capability, but 
only if proper tools for simulation and modeling are available to guide us.  

If successful, this Unified, Open, Multi-Fidelity, Scalable Architectural Simulation infrastructure will 
provide a large increase in capability for the community. It will allow models to be exchanged between 
different groups, providing a common language for hardware development and promoting 
interoperability. It will provide a platform for software development on and in tandem with advanced and 
emerging architectures. This will create new opportunities for true codesign of hardware and software 
and allow the next generation of HPC systems to be more efficient and capable.  
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1 Challenge

The end of Dennard scaling a decade ago and now the slowing and eventual end of Moore’s law has demon-
strated that CMOS device technology can no longer provide the gains it once did. As a result, computer
systems designers must innovate across higher-levels of the computing stack to improve energy-efficiency,
where co-design is increasingly important outside of the traditional embedded space.

Accelerators have emerged as an attractive energy-efficient alternative to CPUs. These accelerators
take various forms, but the most universally applicable accelerator is the general-purpose GPU. GPGPUs
maintain the same Turing completeness as CPUs and are an order of magnitude more energy-efficient,
but have generally maintained a C-like interface and really only work well for dense codes. Enabling
the efficient execution of emerging, often irregular, algorithms on general-purpose accelerators is a key
challenge. Scalable solutions require architects and programming system designers to find innovative ways
to work together.

Programmability almost always comes at a cost to efficiency and vice versa. So when hardware de-
signers work with programming language designers, the question becomes, what will each side give up to
handle more complex software in efficient ways? Several recent real-world examples of this can be found
in contemporary GPUs: Tensor cores for efficient machine-learning processing [1] and ray tracing cores [2]
for emerging, irregular graphics workloads.

Ray tracing hardware is particularly interesting, as it efficiently handles a highly-irregular task: ray
tracing based scene rendering. Unfortunately, ray tracing hardware is essentially impossible to program for
general-purpose or scientific applications, despite its potential uses in irregular high-performance workloads
like collision detection [4], nearest-neighbor classification [5], or n-body simulation [3]. The interface to
current ray tracing hardware is a definition of a bounding volume hierarchy [7], around which the hardware
does ray-object intersection. While useful in the context of the narrow ray tracing space, the brittle interface
is not suited for general-purpose scientific computing.

Inspired by these real-world examples of high-performance co-design, we take the position that archi-
tects and programming systems designers can do better.

2 Opportunities

While companies have done a reasonable job at providing efficient hardware for very specific workloads
that drive product sales (i.e. machine learning and graphics rendering), there has been less thought given to
more general abstractions that can be applied to irregular, scientific applications. There is an opportunity
for architects and system designers from both academia and industry to collaborate on abstractions that are
more domain-specific than application specific, while still allowing for efficient hardware. Hearkening back
to original lessons on instruction set architecture design [8] the irregular applications of the future need
efficient primitives in hardware, not solutions in hardware.

Specific to our ray tracing example, the interface to the ray tracing cores could be a general tree accel-
erator, not a ray accelerator. As Gray and Moore observed in 2000, a large number of important kernels,
including ray tracing and collision detection, but also important scientific computing applications like near-
est neighbor, gravitational force computations, and 2-point correlation, can be thought of as generalized



n-body problems [5]. Rather than thinking about bounding volume hierarchies and ray-object intersection,
the hardware interface could be built around general tree traversals, with alternate spatial tree implementa-
tions and layouts, application-specific object/subject interaction rules, and generalized truncation conditions.
From the hardware’s perspective, such a mechanism would have an efficiency similar to the of the ray trac-
ing specific solution — ray tracing with bounding volume hierarchies is a straightforward instantiation of
those primitives — while enabling more general computations.

In early work, we showed that this kind of abstraction could lead to efficient, but general, distributed
tree traversals [6]; we believe a hardware implementation could provide similar benefits. On the hardware
side, we have demonstrated the cost of raising the abstraction level of accelerator code can be high [9]. By
designing cross-layer solutions that expose the nature of the abstraction to the lower-levels of the system,
minor hardware modifications can be made to make much better use of the highly-efficient accelerator.
More generally, we think that it is time to revisit the hardware abstraction layer for accelerators. Rather than
focus on complete ISAs (as in GPGPUs), or low-level, limited hardware (as in TPUs), or extremely general
but hard-to-program accelerator fabrics (as in FPGAs), a careful selection of generalizable domain-specific
primitives could yield efficient hardware for irregular applications.

3 Timeliness

Moore’s law is dead. The most viable solution to increase computing capability in the next decade is the
use of accelerators. The previous decade saw the birth of GPGPUs as the catch-all accelerator of choice and
the last few years of industrial innovation has been largely centered around application-specific hardware
components for economically important workloads. However, it is clear that innovation in both the pro-
gramming system and architecture space is needed to continue this trend, adding generality to the interfaces
while maintaining efficiency. The impact of success will be accelerators that that meet the abstraction needs
tomorrow, are intuitive to program and demonstrate a level of efficiency on challenging, irregular problems
that is impossible to achieve today.
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Challenge 
For decades high-performance computing (HPC) systems have been technology leaders in utilization of 
massive concurrency, in no small part because HPC applications are composed of software components 
that provide only the communication, concurrency, and synchronization needed for the task at hand. 
This approach has enabled the modern DOE portfolio that consists of a rich ecosystem of simulation, 
data analytics, and learning applications, each with distinct data management and analysis needs. 
 
At the same time, these successful principles of modular reuse, composition, and specialization have not 
become commonplace in the remainder of the software stack, and in particular as they relate to storage 
services such as parallel systems. As a result, most HPC platforms provide a “one size fits all” solution to 
data storage --- a parallel file system --- which has been recognized as a key performance bottleneck for 
many codes. 
 
Without the benefits of modular reuse, composition, and specialization, custom solutions are simply too 
expensive to develop and maintain, in time and resources, to justify an ecosystem of services. 
Additionally, the traditional monolithic approach to these services inhibits adaptation of these services 
to new platforms. Codesign is dramatically more expensive to engage in when modularity and 
composition have not been embraced in the software design. 
 
Opportunity 
Modular reuse, composition, and specialization have enabled the rapid development of a new 
generation of data services [1,2], building on technologies such as lightweight threads [3] and remote 
procedure call abstractions [4]. This model promises to lower the cost of codesign by 
compartmentalizing changes in reusable modules to adapt to new applications and/or new hardware. 
Further, this architecture allows low-level components (e.g., mapping data to nonvolatile memory 
devices) to be codesigned with hardware vendors while application facing aspects (e.g., application 
interfaces) can be codesigned with application development teams. 
 



Codesign with hardware vendors is critically important to exploit the potential of emerging technologies. 
Advanced network technologies suitable for traditional messaging as well as low-latency remote 
procedure call models could provide major advances in communication bound micro-services. Hardware 
features for lightweight threading and network driven scheduling of threads is another area that should 
be examined. Smart storage technologies enabled by processing in storage architectures could enable 
concurrent execution of otherwise high-cost data services concurrent with traditional simulation 
workloads with minimal noise to the application. System-on-a-chip offers further opportunities to 
reimagine the composition of data-services enabled by special purpose accelerator technologies that 
can be efficiently partitioned to different micro-services on-node. 
 
Additionally, the formalization of deployment and configuration facilitated by breaking a service into 
components and defining dependencies leads to more rigorous and programmatic descriptions of 
configuration that in turn aid in the application of learning approaches to tuning of these services for 
specific platforms and to the adaptation of these services in dynamic runtime environments. 
 
Timeliness 
This need for new architectural approaches in storage services was noted in a recent ASCR workshop [5], 
and the growing diversity of applications in the DOE portfolio has pushed the “one size fits all” model to 
the brink of failure. A number of new data services adopting this methodology and model have been 
recently developed, showing the promise of the approach as relates to application specialization. 
 
At the same time, disruptive innovation is occurring at the hardware layer. Increasingly, the limiting 
factor in deploying these innovations is the time it takes to provide a robust software service that makes 
good use of the innovative capabilities. A nimble, modular, service layer is critical to developing the 
partnership and connections between storage and application. 
 
Successful research and development of rich compositional methodologies and programming systems 
in system software will result in a more nimble software stack that is more amenable to codesign for 
both hardware and applications, more robust through increased reuse, and higher performance 
through appropriate specialization where it matters. 
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1 Challenges
Computer systems have long been designed and optimized for
dense computations, i.e., those that operate on dense and regularly
structured data. Since the first version of Fortran, with its regular
loops and dense arrays, systems have evolved a full stack of tech-
niques for dense computations, spanning languages, compilers (e.g.,
autovectorization, the polyhedral model), processor architectures
(e.g., SIMD units and GPUs, prefetchers), and system and network
designs (e.g., interconnects optimized for bulk transfers). Now that
systems are becoming specialized to particular domains to improve
performance, we are again seeing the same narrow focus on dense
computations, like dense deep neural networks. This has given
rise to domain-specific languages (e.g., Spiral [12], Halide [13], and
TVM [3]), compilers (e.g., TensorFlow [1] and PyTorch [11]), and
architectures (e.g., TPUs [8] and NVIDIA Tensor Cores [10]) to
scale dense workloads to cloud settings.

We need a similar development for sparse computations. These
computations are common because many relations and interactions
are sparse. For example, most people are not friends and most neu-
rons in a sparse neural network are not connected. Sparse data
structures (graphs, sparse matrices, and trees) and codes leverage
this sparsity by encoding and processing only meaningful relations.
Sparse applications are ubiquitous in high-performance computing,
where they include unstructured grids, sparse linear or tensor al-
gebra, and simulation. They are also becoming crucial in industry,
where graph analytics, sparse neural networks, and learning on
sparse data (like graphs or point clouds) are increasingly important.

Current systems are ill-suited to sparse computations. This mis-
match wastes many billions of dollars yearly. For example, whereas
supercomputers achieve 50–80% of their theoretical peak perfor-
mance on dense linear algebra [14], they achieve only 1–3% of their
peak on HPCG [7], a sparse linear algebra solver, and are well below
1% on graph algorithms [6]. As systems become more specialized,
the lack of support for sparsity becomes more limiting: it stymies
algorithm progress by forcing the use of inefficient dense computa-
tions, and eventually renders specialized architectures obsolete.

Sparse computations pose challenges that demand a full-stack
approach. These challenges stem from two key properties. First,
sparse data structures are complex: whereas dense data structures
use negligible metadata (e.g., the length of each dimension in a
dense matrix) and support arbitrary iteration orders, sparse struc-
tures use substantial metadata (e.g., coordinates associated with
each value in a sparse matrix), and only some iteration orders
are efficient (e.g., by rows, but not by columns, for a matrix in
CSR format). Second, stemming from the characteristics of sparse
data, sparse computation is irregular : tasks, data dependences, and
operand sizes are not known in advance, but depend on runtime

values (e.g., when multiplying two sparse matrices, the amount of
work and output matrix size heavily depend on the coordinates of
their nonzeros). Stemming from these properties, we identify the
following key challenges:
Algorithmic choice: Sparse computations have a rich space of
choices in algorithm, data representation, and schedule, which cur-
rent languages and compilers cannot capture and optimize. Instead,
programmers manually encode a concrete algorithm and data rep-
resentation, and a suboptimal choice may lead to asymptotically
worse performance.
Composition: Composing sparse computations is challenging be-
cause their combination may alter the right choices of algorithm
and data representation, requiring global optimization. For example,
computing the distances among vertices in a graph can involve a
matrix multiplication followed by an element-wise multiplication
with a sparse matrix (SDDMM). These operations must be fused to
avoid asymptotically worse performance.
Adaptation and scheduling: In sparse computations, the right
choice of algorithm and data representation are often unknown in
advance and may change at run-time, thwarting the rigid division
between current compilers and schedulers. Moreover, substantial
runtime support is needed to find parallelism and locality, and to
schedule and load-balance tasks and their data in a parallel system.
Hardware efficiency: Processor and network architectures in-
clude techniques tailored to dense computations, like vector units,
prefetchers, and rigid memory systems and networks optimized for
bulk transfers and infrequent synchronization. These techniques
are inefficient on sparse computations, demanding new hardware
techniques and software mechanisms to exploit them.

2 Opportunities
2.1 A Unified, Sparse IR
Modern applications often not only feature sparse computations
but combinations of sparse computations that make efficient execu-
tion challenging. For example, many types of simulation compose
different computational models and data structures to model differ-
ent aspects of the overall system (e.g., weather simulations which
combine separate models of the sea, atmosphere, and ocean surface).
Different components may use different spare computation styles.
For example, a a finite element model time integrator might use
sparse tensors, incorporating contact force at the points determined
by a collision detection algorithm based around spatial tree codes.

The variety of data structures and access patterns in sparse pro-
grams results in a corresponding variety of iteration constructs
over sparse iteration spaces. A program over sparse data might fea-
ture loops over indirection arrays that result in irregular memory
accesses (as in sparse tensor codes), a recursive traversal (as in
tree-traversing simulation codes), or any combination of these con-
structs (e.g., dense loops with recursive traversals in n-body codes,
or sparse loops with dense loops in semi-sparse tensor codes). These
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Figure 1. Overview of proposed intermediate representation.

iteration constructs arise from higher-level kernels that express al-
gorithmic concepts, like an element-wise join of two trees [5] or an
intersection of two sparse tensor spaces in a tensor contraction. The
kernels operate over any number of data representations—pointer-
based trees, sparse tensors stored as coordinates, graphs stored
in CSR data structures. Realizing efficient iteration strategies to
implement these complex programs using complex data structures
on complex hardware requires two components: (i) defining the
right interfaces for programmers to communicate computation and
data properties to the compiler, and for the compiler to convey par-
allelism and locality information to the scheduler and architecture;
and (ii) transformations of the sparse traversals to best match an
application’s computation and data to the available hardware.

We believe there is an opportunity for a unified intermediate rep-
resentation (IR) for representing, optimizing, and generating code
for sparse applications. Figure 1 shows the three levels of abstrac-
tion we envision: abstractions of sparse operations; representation
of traversal over sparse iteration spaces; and concrete realization
of specific traversal strategies that match data layouts and target
architectures. The IR would be a target for domain-specific lan-
guages (DSLs) like TACO [9] or GraphIt [15]. Transformations of
the IR would generate different variant implementations that the
scheduler chooses from to target specific architectures. The IR thus
serves two purposes. First, it is the glue that connects the high-level
representation of computations and data expressed in DSLs to the
low-level hardware operations. Second, it serves as a unified repre-
sentation for expressing transformations on sparse computations
to enhance locality and parallelism and generate efficient code.

2.2 A Data-Centric Sparse Accelerator
Existing accelerators mainly target dense computations. We believe
there is an opportunity for a new kind of accelerator that is flexible
enough to accelerate a broad range of sparse computations. The key
challenge is that these applications feature irregular control flow
and memory accesses, as they manipulate complex data structures
(e.g., sparse tensors or graphs) and need complex coordination.
Supporting this is infeasible with existing specialization approaches,
which are limited to dense computations like deep learning [2, 4].

Our key insight is adopting data-centric specialization. Most spe-
cialized architectures focus on the processing cores rather than on
the memory system. This is ill-suited to the complex access pat-
terns and coordination required by sparse computations. Moreover,
because data movement costs dwarf those of computation, scalable
accelerators must be designed to minimize data movement first.

To tackle this challenge, we observe that the complex and ir-
regular access patterns in these applications arise from the com-
plexity and size of the data representation, e.g., of large sparse
multi-dimensional tensors, and not intrinsically from the data val-
ues in the tensor. Thus, providing hardware support to manipulate
these data structures both enables effective acceleration and results
in a simple hardware/software interface that is well-matched to the
capabilities of our proposed sparse IR.

To this end, we propose an architecture with three distinguish-
ing features. First, hardware implements data orchestration units
specialized for sparse data structures. Each of these units would
perform a primitive function (e.g., pattern generation, dereference,
intersection, union/merge, and accumulation), so the system will
support the rich variety of storage formats and traversal structures
needed by different applications. Data orchestration units will fetch
complex data structures, marshal them to a spatial fabric of efficient
processing elements, and combine their results to produce sparse
outputs efficiently. Second, on-chip memory will be organized as a
distributed collection of banks that can be reconfigured as a cache or
a local memory. This hierarchy will support the mix of implicit and
explicit decoupled data movement required by these applications.
Third, hardware will provide adaptive partitioning, load-balancing,
and pipelining techniques to achieve high utilization of compute
and data orchestration units while minimizing data movement.
3 Timeliness
Now is the right time to develop a full-stack approach to handle
sparsity. The waning of Moore’s Law means that we cannot rely
on silicon fabrication technology to improve over time and hide
the massive inefficiencies of existing systems. And the push for
specialization demands that we cater towards this broad and emerg-
ing domain; otherwise, we risk stifling algorithmic innovation and
eventually making accelerators obsolete. Our proposed approach
will especially benefit sparse computations that are key in emerg-
ing domains, such as data analytics, machine learning, simulation,
and in-memory databases. This work leverages our recent work
on languages, compilers, schedulers, and architectures for sparse
computations. By innovating across the full software and hardware
stack, these techniques can achieve performance, scalability, and
efficiency gains that single-layer approaches cannot provide.
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Challenge:​ ​Neuromorphic systems have tremendous potential in a variety of diverse settings, including 
for edge computing applications and as co-processors for future HPC systems.  ​A key challenge with 
neuromorphic computing systems today is the disconnect between ongoing research efforts in 
architecture, devices, and materials development and the needs of the algorithms and applications 
at the top of the compute stack, leading to a “bottom-up” approach to neuromorphic hardware and 
software​.  This lack of a common software ecosystem to support hardware development has led 
neuromorphic architectures and devices researchers to follow a “hardware first, applications/algorithms 
later” approach.  This approach can result in hardware that is suboptimal for some or all of the 
applications of interest to the Department of Energy (DOE).  Different neuromorphic hardware 
implementations can have radically different performance implications; for example, a neuromorphic 
hardware system implemented with superconducting optoelectronics may be very fast but sacrifice energy 
efficiency, whereas a mixed analog-digital approach may be very energy efficient but may operate much 
slower.  Because of the diversity of neuromorphic hardware implementations and because of the vastly 
different needs of application use cases ranging from edge computing to HPC, it is vital that 
application-hardware co-design play a key role in the development of neuromorphic hardware, 
specifically so that application and algorithm designers can help to shape the hardware itself.  
  

 
  
Opportunity:​ There is the opportunity to establish a software ecosystem that connects the algorithms and 
applications of interest to DOE to the design and development of architectures, devices, and materials for 
neuromorphic computing, to enable application/algorithm-driven co-design of neuromorphic systems. 
Two key components of this software ecosystem, ​large-scale hardware simulation on existing HPC​ to 
inform hardware design and ​a common programming model for neuromorphic applications​ to enable 
rapid application and algorithm development, can be combined with a third component, ​machine 
learning-based hyperparameter optimization​, to tailor hardware designs in simulation to meet 
application and algorithm needs.  This approach can be used to define hardware requirements for future 
neuromorphic architectures, devices, and materials.  



Large-scale hardware simulation​ is a critical component of the complete co-design workflow.  There is 
a vast diversity of ways to implement neuromorphic systems, ranging from fully digital CMOS and mixed 
analog-digital CMOS to beyond CMOS implementations with memristors, magnetic tunneling junctions, 
spintronics, superconducting optoelectronics, and even biomimetic materials.  Each of these different 
implementations has vastly different performance characteristics in terms of processing speed, power 
efficiency, and space efficiency, and thus are not necessarily well-suited for every application of interest 
to neuromorphic.  The ability to perform hardware simulation at scale to understand the performance 
characteristics on real-world applications is critical for top-down hardware co-design.  Such a hardware 
simulator needs to be parameterizable to allow for the evaluation of radically different device types. 
Equally important to hardware simulation is a ​common programming model​ for neuromorphic 
computers to enable rapid application development and evaluation with hardware simulation.  Finally, 
because the design exploration space for potential hardware systems is vast, ​machine learning 
approaches will be required to automatically optimize hardware characteristics to achieve desired 
performance characteristics (i.e., speed, precision, energy efficiency, etc.) for a particular application or 
suite of applications.  
  
Timeliness or maturity:​ Neuromorphic systems now exist in a variety stages of maturity and are under 
active development by large industry players (e.g., Intel with Loihi [1]), start-ups (e.g., Rain 
Neuromorphics [2]), as well as large-scale academic efforts such as EFRCs with a neuromorphic focus 
[3].  All of these efforts are under active development and can be influenced by compelling 
demonstrations of applications of interest with their associated deployment requirements. At the same 
time, there have been a variety of real-world applications demonstrated on neuromorphic hardware or in 
simulations of neuromorphic hardware, ranging from scientific data classification for large-scale scientific 
instruments [4] to edge computing applications [5] to non-machine learning tasks such as modeling 
epidemic spread [6].  As such, there are already a set of applications that can be used to seed the 
development of a neuromorphic software ecosystem to enable application-hardware co-design. The 
relative maturity of neuromorphic systems today, along with sets of applications that are ready to go 
provide the opportunity to establish a template for future tightly coupled application-hardware co-design.  
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1. Topic: The following document is a Position Paper on Co-design as a methodology for integration of application-

specific computing to solve real challenges. This methodology is based on concurrent design and optimization of 

the computing architecture, software, algorithms, materials, devices, information processing, communication, etc.  

Previous analysis of specific examples of Co-design (e.g., Anton for protein folding2) indicates great promise for 

acceleration of computing for applications on top of Moore’s law. However, these examples are still a selective few 

with dedicated resources and budgets, and no current framework exists to more broadly integrate the various 

components of computing for most applications. We believe that a radical rethinking of innovation across 

components of computing would be useful to address both the multi-disciplinary complexity of constructing new 

application-specific computing systems and the continuing offshoring of the US innovation ecosystem3. 
 

2. Co-design Scientific and Technological Challenges: Development of new design abstractions as an integral 

part of the codesign process remains a fundamental methodological challenge.  On a more focused level, low-level 

aspects of codesign could be greatly accelerated by the development of cyber-physical simulation toolkits and 

workflows that facilitate simple construction of models in which dynamical systems with real-time control 

algorithms or other rule-based adaptive supervision.  High-level aspects of codesign will likely demand new 

theoretical tools related to algorithm design for complex heterogeneous hardware systems that may exhibit 

behavioral uncertainties that cannot effectively be captured by low-dimensional parameterization. We see three 

types of challenges in a general-purpose computing solution for all applications. 
 
Efficiency:  Aspects of efficiency include energy per bit, computational complexity of an application, and 

manufacturability. Of these, energy or power minimization is a universal macro-constraint for on-chip architectures.   

The computer industry is actively dealing with trade-offs between performance and energy efficiency.   Detection 

and real-time mitigation of manufacturing abnormalities in the lower levels (materials/devices/circuits) of the 

system stack is crucial for maintaining system performance, yield, and reducing waste and energy consumption in 

the manufacturing process. In addition, trade-offs between large volume manufacturing of a few systems versus 

custom-manufacturing for multiple systems need to be systematically evaluated. Although there are many efforts 

to analyze energy efficiency and complexity, no dedicated efforts exist that integrate efficiency for researchers and 

scientists to design and develop tools and methodologies for developing the building blocks for an optimal design.   
 
Prototyping and Manufacturing:  There are many challenges including the time lag from design to prototyping, 

ability for integration of novel materials across multiple technologies, co-optimization between packaging and 

silicon, ability to ramp up production with well-understood cadences, manufacturing within the US for security and 

resilience.  Current approaches to manufacturing are based on existing designs which are optimized for a given 

process technology.  The process from design to product is still largely sequential with many iterations that are 

becoming increasingly necessary for efficient optimization across performance, cost, and adaptability. 

Understanding the opportunities and limitations presented by new ideas in materials, devices and circuits has been 

limited by the practical limitation of testing those ideas at the system level, at least, as a prototype. 
 
Security and Resiliency:  Even if the above building blocks are available for a wider audience, security of the 

components and the integrated systems are key to resilient computing systems.  This aspect is critical for both the 

components of co-design and the tools used to design, prototype and manufacture. The need for trust in 

microelectronics design along with implementation of software packages is a critical need for all sectors of 

computing and system control.   The problem is further compounded when sensors designed and manufactured by 
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third party suppliers are integrated into large-scale computational systems. The security and resiliency at the system 

and component levels are necessary for mission critical applications. 
 
3. Guiding Principles for Co-design: A new proposed framework should enable a modular, “Legos-type” approach 

where researchers could simulate and put together the building blocks to design and prototype the computing 

advances as they become available.  The components themselves should be based on all aspects of efficiency. We 

propose a few guiding principles below related to global co-design for optimizing efficiency, use of smart hardware-

software labs for ability to emulate and prototype, open workflows and tools to design for resilience and testing, 

and a hub for a multi-disciplinary engagement to engage in cross-cutting research. 
 
Use of Global Co-design from Atoms to Architectures (Bottom-up Design): As proposed, Co-design must reach all 

the way down to the atomic level to integrate materials engineering and advanced characterization early in the 

process.  The rise of multifunctional atomically engineered materials opens up unprecedented opportunities for 

bottom-up engineering of building blocks for computing, starting from single atoms or even single electrons. Due 

to its engineered functionality, the material or the molecule thus becomes the device, which is to be reproduced and 

integrated in a circuit and, later, a system. This design approach in turn will help integrate information processing 

between different classes or materials to systems such as analogue, classical, and quantum systems. 
 
Design of Intelligent Hardware-Software Labs:  Integration of Artificial Intelligence/Machine Learning (AI/ML) 

with Hardware/Lab Equipment can enable smart design, development, testing, and prototyping.4 The current 

proliferation of opportunistic applications of AI/ML tools in scientific workflows are short-circuiting the detailed 

physics and chemistry-based analysis of critical complex phenomena. Developing powerful yet human-interpretable 

AI/ML is still a grand challenge for the AI/ML field in general, but this challenge of overlaying principled statistical 

theory with practical “big data” can be enabled by Co-design.  The concepts and methods from cybernetics and 

robust control theory and from the emerging field of control-over-channels, could prove useful if properly translated 

to the codesign context.    
 
Develop Open Workflows and Tools: The exponential increase in sensors both in high-energy physics detectors and 

in Internet of Things, especially in large-scale scientific facilities and in intelligent consumer systems, pre-supposes 

a commensurate revolution in data analysis workflow. Realizing this revolution requires multiple stages to 

transparently handle the acquisition, processing, transfer, analysis, and visualization. Optimization of the workflow 

to extract information that distills data into actionable information on the timescales required of experiments 

requires co-design of detectors, edge computing layers, and data analytics which may run on a variety of 

architectures, from local compute clusters to Department of Energy’s leadership computing facilities. 
 
Create Application-Enabled Innovation Hubs: Development of an “innovation hub” will enable the community to 

use the building blocks for developing physical computing prototypes for visualizing and testing new designs.  We 

propose a two-dimensional approach: 1) Scientific and Engineering Research linking Applications, Architectures, 

System and Devices, Novel materials along with their synthesis and processing, Information Abstractions; 2) 

Prototyping for exploring various computing options by developing following components as needed: Design 

methodologies, Validation strategies, Tool sets for design, Fabrication, Integration, and Packaging.   The sensing 

may be precise in particle accelerators or noisy in wireless networks. Working across the stack in applications, 

systems software and hardware creates opportunity for innovative Co-design and enabling a disciplined process to 

bridge/apply shared knowledge across the spectrum.  
 
4. Timeliness of Co-design: With the increasing difficulty of sustaining the cadence of Moore’s Law, there is a 

time critical need to rethink how can we build the next generation of computing while lowering the increasing costs 

of design and manufacturing. Our vision will enable a new era in personalized and application-centric computing 

(“Cambrian” era5) that bridges information theory, computing and communication abstractions with materials, 

devices, hardware, systems, architecture, algorithms and software for enabling new applications. As early examples 

have shown the promise of this approach, our integration would enable a new systematic approach for designing 

and building efficient computing systems from atoms to materials to devices to systems, which can be rapidly 

prototyped within an innovation hub. 

 
4 Dally, W. et al. Hardware-enabled artificial intelligence. In Proceedings of the Symposia on VLSI Technology and Circuits (Honolulu, HI, June 18–22). IEEE Press, 
2018, 3–6. 
5Hennessy, J. and Patterson, D. A New Golden Age for Computer Architecture. Communications of the ACM, Vol. 62, No. 2, February 2019.   
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APPENDIX 1:   Comments on Areas of Emphasis  

 
1. Key aspects of codesign across the entire hardware/software stack to include applications, 

algorithms, system software, and system architecture;  

• Novel approach to co-design is needed, that bridges from applications all the way to 

materials.   Traditional co-design has focused on tradeoffs between algorithms, (software) and 

hardware implementations of functions.  Permitting trades in power, performance, flexibility, cost, 

etc.  In the future we need to consider deep trades due to additional alternatives such as surrogate 

models of applications, broader options in architecture and potentially novel materials that permit 

improvements in power. 

 

 

2. Insights into codesign for workflows arising from scientific experiments, on supercomputers, or to 

support large-scale scientific instrument;  

• Pushing past traditional single applications to entire end to end workflows implies that you might 

have different systems components carrying out different stages of computation and I/O.  This opens 

up the idea of hierarchical or multi-component optimization as part of the co-design with different 

trade offs being exploited for different elements of the workflows.   
 

3. Methods and tools for quantitative codesign, including both those that inform high-level decision-

making and those impacting low-level aspects of the codesign process; 

• Design synthesis (either traditional or via new AI driven methods) will be an important future driver 

of co-design.  The idea of extending design synthesis to the full stack should be considered as it may 

result in deeper optimizations.  Iterative design is another approach that revisits design choices 

multiple times as different trajectories are explored. 

• Principled approaches to the development of new design abstractions as an integral part of the 

codesign process remains a fundamental methodological challenge.  On a more focused level, low-

level aspects of codesign could be greatly accelerated by the development of cyber-physical 

simulation toolkits that facilitate simple construction of models in which dynamical systems 

(specified in terms of ordinary or partial differential equations) interact in real time with control 

algorithms or other rule-based adaptive supervision.  High-level aspects of codesign will likely 

demand new theoretical tools related to algorithm design for complex heterogeneous hardware 

systems that may exhibit behavioral uncertainties that cannot effectively be captured by low-

dimensional parameterization.  It seems likely that concepts and methods from robust control theory 

(and from the emerging field of control-over-channels, e.g., Bode-Shannon theory) could prove useful 

in this context if properly translated to the codesign context. 

 

 

4. New codesign challenges anticipated over the next decade 

• The dream of single computational systems where analog and digital computation is mixed in to a 

hybrid computation system has been simmering in the background of computing for decades [A. 

Hausner, Analog and analog/hybrid computer programming, Prentice-Hall, 1971]. The recent 

advances in quantum computing and integrated non-linear photonic systems [N Singh, et. al. 

Photonics (2020) https://doi.org/10.1364/PRJ.400057] have greatly expanded the potential 

capabilities and applications of these systems. However, the complexity of building, optimizing and 

implementing such computational systems has stymied their applications to anything more than a few 

niche applications. This is an opportunity for co-design of materials, devices, and system architecture 

provide a unique opportunity to greatly expand the impact of hybrid computing. Challenges include 

understanding dissimilar interfaces, and joining of analog and digital components together, as well 

electrically / optically coupling the devices.    

• From an applications perspective, the next decade will see dramatic new challenges in public health 

that can only be met by revolutionary codesign methodologies.  Tracking the emergence and mutation 
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of novel viruses will require widespread environmental sampling and genomic/proteomic 

characterization on unprecedented scale; sheer numbers will require innovative codesign of hardware 

systems and search algorithms in order to enable surveillance at scale within achievable supply rates 

of biochemical reagents, dedicated laboratory time, and compute cycles.  The next decade will 

likewise see a dramatic increase in the number of autonomous/auto-piloted vehicles on roadways and 

in commercial airspace; robust, secure, verifiable and adaptable/updatable collision avoidance 

systems will likely require codesign of sensors, transponders and algorithms/protocols at their core.  

From a methodological perspective, the generalization of nascent codesign principles beyond the 

relatively familiar substrate of semiconductor electronics to biological and quantum systems will 

demand accelerated development of core theory regarding codesign as a new science in its own right. 

• System on a Chip  and flexible hardware design to accommodate variety of the needs in industry and 

scientific community. It is apparent that there are only a handful of companies who are capable of 

mass producing SOC with sufficient size of on chip high-bandwidth memory in economical way. 

Most likely, HPC project will also rely on their capability. Designing capability of a prototype is 

important but supplying sufficient number of HPC chips is critical.  
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APPENDIX 2:   Answers to a few Notational Questions  
 

1. How to balance breadth of applications versus customization benefit? Does this vary by system 

type?   

• This is a hard question to answer in general for the breadth of applications.  For it to be viable, the 

breadth of applications includes enough users to put the project above the threshold to recover the 

fixed costs of designing and building hardware.  And to the extent that we can make codesign 

more efficient we help reduce those fixed costs and the risk associated with any new codesign 

project.  It most certainly will vary by system type and use case, but by focusing on those use 

cases with higher potential gains (that could be cumulative) will keep things moving.  With some 

scenarios that are exploiting surrogatges we can see factors of thousands in improvement coming 

from alternative algorithms with changes to hardware needed to support those new methods. 

• System on a Chip and flexible hardware design to accommodate variety of the needs in industry 

and scientific community. Designing capability of a prototype is important and needs to be 

connected to scaled-up manufacturing.  

• The resent revolution in additive manufacturing has been fired by the ability to use a library of 

materials to produce nearly an infinite number of new structural that solve specific problem. Co-

design enables this same revolution to occur in microelectronics manufacturing.  

 

 

2. What are the tools and techniques that enable successful codesign interactions and where are the 

gaps? 

• We need next generation of vertically integrated design and simulation tools and high speed 

emulators to run them on. 

 

3. With artificial intelligence and machine learning becoming more widely used in scientific 

workflows and applications, what new challenges and opportunities does this present?  

• The current proliferation of opportunistic applications of "black box" artificial intelligence and 

machine learning (AI/ML) tools in scientific workflows has the unfortunate consequence of short-

circuiting the traditional emphasis on painstaking careful development of new concepts and 

reduced models for critical complex phenomena.  As a result, hand-waving interpretations of 

otherwise inscrutable designs discovered by application of AI/ML to limited datasets launch 

dubious ideas into complex systems engineering, which may in fact reflect only improper 

generalization of specific results to broader context, or even unwarranted rationalizations of 

overfitting by AI/ML routines. Of course, developing powerful yet human-interpretable AI/ML is 

a grand challenge for the AI/ML field in general, but this challenge of overlaying principled 

statistical theory with practical "big data" seems to echo the broader paradigm of codesign.  There 

could be opportunities to help guide the development of AI/ML practice within the mainstream 

scientific community by establishing "governed" cloud computing services that incorporate not 

only data storage and computation but rigorous meta-analysis of results and curated guidance 

regarding best practices for interpretation of specific types of results. 

• The primary one is that the low level architectural features needed to support AI centric 

workloads are different than traditional architectures and in many ways are simpler and need to 

be part of the design space considerations.   

 

4. New accelerator technologies and chiplets are increasing the possible design space. What is the 

potential of these new technologies and how can codesign be used to take maximum advantage of 

them? 

• Co-design is to provide accurate information regarding application side requirement as well as 

constraint coming from options in fabrication capabilities thereby most effective platform for 

developing future HPC chipset that can be the most (cost) effective for both scientific and 

industry uses. If one admits SOC is the way to go, understanding possible design space will 
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likely to have constraints coming from the fabrication capability is must. Understanding could 

be achieved if good communication is established.  

• Essentially these open the space of solutions a bit by making it easier to integrate technologies 

from different nodes etc.  A major breakthrough would be possible if we could use these new 

packaging technologies to integrate components fabricated with different materials.   Also one 

could consider that we now have the ability to map IP to chiplets and do fine grain integration. 

 

 

5. How can we further the state of the art in efficient and flexible open-source hardware, modeling, 

and simulation tools that can underpin hardware codesign activities?   

• Co-design of materials, devices, and architecture dramatically increases the parameter space for 

engineering the next generation of computational systems. It will only be possible to take full 

advantage of these advances if there are models that can rapidly explore the parameter space in 

real time during fabrication. 

• Encourage open source design stack with well defined APIs that encourage groups to develop 
components.  Require that for government procurements that in addition to the hardware that the 

vendors ship the full simulation stack so it can be used as baselines for further co-design work. 

 

6. Is there a performance benefit to codesigning scientific applications and the computer systems 

(hardware and software) they run on, or will the additional time and cost outweigh the benefits 

observed relative to more-or-less portable applications running on stock supercomputers? 

• A significant benefit to the additional complexity of co-designed hybrid systems is the ability to 

improve the digital / materials fingerprint for increased security. The need for trust in 

microelectronics design along with implementation of software packages is a critical need for all 

sectors of computing and system control. Co-design greatly increases the ways in which unique 

digital fingerprints can be related to enable trusted systems.  

• With the characteristics of next generation scientific facilities in National Laboratories and 

elsewhere, experiments requiring massive-scale data analytics are on the horizon. Co-design of 

smart sensors, customized computing systems and real-time algorithms, not only will increase 

performance but would constitute an enabling factor. Co-design will enable a new level of 

customization and optimization focused on information extraction and data reduction throughout 

the entire data acquisition chains. 

 

 

7. How do scientific applications and supercomputer codesign differ fundamentally from the codesign 

employed regularly for embedded systems (such as in automobiles and home appliances)? Can 

either area learn from the other? 

 

• Fundamentally the ability to simulate end-to-end is much greater in embedded systems and this 

enables co-design.  Addressing the simulation stack is one way to improve this. 
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Introduction 
Scalable, parallel computing architectures are the foundation of modern high-end computing           
(HEC) systems, with the potential to deliver vast amounts of processing power required to solve               
grand challenges in scientific and engineering high performance computing (HPC) applications           
as well as artificial intelligence/machine learning (AI/ML) applications. It is their ability to scale              
along two fundamental dimensions – node-level parallelism with an increasing number of cores             
and graphics processing units (GPUs) and system-level parallelism through clustering and           
high-performance networks – that has propelled advances in computational power through           
massive parallelism. As compilers and runtime systems for intra-node parallelism evolve, it is             
becoming harder to comprehend and interpret performance down to the source level. This often              
leads to suboptimal performance and under utilization of HEC and lost programmer productivity.  
 
Challenges 
Computational scientists want to create next-generation scalable applications that are          
performant and portable, without having to re-engineer and optimize the code for every new              
platform. Optimizing the performance of coupled applications is even more challenging at            
extreme-scales. This is due to the following reasons:  

1. Coupled multi-physics solvers operating at different rates need to synchronize,          
coordinate, and exchange data. The ExaWind [5] project features Nalu-Wind and           
AMR-Wind applications with different MPI communicators within an MPMD application.          
Achieving optimal MPI performance for coupled codes at extreme-scale is challenging.  

2. GPUs are now widely recognized as the key component in extreme-scale HPC systems,             
but obtaining and sustaining good performance on GPUs remains a challenge.  

3. Advanced optimizing compilers based on LLVM are now able to leverage capabilities of             
GPUs including support for OpenACC and OpenMP target offload directives. These           
compilers feature support for expressing loop level transformations/optimizations using         
pragmas, and efficient performance instrumentation using a TAU LLVM plugin, but these            
improvements are scattered in different repositories and cannot be used to compile an             
application yet. With the recent work for the creation of a DOE LLVM fork from ECP[6],                
there is an opportunity to leverage these features in a single C++ compiler framework.  

4. Node level programming models have evolved and it is now possible to express             
parallelism for multiple GPU architectures from vendors such as NVIDIA, AMD, and Intel             
using C++ lambda functions. Kokkos, AMReX, and RAJA provide GPU optimized           
backends, but higher-level libraries such as Trilinos still can’t substitute one Kokkos            
implementation for another leading to limitations in portability to new GPUs due to             
embedded software components. Nalu-Wind uses Trilinos but doesn’t support new GPU           
architectures from Intel or AMD GPUs yet, although Kokkos has been ported to each.  



5. Solver libraries such as Trilinos [2] are not the only users of the GPU. Optimized               
MVAPICH2-GDR libraries use GPUs for efficient inter-GPU communication using GPU          
Direct Async protocols and use the GPU cores in large scale computations for             
asynchronous collective operations. As the number of nodes increases, the need for            
efficient global collective operations increases and poses a challenge.  

6. The role of network cards has evolved. Collective operations can now be offloaded to              
processors in specialized network cards including Mellanox Infiniband cards that support           
BlueField-2 adapters with ARM64 cores. SHaRP protocols used by MVAPICH2 also           
offload collective operations to the network card to improve the efficiency of collectives.  

7. It is getting harder to observe and optimize the performance of HPC applications running              
on multiple GPU architectures, using advanced MPI optimizations involving GPUs, using           
multiple communicators in coupled simulation codes.  
 

Opportunity 
We envision a codesign project that will optimize the coupled AMR-Wind and Nalu-Wind             
Computational Fluid Dynamics (CFD) codes, written in C++, that aim to advance fundamental             
understanding of flow physics governing wind plant performance, including wake formation,           
complex-terrain impacts, and turbine-turbine effects. The technologies that we will target include            
MVAPICH2 [4] for inter-node parallelism and runtime optimization of coupled MPI applications,            
TAU [1] for performance evaluation and optimization, LLVM-DOE compilers [6] for code            
optimization, Kokkos [3] and AMReX libraries for node-level parallelism, and GPU runtimes            
including HIP, CUDA, and OneAPI DPC++/SYCL.  
  
Timeliness and Maturity 
Recent advances in MVAPICH2 to support the MPI Tools Interface (MPI_T) in tools such as               
TAU, GPU based communication and collective operation optimization, and support for           
multi-communicator MPMD codes fits in well for runtime optimization of coupled executions of             
Nalu-Wind and AMR-Wind. Advances in the Kokkos profiling API including support for tracking             
deep copies and GPU-CPU interactions can help improve GPU profiling features of TAU. It              
allows for multi-level instrumentation from the compiler-level to the runtime using fine-grained            
instrumentation and mappings to higher-level source code in the form of Lambda functions.             
Runtime optimization of coupled CFD solvers using MVAPICH2, LLVM, Kokkos, AMReX, TAU            
seems within reach as we evaluate and attempt to co-design using emerging new technologies.  
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1 Motivation

In recent years, supercomputers have increasingly tar-
geted petascale and exascale levels of computing. To
reach this lofty goal, many of these systems have turned
to using large numbers of compute accelerators, which
offer greater power efficiency and thus enable exascale
computing for emerging AI and HPC workloads within
a constrained power budget. For example, nearly all of
the top 10 supercomputers in the Top-500 today utilize
GPUs and the top ranked supercomputer, Oak Ridge Na-
tional Labs’ Summit, has approximately 24000 NVIDIA
Volta V100 GPUs. Moreover, the recently announced Au-
rora, El Capitan, and Frontier supercomputers (as part of
the DOE’s CORAL-2 program) are expected to have even
more GPUs. Further, with the development of new ac-
celerators and customized chips (e.g., TPUs, GraphCore),
future supercomputers will likely be comprised of a large
variety of compute devices. However, using accelerators
increases heterogeneity at multiple levels, including the
architecture, resource allocation, competing user needs,
and manufacturing variability. Accordingly, exascale-
class and beyond systems need to efficiently handle many
simultaneous jobs while balancing PM and multiple levels
of heterogeneity.

Recent studies on supercomputers have shown that PM
can impact application performance by up to 20% on
CPUs in supercomputing systems, even when the CPUs
have the same architecture and vendor SKU [1, 2, 4, 6].
This variation occurs due to the manufacturing process
and the chip’s power constraints [2]. However, despite
their increasingly widespread use in modern HPC sys-
tems and supercomputers, little work exists that examines
how PM and manufacturing variability in other accelera-
tors (e.g., GPUs) affect application performance. Further,
since there is no standardized way for accelerators to ex-
pose PM information, system management software (e.g.,
operating systems or job schedulers) struggle to control
performance and predictability. Given their importance in
driving modern HPC systems and supercomputers, it is
imperative to understand how PM affects application per-
formance. We next present some initial results on how
PM can impact performance, which highlights the need
for co-designing power-management policies alongside
job scheduling.

2 Challenges
To observe the impact of PM on GPU performance, we
chose GPU applications that stress the steady state power
consumption of the GPU. Specifically, we use a SGEMM
kernel from NVIDIA’s cuBLAS library, which stresses the
compute, and STREAM, which stresses the memory sub-
system. These applications are representative of key ker-
nels from next-generation workloads including machine
learning. We use them to study the behavior of GPUs
across a number of clusters ranging from Cloudlab1, a
small GPU cluster with 12 NVIDIA Volta V100 GPUs, to
Oak Ridge (Summit supercomputer), Sandia (Vortex), and
TACC (Frontera and Longhorn) which contain between
216 and 24000 V100 GPUs, and which use a variety of
cooling methods (air, mineral oil, and water).

To study the effects on performance, we size the bench-
marks to fully occupy all of the GPU’s streaming multi-
processors (SMs). Additionally, as the GPU’s PM con-
troller relies on dynamic voltage and frequency scaling
(DVFS) to maintain the per-GPU power limit for safe op-
eration [5], it is important that the kernels run long enough
for the DVFS controller to reach a stable state (i.e., a con-
stant SM frequency) [3]. We define 1 run of our experi-
ment as 100 repetitions of each benchmark’s kernel. The
repetitions help avoid statistical bias and any other ad-
ditional transient effects. In all our experiments we use
V100 GPUs in the SXM2 configuration (max frequency:
1530 MHz, TDP: 300W). Moreover, to avoid transient ef-
fects, we collected data for multiple runs on the same ma-
chine over multiple weeks.

In total, we ran over 100000 experiments and our pre-
liminary study has identified several key insights.2 Re-
gardless of cooling approach or cluster size, we observed
5%-10% performance variability caused by the lack of
global PM (similar to prior work for CPUs [2]). Some
outliers are severe: for example, in TACC, PM throttled
300W TDP GPUs to as low as 250W, causing a 20%
slowdown. However, while performance variations are
directly correlated with frequency changes, temperature
and power consumption are in general not directly corre-
lated and are poor indicators of GPU performance. Fi-
nally, we also observed that PM can be influenced by spa-
tial (i.e., neighboring GPUs) and temporal (i.e., kernels
running previously on same GPU) effects. Although min-
eral oil and water cooling reduce the relative temperature
variation, we still observed performance and power vari-

1https://cloudlab.us
2Due to space constraints we do not show figures of these results.
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Figure 1: Proposed co-design of application profiling, job
scheduling and accelerator power management policies.

ability.
As multi-GPU experiments become increasingly com-

mon, having such a variation across GPUs due to PM
can significantly affect applications that coordinate across
GPUs. Further we find that the performance variation also
depends on the application (STREAM vs. SGEMM). We
also discussed our preliminary findings with researchers
at AMD and NVIDIA to validate that this behavior was
beyond that expected from process variation.

Unfortunately, it is difficult to address these challenges
directly, because modern GPUs make only local PM deci-
sions where each node merely allows its GPUs (and other
processors) to optimize for its power consumption. This
means that we cannot perform application-aware global
PM, where scheduling frameworks or administrative tools
can effectively place workloads to avoid slowdowns. This
motivates our proposed co-design that we describe next.

3 Opportunity
To overcome the observed performance variability in
modern systems, we propose working with system ven-
dors, administrators, and integrators, as well as end users
to create a new ecosystem that transforms the efficiency of
PM in existing systems and creates best-in-class method-
ologies that can be adopted to improve both current and
future systems. Figure 1 shows our overall approach.

Thus far we focused on GEMM and STREAM, which
are representative of workloads such as machine learning
on modern GPUs. However, further experiments with ad-
ditional applications that stress different system compo-
nents are needed to design application-specific PM poli-
cies. We will further enhance these application-specific
PM policies by making job schedulers variability-
aware. Variability-aware schedulers will utilize software-
runtime co-design to identify and harness the perfor-
mance variation across GPUs in existing systems. As
a result, schedulers can optimize for each application’s
power needs. Moreover, grouping GPUs with similar per-
formance variability together and scheduling jobs across
those GPUs, we can reduce time spent waiting for strag-
glers and ensure consistent behavior. Finally, in addi-
tion to identifying performance variation amongst accel-
erators, we will extend our experiments into a benchmark
suite (and corresponding user-facing interface) that is run
periodically to provide better tools for system adminis-

trators to identify slow accelerators and mark them for
further investigation, reboot, or potential replacement.

However, scheduling jobs more efficiently at the soft-
ware and runtime layers is limited in its ability to quickly,
dynamically change policies as cluster conditions evolve.
A major limiter to further improving efficiency is the lack
of standards for exposing power information in modern
accelerators. Thus, for future systems we will build on
the insights generated by our optimizations for current
systems, and apply co-design that makes the hardware,
software, and runtime layers aware of the variance in the
systems. To do this, we will design a standard for accel-
erators to expose PM information from the hardware to
the software and runtime. Using this information, instead
of performing PM locally, we plan to develop a global
power management scheme to enable optimal PM deci-
sions across accelerators and further reduce performance
variability.

4 Timeliness
As modern HPC systems are designed to use increasing
number of accelerators such as GPUs, it is imperative to
understand how power management affects the behavior
of applications. Our preliminary results show that signifi-
cant performance variation already exists on modern sys-
tems. Thus, given the US government’s planned invest-
ment in additional exascale-class and beyond machines
with even more accelerators (which will further increase
both heterogeneity and variability), our proposed work is
both timely and important to improving the efficacy and
utility of these machines. By making power management
a first-class citizen in these systems, our co-design will
ensure more consistent performance between runs, help
administrators better spot and investigate bad GPUs, and
reduce thermal throttling, thereby improving energy effi-
ciency.
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Automatic derivation of performance models for programs with data dependent behavior 
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TOPIC: Programming systems 
 
CHALLENGE: 
 
Co-design methods often require system designers and application developers to communicate 
their requirements via models and specifications.  System designers may provide simulators 
that can mimic systems that do not yet exist.  Application developers will provide reduced 
programs or mathematical models that capture the behavior of their application without the 
complexity of the full application.  A key challenge in creation of these application models is the 
mapping process from code to model, in particular the problem of characterizing dynamic 
properties of the programs.  Prior work in derivation of program skeletons [1] [2] demonstrated 
that complex programs can be reduced to skeleton applications via static analysis techniques 
with user guidance.  These skeletons are limited in that the removal of code as part of the 
skeletonization process removes computations that define values that data takes on at runtime.  
This data very likely impacts control flow properties that are critical to capturing realistic 
properties of program behavior.  A key challenge is to characterize this state within a skeleton 
without retaining the full code that performs the calculation.  We believe that this is similar to 
the challenge in software assurance contexts of generating test inputs and reasoning about 
data flow state in programs via formal program analysis.    
 
OPPORTUNITY: 
 
The development of cost models for programs relative to current or future systems allows 
performance to be predicted without explicitly executing the code.  This is extremely important 
at stages during system development when performant instances of a system do not exist yet 
and designers rely on simulators to predict the impact of design decisions.  Execution of 
programs that require large scale compute hardware in a simulation environment is simply not 
possible.  As demonstrated in the context of existing simulators [3], automatically derived 
skeletons can be used to make performance predictions.  We believe that extending the 
analysis used to derive skeletons to include formal analysis and characterization of data state 
will make automatically generated skeletons and related performance models more useful 
when considering programs with runtime behavior that is highly dependent on data. 
 
Recent advances in test generation and data flow analysis for software correctness and testing 
purposes can be applied in this performance modeling context, although research remains to 
apply those techniques to large programs and ensure good coverage of possible program 
behaviors [4] [5].  In particular these techniques focus on reasoning about the plausible values 

 
1 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National 
Laboratory under Contract DE-AC52-07NA27344. 



that one can expect data to take on at runtime.  When augmented with human provided 
annotations that express constraints not inferable directly from source code, constraint solvers 
and model checkers can be used.  In addition to classic program skeletons, where a skeleton is 
represented as a program in the same language as the application from which it was derived, 
we believe there are additional opportunities to build models that borrow from these formal 
analysis methods as well.  For example, abstracting a program from a specific language to a 
higher-level state transition system that can be used to analyze concurrency and control flow 
properties. 
 
TIMELINESS: 
 
Advances in formal analysis tools in the last decade, particularly constraint satisfaction and 
model checking methods, has made it possible to reason about program execution beyond 
basic static analysis.  In the last decade a number of efforts have combined SMT solvers with 
compiler and program transformation frameworks to perform data flow analysis and symbolic 
execution.   These tools have been developed largely in testing and correctness contexts but 
can be repurposed to build richer performance models of programs by augmenting structural 
features with approximate runtime properties.  We envision applications of such models 
beyond their traditional use to drive simulators for systems during the design process.  For 
example, significant interest is arising in program synthesis methods in which one or more 
candidate programs may be automatically assembled to execute on a target system.  In the 
case of HPC applications the evaluation of these candidate programs to pick the best cannot 
rely on direct execution: a predictive model of their expected performance is necessary to 
rapidly explore the space of potential programs that can be synthesized.  
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Challenge: 
DOE experimental user facilities such as light sources and other accelerators have moved into 
the arena of data-intensive computing and even compute-intensive applications as facilities are 
upgraded.  Data volumes and rates are increasing, new capabilities are enabled by the 
upgrades, and analysis workflows [1-4] and facility control workflows are increasingly 
challenged by a number of requirements: 

• Sophisticated data science and compression techniques:   Experimental scientists 
increasingly want faster and better analytics that include multi-modal data and can be 
done in real-time to help steer experiments.  The workflow is often limited by I/O, 
reading in large data volumes, and reducing them to the format needed for analysis.  In 
some cases, it is an analysis that can be done by streaming through an FGPA (detecting 
“hits” versus “misses” in crystallography data) and in other cases, such as when 
reconstructing images of samples based on long-running scans, it requires checking data 
quality, compressing, and possibly reformatting before reconstruction. 

• Compute-intensive analytics and simulations:  As light sources become brighter, for 
example, more imaging can be done and the analytics for these can be computationally-
intensive, in some cases requiring inter-facility workflows to process the data at 
supercomputer facilities.  Experimentalists want comparison with simulations even 
during experiments or between shifts, for example, to help with prediction and to 
supplement analytical solutions when they are not unique. 

• Distributed sensor monitoring, data collection and coordination:  New sensors and edge 
devices are just coming online to meet challenges of upgraded facilities, so have not 
been integrated into control and/or experimental workflows previously and have new 
performance characteristics.  For example, mechanical sample delivery for automating 
dynamic compression experiments will transform the workflow. 

• Widely different experimental workflows for  experiments:  Diverse applications make it 
hard to optimize and codesign solutions that will work for many.  For example, long-
running experimental workflows such as nanocrystallography produce orders of 
magnitude more data than do dynamic compression workflows, however each has their 
own real-time challenges.  Human interaction and decision making aspects also vary 
widely. 

In order to continue to forge new scientific discoveries and more fully utilize these upgraded 
science facilities, the computational workflows associated with experimental data and facility 
control need hardware and software codesign as well as codesign with a number of 
communities such as applied mathematics, statistics, mechanical and electrical engineering, 
computational science, and computer science. 
Opportunity: 
Key to being able to codesign these experimental workflows is a better understanding of them 
now and as they evolve.   Light sources such as LCLS have done detailed studies on data rates 
and volumes for a number of experiments in order to better understand how to tackle data 
compression and data transfer needs going forward.  However, widespread, cross-cutting 



understanding of the performance of these diverse workflows is needed. The following 
opportunities emerge as ones that will enable codesign in this domain: 

• Experimental workflow performance monitoring systems for user facility sensor, 
network, storage, memory, compute and user interaction:  The opportunity here is to 
make an independent, portable framework that measures performance of resources at 
experimental user facilities.   It is important that this tool work independently of 
workflow management systems(WMS) so that measurements can be made across those 
systems, however provide an interface so that the WMS can do this monitoring also. 

• Performance modeling tools that correspond to resources monitored above in order to 
create and predict performance of a diverse set of complex workflows:   This may 
require coordination between computing systems and beamline control systems.  While 
some performance monitoring systems are being made for larger supercomputing and 
interfacility workflows, the edge, local network, local storage and compute workflows at 
experimental facilities are less characterized.  We need to better understand how to 
overlap, distribute, and parallelize computation and make way for creative hardware 
solutions and resource utilization unique to experimental facilities. 

• Proxy applications:  Proxy applications have not typically been used for computations 
for experimental workflows, but have focused on large-scale scientific computing 
applications.  There is an opportunity to select subsets of experimental workflows as 
proxy applications to start providing a view of these to hardware vendors.  Examples of 
proxy applications would be those that highlight common operations on experimental 
data, such as compression methods, data calibration or fast analytics for accept/reject 
decisions based on control and beamline sensor data.  Proxy applications can also cover 
automated workflows that employ control methods to change beamline or user 
experiment parameters. 

Timeliness: 
It is quite timely to work toward the discovery, modeling and proxy applications for 
experimental workflow resource usage, since facilities are being upgraded now and beamtimes 
are scarce and expensive.  Edge computing is burgeoning for experimental science and many 
are currently interested in better harnessing it in their workflows now.  The impact of success 
would be that experimentalists can better understand resource usage and optimize it, real-time 
workflows can be enabled more often to make better use of beam time, and better science will 
result, as intended by the facility upgrades. 
 
[1] Sweeney, C., et al., Data Science and Computation for Rapid and Dynamic Compression 
Experiment Workflows at Experimental Facilities.  Workshop Report. 2021. LA-UR-20-24310.  
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[2] Sweeney, C., et al., Gap Analysis: Materials Discovery through Data Science at Advanced 
User Light Sources.  Workshop Report. 2019. LA-UR-19-21342.  
https://www.lanl.gov/2018gapanalysis 
[3] Bethel, E. W et al. Report of the DOE Workshop on Management, Analysis, and Visualization 
of Experimental and Observational data – The Convergence of Data and Computing. 2016.  
[4] Peterka, Tom, et al. ASCR Workshop on In Situ Data Management: Enabling Scientific 
Discovery from Diverse Data Sources. 2019. 
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Challenge
Dennard scaling has been over more than a decade and
Moore’s law is near its end. Therefore, the conventional
CMOS architectures that comprise the Top500 supercomput-
ers have only a few generations left, with rapidly diminishing
returns. Improvements are being sought in numerous di-
rections, ranging from similar architectures based on new
materials and physics [1], specialization and customization
within the CMOS world, new paradigms like non-von Neu-
mann and data flow, or dramatically new ways of computing
including reversible, neuromorphic, and quantum computing.

Exascale will be achieved largely through GPGPU acceler-
ators, fighting off dire predictions that dramatic hardware
changes would be needed. Similarly, once gloomy predictions
of failures for exascale have not wholly materialized. Check-
point/restart remains the dominant model for fail-stop faults,
albeit including I/O optimizations like in-memory checkpoint-
ing, burst buffers, and acceptable mean time between failures
(MTBF). Error correction in hardware is trusted to correct
soft errors (though still actively studied [5, 12]). Program-
ming models and other redundant computing strategies have
advanced, yet not seen wide adoption. As a result, hardware
and system approaches attempt to isolate faults and errors in
an effort to avoid mitigation at the application level. Though
applications themselves often do not address resilience (be-
yond checkpointing), significant costs for fault mitigation are
already a fact of life in HPC. Even if current standard design
approaches (e.g., built-in hardware error correction, software
checkpoint/restart) remain feasible, they are not necessarily
optimal. Therefore, pushing beyond exascale will require
significant innovation and paradigm shifts. Moreover, ex-
treme heterogeneity will challenge established strategies like
checkpoint/restart. Finally, the power-performance tradeoffs
for resilience deemed acceptable today may be dramatically
altered. This motivates codesign for resilience.

Research should seek potential benefits in overall cost,
performance, reliability and usability, via new tradeoffs in
hardware and software design that affect the origin and
mitigation of faults. For example, current hardware and
system reliability (and hence power) requirements could be
relaxed if more faults can be tolerated at the application
level. The value of such work is increased by the trend to
increasingly customized and heterogeneous hardware in HPC.
Alternatively, one may consider reversible computing, which

represents a non-traditional paradigm for digital computing
that offers an unconventional path for improving the power-
efficiency of systems while maintaining high reliability, via
recovering logic signal energies rather than reducing them to
the point where gate-level reliability is impaired. However, re-
versible computing requires significant architectural changes
(e.g., adoption of reversible hardware algorithms) which incur
their own overheads. A proper codesign analysis would also
be needed to compare a reversible computing approach to
other methods for resiliently scaling the power-efficiency of
systems. Both perspectives will be critical to addressing
resilience. We should not neglect addressing resilience in the
application if unreliable devices provide power/performance
benefits, nor should unreliable or low-voltage devices be
accepted as inevitable.

Opportunities
Overall, our idea of codesign still addresses the same problem
of optimizing performance, power, productivity and relia-
bility. The major questions are what type of errors and
faults need to be mitigated or isolated at the hardware or
middleware levels, how to manage the complex tradeoffs of
performance, power, and reliability while keeping the comput-
ing system usable, and what type of error or fault information
needs to be reflected up and across the system stack. We
call out the need for five critical advances in future codesign
to address resilience:

• Hardware experts delivering fault-tolerance models ac-
cessible to software developers

• Benchmarking on test beds and development of a cen-
tralized repository of observed faults on actual systems
to inform and validate models

• Application developers engaged in developing kernel-
specific resilience methods beyond generic approaches
like triple modular redundancy

• Programming models providing abstraction of unreli-
able execution environment to enable a variety of fault
tolerance techniques in a usable manner

• System simulation and modeling tools capable of evalu-
ating both built-in hardware fault tolerance and ABFT
strategies.

The computer architecture and fault-tolerant algorithms
space already offers many opportunities to pursue such code-
sign, which we address below.



Timeliness and Maturity
Numerous advances in architectures, ABFT, and program-
ming models provide an excellent foundation for rethinking
how we approach resilience in co-design. The prime example
of fault-tolerance codesign directly in the algorithm is quan-
tum computing [4]. Beyond quantum, several architecture
proposals pose new fault-tolerance challenges. Low-voltage,
“unreliable” devices promise dramatic power reductions. Re-
liably computing on these devices, however, may require
rethinking the instructions sets as seen in proposals, e.g.,
based on the residue number system [6]. Similarly, ABFT
techniques such as those found in [16] and [3] may tolerate un-
reliable, low-voltage devices. Coarse-grained reconfigurable
architectures may dramatically limit data movement relative
to von Neumann architectures. While von Neumann mod-
els lend themselves to obvious error-correcting code (ECC)
strategies on memory or registers, it is less clear how to opti-
mize error correction for data-flow architectures. If data-flow
accelerators provide abundant parallelism, it may be possible
to incorporate some redundant compute in kernels with lim-
ited overhead. Analog computing, particularly for individual
kernels like matrix-multiplication, could provide dramatic
performance and power gains, but reliability of such devices
remains to be studied [7]. Even if such devices regularly
experience faults, it may be possible to make them resilient
through ABFT techniques, e.g., [16] for matrix-multiplication.
Neuromorphic architectures can provide power-performance
improvements, most obviously for neural networks and ma-
chine learning. Neuromorphic algorithms for other domains
like graph analytics or random walks have been proposed [2].
Certain algorithm utilizing spiking neuromorphic devices em-
bed information temporally [11], not spatially, which clearly
requires a dramatic shift in thinking from simple ECC strate-
gies to address fault-tolerance.

The ABFT community has been exploring a new oppor-
tunity for codesign and better integration with resilience
techniques accommodated by systems and programming mod-
els [9]. Additionally, there has been increased attention to
randomized methods [10] for numerical and combinatorial
algorithms, which significantly reduce computation through
random sampling techniques. These algorithms, delivering
similar accuracy to conventional deterministic algorithms,
are potentially tolerant to occasional soft errors because of
the way they handle randomness in the computation.

Fault tolerance support in parallel programming models
have been explored for the past several years. The MPI
standardization committee have been discussing a number
of fault tolerance extensions (ReInit [8] and User Level Fault
Mitigations [13]) as alternatives to global checkpoint/restart.
Recently, a resilient extension of Kokkos [14] has been pro-
posed to leverage performance portable abstractions and
enable resilient program execution and data objects for un-
reliable computing systems. Additionally, there have been
emerging task parallel models resilience extensions to enable
localized program recovery [15].
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I. INTRODUCTION

As we approach the end of Moore’s Law, computing systems at
all scale, from edge devices to supercomputers, will have to resort
to the use of domain-specific processing elements to keep providing
performance improvements in tightly constrained power envelopes.
At the extremes, we can expect the appearance of computing systems
integrating modular processors with seas of accelerators [1], where
the accelerators themselves may present different levels of configura-
bility (from simple parameters, to array of coarse grained functional
units, to bit-level configurability such as the one provided by Field
Programmable Gate Arrays).

While the programmability challenges posed by heterogeneous
systems are not new, the need to exploit extreme specialization,
coupled with the appearance of modular compiler technologies, open
source hardware and licensable Intellectual Property (IP) Cores,
and new chip integration methods, is creating new opportunities
for reimagining tools able to quickly transition from algorithmic
specification to their hardware description and implementation.

II. CHALLENGES AND CURRENT APPROACHES

We are moving towards a new generation of applications where
algorithms with significantly different behaviors are composed in
complex workflows that alternatively are compute-intensive (e.g.,
scientific simulation), memory-intensive (e.g., data analytics, data
structure preprocessing through graph algorithms), or both (e.g.,
machine learning methods that operate on large dense or sparse
tensors).

A domain specialized accelerator for one phase may not adapt
to the subsequent phase, requiring the composition of a complex
heterogeneous system. At the system level, thus, the challenge is
making sure that the adequate accelerators are select, and/or gen-
erated, considering the algorithmic computational patterns, without
directly requiring the intervention of an expert hardware designer.
Hand-designing accelerators is, arguably, time consuming, and does
not even consider the added system programmability challenges. Even
in the case of Application Specific Integrated Circuits (ASICs), the
generation methodology needs to be aware of specific features (anal-
ysis) of the patterns to accelerate, the metrics, and the constraints, to
allow exploration along a variety of old (area, performance, energy)
and new (security, cooling, size) metrics.

Some of these accelerator generation challenges have somewhat
been previously discussed in the area of fine-grained (re)configurable
devices (FPGAs). While these devices have been around for a long
time, they have mainly been used to implement mission critical cus-
tom architectures for designs where the low volume could not justify

ASICs production. However, the possibility to instantiate domain-
specific accelerators after deployment adapts well to novel emerging
application areas such as machine learning and data analytics, where
the algorithms (and, thus, the computational pattern) keep quickly
evolving and fixed domain accelerators may support only subsets
of progressively less relevant methods (or only the most general
computational patterns). Because High-Level Synthesis (i.e., the
process that allows generating hardware description instantiable on
the FPGAs starting from higher-level languages) historically focused
on approaches mostly considering digital signal processing (DSP)
worklaods, research and industry have renewed their commitments
to develop new synthesis tools (or new ”libraries” of components)
for various types of parallel computational patterns, with different
degrees of success - but typically focusing only on very specific
domains.

The performance/flexibility/adaptability tradeoffs between bit-level
configurable devices and fixed accelerators also led research to restart
investigating coarser grained reconfigurable designs, which promise
to provide higher performance through specialized functional units
while maintaining adaptability through quick runtime reconfiguration
of the computational substrate. This led to the appearance of a
plethora of new Coarse Grained Reconfigurable Array (CGRA) like
designs and dataflow architectures (e.g., SambaNova, GraphCore,
Cerebras, NextSilicon, etc.). However, the variety of architectures
highlights how there is not yet clarity on how such architectures
needs to be actually organized, and how the key challenges are in
the software toolchains, typically limited by the fact that each and
every platform adopts its own abstractions and related infrastructures.

III. OPPORTUNITY

Retargetable opensource compiler frameworks, which have been
a staple point for the realization of commercial and research High-
Level Synthesis tools [2], have today reached a level of maturity that
can really enable the development of modular and reusable, custom
hardware generators. Retargetability allows, for example, to instanti-
ate appropriate frontends for different input abstractions. The variety
of domain specific languages (with different levels of appreciation de-
pending on the domain science and scientist) and/or general purpose
languages (with large amount of existing complex applications that
can still benefit from domain specialization), requires a decoupling
of the frontend from the middle end. At the same time, there is
a need for these infrastructures to initiate architecture independent
optimization and design space exploration at the front-end level (as
early as possible), to maximize the benefit of user-provided informa-
tion. Approaches such as the MultiLevel Intermediate Representation
(MLIR) [3] which allows building reusable and extensible compiler
infrastructures enables defining such decoupling and the ”High-Level
IRs” to apply optimizations at the right abstraction level. Furthermore,
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they provide opportunities to define ”attributes” and extensions (e.g.,
to existing languages) to drive hardware design space exploration and
optimizations along novel metrics (e.g., security).

Middle ends (such as the actual LLVM compiler) can today
leverage a richness of algorithmic solutions to generate highly
optimized machine code, and can be relatively quickly retargeted
to new instruction sets (or instruction set extensions). Many of
the compiler algorithms already available are basilar for hardware
synthesis, especially in the case of Finite State Machines with
Datapath (FSMD), which leverage instruction level parallelism and
static scheduling. Interfacing with novel HLIRs, with their natural
support for hierarchy and (task level, coarse grained) parallelism,
opens further opportunities in generating and composing hierarchical
hardware systems.

The hardware synthesis process can greatly benefit from the avail-
ability of opensource or licensable hardware IPs, which can become
part of the resource library for such compiler-based toolchains, en-
abling algorithmic and hierarchical system-level design. This not only
accounts for opensource instructions sets (such as RISC-V) but also
templated accelerators [4] or even functional units. Compiler-based
generators enable exploring the design space and setting parameters
for these components (e.g., precision). Hence, they directly tie to
configurability of templated components. Additionally, they provide
a path to supporting reconfigurability, for example leveraging just-
in-time compilation, where the IR (bit code) can be lowered to
slighlty different machine code depending on the overall system
status. On the line of modularity, employing circuit-level IRs (e.g.,
FIRRTL, CIRCT) [5] before actually generating the designs in hard-
ware languages provides yet another level of decoupling, enabling
composability of hardware modules and the possibility of optimizing
the final design depending on the actual device technology (different
types of devices, technology nodes, or logic cells).

Employing compiler based toolchains also provide unique opportu-
nities to implement profile driven hardware synthesis. Akin to profile
driven compilation, beside leveraging typical static analysis, hardware
synthesis can also benefit from dynamic analysis, especially for data
dependent workloads. Modern compiler toolchain can easily interface
with instrumentation and profiling tools (e.g., binary instrumentation),
and even provide such functionalities through appropriate compiler
passes. The resulting information can be fed back to drive the syn-
thesis process. This is especially crucial with novel memory intensive
workloads, which dramatically change the typical hardware genera-
tion approaches focused on compute first. Compiler retargetability
even allows profiling on a given host architecture, and reuse the
information for the synthesis. Dynamic analysis becomes even more
critical if targeting configurable, or reconfigurable components, which
can modify behaviors and parameters as program execution proceeds.
Obviously, these mechanisms also require a close collaboration with
the hardware component designers, to provide necessary hardware
hooks, and runtime layers, to support monitoring.

Furthermore, design space exploration calls for integration with
modeling and simulation methods. Hardware synthesis algorithms
require metrics to drive the optimization process. Such techniques
need to provide quick estimation of the metrics, along the different
dimensions, possibly without performing actual simulation and logic
synthesis of the identified design point. This obviously need the
development effective models for performance, area, and energy.
Modular compiler based toolchains can streghten such integration,
enabling association of metrics to the operations represented in the
IRs, and opening opportunities for automating model building.

IV. RELATED FRAMEWORKS

OpenCGRA [6]: OpenCGRA is a parameterizable opensource
CGRA (Coarse-Grained Reconfigurable Arrays) generator based on
user-specified configurations (e.g., size, type of the computing units
in each tile, communication connection, etc.). Implemented by lever-
aging PyMTL, OpenCGRA uses a modular design and standardized
interfaces between modules to generate synthesizable Verilog of the
designs.

SODA Synthesizer [7]: the Software Defined Architectures
(SODA) is a new modular opensource synthesis infrastructure. Lever-
aging a variety of community effort, SODA supports a variety
of domain specific and general purpose languages that interface
with the Multi-Level Intermediate Representation (MLIR) compiler
infrastructure, implements a synthesis backend fully integrated within
the LLVM framework, and is able to generate a circuit representation
in FIRRTL. The backend can interface with OpenCGRA, or generate
RTL for FPGAs and ASICs, supporting both opensource (e.g.,
OpenROAD) [8] and commercial logic synthesis tools. The whole
design flow will be able to perform optimization and design space
exploration at the front-, middle, and back-end levels.

V. TIMELINESS

Novel converged workloads, integrating scientific simulation,
data analytics, and machine learning, coupled with waning ben-
efits of technology scaling, requires complex systems integrating
many domain-specific accelerators. At the same time, new meth-
ods of integration (e.g., chiplets), the appearance novel config-
urable/reconfigurable devices, the availability of opensource or li-
censable IPs, and new community efforts in the area of compilers,
are creating a unique opportunity to develop novel, modular, and
extensible hardware generators. These generators have the potential
to bridge not only some of the programmability gaps, but also
bridge the design gap from algorithmic specification to hardware
implementation.
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Challenge: 
Heterogeneity and specialization have led to a new generation of high performance 
architectures.   These architectures span a variety of power and performance profiles, from 
resource-constrained (though increasingly powerful) edge devices to leadership class 
supercomputers.   
 
Today’s approach to software development for both HPC and edge computing requires either 
computing experts (HPC or edge) to become domain experts, or vice versa.  Either case comes at 
great cost, taking time away from the research problem at hand and slowing momentum. 
Previous efforts to port highly scalable and performant code to the Titan supercomputer at Oak 
Ridge National Lab required 2 FTE years per codebase [1]. Domain specific approaches are 
common, but traditionally cannot bridge the performance portability gap and have not yet been 
shown capable of targeting systems of vastly differing scales, with unique performance, power, 
and reliability constraints.  Instead, software is developed, verified, and debugged on every 
system of interest. 
 

 
Figure 1: Notional DSL compiler with support for heterogeneous deployment scenarios 

Opportunity: 
A new generation of domain-specific programming models provides an opportunity to unify edge 
computing, HPC, and intermediate systems and scales of interest.  Domain-specific programming 
models have been shown to offer substantial performance portability, particularly within the 
supercomputing space, enabling domain experts to rapidly express scientific simulations from 
computational fluid dynamics to radar applications [2].  These domain-specific approaches, in 
combination with next-generation compilers and intermediate representations such as MLIR, 
offer opportunities for rapid adaptation to multiple accelerator technologies and heterogeneous 
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resources.  This may represent a major step for high performance computing, but on its own is 
insufficient to unify the HPC to edge computing spectrum and their programming models.   
 
Instead, the next generation of domain-specific programming models must be capable of 
optimizing across multiple, radically different, architectures as shown in Figure 1.  A domain-
specific language should be capable of producing an optimized implementation for both today’s 
leadership class supercomputers and resource-constrained edge devices, including support for 
fault tolerance, reduced precision, and more.  This will require advances in system modeling, 
performance prediction, domain-specific compilers, and runtimes.   
 
The architecture envisioned in Figure 1 accepts a standard domain-specific application along with 
fault tolerance requirements, deployment/architecture requirements.  The backend emits 
architecture-specific object code including support for fault tolerance according to the 
deployment and reliability characteristics requested by the programmer.  Likewise, an 
application-specific and architecture-specific runtime is emitted which is responsible for 
monitoring the execution of the application via introspection, heartbeats, etc. and adapting the 
execution for improved performance, power efficiency, or fault tolerance.  The runtime may, for 
example, rebalance computation across a supercomputer due to load imbalance that cannot be 
detected at compile time.  On an edge deployment, the runtime may observe increasing memory 
failures and disable a memory rank to improve reliability. 
 
Timeliness: 
Now is the time for investment  in the next generation of domain-specific programming models. 
The research community has seen a proliferation of DSLs with increasing capabilities, from Halide 
for computer vision [3] to Spiral [4] for signal processing and numerical kernels and CASPER [2] 
for high performance radar and CFD applications.  The DARPA PAPPA program has advanced 
domain-specific programming models specifically targeting heterogeneous targeting high 
performance computing resources.  As a result, the community is well-positioned to extend this 
work to the edge computing space.   
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The Center for Efficient Exascale Discretizations (CEED) is a focused team effort within the U.S.               
Department of Energy (DOE) Exascale Computing Project (ECP) that is developing the            
next-generation discretization software and algorithms to enable a wide range of finite element             
applications to run efficiently on exascale hardware [1]. In this whitepaper we present lessons              
learned and propose future directions based on the co-design research and development activities             
in the CEED project. 

High-Order Applications. Efficient exploitation of modern architectures requires rethinking of the           
numerical algorithms for solving partial differential equations (PDEs) on general unstructured           
grids. Many of these new architectures, such as general purpose graphics processing units (GPUs)              
favor algorithms that expose ultra fine-grain parallelism and maximize the ratio of floating point              
operations to energy intensive data movement. In large-scale PDE-based applications that employ            
unstructured finite element discretizations, practical efficiency is measured by the accuracy           
achieved per unit computational time. One of the few viable approaches to achieve high              
performance in this case is to use matrix-free high-order finite element methods, since these              
methods can both increase the accuracy and/or lower the computational time due to reduced data               
motion. To achieve this efficiency, high-order methods use mesh elements that are mapped from              
canonical reference elements and exploit, where possible, the tensor-product structure of the            
canonical mesh elements and finite element spaces. Through matrix-free partial assembly, the use             
of reference elements enables substantial cache efficiency and minimizes extraneous data           
movement in comparison to traditional low-order approaches.  

As a co-design center positioned between applications and hardware vendors the CEED efforts have              
been focused on two major goals: 1) Help applications leverage architectures by providing them              
with state-of-the-art high-order discretization algorithms that better exploit the hardware and           
deliver significant performance gain over conventional low-order methods; and 2) Collaborate with            
hardware vendors to utilize and impact hardware design and its software stack through proxies              
and miniapps. In achieving these goals, we have found the following factors to be important and we                 
believe that they will continue to be important for future co-design activities: 

Scalable hardware ​that not only achieves high on-node peak performance but requires small             
amounts of data on the node to achieve e.g. 80% of that peak, see the key n​0.8 parameter in [2]. This                     
is critical for strong scaling and reducing the time to solution. Low system noise and reproducibility                
are also important for algorithmic development​. 

Benchmarks that are not synthetic but motivated by applications, incorporating key local and             
global kernels in model problem settings. We have found that such application-relevant            
performance testing and analysis (as opposed to e.g. using Top500 benchmarks) is critical to              
effective HPC software deployment and achieving our first goal of real application impact. We have               



also found it useful to develop a hierarchy of benchmarks that are inter-connected but serve               
different purposes: 
 

● Streaming Benchmarks. ​These represent basic memory-bound linear algebra operations         
that give us bounds on expected performance of the more complex benchmarks, and are              
directly relevant to performance modelling discussed below. 

 
● Bake-off Problems (BPs). ​These represent the simplest PDE-motivated application kernel,          

e.g. conjugate gradient iterations with a mass matrix, but combine local dense linear algebra              
with MPI communication and global scatter/gather and reduction operations. The BPs were            
designed to establish best practices for performant implementations of high-order methods           
across a variety of platforms. This has allowed us to pool the community efforts of multiple                
high-order development groups to identify effective code optimization strategies for          
candidate architectures. In addition to driving algorithm design and providing meaningful           
goals for vendor optimizations (e.g. size of on package memory, internode latency, kernel             
launch overheads, hardware collectives), the BPs are also useful for comparing different            
HPC systems and identifying the hardware bottlenecks to application performance. 
 

● Miniapps. ​One step above the BPs are the miniapps, which are simple yet capture              
application-relevant physics to work with vendors, be used in system procurement,           
collaborate software technologies projects, and provide test and demonstration cases for           
application scientists. One of their uses is to highlight performance critical paths with the              
goal to impact the design of exascale architectures, and system and application software, for              
improved portability and performance of the high-order algorithms. A good miniapp should            
cover at least 80% of key kernels in a distinct part of the application, and so combining with                  
the n​0.8 ​parameter above we aim for “80:80:80”, i.e. 80% MPI scalability at 80% of device                
throughput for 80% of representative app capabilities. 

Performance and Energy Efficiency Models ​that are important to understand the benchmarks and             
directly inform hardware design choices and trade-offs. In addition to performance benchmarks            
and models, we have previously investigated the inclusion of benchmark capabilities to evaluate             
energy efficiency. This would allow us to incorporate power-efficient computations in the CEED             
software and produce feedback of value to hardware designers. For example, we have established              
important cases where capping power consumption leads to improved power efficiency of up to              
20% without loss of performance [3]. 

[1]  ECP co-design Center for Efficient Exascale Discretizations, ​https://ceed.exascaleproject.org​. 

[2]  P. Fischer, M. Min, T. Rathnayake, S. Dutta, T. Kolev, V. Dobrev, J.-S. Camier, M. Kronbichler,  

      ​ ​ T. Warburton, K. Swirydowicz, and J. Brown, ​Scalability of high-performance PDE solvers​,  
      ​ ​ ​The International Journal of High Performance Computing Applications​,​ ​34(5): 562–586, 2020. 

[3]  A. Haidar, H. Jagode, P. Vaccaro, A. YarKhan, S. Tomov, and Jack Dongarra, ​Investigating Power 

     ​ ​  ​Capping toward Energy-Efficient Scientific Applications​, ​Journal of CCPE​, 31 (6), 2019. 
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2 Challenge

Current codesign activities in conjunction with next-generation supercomputer procurements are often too
focused on (a) achieving performance at a single-node or fine-grained hardware level and (b) using vendor-
specific software to assess a limited class of performance metrics (such as designing a new language around
a new accelerator, creating a development environment which is by definition not portable). In addition,
the widening of the mission space of leadership-class facilities to support complex modeling and simulation
tasks and data-intensive and AI-based application components is a rapidly evolving trend that should be
addressed through co-design efforts. The appearance of these application classes as peers to more traditional
high performance computing (HPC) is highly significant. Without due recognition of this fact, the use of
conventional codesign practices will lead to an increased gap between the real-world demands posed on the
systems and the design and performance metrics by which they are being designed and formally evaluated.
The existence of this gap must therefore be properly recognized and taken into account in any holistic
codesign process.

The relatively narrow focus at the node level can lead to missing out on important opportunities at
system-scale codesign. These opportunities, when properly exploited, can significantly increase the scientific
return by supporting new classes of applications as well as by optimizing the way science campaigns are
actually carried out on the machines. Examples of these opportunities include data-intensive computing,
large-scale dynamic workflows, and smart scheduling. Considering the scale and costs of next-generation
leadership class systems, this level of codesign should have the force of an architectural design imperative.

Issues of urgent relevance for production application use such as how to layer concurrency across MPI,
GPUs, GPU subunits, etc. can become afterthoughts, with getting codes to build or run with evolving
vendor tools taking up all the time. Eventually, the influence on hardware is in any case very limited—in
part because vendors are aiming to deploy a new software stack and new hardware concurrently. The scope of
codesign in procurements is also extremely limited: One option is picked from a few vendors, by which time
most design parameters are already fixed by the vendor to fit their hardware roadmap targeting mainstream
customers. Few if any parameter/feature changes can be made in the 2-3 year timeframe from award to
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delivery that fit within the vendor’s target market, and the vendor is ultimately the one making the final
decisions.

3 Opportunity

The challenges described above could be addressed by defining a community/open-source development en-
vironment (compilers, libraries, and data science frameworks) which will be evolved to deliver optimal
performance on the new hardware. This environment should exist, fully-functional on existing hardware
platforms today. For post-exascale system design, this could include products of the Exascale Computing
Project [1]. A tool chain should allow customization, corrections, and interoperability in a reasonable way
based on documented interfaces.

A modest set of complex-workflow applications targeting high performance at scale will be used to
codesign the system. Compilers, libraries, and frameworks in that “stack” will be iteratively refined as
hardware design evolves. Full-system application test cases, with all levels of concurrency considered from the
outset, will lead to a more holistic design rather than hotspot and microbenchmark optimization. Asserting
this common development context will help:

• lead to increased diversity in hardware vendors with strong responses to RFPs, and more opportunity
to pick best-fit systems for the needs of compute facility users

• address non-traditional scientific use cases such as processing experimental/observational data on
demand through dynamic and preemptable scheduling, re-training or revising embedded AI models
confronted with new data patterns, time-sharing of accelerator resources by CPUs, and dynamically
growing/shrinking resources for an application

Vendors working with research and compute facility staff toward a next-generation system would commit
to deep engagement on the set of complex-workflow applications, to develop system software supporting the
development environment, and the at-scale runtime environment. Important considerations such as power
constraints would manifest in hardware at the integration level—numbers of nodes and node architecture to
achieve applications performance within those constraints. At the node architecture level, there might be
minor hardware design changes to support, for example, timesharing of accelerators.

System procurement is not the place for traditional microscale-focused codesign projects. These should
be more open-ended efforts begun long before product roadmaps solidify. When hardware is designed we
need to think early on about programmability and exposure into a non-vendor-specific software stack. Here
again, in the context of microscale-focused codesign, we argue that community-based development tools are
the way to go for something to be used by DOE researchers. The hardware design process could also take
advantage of using production or near-future-production DOE scientific computing applications as targets.

4 Timeliness

This would be well-timed with respect to procurement of the first post-exascale systems at DOE facilities.
Additionally, the current explosion of specialized accelerators and node architectures (neuromorphic, wafer-
scale, etc.) has led to a rapid growth of trying out modest new systems on scientific computing workloads.
A common, community-based development environment is more important than ever for performance porta-
bility across this emerging new ecosystem. Smaller vendors could leverage DOE development of system-scale
design to build large systems with lower software investment needs. New microscale hardware design, such
as novel accelerators with potential for DOE computing, could benefit early in the process by focus on pro-
grammability using a community development environment and by optimizing around a well-chosen set of
modern, forward-looking DOE computing workflows.
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Challenge:  The explosion of the architectural design space that comes from the many newly 
available technologies (chiplets, photonics, etc.) opens up more options for the scientific 
computing community, and existing efforts have shown that applying deep application 
knowledge to drive choices can lead to important new design points.  However, approaching 
codesign as just the interaction between an end application and the heterogeneous hardware 
leaves out the crucial systems and middleware components from the HPC and scientific 
computing communities.  Adding these components, libraries, and workflows into the codesign 
process is key if we are to get beyond individual, small-community, hero-effort codesign 
efforts.  Further, the emergence of edge computing and experimental pipelines that span 
codesign workflows across a variety of systems and architectures has added even more 
heterogeneity to the parametric exploration of the codesign space. The scientific HPC 
community brings together a wide array of people and specialties, and the codesign of the tools 
and runtimes that bind all of that together needs to be a prime consideration. 
 
Opportunity:  The key opportunity in redefining how codesign works with the scientific HPC 
community is in reorienting from a one-time activity to an ecosystem that supports persistent, 
long-term investments in measuring, modeling, and portably applying fresh insights. The 
practice of codesign coming from our previous experiences [1,2] has led us to the observation 
that the output of a codesign study should not be a preferred solution for a current 
problem.  Instead, we contend that the point of the codesign study is to determine a decision 
tree or, more generally, a decision space with prioritized directions for optimization when 
solving a problem, once the particular hardware, power, and/or performance constraints have 
been determined for a particular effort.  Adopting this change in approach offers a number of 
benefits:  (1) it highlights the need for tools that can generate and manage the decision space 
and the data upon which it is built; (2) it gives an abstract representation of the performance 
trade-off choices that separates out the different time scales on which performance decisions 
might need to be taken, and (3) it offers a chance for constructing software systems where 
hardware/software codesign can merge smoothly into models for auto-tuning of portable and 
reusable codes.    

The tools for constructing and conducting the codesign experiments need to have traits of 
workflow and performance monitoring systems while delving further into supporting the 
codesign experimental platform.  To make the analysis, data, and constituent components of the 
codesign reusable, a common abstraction that supports an easy and structured approach is 
important. Codesign-focused workflow and monitoring software can help users experiment 
across different layers in the hardware and software stack such as heterogeneous compute 
endpoints (CPUs, GPUs, FPGAs), tiered storage hierarchies (SSDs, NVMs, PFS), 
communication and I/O middleware, as well as application patterns. The ability to extract and 
manage live and rich performance information dynamically will enable evaluating multi-step 
science workflows as opposed to a single set of targeted benchmarks. As an example, consider 
the ECP Whole Device Model Application (WDMApp) project where multiple concurrent, 
heterogeneous simulations (some run only on CPUs, some run on GPUs/FPGAs, some need 
tightly connected networks, etc.)  create a complex decision space to be explored [2]. The 
codesign of code-coupling requires clear experimentation, prediction, evaluation, and 



refinement stages for each exascale context. As a start to supporting this sort of codesign within 
ECP’s Center for Online Data Analysis and Reduction [1], we developed the Cheetah and 
Savanna suite of tools that demonstrated to us the power of using a regularized experimental 
environment to guide codesign hypothesis testing and decision exploration. Thus a 
standardized method of performing codesign studies through new workflow systems will play an 
important role in accomplishing the end goals for codesign studies.  

This new perspective on codesign enables but also requires dynamic configuration of both 
simulation and infrastructure resources, including libraries and dependent technology. 
Telemetry data from HPC systems is broadly available and can be dynamically captured, 
aggregated, modeled, and fed as input into feedback & control frameworks that use traditional 
or modern machine learning methods to guide algorithmic choices.  Consider the challenge of 
tuning workflows that consist of multiple applications connected via streaming data links, such 
as federated instruments or multi-application code coupling.  For example, [3] found that RDMA-
based communication of simulation output data to an analysis application had an outsized 
negative impact on simulation performance because it interfered with the simulation's use of 
MPI.  However, utilizing application-level monitoring to discern the simulation’s "communication 
phases" vs. "compute phases" and scheduling output RDMA use appropriately eliminated this 
interference and maximized the performance of the linked applications.  Detailed performance 
understanding is necessary both to diagnose such interactions and also to provide the 
infrastructure upon which automated amelioration solutions could be constructed.  

Traditional codesign provides a human-actionable plan for adapting and tuning software to 
run on targeted hardware platforms. The target of a codesign decision space should be adjusted 
to be machine-actionable and dynamically reusable throughout the lifespan of the application. 
Such a reimagined codesign drives a shared decision space where architecture decisions, 
application performance, and auto-tuning middleware can all benefit.  Treating it as a process to 
generate a static roadmap for systems or architectural engineers leaves out too many 
possibilities. As we have described, the monitoring and capture of runtime performance 
provenance information from a system is essential for developing rich models. In this case, a 
machine-actionable codesign provides an easy-to-deploy workflow that can be executed on a 
different target platform to not only measure the performance characteristics of that platform, but 
also to interpret the results and provide adaptation of codesigned software to run efficiently. 
Codesigning the interaction between heterogeneous hardware, allocation systems, workflow 
management, simulations, infrastructure libraries and the runtime analysis is key to enabling the 
type of reconfigurable computing that will fully utilize costly HPC resources. 
 
Timeliness:   Recent innovations due to exascale efforts, along with the overall degree of 
maturity in HPC software development, leave us ready to translate these gains to a broader set 
of interests. Individual hero efforts have been foundational, but we need scalable approaches 
that encourage reuse and sharing. 
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Topic Architectures, modeling and simulation, codesign methodologies
Challenge To-date co-design approaches within the DOE have focused primarily upon the processing element (e.g., CPU

and GPU) using mini-apps and proxy applications. There has been some focus on network co-design using traces, modelling,
SST and similar methods [1]. To fulfill its science and national security missions, the DOE needs to procure HPC systems and
continued increases in effectiveness will require the exploration of co-design at the system, rather than only the component,
level. Previous approaches have not adequately explored this aspect which will become more important as we enter the era of
extreme heterogeneity and a slowing of Moore’s Law. There are several challenges with current approaches:
• Under-represented Application Space - During various *Forward programs, selected vendor partners used on the order

of ten proxy or mini apps, but ASCR facilities host hundreds of applications each year. Vendors limit the number of
applications because they are focused on very low-level architectural details (e.g., cache replacement policies, memory
access optimizations) that require very expensive cycle-accurate simulations. A related issue for the ASCR facilities is
application turnover. While the NNSA facilities have more fixed and well-defined application and user base, the ASCR labs
use annual public allocation programs that can see up to 30% turnover in applications from year to year. Even if the facility
profiles applications in a given year, that information is perishable and declines in value over time.

• Poor Representation of Full Applications - Proxy apps and mini apps are not full applications. Proxies and mini apps
tend to focus on a specific area of interest for the developer but, by design, leave out many aspects of full applications (e.g.,
serial sections, data movement between CPU and accelerator, non-representative data, I/O). It is challenging to understand
the limitation of proxy and mini apps. Often a vendor partner may not understand or factor in these limitations, which can
lead to hardware architectural choices based on invalid, unrepresentative, or incomplete code representations.

• Applications in Isolation - Most *Forward co-design efforts have focused on a single application on a single processor
(or perhaps a single CPU and accelerator pair). Few jobs, even at the Leadership Computing Facilities, run in isolation.
Assessing the impacts of co-scheduled jobs on current and proposed architectures is a challenge. DesignForward-2 had the
goal to encourage vendors to consider whole system design and simulation although its budget was limited and outcomes
from this program were varied. Also, the vendor-developed tools remained with the vendors and are not generally available
for DOE use.

• Lack of I/O - While I/O can be included in the previous item, we call it out explicitly because most proxy and mini apps
do not perform any I/O except perhaps to read input files. One job’s I/O has been shown to negatively impact another job’s
performance [2]. Vendors may try to mitigate this by provisioning a separate, dedicated I/O fabric which is an expensive
alternative or by providing Quality-of-Service (QoS) implemented using traffic classes. Being able to assess a proposed
design’s ability to adequately handle I/O is a challenge, and exploitation of co-design opportunities involving I/O is currently
not possible.

• Limited Market Scope - A challenge in the co-design of HPC resources for DOE Supercomputers is matching the wider
market need. Vendors are hesitant to work on options at the sole benefit to HPC. Identifying robust architectural solutions
that benefit both HPC and the wider technology market is necessary for continued success.

In combination, these challenges outline the key differences as compared to co-design for embedded systems - the constantly
evolving workloads and the multiple simultaneous users of an HPC system.

Opportunity The era of extreme heterogeneity and an increased focus upon considering application workflows provide
opportunities for new directions of research that both address the aforementioned challenges as well as incorporate new trends.
The target should be optimal performance of a whole HPC system; delivering a robust set of performance increases that will
be perceived by end users. This whole system, holistic approach to co-design may also benefit a broader base of applications
by offering optimizations that target common data paths between heterogeneous components such as NIC-to-accelerator or
accelerator-to-storage. Such considerations will also provide a set of design goals for system software research, allowing
identification of needed new capabilities in the future.
• System Resource Usage Data - A necessary step in to enabling this vision is to research how to collect resource usage for

existing systems, and how to interpret it. At a minimum, facilities can use the data to assess whether the measured resources
are over- or under-provisioned as well as for hotspot determination to help guide future procurements. Existing telemetry
tools, such as LDMS [3] and Lustre Jobstats [4], are very useful but provide a limited view of the full application and



full system behavior. Combining multiple streams of telemetry from inside (e.g., scheduler logs, resource usage) as well as
outside (e.g., system power/cooling, outside ambient temperature) the system, researchers should be able to gain insights into
the behavior of the system as a whole as it executes various workloads. Increased collection of telemetry will enable using
AI/ML to discover new correlations (e.g., power/cooling trends for various projects/applications, optimized job scheduling
in order to minimize inter-job interference or to smooth power usage, improve job throughput).

• More Informative Application Proxies - Although many mini-apps have been developed, there has been no systematic
study of their deficiencies and how these may be addressed. Can application developers, in partnership with computer science
researchers, provide more information to vendors about the valid uses of the proxy or mini-app and, more importantly, what
uses are invalid (e.g., looking at data movement between a processor and accelerator when the proxy is only meant to
focus on a specific kernel on an accelerator, whether the data is representative or not)? Relatedly, can application proxies
be developed to addresses the gaps in coverage identified? Can the needs of DOE and HPC applications that are unique as
compared to the overall IT industry be documented and quantified?

• Continuous, Lightweight Application Characterization - To complement the facility data collection above and to go
beyond what mini-apps and proxies can provide, facilities need the capability to continuously characterize full applications
running on their systems. These tools need to be lightweight to avoid slowing the applications down. Darshan [5] and
AutoPerf [6] provide good examples of the desired performance but are of limited scope, I/O and MPI. Traditional profiling
is useful for understanding application behavior on existing hardware, but lacks the ability to project performance on new
hardware. The tools need to be able to capture the compute phases as well as data movement between components within a
process and between processes. To minimize storage space for profiles, an ideal tool would recursively extract patterns that
represent the application’s use of resources (e.g., compute, memory, data movement).

• Standardized System Model Format - To assist facilities as they evaluate proposed architectures, the need exists for
a standardized, machine-readable format to describe a proposed system’s architecture including compute elements (e.g.,
chiplets within a processor, processors within a node), memory, interconnects, and storage with their associated performance
characteristics. It should be have the granularity to describe individual processors, how processors are configured within a
node, and how nodes are interconnected at the system level, and how systems are interconnected (e.g., compute and storage).
It should be flexible enough to describe current systems and also future designs that could include dis-aggregated resources
connected by photonics, compute in memory, and compute in the network.

• Full System Modeling - With the above full application representations and standardized system models, the final piece
of the puzzle are tools to play the workload on the system model to determine a facility-defined Figure of Merit (FOM)
(e.g., 50x faster, Volume of work, shortest time to complete the workload). Early work towards this has been promising if
labor-intensive due to the nonstandard approaches to system profiling and data exchange between facilities, researchers, and
vendors. Such tools might employ AI/ML to find the optimal balance for a given facility tailored to its specific workload.
Much remains to be done in order to be able to determine the optimal balance of resources for a given facility’s workload.
Timeliness or Maturity Given the rising costs of pre-exascale and exascale systems and the large step functions for

provisioning key resources (e.g., memory, compute, interconnect, and storage), understanding the actual needs of applications
rather than relying on received rules-of-thumb (e.g., 2 GBs of memory per core, checkpointing 50% of memory) will allow
DOE facilities to provision the optimal combination of resources to provide the most effective system for their users. To
this end, we need to co-design the system, not just the individual components. The research topics described above provide
a pathway towards that goal. Gathering as much telemetry as possible about pre-exascale and exascale systems as they are
deployed will allow computer scientists to make insights into resource usage quickly. More and improved proxy and mini-apps
will allow vendors to have more insights into DOE’s workload. Further out, tools to capture application motifs, standardized
machine representations, and the ability to combine the two could enable DOE facilities to continue to improve the quality
and quantity of science in an era of extreme heterogeneity.
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I. TOPIC: SOFTWARE CODESIGN METHODOLOGIES

Efficiently utilizing procured power and optimizing per-
formance of scientific applications under power and energy
constraints are important challenges in HPC. The HPC Pow-
erStack - a global consortium of laboratories, vendors, and
universities - has highlighted a design shift towards standard-
ization of the HPC power-management software stack. This
enables seamless integration of software codesign solutions
that enable management of energy/power consumption of large
scale HPC systems. This position paper presents the findings
of a working group focused on the end-to-end tuning of this
power management codesign stack. We identify the research
opportunities and challenges for collective auto-tuning of two
or more management layers (or domains) in the PowerStack.
This paper lays the foundation for this initiative by identifying
and aggregating the important R&D challenges in streamlining
optimization efforts across the multiple layers, contributors
and stakeholders of the PowerStack for aiding in energy
efficient HPC codesign.

II. CHALLENGES

As we enter the Exascale computing era, power and en-
ergy management are key design points and constraints for
any next generation of supercomputers [1]. Efficiently uti-
lizing procured power and optimizing the performance of
scientific applications under power and energy constraints
are challenging for several reasons including dynamic phase
behavior, manufacturing variation, and increasing system-level
heterogeneity. While several individual techniques have been
proposed for the automatic and efficient management of power
and energy, the majority of these techniques have been devised
to meet the needs of a specific high-performance computing
(HPC) center or specific optimization goals. Furthermore, each
technique tends to improve the management of power and
energy for a different subset of the site or system hardware and
at different (and often conflicting) granularities. Unfortunately,
the existing techniques have not been designed to coexist si-
multaneously on one site and cooperatively manage resources
in a streamlined fashion.

To address these gaps, the HPC community needs a holistic
stack for power and energy management. The HPC Power-
Stack Initiative [1], [2] started in May 2018 as a working
group to gather the experience of active developers in industry,

computing centers, and academia for building software inter-
faces and solutions for handling and optimizing the power and
energy consumption in production HPC systems. Based on the
state of the art of the components available in the community
for power and energy management a hierarchical strawman
PowerStack design [1] was proposed to manage power and
energy at three levels of granularity: the system level, the job
level, and the node level. This implies the need to put in place
the following incrementally:

• Define policies that govern site-level requirements, a
power-aware system Resource Manager (RM) / job
scheduler, a power-aware job-level manager, and a power-
aware node manager.

• Define the interfaces between these layers to translate
objectives at each layer into actionable items at the
adjacent lower layer.

• Drive end-to-end optimizations across different layers of
the PowerStack.

III. RESEARCH OPPORTUNITY

To address these requirements above, we formed a Pow-
erStack End-to-End Auto-tuning Working Group in 2019. A
plethora of literature on power-aware tuning exists, including
notable works by the members of this working group. A
primary limitation of most—if not all—of these efforts is that
the tuning research has been solely limited to the individual
layers of the PowerStack.

Our recent work [3] (a) surveyed the high-level objectives
of the existing layer-specific tuning approaches at the different
layers: system (i.e., cluster), job / application, and node, (b)
defined the tunable parameters at each layer, and (c) proposed
and discussed how to autotune the combination of different
parameters at the distinct layers (parameter space) for an
optimal solution (the smallest runtime, the lowest power, or
the lowest energy) under a system power cap as shown in
Figure 1. This diagram shows the interactions among four
layers: system-level, job-level, node-level, and application-
level. However, to the best of our knowledge, it still lacks an
end-to-end autotuning component to target all four layers for
the optimal solution. Specifically, for DoE HPC platforms and
simulations, each system node consists of not only CPUs and
GPUs but also FPGAs and AI accelerators; each simulation
involves not only computation and communication but also
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Fig. 1. The PowerStack System Autotuning Framework

surrogate model training, evaluation, and prediction. Thus,
achieving optimal system-level target metric while satisfying
component-specific goals becomes challenging. In the rest of
this paper, we identify the important unsolved challenges in
collective autotuning of two or more management layers (or
domains) in the PowerStack.

Research Question: How to explore a holistic perfor-
mance, power and energy management software codesign
stack that is capable of optimizing the target power- or energy-
efficiency application-aware metric so that it can trade-off
power, energy, and time to solution in order to optimize the
end-to-end efficiency of HPC codesigns?

IV. TIMELINESS

As the complexity of heterogeneous HPC ecosystems (hard-
ware stacks, software stacks, applications) continues to rise,
achieving optimal performance becomes a challenge. The
number of tunable parameters the user of each layer can
configure has increased, resulting in the overall parame-
ter space growing significantly. Exhaustively evaluating all
parameter combinations becomes very time-consuming, and
consequently, impractical. Therefore, automatic exploration of
the parameter space is desirable. In our recent work [4], we
developed an autotuning framework that leverages Bayesian
optimization with four supervised machine learning methods
to explore the parameter space search and used the autotuning
framework to optimize the loop pragma parameters to improve
the application performance.

Based on our experience of autotuning [3], [4] performance,
power, and energy of applications and systems, we propose an
End-to-end PowerStack Autotuning Framework for DoE HPC
platforms, supplemented by a prototype of the framework
with dynamic power management, and demonstrate at-scale
impact on controlling trade-offs between system performance
and power trade-offs. For the proposed end-to-end Power-
Stack autotuning framework, we will integrate the existing
power-aware resource scheduler SLURM at system level, job
constraint-aware power/energy optimizer GEOPM [5] at job
and node levels, and the application autotuning framework
at application level to develop a prototype to tune all four
layers of PowerStack so that we can have better understand-
ing of the tunable parameters at each layer and interaction
interfaces between layers and potential new requirements in

order to achieve energy efficient codesign goal. The process
of co-tuning in the layers (a) typically targets performance
or power efficiency as the primary metric, (b) complies with
the operating power constraint imposed on the layer, and (c)
attempts to improve the management and orchestration of the
available control parameters that affect the application and/or
hardware performance.

The end goal of this tuning software codesign space is to en-
able HPC sites under power constraints to leverage feedback-
driven interoperability between system resource managers,
runtime systems, and applications to maximize system per-
formance and energy efficiency. Interfaces are required to
facilitate the interaction across three layers. The interfaces
defined must leverage codesign principles as follows:

1) They must enable translation of system-level targets
from the resource manager into job-level targets at the
granularity of runtime systems and the applications.

2) They must enable end-to-end flow of telemetry data at
multiple levels of granularity.

3) They must enable interacting system components to
validate and verify the reliability and robustness of the
flow of signals and controls across the stack

A classic beneficiary of the above efforts will be that of
a site driven by system throughput and power constraints.
A solution adopted by this site will require resource man-
agers to translate throughput-based metrics into optimization
policies which, in turn, would translate to ‘job-level power
budgets‘ or ‘total allocated runtime‘. These metrics in turn
would be leveraged by application-aware runtimes to boost
calculations per time-step per watt. Such end-to-end solutions
are extremely critical for resource-constrained sites. The time
is right to invest in such opportunities to boost gains in power
efficiency from tapping into interoperability between multiple
layers of the HPC PowerStack.
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Challenge: Applications at the extreme edge are subject to power, bandwidth, and environ-
mental constraints, in some cases requiring the design from scratch of a hardware layer capable of
operating in high temperature and high radiation environments. These conditions are crucial for
the DOE mission, both in terms of enhancing our ability to carry out new science and to enable
monitoring and sensing over the energy lifecycle.

Extreme 
edge

Protected 
system HPCApplication

Closeness to physical layer
Larger emulation time scales

Optimization-driven codesign

The design and optimization of these architectures often requires integrating multiple levels of ab-
straction, spanning from high performance computing for data processing, wireless communication,
and system level operation, down to HDL and circuit level emulation for edge architectures. It also
requires integrating vastly different timescales: for instance, in order to properly characterize power
consumption and bandwidth we need to model edge architectures over timescales and tasks relevant
for the target applications, which may involve many clock cycles.

This leads to the following two challenges:

(1) How can we accelerate the optimization of novel architectures in a way that integrates all
the steps from application down to novel devices and incorporates system-level constraints?

(2) Can we emulate architectures at the HDL and circuit levels as they interact with complex,
scientifically relevant environments at speeds faster than real time?

Opportunity: Overcoming existing gaps in hardware design tools and workflows to enable
codesign of novel architectures could be accomplished by focusing on three different thrusts:

(1) The development of rich, interacting environments (digital twins) that can run natively in
leadership computing facilities.

(2) The exploration of novel ways of accelerating the emulation of circuits to benefit from
massive parallelism beyond the capabilities of existing tools.

E-mail address: ayg@anl.gov.
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2 CODESIGN APPROACHES TO ENABLE AND OPTIMIZE COMPUTING AT THE EXTREME EDGE

(3) The integration of these novel tools with optimization frameworks that can focus on archi-
tecture exploration, from swapping modules and components down to the optimization of
specific devices in the case of analog architectures.

We have started to explore such codesign approaches to develop architectures capable of com-
puting at temperatures exceeding 300 deg C, well above the limit of existing hardware, as proof
of concept for an LDRD-funded research project on hardware optimization. These temperatures
are beyond the limits of current Si and SiGe SOI CMOS technology, and would require integrating
JFET-based nmos logic on wide bandgap semiconductors with novel refractory materials.[1, 2]

Our approach focuses on two key ideas: first, we leverage existing machine learning frameworks
to emulate the behavior of digital and analog circuits, using stochastic gradient descent methods
to optimize our architectures to carry out inference and reinforcement learning tasks. This is an
approach that we have already demonstrated in the context of spiking neural networks.[3] Second,
we integrate our architecture with black-box optimization tools to efficiently search over the design
space. In particular, we use DeepHyper [4], a scalable mixed-integer nonlinear optimization package
that is built to take advantage of leadership class computing systems through parallel algorithms
and efficient workflow management systems. The design space includes parameters intrinsic to the
architecture itself, parameters that relate to underlying devices, and parameters, such as the use of
synchronous or asynchronous implementations, that relate to how the architecture interacts with
the rest of the system. Since the model is grounded in the physical layer, we can also extract
information on power consumption and the impact of interfaces in the overall performance.

This approach to codesign can be generalized well beyond this particular example: by designing
modular architectures with components that can be swapped while preserving the overall function-
ality, we can explore complex design spaces spanning from application to basic building blocks in a
massively parallel, asynchronous way. This ability is limited solely by our ability to bring efficient
hardware emulation into leadership computing machines. This approach complements well existing
digital design tools, enabling the exploration of potentially thousands of architectures and downs-
electing the most promising candidates for their implementation and verification using existing
design workflows.

Timeliness: Our approach to codesign is enabled by recent advanced in the area of machine
learning, including both artificial neural networks and optimization. The implementation of effi-
cient emulation tools in leadership computing facilities is also well aligned with DOE’s traditional
emphasis on scientific computing, and could broaden the scope of architectures beyond AI accel-
erators and neuromorphic computing approaches to other critical areas such as advanced wireless
and quantum computing. The ability to bridge from applications back to novel materials would
also benefit other DOE initiatives such as microelectronics, providing a top-down approach that
complements research that is largely focused on emergent materials.

Acknowledgments: This material is based upon work supported by Laboratory Directed Re-
search and Development (LDRD) funding from Argonne National Laboratory, provided by the
Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-
06CH11357.
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I. INTRODUCTION

Integrating seamlessly between large scientific instru-
mentation such as X-ray light source and HPC systems
is a crucial next step to accelerate scientific discoveries
towards future scientific laboratories. We are at an early
stage of such integration. As both temporal and spatial
resolution keep increasing, a massive amount of data
will be generated. As an example, the frame rate of
pixel array detector chips for X-ray light sources will
approach MHz soon, which will eventually generate a
terabit of raw data per chip. Yet large percentage of data
can be outside of region of interests. Connecting between
the edge of scientific facility (e.g., X-ray detector chip)
and HPC systems with high-end networks could only
solve the integration problem partially and is likely to
be impractical in terms of the economical stand point
of view. The size of data needs to be reduced by data
compression, filtering or ultimately AI-based feature
detection in a streaming manner, taking into account
application or experiment requirements. We discuss a
true hardware/software co-design process for streaming
processing hardware, leveraging Chisel, a Scala-based
modern hardware construction language.

Topics: architectures, simulation, codesign methodolo-
gies

II. CHALLENGES

True co-design requires both software and hardware
development. However, genuine hardware experts are
minority in DOE community. Even with more hardware
experts, developing hardware using hardware description
language (HDL) such as Verilog, VHDL is still a daunt-
ing task due to lack of flexible parameter systems and
modern software constructs. In HDL, recursive structure
needs to be unrolled and attributes are hard-coded (e.g.,
names and parameters for unrolled instances), which
significantly affects reusability. On the other hands,
emerging high-level synthesis (HLS) tools [5], which

allows developers to express hardware in a familiar lan-
guage (e.g., a subset of C/C++ language), can potentially
improve productivity and reusability. It still requires
hardware expertise to optimize HLS codes. Unfortu-
nately we have little control over generated circuits such
as timing, resource usage in order to meet requirements.

III. OPPORTUNITIES

As the transistor scaling is coming to halt, custom
hardware development is a new trend in large companies
such as Apple, Google, Microsoft, even previous known
as a software company. This new custom hardware trend
is becoming a good tailwind to hardware ecosystem,
including open-source instruction-set such as RISC-
V [2], open-source hardware implementations [4, 7] and
open-source hardware tools [11, 3] In terms of hard-
ware platform, field-programmable gate array (FPGA)
is readily available these days. HLS further lower the
hurdle to FPGA. Even the barrier to entering ASIC
development is lowering. Google announced that an
open-source foundry PDK recently [1]. The advent of
innovative semiconductor companies like efabless.com
help a small group to tape-out a chip with significantly
lower cost, benefiting from a fully open-source end-to-
end ASIC design flow [6].

What caught our attention was a new class of hard-
ware description language called hardware construction
language (HCL), which addresses productivity chal-
lenges while offering control of generated digital circuits.
Chisel [3] is one of the emerging HCLs and offers
higher expressivity that dramatically improves the pro-
ductivity of the circuit design process. In fact, Chisel is
used for many real-world tapeout designs (e.g., RISC-
V processors, Google’s Edge TPU) and many open-
source academic hardware projects. Technically Chisel
is a class library written in the Scala functional program-
ming language [9], instead of a standalone programming
language. In Chisel, developers write a hardware circuit
generator in Scala using hardware construction primi-



tives provided by Chisel class library so that they can
leverage the power of modern programming language.
Synthesizable Verilog codes are generated by executing
Chisel codes.

One of the interesting aspect of Chisel is that it
encourages test-driven development and offers fully inte-
grated testing harnesses so that users can write test-bench
codes in Scala. Running simulators to test user designs
is straightforward in Chisel and requires no high-end
machines. Since Scala is a powerful modern program-
ming language, software/hardware co-design can be done
through test-bench development. Other important point
is that the quality of circuit design is proportional to the
number of iterations in the design loop (coding, building,
evaluating) in many cases.

At Argonne, we have been using Chisel for hardware
design exploration on data compressor circuits for X-
ray detector ASIC [8]. With a thousand input signals
and large reduction components, the number of lines
in Verilog codes of the compressor design can be an
order of ten thousands for the compressor circuit. In
early design exploration stages, design parameters often
change, which made maintaining Verilog implementa-
tions impractical. Chisel not only allowed us to explore
various compressor designs, but also allowed us to
perform RTL-simulation with actual X-ray input datasets
without additional effort.

Near-detector real-time AI inference capability is ex-
pected to be a core technology for X-ray data analysis in
future. We are currently seeking an opportunity that we
can apply Chisel to generate light-weight AI inference
FPGA firmware that can perform classification at FPGAs
near the detector. We have previously studied FPGA-
based AI acceleration [10] and demonstrated its real-time
performance. New challenges are to optimize firmware
in AI training level (e.g., lower precision) and generate
FPGA firmware from AI model format such as ONNX,
which can lead to automatic data-driven co-design.

IV. CONCLUSION

Since recent custom hardware development trend is
becoming a good tailwind for hardware ecosystem, it is
a good timing to ride on the trend. We have successfully
evaluated Chisel for design exploration of X-ray detec-
tor ASIC’s compressor circuits. From our experiences,
we believe that Chisel or other HCLs can be a great
research vehicle for software/hardware co-design for
scientific instruments/HPC integration and other stream
computing applications (bump-in-wire network, storage).
Additionally, with Chisel’s RISC-V root, our expertise

can be smoothly translated into co-designing RISC-V
accelerators.
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1 Challenge

As Moore’s Law and Dennard scaling are coming to an end, simple technology scaling cannot be
relied on for performance gain, and new technologies and computing paradigms must be developed
to continue improving application performance. To this end, hardware accelerators like GPUs, TPUs,
and FPGAs are being employed as co-processors to traditional systems to accelerate computation.
Additionally, new ways of computing, for example, neuromorphic and quantum computing, are
also showing promise and could be incorporated into large-scale HPC systems. Because different
scientific domains and applications will benefit from different configurations of accelerator types
and computing paradigms, we predict that HPC systems will become “extremely” heterogeneous
[1]. Though such systems could significantly accelerate application performance, there are many
resulting application, system, and hardware development challenges, including: 1) how to write
software to target extremely heterogeneous systems, 2) how to port legacy software to new systems,
3) how the programming environment and runtime system should map the software to utilize the
hardware accelerators efficiently, and 4) how the heterogeneous systems should be designed (i.e.,
which accelerators should be included and how they should be configured).

We believe that by codesigning the applications, runtime environment, and accelerators, it is
possible to achieve high-performance without losing performance portability in future, extremely
heterogeneous systems.

2 Opportunity

Interconnect The challenge of how to design these heterogeneous systems leads to many research
opportunities. One such opportunity is architecture exploration of the interconnect between compute
and memory components. CXL, an emerging and open industry standard processor interconnect, is
designed to enable low-latency memory access and create coherent memory space between CPUs,
accelerators, and memory pools. CXL is a promising interconnect to enable multiple accelerators
and new emerging memory technologies to be incorporated within an extremely heterogeneous node.

Architecture Modeling The interconnect, applications, runtime, and accelerators all need to be
designed together to meet performance and compatibility requirements. Architecture level models
built using tools like GEM5 and SST will enable the joint exploration of all these components using
simulation. Architecture level simulations and machine learning techniques can be used to perform
design space exploration to determine the best architecture configuration [2].

Hardware Design Accelerators are more specialized than general compute cores. Some devices
like FPGAs are re-configurable, while others perform more limited operations. In all cases, a joint
design effort by hardware and software designers is required to develop software that can leverage the
more specialized hardware and design hardware that is well suited to accelerate important software
tasks.

Application Characterization Workload characterization of key target application(s) is pivotal
to a successful co-design effort in informing design space exploration. An in-depth analysis of
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applications and associated proxy apps [3] would entail both static and dynamic analyses as well as
gathering architecture-aware and agnostic metrics. The proliferation of high-bandwidth memory and
complex memory hierarchies necessitate research into trade-offs for memory-bound applications.

Heterogeneous Programming How to best write maintainable code that can target a range of
different accelerators is an ongoing challenge. However, current work is looking at the portability of
popular accelerator languages such as OpenCL and C. Additionally, new frameworks like OneAPI,
SYCL, and OpenARC [4] show promise for enabling heterogeneous compute; however, additional
work is needed on both the language and hardware sides to ensure the performance portability of
software written in these frameworks.

Runtime Another considerable challenge and opportunity is in designing runtime frameworks to
map the work expressed by the application onto hardware for execution. MPI and OpenMP are
widely used solutions for expressing concurrency for distributed applications, but these methods will
fall short when targeting large heterogeneous systems. More complex heterogeneous workflows could
be expressed using a task-based or dataflow-based programming model. Work expressed in these
models could then be automatically parallelized and distributed to the appropriate compute nodes
and accelerators by a runtime system. This system could leverage multiple tuned application kernels
that were either provided or generated from a higher-level language by a compiler. The runtime could
also use architecture-independent workload characteristics [5] and workload-independent hardware
characteristics, along with an AI-assisted scheduling policy to assign tasks and map the work across
the heterogeneous HPC system.

3 Timeliness

The end of simple compute scaling, the rise of open hardware, and the increase in new accelerators
are leading to increasingly heterogeneous architectures. New developments in heterogeneous languages
and runtimes are enabling the software support to leverage this heterogeneous hardware. By
codesigning the applications, programming languages, runtimes, system architectures, and accelerator
hardware, future heterogeneous HPC systems are designed to accelerate workloads beyond what is
currently possible. If we work to codesign these systems now, we can overcome these challenges and
create maintainable, performance portable code.
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Topic: Programming Systems, Co-design Methodologies 
 
Challenge:   Container deployment models have taken the computing industry by storm, 
fundamentally changing how computational workloads are deployed on distributed systems and 
clouds. More recently, container-based scientific computing has also gained traction [1] within the 
HPC community, with several new runtimes and processes specially derived for supercomputers 
[2]. If this trend in usage continues and containers are integrated into modern DevOps solutions 
for scientific computing, then new opportunities arise for better integration between containerized 
workloads, the OS-level virtualization mechanisms, and managing hardware resources for any 
given supercomputing system.  This need will be further driven by the increase in system and node 
level heterogeneity expected in the next decade, whereby no single workload will be able to 
concurrently use all available resources of a given system. As such, increasing supercomputing 
efficiency for extreme heterogeneous systems is likely to require on-node state sharing and 
hardware partitioning of containerized workloads, and hardware co-design is needed.  

Predating the advent of containers, virtual machines and hypervisors handled the task of 
abstracting, emulating, and isolating the underlying hardware for deploying one or more operating 
systems. While this capability ushered in novel cloud paradigms with Infrastructure-as-a-Service, 
hypervisors also drove co-design in hardware where the goal was to simplify or offload hypervisor 
tasks directly to hardware whenever possible. Several examples include second-level address 
translation (often known by implementations such as Extended or Nested Page Tables from Intel 
and AMD, respectively), where CPU instructions were added to manage shadow page table entries 
directly in hardware. Other examples include device multiplexing through hardware capabilities 
such as SR-IOV, which allowed for PCI-Express devices to be safely shared or multiplexed in 
virtual environments.  All of these advances made in hardware resulted in hypervisor performance 
improvements that allowed VMs to approach near-native performance, for both the hyperscaler 
market and production HPC workloads [3, 4]. 

However, containers currently do not utilize any hardware-assisted mechanisms beyond 
traditional memory isolation mechanisms for process separation & security. Instead, the OS is 
responsible for isolating the container process, and then acting as a loose arbiter of underlying 
resources through OS primitives provided by cgroups [5]. While this has proven successful for 
basic resource sharing, time-slicing mechanisms such as those found in the CPU cgroup interfaces 
are fundamentally not well suited for resource partitioning. As an anecdotal example, HPC users 
running containerized workloads constrained by cgroups have found up to 10x performance 
degradation due to ill-informed limits and over-scheduling of OpenMP tasks. While workloads 
can be manually adapted to perform better in cgroups-constrained environments, it nevertheless 
demonstrates that OS-level time-slicing mechanisms do not meet the needs of HPC. 
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Opportunity:  Instead, the HPC system software community requires a new effort to co-design 
hardware assistance for improved resource isolation, partitioning, and quality of service. This 
effort can be divided into three sub co-design areas: CPU partitioning, Memory isolation, and I/O 
multiplexing. For CPU partitioning, cores could be cordoned off from the rest of the OS (and other 
containers) to execute specific CPU-sensitive container processes. This method could build from 
CPU off-lining techniques pioneered by multi-kernels [6], with added features in hardware to 
speed transitions and reroute IRQ requests, for example. L2 & L3 cache partitioning strategies and 
the assignment of NUMA-aware memory regions could help container workloads increase 
memory bandwidth when needed. Furthermore, container runtimes could even negotiate NUMA 
affinity to directly map memory regions to accelerators and GPUS and to improve offload 
latencies, effectively bypassing the OS entirely. Containers will also benefit from hardware-based 
I/O multiplexing solutions like SR-IOV to assign networking interfaces and SmartNICs to specific 
containers. Such hardware-based I/O assistance could provide isolation, quality of service, and OS 
bypass solutions in hardware to insure optimal performance for networking and I/O tasks.  Designs 
could offer more ubiquitous quality of service on every type of hardware resource, perhaps by 
hardware tagging networking data & memory regions, or offloaded kernels, coupled with a unified 
set of OS interfaces exposed to container runtimes.  If hardware-assisted resource isolation and 
partitioning for containers can be coupled with process-based state-sharing properties in shared 
memory and IPC, then HPC workloads can be fundamentally cast as coordinated ensembles of 
containerized units, rather than just as another queue of batched jobs. Effectively, this will enable 
the DOE to increase efficiency by matching available hardware to workload ensembles rather than 
jobs, so extremely heterogenous architectures could achieve 2-4x utilization improvements 
compared to current course-grained node allocation strategies. 
 
Timeliness & Impact:  As containers are increasing in popularity and existing work in hardware 
co-design for VMs has reached relative maturity, now is the ideal time to invest in the co-design 
of hardware-accelerated containerization mechanisms.  With more heterogenous hardware designs 
on the horizon, hardware-assisted partitioning and isolation mechanisms are needed more than 
ever to help increase system utilization across an entire HPC resource. Such capabilities could 
have a significant impact on how scientific computing workloads are developed, deployed, and 
orchestrated on the next generation of supercomputing systems. 
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Challenge: 

The current hardware-software (HW-SW) paradigm in information and communication technologies (ICT) is reaching its 

limits and must change. As the first step Semiconductor Research Corporation (SRC), partnering with Semiconductor 

Industry Association (SIA), has launched a new industry-wide road-mapping initiative called the 2030 Decadal Plan for 

Semiconductors. The use of the information and communication technologies continues to grow without bounds dominated 

by the exponential creation of data that must be moved, stored, computed, communicated, secured and converted to end user 

information. Future ICT systems will require a true codesign optimization across all layers from materials to applications 

(Fig. 1). A number of emerging codesign challenges anticipated over the next decade are outlined in the Decadal Plan, just 

three examples: 

1) Machine Learning/Artificial Intelligence: The recent explosion of artificial 

intelligence (AI) applications is a clear example, and we have only begun to scratch 

the surface. Having computing systems move into domains with true cognition, i. e., 

acquiring understanding through experience, reasoning and perception is a new 

regime. This regime is unachievable with the state-of-the-art semiconductor 

technologies and design practices. As a result, the current design paradigm must 

change to address an information and intelligence-based value proposition with 

semiconductor technologies as the driver. Industry has progressed beyond the 

production of general-purpose processors, advanced GPUs, and AI accelerator chips 

to now give way to approximate computing hardware. Approximate computing refers 

to the tradeoff in effort expended with computation quality. It has become pervasive 

in newer CPUs, GPUs, FPGAs, and memory. A key issue to be addressed is the 

memory access energy, which is about three orders of magnitude in excess of compute 

energy. This constraint underscores the inconvenience of moving data to the CPU for 

computation and makes near-memory computing (NMC) imperative. That said, the 

need for precision-scaling neutralizes the gains from current accelerators’ near-

memory compute. Research is underway to design memory arrays that exploit 

parallelism to lower data-movement cost. Critical evaluations of the performance of 

binary, ternary, and super-ternary/analog in-memory computing, e.g., with resistive switching, are underway. This 

in-memory computing requires better codesign of programmable architectures and peripheral circuits. It can be 

realized by storing data in RAM and processing it in parallel across a cluster of computers. This development in 

hardware should also be complemented with greater development in AI programming frameworks like graph 

networks and Causal/Explainable AI to yield codesign development that could achieve greater workload capabilities. 

2) AI for Science: In 2019, the DOE and National Labs conducted four ‘AI for Science’ townhalls with a final objective 

of obtaining community consensus to guide the strategic planning for scientific AI for the 10 years [2]. Since 

algorithms like deep learning, as data-fitted functions between inputs and outputs, may have reached a stagnation 

point in their potential, it is necessary for the National Labs to drive greater collaboration with industry and academia 

to co-design heterogeneous computing solutions that integrate AI, data analysis, and scientific computing hardware 

designs. Algorithms and computer architectures for AI are evolving quickly and growing more diverse (e.g., 

neuromorphic, quantum, brain-inspiring computing). Effort at the intersection of these domains is also required. 

3) Edge applications: A paradigm shift in how sensed signal or “information” is processed is required in order to 

provide an output (analog or few bytes) of detected “actionable information” from the sensed signal. High 

understanding of the key action objective is needed, as well as the signal and the associated “detection entropy”—

and thus certainty or robustness. In classical information theory, Shannon defines the “information entropy” metric 

as the absolute minimum amount of storage and transmission needed for succinctly capturing any information (as 

opposed to raw data). Here this concept is being extended to the minimum actionable output required to take action, 

which is detected from sensing. This output could be data bits (even a single bit) or an analog output signal 

controlling driving actuation. To produce an actionable output, system knowledge will be required, as will 

consideration of added intelligence to all system components, from the sensor itself to analog signal processing, and 

possibly neural processing in analog and digital domains. Therefore, overall co-design will be required for the most 

Fig. 1. Codesign optimization of ICT systems:  

            Balancing over layers (source: Decadal Plan 

for Semiconductors [1]) 
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robust, compact, energy-efficient, and cost-eff ective solution, as also highlighted in the “Basic Research Needs for 

Microelectronics” report published by the Department of Energy Office of Science Workshop in 2018 [3]. This 

holistic codesign approach is recommended will require:  

• Intelligent sensors and sensor-fusion research — multisensor distributed intelligence  

• Applications and system knowledge research  

• Hierarchical and distributed exploration/optimization  

• Collaborative multi-expertise research projects — Moon Shot demonstrator platform  

• System approach to optimization that crosses boundaries — sensor, analog processing, digital processing, 

ML/detection, etc. 

The codesign aspects of the future Edge system will also impact DOE-specific tasks such as integration of processing 

with scientific instruments and diagnostics for experimental facilities. Also, edge computing capabilities are crucial 

for secure, resilient, operation and control of the future smart power grid. To prevent cascading failure modes, 

inferencing and training needs to be distributed throughout the power grid.  

Perhaps the biggest challenge for the future ICT systems is the absence of unified codesign framework, with most current 

codesign effort being ad hoc, task-specific, and often labor intensive. In fact, different organizations have different definitions 

of what ‘codesign’ is. For example, for semiconductor companies the codesign occurs mainly on device-to-circuits level for 

emerging products, while the IT companies usually consider HW/SW codesign using of-the-shelf hardware offerings.   

Opportunity: 

The proposed strategy is to develop, based on our Decadal Plan, a Codesign 2030 Agenda, with a primary goal of creating a 

world-class Research Center focused on the development and dissemination of tools and methodologies for codesign of 

efficient electronic systems that address the topics above. This will be a new, previously unexplored model of collaboration 

between DOE and industry via SRC, a non-profit specializing in management of industry-relevant fundamental research.  

In our experience public-private partnership is the best avenue to gain rapid advances in the codesign space. A public-private 

partnership in the form of a non-profit and neutral third-party consortium that connects academia, industry, and government 

provides the benefits of reproducibility, replicability, and quality of research. The main mechanism ensuring the high 

standards of research is technology transfer from the university lab into companies, which reproduce it within their research 

and development (R&D) facilities, tailoring it to their needs for integration into commercial products. The experience gained 

by industry can then be returned into the National Laboratories and academic setting in a virtuous cycle of learning and 

innovation that motivates benefits all participants in the consortium. 

SRC (Semiconductor Research Corp.) is a consortium of semiconductor and IT companies that funds and manages university 

research on industry-relevant topics and that explore new technologies important for SRC members. SRC has 24 industry and 

government partners and has invested over $2.5 billion in university research over its 40-year history. Through collaborative 

research, SRC has fueled the technology engine defining the semiconductor and IT industries. The consortium has worked 

successfully with different government agencies and different business models.  

SRC-led workshops on five seismic shifts in ICT, culminated in the 2030 Decadal Plan for Semiconductors. Along with our 

refined approach to collaborative research, it can be activated to address this research imperative and build a foundation for 

transforming codesign effectiveness. SRC is well positioned to accomplish this transformation by catalyzing the intersection 

between different ‘layers’ of the technology stack shown in Fig. 1. As one example of where SRC is currently driving 

codesign, IBM, Arm and Harvard’s CHIPKIT framework provides a reusable SoC subsystem with basic IO, an on-chip 

programmable host, off-chip hosting, memory, and peripherals. New IP blocks can be added to generate custom test chips. 

Central to CHIPKIT, is an agile RTL development flow, including VGEN, a simple Python-based code generation tool [4]. 

Timeliness: 

It is paramount to restore U.S. leadership in microelectronic technologies and innovation. With the 2030 Decadal Plan for 

Semiconductors released in January 2021, now is the crucial time to drive the conversion of the high-level Grand Goals of 

the Decadal Plan into a detailed Semiconductor Agenda toward 2030. Future ICT systems will require a true codesign 

optimization across all layers from materials to applications, and thus the Codesign Research Center and 2030 Agenda are 

most timely. 
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